气体在血液中的运输
- 格式:ppt
- 大小:1.99 MB
- 文档页数:6
气体在血液中的运输掌握内容血红蛋白氧容量、血红蛋白氧含量和血红蛋白氧饱和度、血氧容量、血氧含量和血氧饱和度的概念;氧解离曲线的概念及其各段的特点和意义。
影响氧解离曲线的因素及曲线左移和右移对机体的影响。
熟悉内容气体在血液中的运输形式;CO2的化学结合的形式和影响因素。
血红蛋白与O2的结合对CO2运输的影响;了解内容血红蛋白的结构与性质;CO2离解曲线;[练习]【A1型题】1. 下列有关氧在血液中运输的描述,错误的是A. O2主要与Hb结合运输B. O2与Hb结合反应迅速可逆C. O2与Hb的结合反应需要酶催化D. O2与Hb结合反应受PO2影响E. 1分子Hb可结合运输4分子O22.氧解离曲线是表示下列哪种关系的曲线A. 血红蛋白含量与血氧含量B. 血红蛋白氧饱和度与血氧分压C. 血红蛋白氧饱和度与血红蛋白氧含量D. 血红蛋白浓度与血红蛋白氧容量E. 血红蛋白浓度与血红蛋白氧含量3. Hb的构型由R型变为T型时A.氧离曲线左移B. Hb与O2的亲和力降低C. Hb与H+结合能力降低D. Hb与CO2结合能力降低E. P50降低4. O2的利用系数是指A. 血液流经组织时所含O2量占血O2容量的百分数B. 血液流经组织释放出的O2容积占动脉血O2含量的百分数C. 血液流经组织释放出的O2容积占动脉血O2容量的百分数D. 血液流经组织时释放出的O2含量占动脉血O2含量的百分数E. 动脉血流经组织时释放出的O2含量占动脉血O2容量的百分数5. 氧解离曲线由正常位置向左移A. 表明血液在一定PO2时氧含量减少B. 可发生在贫血时C. 表明血液流经组织时释放氧量增加D. 可见于贮存了数周的血液E. 可见于组织代谢增加时6. 引起氧解离曲线右移的因素是A. PCO2分压升高B. 2,3-DPG降低C. pH升高D. 温度降低E. 吸入气CO浓度升高7. 下列关于氧解离曲线特点的叙述,错误的是A. 曲线上段表明PO2变化对血红蛋白氧含量影响不明显B. 曲线中段最陡,有利于释放出大量O2供给细胞利用C. 曲线下段特点反映机体供O2的贮备能力D. 高原地区如果动脉血PO2高于60mmHg,Hb氧饱和度能达到90%以上E. 剧烈运动细胞代谢活动增强时,血红蛋白氧饱和度将明显降低8. 血液中CO2运输的主要形式是A. 物理溶解B. 氨基甲酰血红蛋白C. 碳酸氢盐D. 氧合血红蛋白E. 去氧血红蛋白9. 下列哪种因素将导致静脉血PO2降低A. 贫血B. CO中毒C. 剧烈运动D. 亚硝酸盐中毒E. 过度通气10. 下列各项中,能引起动脉血PCO2降低的是A. 增大无效腔B. 肺气肿C. 肺水肿D. 呼吸性酸中毒E. 过度通气11. 影响CO2与Hb结合生成氨基甲酰血红蛋白的主要因素是A. 血液PO2B. 血液PCO2C. 氧化作用D. 氧合作用E. 碳酸酐酶的活性12. 体内PCO2最高的部位是A.组织液B. 细胞内液C.静脉血液D.动脉血液E.外周毛细血管血液13. 高原地区,若血红蛋白氧饱和度达到90%以上,需要PO2大于A. 100mmHgB. 90mmHgC. 80mmHgD. 70mmHgE. 60mmHg【B型题】A. 氧合血红蛋白B. 去氧血红蛋白C. 氨基甲酰血红蛋白D. 一氧化碳血红蛋白E. 高铁血红蛋白14. 分子结构较紧密的血红蛋白构型是15. 呈樱桃红色的血红蛋白是A. 肺扩张反射B. 肺萎陷反射C. 化学感受器反射D. 呼吸肌本体感受器反射E. 咳嗽反射【X型题】多项选择题,每题有A、B、C、D四个备选答案,请从中选出2~4个正确答案。
第三节气体在血液中的运输O2和CO2均以物理溶解和化学结合两种形式进行运输,主要以化学结合形式存在,而物理溶解形式所占比例极小,但很重要,起着“桥梁”作用。
因为进入血液中的O2和CO2都是先溶解在血浆中,提高其分压,在发生化学结合。
(气体在血液中的分压取决于物理溶解的压力)一、氧的运输(一)Hb与O2结合的特征(二)氧解离曲线(三)影响氧解离曲线的因素通常用P50来表示Hb对O2的亲和力,P50是使Hb氧饱和度达50%时的PO2,正常约为26.5mmHg。
●P50增大→解离曲线右移→HB对O2的亲和力降低→需要更高的O2才能达到P5O(PCO2↑、PH↓、2,3-DPG↑、温度↑)●P50降低→解离曲线左移→HB对O2的亲和力增加→需要更少的O2就能达到P5O(PCO2↓、PH↑、2,3-DPG↓、温度↓)1.血液PH和PCO2的影响血液PH降低或PCO2升高,HB对O2的亲和力降低,P50增大,曲线右移;血液PH升高或PCO2降低,HB对O2的亲和力增加,P50减小,曲线左移;波尔效应:液酸度和PCO2对HB与O2的亲和力的这种影响称为波尔效应CO2可直接与HB结合而降低亲和力,不过作用很小。
波尔效应的生理意义:它既可以促进肺毛细血管血液摄取O2,又有利于组织毛细血管血液释放O2.2.温度的影响温度升高→亲和力降低→P50增大→曲线右移→促进O2的释放温度降低→亲和力增加→P50减小→曲线左移→利于O2的结合临床上进行低温麻醉手术是因为低温有利于降低组织的耗氧量。
但应注意温度下降可增加HB对O2的亲和力,容易疏忽组织缺氧的情况。
3.红细胞内2,3-二磷酸甘油酸(2,3-DPG)2,3-DPG是糖酵解的产物,在缺氧的情况下,糖酵解增强,2,3-DPG升高→亲和力降低→P50增大→曲线右移(慢性缺氧、贫血、高山低氧),反之左移。
血库中用抗凝剂枸橼酸-葡萄糖溶液保存3周以上的血液,因糖酵解停止,2,3-DPG降低,使得亲和力增加,02不利于解离而影响对组织的供氧。
气体在血液中的运输肺泡扩散入血液的O2必须通过血液循环运送到各组织,从组织扩散入血液的CO2也必须由血液循环送到肺泡。
因此,气体在血液中的运输是实现肺换气和组织换气的重要环节。
O2和CO2在血液中的运输形式有两种,即物理溶解和化学结合。
其中物理溶解的量较少,化学结合为主要运输形式。
由于进入血液的气体必须先溶解,才能进行化学结合,同样结合状态的气体也要先溶解于血液,才能从血液中逸出。
所以虽然物理溶解的量少,但却是气体实现化学结合的必要环节。
一、氧的运输血液中以物理溶解形式存在的O2量仅占血液总O2含量的1.5%左右,化学结合的约占98.5%。
扩散入血液的O2进入红细胞后,与红细胞内的血红蛋白〔Hb〕结合,以氧合血红蛋白〔HbO2〕的形式运输。
〔一〕Hb和O2结合的特征1.快速性和可逆性血红蛋白与O2的结合反应快,可逆,主要受PO2的影响。
当血液流经PO2高的肺部时,血液中的O2扩散入红细胞后,与红细胞内的血红蛋白〔Hb〕结合,形成氧合血红蛋白〔oxyhemoglobin,HbO2〕;当血液流经PO2低的组织,氧合血红蛋白迅速解离,释放出O2,成为去氧血红蛋白〔deoxyhemoglobin,Hb〕,可用下式表示:2222PO PO Hb O HbO −−−→+←−−−高低2.是氧合而非氧化 Fe 2+与O 2结合仍是二价铁,所以,该反应是氧合反应,而不是氧化反应。
3.血红蛋白与O 2结合的量 血液含氧的程度通常用血氧饱和度表示。
在足够PO 2下,1g Hb 可以结合1.34~1.39ml O 2。
如果按正常成年人血液中的血红蛋白浓度为150g/L 计算,100ml 血液中,Hb 所能结合的最大O 2量应为201ml/L 。
Hb 所能结合的最大O 2量称为Hb 的氧容量,简称为血氧容量;而实际结合的O 2量称为Hb 的氧含量,简称血氧含量;血氧含量占血氧容量的百分比称为血氧饱和度。
〔二〕氧解离曲线与影响因素氧解离曲线是表示血液PO 2与血氧饱和度关系的曲线。
一、O₂的运输1. 运输形式血液中所含的O2仅约1.5%以物理溶解的形式运输,其余98.5%则以化学结合的形式运输。
红细胞内血红蛋白的分子结构特征使之成为有效的运输O2的载体。
Hb 与O2结合的特征:(1)结合反应迅速而可逆:不需酶的催化。
(2)结合反应是氧合而非氧化(3)Hb结合O2的量:1分子Hb可结合4分子O2。
Hb氧容量:是指在100ml血液中,Hb所能结合的最大O2量。
Hb氧饱和度:是指Hb氧含量与Hb氧容量的百分比。
(4)氧解离曲线呈S形:无论在结合O2还是释放O2的过程中,Hb的4个亚单位彼此之间有协同效应。
因此,氧解离曲线呈S形。
2. 氧解离曲线是表示血液PO2与Hb氧饱和度关系的曲线,呈S形。
(1)上段:相当于血液PO2在60~100mmHg之间时的Hb氧饱和度,其特点是曲线较平坦,表明在此范围内PO2对Hb饱和度或血氧含量影响不大。
当PO2从100mmHg下降到60mmHg时,Hb氧饱和度为90%,血氧含量下降并不多。
(2)中段:相当于血液PO2在40~60mmHg之间时的Hb氧饱和度,其特点是曲线较陡。
可以反映安静状态下血液对组织的供O2情况。
(3)下段:相当于血液PO2在15~40mmHg 之间时的Hb氧饱和度,其特点是曲线最为陡直,表明血液PO2发生较小变化即可导致Hb氧饱和度的明显改变。
可以反映血液供O2的储备能力。
3. 影响氧解离曲线的因素(1)血液pH和PCO2:血液pH降低或PCO2升高时,Hb对O2的亲和力降低,P50增大,曲线右移;而pH升高或PCO2降低时,则Hb对O2的亲和力增加,P50降低,曲线左移。
血液酸度和PCO2对Hb与O2的亲和力的这种影响称为波尔效应。
(2)温度:温度升高时,Hb对O2的亲和力降低,P50增大,氧解离曲线右移,促进O2的释放;而温度降低时,曲线左移,不利于O2的释放而有利于结合。
(3)红细胞内2,3-二磷酸甘油酸(2,3-DPG):2,3-DPG浓度升高时,Hb对O2的亲和力降低,P50增大,氧解离曲线右移;反之,曲线左移。
气体在血液中的运输肺泡扩散入血液的O2必须通过血液循环运送到各组织,从组织扩散入血液的CO2也必须由血液循环送到肺泡。
因此,气体在血液中的运输是实现肺换气和组织换气的重要环节。
O2和CO2在血液中的运输形式有两种,即物理溶解和化学结合。
其中物理溶解的量较少,化学结合为主要运输形式。
由于进入血液的气体必须先溶解,才能进行化学结合,同样结合状态的气体也要先溶解于血液,才能从血液中逸出。
所以虽然物理溶解的量少,但却是气体实现化学结合的必要环节。
一、氧的运输血液中以物理溶解形式存在的O2量仅占血液总O2含量的1.5%左右,化学结合的约占98.5%。
扩散入血液的O2进入红细胞后,与红细胞内的血红蛋白(Hb)结合,以氧合血红蛋白(HbO2)的形式运输。
(一)Hb和O2结合的特征1.快速性和可逆性血红蛋白与O2的结合反应快,可逆,主要受PO2的影响。
当血液流经PO2高的肺部时,血液中的O2扩散入红细胞后,与红细胞内的血红蛋白(Hb)结合,形成氧合血红蛋白(oxyhemoglobin,HbO2);当血液流经PO2低的组织,氧合血红蛋白迅速解离,释放出O2,成为去氧血红蛋白(deoxyhemoglobin,Hb),可用下式表示:2222PO PO Hb O HbO −−−→+←−−−高低2.是氧合而非氧化 Fe 2+与O 2结合仍是二价铁,所以,该反应是氧合反应,而不是氧化反应。
3.血红蛋白与O 2结合的量 血液含氧的程度通常用血氧饱和度表示。
在足够PO 2下,1g Hb 可以结合1.34~1.39ml O 2。
如果按正常成年人血液中的血红蛋白浓度为150g/L 计算,100ml 血液中,Hb 所能结合的最大O 2量应为201ml/L 。
Hb 所能结合的最大O 2量称为Hb 的氧容量,简称为血氧容量;而实际结合的O 2量称为Hb 的氧含量,简称血氧含量;血氧含量占血氧容量的百分比称为血氧饱和度。
(二)氧解离曲线及影响因素氧解离曲线是表示血液PO 2与血氧饱和度关系的曲线。
第三节气体在血液中的运输经肺换气摄取的02通过血液循环被运输到机体各器官组织供细胞利用;由细胞代产生的C02经组织换气进入血液后,也经血液循环被运输到肺部排出体外。
因此,02和C02的运输是以血液为媒介的。
,02和C02都是以物理溶解和化学结合两种形式存在于血液中。
根据Henry定律,气体在溶液中溶解的量与分压和溶解度成正比,与温度成反比。
温度为380C时,1个大气压下,02和C02在100ml血液中溶解的量分别为2.36ml和48ml。
按此计算,动脉血P02为100mmHg,每100ml血液含溶解的02 0.31ml;静脉血P C02为46mmHg,每100ml血液含溶解的C02 2.9ml。
安静状态下,正常成年人心输出量约5L/min,因此,物理溶解于动脉血液中的02流量仅约15ml/min,物理溶解于静脉血液中的C02流量约为145ml/min。
然而,安静时机体耗氧量约250ml/min,C02生成量约200ml/min。
显然,单靠物理溶解形式来运输02和C02是不能适应机体代需要的。
实际上,机体在进化过程中形成了非常有效的02和C02的化学结合运输形式。
如表5-4所示,血液中的02和C02,主要以化学结合的形式存在,而物理溶解的02和C02所占比例极小;化学结合可使血液对02的运输量增加约65至140倍,对C02的运输量增加近20倍。
.. .专虽然血液中以物理溶解形式存在的02和C02很少,但很重要,因为必须先有溶解才能发生化学结合。
在肺换气或组织换气时,进入血液的02和C02都是先溶解在血浆中,提高各自的分压,再出现化学结合;02和C02。
从血液释放时,也是溶解的先逸出,使各自的分压下降,然后化学结合的02和C02,再分离出来,溶解到血浆中。
物理溶解和化学结合两者之间处于动态平衡。
下面主要讨论02和C02的化学结合形式的运输。
一、氧的运输血液中以物理溶解形式存在的02量仅占血液总02含量的1.5%左右,化学结合的约占98.5%。