随机现象的数学模拟
- 格式:doc
- 大小:47.00 KB
- 文档页数:6
第1章 随机事件1.1 随机事件1.1.1 随机现象与随机试验概率论与数理统计是研究随机现象统计规律的一门数学分科.什么是随机现象呢?下面让我们先做两个简单的试验:试验一:一个盒子中有10个完全相同的白球,搅匀后从中任意摸取一球;试验二:一个盒子中有10个相同的球,其中5个是白色的,另外5个是黑色的,搅匀后从中任意摸取一球.分析上述两个试验结果给出下述两个基本概念:确定性现象:在一定条件下必然发生的现象称为确定性现象.试验一所代表的类型即是确定性现象.试验二所代表的类型,有多于一种可能的试验结果,而且在一次试验之前不能确定会出现哪一个结果,这一类试验称为随机试验.在客观世界中随机现象也是极为普遍的,例如:某地区的年降雨量;检查流水生产线上的一件产品,是合格品还是不合格;打靶射击时,弹着点离靶心的距离,等等.在条件相同的一系列重复观察中,会时而出现时而不出现,呈现出不确定性,并且在每次观察之前不能准确预料其是否出现,这类现象称之为随机现象.在相同条件下多次重复某一试验或观察时,虽然结果具有不确定性,但会表现出一定的规律性,这种规律性称之为统计规律性.那么如何来研究随机现象的统计规律呢?对随机现象进行的实验与观察统称为试验.具有下列特征的试验称为随机试验:1.可在相同的条件下重复进行;2.试验结果不止一个,但在试验之前能明确试验所有可能的结果;3.试验前不能确定到底会出现哪一个结果.随机试验一般用大写英文字母E 表示.如:1E :抛一枚硬币,观察出现正面还是反面(分别用“H ” 和“T ” 表示出现正面和反面);2E :抛两枚硬币,观察出现的结果;3E :掷一颗骰子,观察出现的点数;4E :记录某网站一分钟内被点击的次数;5E :对一目标进行射击,直到命中为止,观察其结果;6E :在一批灯泡中任取一只,测其寿命.1.1.2 样本空间与随机事件对于随机试验,虽然在我们试验之前不能预知试验的结果,但可以确定试验的所有可能的结果.定义1.1.1 样本空间:随机试验所有可能的结果组成的集合称为样本空间,通常用字母Ω表示.定义1.1.2 样本点:随机试验每一个可能的结果称为样本点,通常用字母ω表示样本点,即为Ω中的元素.例1.1.1 一盒子中有黑球、白球,从中任取一球,观察其颜色,记1ω={取得白球},2ω={取得黑球},则12{,}ωωΩ=.例 1.1.2 一个盒子中有十个完全相同球,分别标以号码1210,,,,从中任取一球,令 i ={取得球的号码为i },则{1,210}Ω=.例1.1.3 写出16~E E 的样本空间.解 16~E E 的样本空间分别为:(1) 1{,}H T Ω=;(2) 2{,,,}HH HT TH TT Ω=;(3) 3{1,2,3,4,5,6}Ω=;(4) 4{0,1,2}Ω=;(5) 5{(,)|0,0}x y x y Ω=>>;(6) 6{|0}t t Ω=≥.在实际中,我们通常并不关心所有的样本点,而是只关注一些满足一定条件的样本点,如在随机试验6E 中,若规定这种灯泡的寿命超过1000小时为一级品,那么我们只关心{|1000}t t >中的样本点,所以我们有如下定义:定义1.1.3 随机事件:样本空间Ω的子集,称为随机事件,用大写字母,,,,A B C D 表示,即随机事件为满足一定条件的样本点组成的集合.特别的,仅由一个样本点的事件称为基本事件,它是随机试验的直接结果,每次试验必定发生且只可能发生一个基本事件;全体样本点组成的事件称为必然事件,记为Ω,每次试验必然事件必定发生;不包含任何样本点的事件称为不可能事件,记为∅,每次试验不可能事件必定不发生.在每次试验中,当且仅当事件A 中的一个样本点出现时,称事件A 发生.例如在3E 中,如果用A 表示事件“掷出奇点数”,那么A 是一个随机事件.由于在一次投掷中,当且仅当掷出的点数是1,3,5中的任何一个时才称事件A 发生了,所以我们把事件A 表示为{}1,3,5A =;“掷出的点数不超过6”就是必然事件,用集合表示这一事件就是3E 的样本空间{}1,2,3,4,5,6Ω=.而事件“掷出的点数大于6”是不可能事件,这个事件不包括3E 的任何一个可能结果,所以用空集∅表示.一个样本空间Ω中,可以有很多的随机事件.概率论的任务之一,是研究随机事件的规律,通过对较简单事件规律的研究去掌握更复杂事件的规律.下面我们来介绍事件之间的关系和事件之间的运算规律.1.1.3 事件的关系及运算因为事件是一个集合,因而事件间的关系和运算是按集合间的关系和运算来处理的.下面给出这些关系和运算在概率中的提法,并根据“事件发生”的含义,给出它们在概率中的含义.设随机试验E 的样本空间为Ω,,,(1,2,)k A B A k =是Ω的子集.1. 事件的关系(1) 事件的包含与相等:若事件A 发生必然导致事件B 发生,则称事件A 包含于事件 B ,记为A B ⊃或者B A ⊂.:{}A B A,B ⊂∈∈ωω则.见文氏(Venn )图1.1.若B A ⊂且A B ⊂,即B A =,则称事件A 与事件B 相等.(2) 事件的和:事件A 与事件B 至少有一个发生的事件称为事件A 与事件B 的和事件, 记为A B .事件A B 发生意味着:或事件A 发生,或事件B 发生,或事件A 与事件B 都发生.{}A B A,B =∈∈ωω或.见文氏(Venn )图1.1.推广121ni n i A A A A ==,表示12,,,n A A A 至少有一个发生, 121i i A A A ∞==,表示12,,A A 至少有一个发生.(3) 事件的积:事件A 与事件B 都发生的事件称为事件A 与事件B 的积事件,记为A B ,也简记为AB .事件A B (或AB )发生意味着事件A 发生且事件B 也发生,即A 与B 都发生.{}A B A,B =∈∈ωω且.见文氏图1.1.推广121ni n i A A A A ==,表示12,,,n A A A 同时发生, 121i i A A A ∞==,表示12,,A A 同时发生.(4) 事件的差:事件A 发生而事件B 不发生的事件称为事件A 与事件B 的差事件,记为B A -,}A B {A,B -=ω∈ω∉且.见文氏图1.1.注:A B A AB -=-.(5) 互不相容事件(互斥): 若事件A 与事件B 不能同时发生,即AB =∅,则称事件A 与事件B 是互斥的,或称它们是互不相容的.见文氏图1.1.若事件12,,,n A A A 中的任意两个都互斥,则称这些事件是两两互斥的. (6) 对立事件:“A 不发生”的事件称为事件A 的对立事件,记为A .A 和A 满足:A A =Ω,AA =∅.见文氏图1.1:注:① __A A =Ω-;②在一次随机试验中A 和A 有一个发生而且只有一个发生.图1.1事件的关系图 由上述可见概率论中事件间的关系与集合论中集合之间的关系是一致的,于是事件之间的运算规律与集合之间的运算规律也是一致的.2.事件的运算规律设C B A ,,为事件,则事件之间的运算满足:(1) 交换律:A B B A =,BA AB =.(2) 结合律:()()A B C A B C =,)()(BC A C AB =.(3) 分配律:()()()A B C AC BC =,()()()AB C A C B C =. (4) 对偶律:A B AB =;___AB A B =.例1.1.4 甲,乙,丙三人各射一次靶,记事件A ={甲中靶},事件B ={乙中靶},事件C ={丙中靶},用上述三个事件的运算来分别表示下列各事件:(1)“甲未中靶”;(2)“甲中靶而乙未中靶”;(3)“三人中只有丙未中靶”;(4)“三人中恰好有一人中靶”;(5)“ 三人中至少有一人中靶”;(6)“三人中至少有一人未中靶”;(7)“三人中恰有两人中靶”;(8)“三人中至少两人中靶”;(9)“三人均未中靶”;(10)“三人中至多一人中靶”;(11)“三人中至多两人中靶”.解(1)“甲未中靶”=A;=;(2)“甲中靶而乙未中靶”AB=;(3)“三人中只有丙未中靶”ABC=;(4)“三人中恰好有一人中靶”ABC ABC ABC=;(5)“三人中至少有一人中靶”A B C==ABC;(6)“三人中至少有一人未中靶”A B C=;(7)“三人中恰有两人中靶”ABC ABC ABC=;(8)“三人中至少两人中靶”AB AC BC=;(9)“三人均未中靶”ABC=;(10)“三人中至多一人中靶”ABC ABC ABC ABC==A B C.(11)“三人中至多两人中靶”ABC注:用其它事件的运算来表示一个事件,方法往往不唯一,如上例1.1.4中的(6)和(11)所表示的事件实际上是同一事件.1.2 随机事件的概率在一次随机试验中,除必然事件一定发生,不可能事件不发生外,一般的随机事件可能发生,也可能不发生,于是需要知道它发生的可能性到底有多大.概率是用来描述随机事件发生的可能性的大小的一种数量指标,它是逐步形成和完善起来的.下面我们就先引入频率的概念,然后研究频率的性质,进而引出概率的定义.1.2.1事件的频率定义 1.2.1 对于一个随机事件A 来说,在n 次重复试验中,记A n 为随机事件A 出现的次数,又A n 称为事件A 的频数,称()n f A = A n n为事件的频率. 由上述定义,对于事件的频率,我们很容易得到如下性质:(1)0()1n f A ≤≤;(2)()1n f Ω=;(3)对于k 个两两互斥的事件12,,,k A A A ,有11()k kn i n i i i f A f A ==⎛⎫= ⎪⎝⎭∑.根据上述定义可知频率反应了一个随机事件发生的频繁程度,人们经过长期的实践发现,虽然个别随机事件在某次试验或观察中可能出现也可能不出现,但在大量试验中它却呈现出明显的规律性——频率稳定性.在掷一枚均匀的硬币时,既可能出现正面,也可能出现反面,在大量试验中出现正面和反面的频率,都应接近于50%,为了验证这点,历史上曾有不少数学家做过这个试验,其结果如下:又如,在英语中某些字母出现的频率远远高于另外一些字母.而且各个字母被使用的频率相当稳定.例如,下面就是英文字母使用频率的一份统计表.对一随机事件来说,如果它发生的频率越大,自然这个事件在一次试验中发生的可能性就越大,所以频率在一定程度上反映了事件发生可能性的大小.如上述两个试验,尽管每做n 次试验,所得到的频率()n f A 各不相同,但随着试验次数n 的增加,事件A 的频率()n f A 与会逐渐稳定在一个常数附近,而实际上这一常数即为事件A 的概率.下面给出概率的一个严密的定义.20世纪30年代中期,柯尔莫哥洛夫给出了概率的严密的公理化定义.定义1.2.2 设Ω是随机试验E 的样本空间,对于E 的每一个随机事件A ,定义一个实数()P A 与之对应.若实值集合函数()P ⋅满足下列条件:(1)非负性:对于每个随机事件A ,都有()0;P A ≥(2)规范性:()1P Ω=;(3)可列可加性:若事件12,,,A A 两两互斥,则有 11()i i i i P A P A ∞∞==⎛⎫= ⎪⎝⎭∑, (1.2.1)则称()P ⋅为概率,()P A 为事件A 的概率.由概率的定义,可得到概率的以下性质:性质1 ()0P ∅=.性质2 (有限可加性) 设12,,,n A A A 是两两互斥的事件,则 121()()nn k k P A A A P A ==∑ (1.2.2)性质3 对任意事件A ,有()1()P A P A =-.性质4 对任意事件,A B ,若,A B ⊂则()()()P B A P B P A -=-. (1.2.3)性质5 若,B A ⊂则有()()P B P A ≥.性质6 对于任一事件A ,有0()1P A ≤≤.性质7(减法公式) 对任意事件,A B ,有()()()P B A P B P AB -=-. (1.2.4) 证 因为B A B AB -=-,且AB B ⊂,由(1.2.3),()()()()P B A P B AB P B P AB -=-=-.性质8 (加法公式) 对任意事件,A B ,有()()()() P P AB A P B P AB =+-.(1.2.5) 证 由于 ()A B A B AB =-,且(),A B AB -=∅于是有()()()()()()P A B P A P B AB P A P B P AB =+-=+-.推广 ,,A B C 是任意三个事件,则有()()()()()()()().P A B C P A P B P C P AB P AC P BC P ABC =++---+一般,对于任意n 个事件12,,,n A A A 有1121111()()()()...(1)()n n n i i i j i j k n i i j n i j k n i P A P A P A A P A A A P A A A -=≤<≤≤<<≤==-+++-∑∑∑.1.3 古典概率模型古典概型是人们最初讨论的一种随机试验,本节即要讨论古典概型中随机事件的概率.下面先看第1节的三个例子:1E : 抛一枚硬币,观察出现正面还是反面.(分别用“H ” 和“T ” 表示出正面和反面); 2E :抛两枚硬币,观察出现的结果;3E :掷一颗骰子,观察出现的点数.上述三个例子即为古典概型随机试验,它们有共同的特点:(1)样本空间只包含有限个样本点;(2)每个样本点在每次随机试验中等可能出现.凡是具有上述两个特点的随机试验就称为是古典概型,那么在古典概型中随机事件的概率应该如何计算?定义1.3.1 随机试验E 是古典概型,样本空间Ω共含有n 个样本点,随机事件A 含有r 个样本点,则定义事件A 的概率为: () A r P A n==Ω中本中本样点个数 样点个数. (1.3.1) 古典概型中许多概率的计算相当困难而富有技巧,按照上述概率的计算公式,计算的要点是给定样本点,并计算它的总数,而后再计算所求事件中含的样本点的数目.下面我们看一些典型的古典概率计算的例子.例1.3.1 将一枚硬币抛掷两次,设事件1A ={恰有一次出现正面};事件2A ={至少有一次出现正面},求1()P A 和2()P A .解 正面记为“H ”,反面记为“T ”,则随机试验的样本空间为{,,,}HH HT TH TT Ω=, 而 {}1,A HT TH =,{},,2A HH HT TH =,于是121()42P A ==,23()4P A =. 例1.3.2 有10个电阻,其电阻值分别为1210ΩΩ⋯Ω,,,,从中取出三个,求取出的三个电阻,一个小于5Ω,一个等于5Ω,另一个大于5Ω的概率.解 把从10个电阻中取出3个的各种可能取法作为样本点全体,这是古典概型,样本空间的样本点数为103⎛⎫ ⎪⎝⎭,所求事件含样本点数为⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛151114.故所求概率为 41511111063P ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭==⎛⎫ ⎪⎝⎭. 例1.3.3 30名学生中有3名运动员,将这30名学生平均分成3组,求:(1)每组有一名运动员的概率;(2)3名运动员集中在一个组的概率.解 设事件A={每组有一名运动员},B={3名运动员集中在一组},30名学生平均分成3组共有30201030!10101010!10!10!⎛⎫⎛⎫⎛⎫= ⎪⎪⎪⎝⎭⎝⎭⎝⎭种分法. (1)保证每组有一名运动员则有27!3!9!9!9!分法,所以50()30!20310!10!10!P A =27!3!9!9!9!=; (2)让3名运动员集中在一个组,则有272010371010⎛⎫⎛⎫⎛⎫⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭分法,所以27201037101018()30!20310!10!10!P B ⎛⎫⎛⎫⎛⎫⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭==. 例1.3.4(摸球模型)(1) (无放回地摸球)设袋中有M 个白球和N 个黑球,现从袋中无放回地依次摸出m n +个球,求所取球恰好含m 个白球,n 个黑球的概率.解 样本空间所含样本点总数为,M N m n +⎛⎫⎪+⎝⎭所求事件含的样本点数为,M N m n ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭所以所求概率为 M N m n P M N m n ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=+⎛⎫ ⎪+⎝⎭. (2) 有放回地摸球设袋中有4只红球和6只黑球,现从袋中有放回地摸球3次,求前2 次摸到黑球、第3 次摸到红球的概率.解 样本空间点总数为310101010⨯⨯=,所求事件所含样本点数为664⨯⨯,故 366410P ⨯⨯= 0.144=. 例1.3.5(盒子模型)设有n 个球,每个都能以相同的概率被放到N 个盒子()N n ≥的每一个盒子中,试求:(1)某指定的n 个盒子中各有一个球的概率;(2)恰好有n 个盒子中各有一个球的概率.解 设事件A={某指定的n 个盒子中各有一个球},B={任意n 个盒子中各有一个球}. 由于每个球可落入N 个盒子中的任一个,所以n 个球在N 个盒子中的分布相当于从N 个元素中选取n 个进行有重复的排列,故共有nN 种可能分布.对于事件A ,相当于n 个球在那指定的n 个盒子中全排列,总数为!n ,所以 !()n n P A N=. 对于事件B ,n 个盒子可以任意,即可以从N 个盒子中任意选出n 个来,这种选法共有⎪⎪⎭⎫ ⎝⎛n N 种,对于每种选定的n 个盒子,再全排列,所以事件B 放法共有!N n n ⎛⎫ ⎪⎝⎭种,所以!()n N n n P B N⎛⎫ ⎪⎝⎭=. 上述例子是古典概型中一个比较典型的问题,不少问题都可以归结为它.例如概率论历史上有一个颇为有名的问题:要求参加某次集会的n 个人中没有两个人生日相同的概率.若把n个人看作上面问题中的n 个球,而把一年的365天作为盒子,则365N =,这时按照上述事件B 概率的求法就给出所求的概率.例如当40n =时,0109P =.,即40人中至少有两个人生日相同的概率为0891.,这个概率已经相当大了.例1.3.6 袋中有a 只黑球,b 只白球,它们除颜色不同外,其他方面没有差别,把球均匀混合,然后随机取出来,一次取一个,求第k 次取出的球是黑球的概率()1k a b ≤≤+. 解 设事件A ={第k 次取出的球是黑球}.法1 把a 只黑球及b 只白球都看作是不同的(例如设想把它们进行编号),若把取出的球依次放在排列成一行的a b +个位置上,则可能的排列法相当于把a b +个元素进行全排列,总数为()!a b +,把它们作为样本点全体.A 事件所含样本点数为(1)!a a b ⨯+-,这是因为第k 次取得黑球有a 种取法,而另外1a b +-次取球相当于1a b +-只球进行全排列,有(1)!a b +-种取法,故所求概率为(1)!()()!a a b a P A a b a b⨯+-==++, 结果与k 无关.实际上本例就是一抽签模型,例如在体育比赛中进行抽签,对各队机会均等,与抽签的先后次序无关.法2 把a 只黑球看作是没有区别的,把b 只白球也看作是没有区别的.仍把取出的球依次放在排列成一行的a b +位置上,因若把a 只黑球的位置固定下来则其他位置必然是放白球,而黑球的位置可以有⎪⎪⎭⎫⎝⎛+b b a 种放法,以这种放法作为样本点.对于事件A ,由于第k 次取得黑球,这个位置必须放黑球,剩下的黑球可以在1a b +-个位置上任取1a -个位置,因此共有⎪⎪⎭⎫ ⎝⎛--+11a b a 种放法.所以所求概率为b a a a b a a b a P k +=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛--+=11. 两种不同的解法答案相同,两种解法的区别在于,选取的样本空间不同.在[法一]中把球看作是“有区别的”,而在[法二]中则对同色球不加区别,因此在第一种解法中要顾及各黑球及各白球间的顺序而用排列,第二种解法则不注意顺序而用组合,但最后还是得出了相同的答案.由本例,我们必须注意,在计算样本点总数及所求事件含的样本点数时,必须对同一个确定的样本空间考虑,因此其中一个考虑顺序,另一个也必须考虑顺序,否则结果一定不正确.1.4 条件概率在许多实际问题中,除了考虑()P B 外,有时还需要考虑在一定条件下事件B 发生的概率,比如,已知事件A 发生的条件下,事件B 发生的概率,我们称这种概率为事件A 发生的条件下事件B 发生的条件概率,记为(|)P B A .1.4.1 条件概率的定义引例 盒中有4个外形相同的球,分别标有1,2,3,4,现在从盒中有放回的取两次球,每次取一球.则该试验的所有可能的结果为(1,1) (1,2) (1,3) (1,4)(2,1) (2,2) (2,3) (2,4)(3,1) (3,2) (3,3) (3,4)(4,1) (4,2) (4,3) (4,4)其中(,)i j 表示第一次取i 号球,第二次取j 号球,设A ={ 第一次取出球的标号为2},B ={ 取出的两球标号之和为4}, 则事件{(13),(2,2),(3,1)}B =,,因此事件B 的概率为 ()316P B =. 下面我们考虑在事件A 发生的条件下,事件B 发生的概率(|)P B A .由于已知事件A 已经发生,{(21),(2,2),(2,3),(2,4)}A =,,这时,事件B 在事件A 已经发生的条件下发生,那么只可能出现样本点(2,2),因此A 发生的条件下B 发生的概率为14,即 1(|)4P B A =. 由引例可以看出,事件B 在“条件A 已发生”这附加条件下的概率与不附加这个条件的概率是不同的.那么如何计算条件概率(|)P B A 呢?定义1.4.1 设A 、B 是两个随机事件,()0P A >,称()(|)()P AB P B A P A = (1.4.1) 为在事件A 已发生的条件下事件B 发生的条件概率. 在上述引例中,41(),()1616P A P AB ==,显然有()(|)()P AB P B A P A ==14. 例1.4.1 10个产品中有7个正品,3个次品,按照不放回抽样,每次一个,抽取两次,求(1) 两次都抽到次品的概率;(2 ) 第二次才取到次品的概率;(3)已知第一次取到次品,第二次又取到次品的概率.解 设A ,B 分别表示第一次和第二次抽到的是次品.(1) ()P AB =32110915⨯⨯=; (2) 737()10930P AB ⨯==⨯;(3) 12()215(|)39()1510P AB P B A P A ====.例 1.4.2 某种动物由出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4, 如果现在有一个20岁的这种动物,问它能活到25岁以上的概率是多少?解 设事件A ={能活20岁以上},事件B ={能活25岁以上},即要求条件概率P(B A),由题()0.8P A =,()0.4P B =,()()P AB P B =,于是()(|)()P AB P B A P A =0.410.82==. 1.4.2 条件概率)|(A P ⋅的性质容易验证条件概率|P A ⋅()也有非负性、规范性和可列可加性三条性质: (1) 非负性:对任意的B ,(|)P B A ≥0; (2) 规范性: (|)1P A Ω=;(3) 可列可加性:对任意的一列两两互斥的事件,(1,2,)i B i ⋯=,有 11(|)(|)i i i i P B A P B A ∞∞===∑.因此,条件概率仍然是概率,所以条件概率也具有有限可加性、减法公式、加法公式等无条件概率所具有的一些性质.如对任意的12,B B ,有:(1) 121212(|)(|)(|)(|)P B B A P B A P B A P B B A =+-;(2)12112(|)(|)(|)P B B A P B A P B B A -=-; (3)若()(|)1()P B A B P B A P A ⊂==,则. 例1.4.3 一张储蓄卡的密码共6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解 设事件A ={任意按最后一位数字,不超过2次就按对},事件i A ={第i 次按对密码}(1,2i =),则__112()A A A A =,(1)因为事件1A 与事件12A A 互斥,由概率的加法公式得__1121911()()()101095P A P A P A A ⨯=+=+=⨯;(2)事件B ={最后一位按偶数},则____112112(|)(()|)(|)(|)P A B P A A A B P A B P A A B ==+14125545⨯=+=⨯. 1.4.3 乘法公式由条件概率定义的(1.4.1)可得,当()0P A >时,有()(|)P AB P A P B A =(), (1.4.2) 及()0P B >时,()(|)P AB P B P A B =(). (1.4.3) 推广 12,,,n A A A 为n 个事件,且12n-1()0P A A A >,则有 12n 121321n 121()()(|)(|)(|)n P A A A P A P A A P A A A P A A A A -=. (1.4.4)特别的,当3n =时,有()(|)(|)P ABC P A P B A P C AB =().乘法公式一般用于计算多个事件同时发生的概率.例1.4.4设袋中装有r 只红球,t 只白球.每次取一只观察其颜色并放回,并同时再放入a 只同色球,连续取四次,试求第一次、第二次取到红球且第三、四次取到白球的概率.解 以i A 表示事件“第i 次取到红球”1,2,3,4i =,则43,A A 分别表示第三次、第四次取到白球,即要求事件1234A A A A 的概率,由乘法公式(1.4.4)得12341213124123()()(|)(|)(|)P A A A A P A P A A P A A A P A A A A =r r a t t ar t r t a r t a a r t a a a ++=⋅⋅⋅++++++++++ ()()()()(2)(3)rt r a t a r t r t a r t a r t a ++=+++++++.1.4.4全概率公式和贝叶斯公式全概率公式和贝叶斯公式是概率论中两个比较重要的公式,它们将一个比较复杂事件的概率转化为不同条件下发生的比较简单的条件概率来计算.下面首先介绍一下样本空间划分的概念.定义 1.4.2 设Ω是随机试验E 的样本空间,12,,,n B B B 是E 的一列随机事件,若 (1),,,1,2,,i j B B i j i j n =∅≠=;(2)12n B B B =Ω,则称12,,,n B B B 为样本空间Ω的一个有限划分.定理 1.4.1 (全概率公式)设12,,,n B B B 是样本空间Ω的一个有限划分,且()0,1,2,i P B i n >=,则对任一事件A ,有()1()(|)iii P A P B P A B ∞==∑. (1.4.5)证1()()[()]ni i P A P A P A B ==Ω=1(())ni i P AB ==,对任意i j i j,B B ≠=∅,得()i AB ()()=Φi j AB AB ,由概率的有限可加性得11(())()nn i i i i P AB P AB ===∑=1()(|)ni i i P B P A B =∑.例1.4.5 有一批同一型号的产品,其中由甲厂生产的占30%,乙厂生产的占50%,丙厂生产的占20%,又知这甲、乙、丙三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件,取到次品的概率是多少?解 设事件A 为“任取一件为次品”,事件123,,B B B 分别为产品由甲、乙、丙厂生产,显然123,B B B =Ω且,,1,2,3i j B B i j =∅=,即123B ,B ,B 构成样本空间的划分.所以由(1.4.5)112233()()()()()()()P A P A B P B P A B P B P A B P B =++,123()0.02()0.01()0.01P A B P A B P A B ===,,,故112233()()()()()()()P A P A B P B P A B P B P A B P B =++0020300105001020013.......=⨯+⨯+⨯=.定理 1.4.2 (贝叶斯公式)设12,,,n B B B 是样本空间Ω的一个划分,()i P B 0>,1,2,3,,i n =,对任意事件A ,有1()(|)(|),1,2,...()(|)i i i njjj P B P A B P B A i n P B P A B ===∑. (1.4.6)证 i i P(B A )P(B A )P(A )=1i i njj j P(A B )P(B ),P(A B)P(B )==∑ 1,2,,i n =.例1.4.6 (续例1.4.5) 有一批同一型号的产品,其中由甲厂生产的占30%,乙厂生产的占50%,丙厂生产的占20%,又知这甲、乙、丙三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件,发现是次品,那么它分别由甲、乙、丙厂生产的概率是多少?解 123(),(),()P B A P B A P B A 即为所要求的条件概率,由贝叶斯公式(1.4.6),11131()(|)0.020.3(|)0.460.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑;22231()(|)0.010.5(|)0.380.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑;33331()(|)0.010.2(|)0.150.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑.例1.4.7袋中有4个红球,6个白球,作不放回的摸球两次,求(1)第二次摸到红球的概率;(2)已知第二次摸到红球,求第一次摸到的也是红球的概率.解 设A ={第一次摸到红球},A ={第一次摸到白球},B ={第二次摸到红球}.显然11114634(),(),(|),(|)101099P A P A P B A P B A ====; (1)由全概率公式(1.4.5)111143642()()(|)()(|)1091095P B P A P B A P A P B A =+=⨯+⨯=; (2)由贝叶斯公式(1.4.5)1111111()(|)1(|)()(|)()(|)3P A P B A P A B P A P B A P A P B A ==+.例1.4.8 某一地区患有癌症的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04,现抽查了一个人,试验反应是阳性,问此人是癌症患者的概率有多大?解 设A ={抽查的人患有癌症},B ={试验结果是阳性},则__A ={抽查的人没有患癌症}.()0.005, ()0.995 ,(|)0.95, (|)0.04P A P A P B A P B A ====.由贝叶斯公式(1.4.5),得()(|)(|)0.1066 ()(|)()(|)P A P B A P A B P A P B A P A P B A ==+.这表明某人的试验结果为阳性,但此人确患癌症的概率却非常小,只有0.1066,即平均来说,1000个检查结果呈阳性的人中大约只有107人确患癌症.那是否说明该试验对于诊断一个人是否患有癌症没有意义?我们来分析一下.如果不做试验,随机抽取一人,那么他是癌症患者的概率为()0.005P A =,若进行试验,试验后呈阳性反应,则根据试验得到的信息:此人是癌症患者的概率为P (|)0.1066A B =.概率从0.005增加到0.1066,约增加了21倍,说明试验对于诊断一个人是否患癌症有意义.至于试验结果呈阳性患癌症的概率还如此低,是由癌症的患病率非常低0.005导致的.1.5 事件的独立性条件概率(|)P B A 通常来说与()P B 不相等,这反映了事件A 的发生与否对事件B 有影响;若(|)P B A 与()P B 相等,则反映了事件A 的发生与否对事件B 无影响.如:抛硬币两次,事件A ={第一次正面向上},B ={第二次正面向上}.1()(|)2P B P B A ==. 所以两个事件A 、B 其中一个发生与否,不影响另一件事件发生的可能性大小,此时 (|)()P B A P B =,即:()(|)()()P AB P B A P B P A ==, 于是得到()()()P AB P A P B =,我们称A 与B 相互独立.定义 1.5.1 对事件A 和B ,如果()()()P AB P A P B =,则称事件A 与事件B 相互独立.定理1.5.1 设A ,B 是两个事件, 且0)(>A P ,若A ,B 相互独立,则)()|(A P B A P =. 定理1.5.2 设事件A ,B 相互独立,则A 与B ,A 与B ,A 与B 各对事件也相互独立. 证 因为____()A A A BB ABA B =Ω==,显然__,AB A B 互斥,故______()()()()()()()P A P ABAB P AB P AB P A P B P AB ==+=+,于是____()()()()()(1())()()P A B P A P A P B P A P B P A P B =-=-=,所以A 与B 相互独立.由A ,B 相互独立可以推出A 与B 相互独立,于是,A 与B 相互独立可推出A 与B 相互独立,再由B =B ,又可推出A 与B 相互独立.定理1.5.3 若事件A ,B 相互独立,且0()1P A <<,则__(|)(|)()P B A P B A P B ==.证()()()(|)()()()P AB P A P B P B A P B P A P A ===,__________()()()(|)()()()P A B P A P B P B A P B P A P A ===. 定义1.5.2 (三个事件相互独立) 设C B A ,,为三个事件,若等式),()()()(),()()(),()()(),()()(C P B P A P ABC P C P B P BC P C P A P AC P B P A P AB P ====同时满足,则称事件C B A ,,相互独立.类似的可以定义n 个事件相互独立.定义1.5.3 设12,,,n A A A 是n 个事件,若对其中任意k 个事件12,,,k i i i A A A(2)k n ≤≤有1212()()()()k k i i i i i i P A A A P A P A P A =,则称这n 个事件是相互独立的.定义 1.5.4 设有n 个事件12,,,n A A A (3≥n ),若对其中任意两个事件i A 与)1(n j i A j ≤<≤有)()()(j i j i A P A P A A P =则称这n 个事件是两两相互独立的.显然,若n 个事件12,,,n A A A 相互独立,则n 个事件一定是两两相互独立,但反之不一定成立.在实际应用中,独立性的判断一般不会采用定义判断,而是根据问题的实际意义去判断,如抛硬币两次,事件A ={第一次正面向上},B ={第二次正面向上},第一次出现哪一面并不影响第二次出现正面的概率,所以事件,A B 相互独立.例1.5.1甲、乙两射手独立地向同一目标射击一次,其中命中率分别为0.9和0.8, (1) 求目标被击中的概率;(2) 现已知目标被击中,求它是由甲击中的概率. 解 设A ={甲命中},B ={乙命中},C ={目标被击中},(1) () () ()()()()0.90.80.90.80.98P C P A B P A P B P A P B ==+-=+-⨯=; (2) ()()(|)()[()()()()]P AC P A P A C P C P A P B P A P B ==+-0.90.920.98==. 例1.5.2 设高射炮每次击中飞机的概率为0.2,问至少需要多少门这种高射炮同时独立发射(每门射一次)才能使击中飞机的概率达到95%以上?解 设需要n 门高射炮,A ={飞机被击中},A i ={第i 门高射炮击中飞机},12)i n =⋯(,,,,则12()()n P A P A A A =⋯=_____________________121()n P A A A -______121()n P A A A =-,由相互独立的性质____________1212()()()()n n P A A A P A P A P A =,于是______12()1()()()1(10.2)n n P A P A P A P A =-=--,令1(10.2)0.95n--≥,得08005n≤..,即得14n ≥.即至少需要14门高射炮才能有95%以上的把握击中飞机.例 1.5.3 一个元件能正常工作的概率称为这个元件的可靠性,一个系统能正常工作的概率称为这个系统的可靠性.设一个系统由四个元件按图示方式(图1.2)组成,各个元件相互独立,且每个元件的可靠性都等于)10(<<p p ,求这个系统的可靠性.。
课时分层作业(四十)随机现象样本空间(建议用时:40分钟)一、选择题1.下列现象中,随机现象有()(1)某射手射击一次,射中10环;(2)同时掷两颗骰子,都出现6点;(3)某人购买福利彩票未中奖;(4)若x为实数,则x2+1≥1。
A.1个B.2个C.3个D.4个C[(4)是确定性现象.(1)(2)(3)是随机现象.]2.下列现象中,确定性现象是()A.凸四边形的内角和为360°B.小明放学在十字路口遇到红灯C.三角形中两边之和小于第三边D. 方程x2+a=0有实数根A[C是不可能现象,BD是随机现象.]3.某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则试验的样本点共有() A.1个B.2个C.3个D.4个C[该生选报的所有可能情况是:{数学和计算机},{数学和航空模型},{计算机和航空模型},所以试验的样本点共有3个.]4.从1,2, 3,4这4个数中,任取2个数求和,那么“这2个数的和大于4”包含的样本点数为()A.2个B.3个C.4个D.5个C[从1, 2,3,4这4个数中,任取2个数求和,则试验的样本空间为Ω={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}. 其中“这2个数的和大于4”包含的样本点有:(1,4),(2,3),(2,4),(3,4),共4个.]5。
“连续抛掷两枚质地均匀的骰子,记录朝上的点数”,该试验的样本点共有()A.6种B.12种C.24种D.36种D[试验的全部样本点为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36种.]二、填空题6.下列现象是确定性现象的有________.①某收费站在未来某天内通过的车辆数;②一个平行四边形的对边平行且相等;③某运动员在下届奥运会上获得冠军;④某同学在回家的路上捡到100元钱;⑤在没有水和阳光的条件下,小麦的种子不会发芽.②⑤[①③④都是随机现象,②⑤是确定性现象.]7.从1,2,3,…,10中任意选一个数,这个试验的样本空间为________,满足“它是偶数”样本点的个数为________.Ω={1,2,3,4,5,6,7,8,9,10}5[样本空间为Ω={1,2,3,4,5,6,7,8,9,10},其中满足“它是偶数”样本点有:2,4,6,8,10,共有5个.]8.投掷两枚骰子,点数之和为8所包含的样本点有________种.5[样本点为(2,6),(3,5),(4,4),(5,3),(6,2),共5种.]三、解答题9.现在甲、乙、丙三人玩剪刀、石头、布的出拳游戏,观察其出拳情况.(1)写出该试验的样本空间;(2)“三人出拳相同”包含的样本点有哪些?[解]以J,S,B分别表示出剪刀、石头、布.(1)Ω={(J,J,J),(J,J,S),(J,S,J),(S,J,J),(J,J,B),(J,B,J),(B,J,J),(J,S,S),(S,J,S),(S,S,J),(J,B,B),(B,J,B),(B,B,J),(S,S,S),(S,S,B),(S,B,S),(B,S,S),(B,B,S),(B,S,B),(S,B,B),(B,B,B),(J,S,B),(J,B,S),(S,J,B),(S,B,J),(B,J,S),(B,S,J)}.(2)“三人出拳相同”包含下列三个基本事件:(J,J,J),(S,S,S),(B,B,B)。
概率模型的概念概率模型的概念1. 概论•概率模型是一种用于描述和分析随机现象的数学模型。
•它基于概率论的观点,通过建立数学关系或函数来描述随机事件之间的关联与变化。
2. 概率模型的构建•概率模型的构建过程包括确定样本空间、事件集合和概率分布。
–样本空间:描述随机试验可能的所有结果的集合。
–事件集合:样本空间中的某些子集,代表一些特定的结果。
–概率分布:对每个事件赋予一个概率值,描述事件发生的可能性大小。
3. 常见的概率模型•离散型随机变量模型:描述一些具有有限或可数个取值的随机变量,如二项分布、泊松分布等。
•连续型随机变量模型:描述一些取值为连续范围内任意一个数的随机变量,如正态分布、指数分布等。
4. 概率模型的应用•概率模型在各个领域都有广泛应用,包括但不限于:–金融领域的风险评估和投资决策。
–模式识别和机器学习领域的数据建模和预测分析。
–工程领域的可靠性分析和优化设计。
–生物医学领域的遗传研究和疾病诊断。
5. 概率模型的评估与改进•概率模型的评估通常使用统计学的方法,比如最大似然估计、交叉验证等。
•将模型应用于实际问题时,可能需要对模型进行改进和调整,以提高模型的准确性和适用性。
6. 概率模型的优点与局限•优点:能够描述随机现象的不确定性和相关性,提供了一种量化分析的工具。
•局限:对于复杂的问题,可能需要做出一些简化假设;模型的准确性受到数据质量和模型参数设定的影响。
以上是关于概率模型的相关概念及内容的简述。
概率模型作为一种重要的数学模型,被广泛应用于各个领域,帮助我们理解和分析随机现象,以及做出相应的决策和预测。
通过学习和应用概率模型,我们能够更好地理解和利用不确定性,提高问题解决的效率和准确性。
7. 概率模型的建模步骤•确定分析问题的目标,明确需要预测或推断的变量。
•收集和整理相关的数据,包括观测变量和解释变量。
•根据数据的特点和问题的需求,选择合适的概率分布或模型。
•根据数据进行参数估计或模型拟合,以得到最优的模型参数。
3.1.1 随机现象【新知导读】1. 请举出一些必然事件,不可能事件和随机事件的实例.2. 某人购买福利彩票10注,10注中有2注中得三等奖,其余8注未中奖.这个事件的条件和结果是什么?3.传说古时候有一个农夫正在田间干活,忽然发现一只兔子撞死在地头的木桩上,他喜出望外,于是拾起兔子回家了,第二天他就蹲在木桩旁守侯,就这样日复一日,年复一年,但再也没有等着被木桩碰死的兔子,这是为什么?【范例点睛】例1:给出下列四个命题:①集合{}|||0x x <是空集是必然事件;②()y f x =是奇函数,则()0f x =是随机事件;③若log (1)0a x ->,则2x >是必然事件;④对顶角不相等是不可能事件.其中正确命题的个数是 ( )A .0个 B.1个 C.2个 D.3个思路点拨:结合实数的性质及函数知识来判断.易错辨析:判断是否是随机事件,要看条件是什么,否则②的判断可能会出现错误.例2:下列随机事件中,一次试验是指什么?它们各有几次试验?⑴一天中,从北京开往沈阳的7列列车,全部正点到达;⑵抛10次质地均匀的硬币,硬币落地时有5次正面向上.思路点拨:关键看这两个事件的条件是什么.方法点评:对于某个现象,如果能让其条件实现一次,就是进行了一次试验.每次试验的条件和结果都是独立的,结果可能不相同.【课外链接】1.下列事件:①物体在重力作用下会自由下落;②方程2230x x -+=有两个不相等的实数根;③下周日会下雨;④某寻呼台每天某一时段内收到传呼的次数少于10次.其中随机事件的个数为( )A.1个B.2个C.3个D.4个【自我检测】1.若,a b R ∈,则a b b a +=+是 ( )A.随机事件B.必然事件C.不可能事件D.以上说法都不对2.在10件同类产品中,有8件是正品,2件是次品,从中任意抽出3件的必然事件是 ( )A.3件都是正品B.至少有1件是次品C.3件都是次品D.至少有1件是正品3.判断下列现象:(1)某路口单位时间内发生交通事故的次数;(2)水的沸点是100℃;(3)三角形的内角和为180°;(4)一个射击运动员每次射击的命中环数;(5)任一实数的平方是非负数.其中是随机现象的是 ( )A .(1)(2)(4) B.(1)(4) C .(1)(3)(4) D .(1)(4)(5)4.①已经发生的事件一定是必然事件;②随机事件的发生能够人为控制其发生或不发生;③不可能事件反映的是确定性现象;④随机现象的结果是可以预知的.以上说法正确的是 ( )A. ①③ B .①② C .③ D.②④5.给出下列事件:(1)在常温下,焊锡熔化;(2)同时掷二颗骰子,都出现2点;(3)如果,x y 都是实数且0x y >>,那么1122log log x y >;(4)三角形两边之和大于第三边;(5)口袋中有3个红球,2个白球,随机摸出一个球,这个球是白球,其中必然事件有______,不可能事件有_______,随机事件有________.6.给出下列两个随机事件:(1)抛10次同一枚的质地均匀的硬币,有10次正面向上;(2)姚明在本赛季中共罚球57次,有53次投球命中.其中事件(1)的一次试验是_______________,事件(2)一共进行了___________次试验.7. 事件”某人掷骰子5次,两次点数为2”是随机事件吗?条件和结果是什么?一次试验是指什么?一共做了几次试验?8. 在10个学生中,男生有x 个,现从10个学生中任选6人去参加某项活动.①至少有一个女生;②5个男生,1个女生;③3个男生,3个女生.当x 为何值时,使得①为必然事件,②为不可能事件,③为随机事件?9.同时抛掷骰子m 个,已知事件:”点数之和大于2”为必然事件,事件:”点数之和大于30”为不可能事件,事件”点数之和等于20”为随机事件,求m 的值.10.已知2()2,[2,1]f x x x x =+∈-,给出事件:()A f x a ≥.(1)当A 为必然事件时,求a 的取值范围;(2)当A 为不可能事件时,求a 的取值范围.3.1.1 随机现象【新知导读】1. 略2. 条件:某人购买福利彩票10注,结果:10注中有2注得三等奖,其余8注未中奖.3. 兔子碰死在木桩上是随机事件,可能不发生.【范例点睛】例1. 选 D.∵||0x ≥恒成立,∴①正确;奇函数()y f x =只有当0x =有意义时,才有(0)0f =,∴②正确; log (1)0a x ->当底数a 与真数1x -在相同区间(0,1)或相同区间(1,)+∞时成立,∴③应是随机事件;对顶角相等是必然事件,所以④正确,故应选D.例2. (1)一列列车开出,就是一次试验,共有7次试验.(2)抛一次硬币,就是一次试验.共有10次试验.【课外链接】1. 选B.结合必然事件,不可能事件,随机事件的定义作出判断.由定义可知,①是必然事件;②是不可能事件;③,④是随机事件.【自我检测】1.B2.D3.A4.C5. (4); (1)(3); (2)(5)6.“抛一次硬币”; 57次7. 是随机事件.条件:某人掷骰子5次,结果:两次点数为2,掷骰子一次就是一次试验,一共做了5次试验.8. ”至少有1个女生”为必然事件,则有6x <;“5个男生,1个女生”为不可能事件,则有5x <或10x =;“3个男生,3个女生”为随机事件,则有37x ≤≤;综上所述,又由x ∈N ,可知3x =或4x =.9.”点数之和大于2”为必然事件,则2m >;”点数之和大于30”为不可能事件,则630m ≤,∴5m ≤;”点数之和等于20”为随机事件,∵20=6×3+2,∴420m ≤≤;综上知: 45m ≤≤且m ∈N ,故4m =或5m =.10. 22min ()2(1)1,[2,1],()1,f x x x x x f x =+=+-∈-∴=-此时1x =-,又max (2)0(1)3,()3,()[1,3].f f f x f x -=<=∴=∴∈-(1)当A 为必然事件时,即()f x a ≥恒成立,所以有min ()1a f x ≤=-,则a 的取值范围是(,1];-∞-(1)当A 为不可能事件时,即()f x a ≥一定不成立,所以有max ()3a f x >=,则a 的取值范围是(3,).+∞。
概率论中的随机过程算法仿真概率论中的随机过程算法仿真在概率论中,随机过程是一种描述随机演化的数学模型。
通过对随机过程进行算法仿真,我们可以获得一系列随机事件的演化轨迹,从而更好地理解和分析概率现象。
本文将介绍随机过程的基本概念以及常用的算法仿真方法,并通过具体案例展示其应用。
一、随机过程的基本概念随机过程是一组随机变量的集合,其中每个变量代表系统在不同时间点上的状态。
随机过程可以是离散的(如离散时间马尔可夫链)或连续的(如布朗运动)。
它可以用数学的方式进行建模和分析,帮助我们理解和预测随机现象。
二、随机过程的算法仿真方法1. 蒙特卡洛方法蒙特卡洛方法是一种基于随机抽样的统计分析方法。
在随机过程的算法仿真中,可以通过蒙特卡洛方法模拟系统的随机演化。
具体而言,我们可以生成大量的随机数作为系统状态的取值,并根据系统的特定规律更新状态,从而观察随机事件的演化轨迹。
2. 马尔可夫链蒙特卡洛方法马尔可夫链蒙特卡洛方法是一种利用马尔可夫链进行随机过程仿真的方法。
马尔可夫链是指具有马尔可夫性质的随机过程,即未来状态只与当前状态有关,与过去的状态无关。
通过定义状态空间和状态转移概率矩阵,我们可以使用马尔可夫链蒙特卡洛方法模拟系统的随机演化。
3. 扩散过程模拟方法扩散过程是一种连续的随机过程,常用于描述具有随机漂移和随机波动的现象。
在扩散过程的算法仿真中,可以使用随机微分方程或随机差分方程进行建模。
通过模拟扩散过程的数值解,我们可以观察系统状态的演化,并分析其概率分布特征。
三、随机过程算法仿真的应用案例案例:股票价格模拟假设我们想要模拟某只股票的价格,可以将其视为一个随机过程,并使用算法仿真方法进行分析。
首先,我们可以根据历史数据估计股票价格的平均涨跌幅和波动率,进而构建一个符合实际股票市场特征的随机过程模型。
然后,我们可以使用蒙特卡洛方法生成大量的随机数,并根据随机数和模型规则更新股票价格。
通过多次模拟,并统计价格的分布情况,我们可以得到股票价格的概率分布特征,进而进行风险评估和投资决策。
随机微分方程(stochastic differential equation,sde) 1. 引言1.1 概述随机微分方程(Stochastic Differential Equation,SDE)是一类描述随机现象的微分方程。
相比于传统的确定性微分方程,SDE中包含了一个或多个随机项,能够更准确地描述现实世界中的不确定性和变动性。
SDE在各个领域中广泛应用,特别是金融学、物理学和生物学等领域。
1.2 文章结构本文将从以下几个方面介绍随机微分方程及其应用:定义与基本概念、解随机微分方程的方法与技巧,以及在实际问题中的应用。
具体可以分为三个主要部分:引言、主体内容和结论展望。
1.3 目的本文旨在介绍随机微分方程的基本概念、解法和应用,并探讨其在金融学、物理学和生物学等领域中的实际应用。
通过对随机微分方程的深入了解,读者可以更好地理解和利用该方法来解决实际问题,并对未来研究提出展望。
以上为“1. 引言”部分的内容。
2. 随机微分方程的定义与基本概念2.1 随机过程简介随机过程是一类描述随着时间推移而随机变化的数学模型。
它可以看作是时间参数上的一族随机变量的集合。
随机过程常用于描述具有随机性质的现象,如金融市场中的股票价格、天气预报中的温度变化等。
2.2 随机微分方程的定义随机微分方程是一类描述含有随机项(通常为噪声)的微分方程。
它通常采用以下形式表示:dX(t) = a(X(t), t)dt + b(X(t), t)dW(t)其中,X(t)是未知函数,a(X(t), t)和b(X(t), t)是已知函数,dW(t)表示Wiener 过程(也称为布朗运动或白噪声)。
这个方程表示了X在无穷小时间段dt内发生微小变化dX(t),其中包含一个确定性项a(X(t), t)dt和一个随机项b(X(t), t)dW(t)。
2.3 常见的随机微分方程模型在实际应用中,有许多不同类型的随机微分方程模型被广泛使用。
- Ornstein-Uhlenbeck 过程:该模型描述了维持平衡状态的粒子在受到随机扰动时的演化过程。
主题一、Matlab中的统计学图形化工具
为便于初学者快速认识各种分布的特征,窥探matlab统计学工具箱的性能,首先我们来试用Matlab统计学工具箱中提供的三个图形化工具:
disttool,randtool,dfittool
一、概率分布绘制工具
在Matlab命令行中输入
>> disttool
图中各项:
Distribution:分布类型
Function:函数类型(概率密度函数/累积分布函数)
Probability:当前数据点的概率值
X:当前数据点坐标值(概率分布的统计变量)
Mu:期望
Sigma:方差
Upper/Lower bound:期望和方差的可调范围
例:二项分布对泊松分布的逼近
1. 打开disttool,选择Distribution=Binomial; FunctionType=PDF;
Trials=10;Probability=0.5。
选择菜单Edit-> Axis Properties,将X limits设为0到20,Y limits设为0到0.4
2.在命令行再次输入disttool,打开新的窗口,同样选择Binomial, PDF, Trials=20;Probability=0.25。
同样将X limits设为0到20,Y limits设为0到0.4
3.打开第三个disttool,选择Binomial,PDF,Trials=100,Probability=0.05。
同样将X limits设为0到20,Y limits设为0到0.4
4.打开第四个disttool,选择
Distribution=Poisson;FunctionType=PDF;Lambda=5;
同样将X limits设为0到20,Y limits设为0到0.4
此时前面所打开的四个窗口应该已经嵌入为一个窗口中的四个标签页(见下图底部)。
如果没有,请选择菜单Desktop->Dock Figures将他们叠嵌在一起。
关闭窗口下面的属性编辑界面(修改坐标范围的部分)。
依次切换四个标签查看二项分布对泊松分布的趋近情况。
练习:
1)分别查看下列分布的图形
均匀分布,二项分布,泊松分布,正态分布(normal), F分布,t分布,${\chi}^2$分布
2)利用图形给出下列结果:
1.某天文站进行人卫激光观测,设每次射击的命中率是0.2,独立观测10次,试求击
中卫星的次数大于等于4的概率。
若独立观测100次,命中次数大于等于55的概率又是多少?
2.已知${\xi}$~N(1,$10^2$),求P(${\xi}>12$)及P($5<{\xi}<10$)。
二、随机数生成工具
如下命令打开:
>>randtool
例:样本统计随样本大小的变化
将Distribution选为Normal;将Samples依次设为50,100,500,1000,同时各点几次Resample钮,查看在不同样本大小下统计计数对标准正态分布函数的趋近情况。
选取Samples为100时的一组结果,点Export钮将数据输出到工作空间,在弹出的对话框中输入一个变量名比如norm100命名输出的数据。
在命令行输入
>>whos
返回如下结果
Name Size Bytes Class Attributes
norm100 100x1 800 double
表示norm100为一个100行1列的矩阵。
输入命令
>>mean(norm100)
>>std(norm100)
查看数据的均值和方差
三、概率分布拟合工具
如下打开:
>>dfittool
点Data钮,在打开的对话框中选择Data为norm100(上一步中产生的数据),然后点create dataset。
在拟合工具上点NewFit钮,将Distribution选为Normal,然后点Apply进行拟合,在Results中将显示拟合结果(各种参数),同时在主窗口中将画出拟合曲线。
主题二、随机分布的基本操作
一、函数值的计算
概率密度函数:
正态分布:
normpdf(X,mu,sigma)
其中X:自变量
mu:均值
sigma:方差
比如normpdf(0.5,0,1)或normpdf(0.5)计算标准正态分布f(x)在x=0.5处的概率密度。
例:绘制均值1,方差2的正态分布在[-2,4]区间内的图形。
x=[-2:0.1: 4]; %自变量序列
prob=normpdf(x,1,2); %概率密度值序列
plot(x,prob)%绘制
其它分布函数:
binopdf,chi2pdf,fpdf,poisspdf,tpdf
命令
doc binopdf
打开二项分布的帮助窗口。
其它类似。
通用函数:pdf(name,X,A)
比如pdf('norm',x,2,3)等价于normpdf(x,2,3)
∙累积概率密度函数:
将上文中概率密度函数对应的函数名pdf改为cdf即可。
二、随机分布的产生
∙单个随机数:
normrnd(mu,sigma)
产生一个均值mu,方差sigma的正态分布随机数。
∙随机数组:
normrnd(mu,sigma,m,n)
产生一个m行n列的正态分布随机数组。
三、随机分布的拟合
1、histogram的绘制:
hist(y)
hist(y,nb)
hist(y,x)
所谓histogram,即条形统计图。
y为样本数据,nb为划分的统计区间数目,x 为区间的端点所组成的一个一维矢量。
nb和x可以不指定。
2、随机分布的拟合:
仍以正态分布为例:
[muhat,sigmahat,muci,sigmaci]=normfit(data,alpha)
muhat:均值的估计
sigmahat :方差的估计
muci,sigmaci:均值和方差的百分之(1-alpha)置信区间。
如果不指定alpha,默认为95%置信区间。
例:产生一个均值10方差2,100行2列的正态分布随机数组,拟合求其均值和方差。
data = normrnd(10,2,100,2);
hist(data(:))%data(:)将该二维数组作为一个一维数组来使用。
你可以试试将data(:)改为data
[mu,sigma,muci,sigmaci] = normfit(data)
结果为:
mu =
10.145510.0527
sigma =
1.9072
2.1256
muci =
9.76529.6288
10.525810.4766 sigmaci =
1.6745 1.8663
2.2155 2.4693。