第七周自测《旋转之求线段最值》
- 格式:pdf
- 大小:322.77 KB
- 文档页数:7
试题研究2023年10月下半月㊀㊀㊀一道与旋转有关的动点最值问题的探究◉湖北省武汉市吴家山第二中学㊀李幽兰㊀㊀初中平面几何中,由图形运动而产生的最值问题历来是学生解题的难点,究其原因是图形一直在变化,学生无法捕捉到运动变化背后 不变 的元素,难以分析出取最值时变化元素的位置,也就无法根据具体图形分析求解[1].其中,与旋转有关的动点求最值问题,热度一直高居不下,近几年常 驻 各地中考选填题和几何综合题的压轴位置,令莘莘学子头疼畏惧.下面笔者分享一道题目的解法和变式的深入探究,希望给读者一点启发.图1题目㊀(武汉蔡甸2021 第10题)如图1,在平面直角坐标系中,Q 是直线y =-12x +2上的一个动点,将Q 绕点P (1,0)顺时针旋转90ʎ,得到点Q ᶄ,连接O Q ᶄ,则O Q ᶄ的最小值为(㊀㊀).A.455㊀㊀㊀B .5㊀㊀㊀C .523㊀㊀㊀D.655图2解法1:(坐标法)分别过点Q和Q ᶄ作x 轴的垂线,垂足分别为点M 和N ,如图2.于是øQ M P =øP N Q ᶄ=90ʎ,则øP Q ᶄN +øN P Q ᶄ=90ʎ.因为øQ P Q ᶄ=øQ P M +øN P Q ᶄ=90ʎ,则øP Q ᶄN =øQ P M .又P Q =Q ᶄP ,所以әP M Q ɸәQ ᶄN P (A A S ).故P M =Q ᶄN ,Q M =P N .设Q (a ,-12a +2).因为P (1,0),所以P M =Q ᶄN =a -1,Q M =P N =-12a +2.于是O N =O P +P N =3-12a .所以Q ᶄ(3-12a ,1-a ).所以O Q ᶄ=O N 2+Q ᶄN 2=(3-12a)2+(1-a )2=54(a -2)2+5ȡ5.故选答案:B .点评:解法1抓住平面直角坐标系中的有利条件,构造了 一线三垂直 模型证三角形全等.首先设未知数表示出动点Q 的坐标,用坐标来表示线段长度进行转化,然后由勾股定理表示两点之间的距离,用含x 的式子将O Q ᶄ表示出来,最后运用二次函数的知识求出最值.这种方法虽然很巧妙㊁简便,但是有一定的局限性,只能用于有坐标系且旋转角度特殊的题目.图3解法2:(轨迹法)如图3,将әA O B 绕点P 顺时针旋转90ʎ得到әA ᶄO ᶄB ᶄ,则Q ᶄ为直线A ᶄB ᶄ上一动点,根据垂线段最短,O Q ᶄ的最小值为点O 到直线A ᶄB ᶄ的垂线段的长度d .由直线A B 的解析式为y =-12x +2,得A (0,2),B (4,0),所以O A =2,O B =4.由题意,得O ᶄ(1,1),A ᶄ(3,1),B ᶄ(1,-3).设直线A ᶄB ᶄ的解析式为y =k x +b ,则有3k +b =1,k +b =-3,{解得k =2,b =-5.{于是直线A ᶄB ᶄ的解析式为y =2x -5,则E (52,0),F (0,-5),故O E =52,O F =5.所以E F =O E 2+O F 2=(52)2+52=552.由S әO E F =12O E O F =12E F d ,得O Q ᶄ的最小值为O E O F E F =52ˑ5552=5.点评:解法2由旋转的本质出发,直线A B 绕点P顺时针旋转90ʎ所得直线A ᶄB ᶄ即为动点Q ᶄ的轨迹,但直接求直线A ᶄB ᶄ的解析式不方便,因此旋转整个әA O B ,先求出点A ᶄ和B ᶄ的坐标,再求直线A ᶄB ᶄ的解析式,最后用面积法求出点O 到直线A ᶄB ᶄ的距离.85Copyright ©博看网. All Rights Reserved.2023年10月下半月㊀试题研究㊀㊀㊀㊀当然,在求出了直线A ᶄB ᶄ的解析式后,也可以由此设Q ᶄ的坐标,用解法1中的坐标法,运用勾股定理和二次函数来求最值.解法2适用于大部分的动点旋转求最值问题,即先确定动点轨迹.图4解法3:(逆向轨迹法)O Q ᶄ的最小值其实是定点O 到直线y =-12x +2绕点P 顺时针旋转90ʎ所得到直线的距离,问题可转化为O ᶄ(1,-1)(由点O 绕点P 逆时针旋转90ʎ得到)到直线y =-12x +2的距离d .如图4,过点O ᶄ(1,-1)作O ᶄA 垂直于x 轴交直线y =-12x +2于点A ,O ᶄB 垂直于y 轴交直线y =-12x +2于点B .于是A (1,32),B (6,-1),所以O ᶄA =52,O ᶄB =5.故A B =O ᶄA 2+O ᶄB 2=(52)2+52=552.由S әA O ᶄB =12O ᶄA O ᶄB =12A B d ,得O ᶄQ 的最小值为O ᶄA O ᶄBA B=5,即为O Q ᶄ的最小值.点评:解法3在求O ᶄQ 的最小值时同样可以用解法1的坐标法来求,在本质上它与解法2是一样的,都是将所求最值转化成定点到定直线的距离,但是解法3对解法2进行了简化,免去了求直线y =-12x +2旋转后的直线解析式,直接旋转定点O ,思路新颖巧妙.变式1㊀在R t әA O B 中,O A =2,A B =4,P 是O B 上一点,O P =1,Q 是边A B 上的一个动点,将Q 绕点P 逆时针旋转30ʎ得到点Q ᶄ,连接O Q ᶄ,则O Q ᶄ的最小值为.图5解析:点Q 在A B 上运动,即点Q 的轨迹为A B ,那么将A B 绕点P 旋转就能得到点Q ᶄ的轨迹.于是,将әA O B 绕点P 逆时针旋转30ʎ得到әA ᶄO ᶄB ᶄ,如图5,则点O 到A ᶄB ᶄ的距离即为O Q ᶄ的最小值.由旋转,得øB P B ᶄ=30ʎ.在R t әA O B 中,O A =2,A B =4,所以øB =øB ᶄ=øB P B ᶄ=30ʎ,于是A ᶄB ᶄʊO B ,则øA E B ᶄ=øA O B =90ʎ.所以点O 到A ᶄB ᶄ的距离为O E 的长度.如图5,过点B ᶄ作B ᶄF ʅO B 于点F ,则øB ᶄF P =90ʎ,于是四边形O E B ᶄF 是矩形.由O B =A B 2-O A 2=42-22=23,O P =1,得B P =B ᶄP =23-1.øB ᶄF P =90ʎ,øB P B ᶄ=30ʎ,所以B ᶄF =12B ᶄP =23-12.故O Q ᶄ的最小值为O E =23-12.变式1没有坐标系背景,显然解法1不适用,而运用解法3,将点O 绕点P 顺时针旋转30ʎ以后再求O ᶄ到A B 的距离较为麻烦,经对比发现,此题解法2是最简便的.类似地,还可以变化图形形状和旋转角度,解法一样.图6变式2㊀如图6,在等腰三角形A B C 中,øB A C =120ʎ,A B =A C ,D 是AB 上一点,A D =2,B D =4,E 是边BC 上的动点,若点E 绕点D 逆时针旋转30ʎ的对应点是F ,连C F ,则C F 的最小值是.基于以上分析,我们可以总结:解决这类绕定点旋转的最值问题有三种方法,分别为坐标法㊁轨迹法㊁逆向轨迹法,根据不同的题目来选择合适的方法,最常用的是轨迹法.若是动点所在的直线绕定点旋转,则先确定动点旋转后的轨迹,再根据垂线段最短求点到直线的距离,最后解直角三角形得到所求最值.动态问题解题的关键是在 动 中寻找 定 的量,再由这些定量探寻出动点形成的轨迹,从而根据轨迹分析出最值位置,即 由动寻定,由定定轨,由轨求最 [2].题目只是知识方法的一个素材,解题的过程能让学生理解知识的原理,提炼方法的本质,注重解法的策略,总结问题的归类,从而达到利用有限的题目实现无限的再创造.由解一道题变成会解一类题,乃至通解一种体系的题,这也是解题教学的方向[1].参考文献:[1]郭源源.旋转位似 似 成双定点定形 轨 一致[J ].教学月刊 中学版(教学参考),2020(10):11G15.[2]郭源源. 定量 构建动点轨迹 隐圆 巧解最值问题[J ].中学数学杂志,2018(10):42G44.Z95Copyright ©博看网. All Rights Reserved.。
中考数学复习:旋转之求线段最值用旋转思想解决线段最值问题的本质用三角形三边关系解决问题如图,线段OA,OB为定长,则A,B,O三点共线时,AB取得最值:当点B位于处B1时,AB取得最小值OA-OB;当点B位于B2处时,AB取得最大值OA+O B.最小值常见的题型有:1.如图,Rt△ABC大小固定,其中∠ABC=90°,点A,B分别在互相垂直的直线m,n 上滑动.m取AB中点D,连接OD,C D.当O,C,D三点共线时,OC取得最大值OD+C D.Arraym2.如图,等边△ABC大小固定,点A,B分别在互相垂直的直线m,n上滑动.m取AB中点D,连接OD,C D.当O,C,D三点共线时,OC取得最大值OD+C D.m3.如图,Rt△ABC大小固定,其中∠ABC=90°,点A,B分别在互相垂直的直线m,n 上滑动.取AB中点D,连接OD,C D.当O,C,D三点共线时,OC取得最小值|CD –OD|.m例题讲解例1.已知Rt△ABC中,∠ACB=90°,tan∠BAC=12.若BC=6,点D在边AC的三等分点处,将线段AD绕A点旋转,E始终为BD的中点,求线段CE长度的最大值.解:在Rt△ABC中,AC=tan BCBAC=12,AB=①如图1,当AD=13AC时,取AB的中点F,连接EF和CF,则CF=12AB=,EF=12AD=2.所以当且仅当C,E,F三点共线且点F在线段CE上时,CE最大,此时CE=CF+EF=2+图1②如图2,当AD=23AC时,同理可得CE的最大值为4+.综上可得,当点D在靠近点C的三等分点处时,线段CE的长度的最大值为4+图2例2 以平面上一点O 为直角顶点,分别画出两个直角三角形,记作△AOB 和△COD ,其中∠ABO =30°.如图,若BO=N 在线段OD 上,且NO =2,P 是线段AB 上的一个动点,在将△AOB 绕点O 旋转的过程中,线段PN 长度的最小值为________,最大值为________.BCDPNO A-2;2. 过点O 作OE ⊥AB 于点E ,则OE =12OB.故当点P 在点E 处时,OP;当点P 在点B 处时,OP长度取最大值A O NPDBCE①当△AOB 绕点O 旋转到O ,E ,D 三点共线,且点E 在线段OD 上时,PN 取最小值,即OE -ON-2;D②当△AOB 绕点O 旋转到O ,B ,D 三点共线,且点B 在线段DO的延长线上时,PN 取最大值,OB +ON =2.所以线段PN 长度的最小值为-2,最大值为2.D进阶训练1. 已知△AOB 和△COD 是等腰三角形,其中BA =BO =2,CD =CO =3,∠ABO =∠DCO .连结AD ,BC ,M ,N 分别为OA ,BC 的中点.若固定△AOB ,将△COD 绕点O 旋转,求MN 的最大值.NMABCDO【答案】52. 【提示】如图,取OB 的中点E ,连结EM ,EN ,则EM ,EN 为定值,当点E 在线段MN 上时,MN 取最大值.EODCBAM N2. 已知:在Rt △ABC 中,∠BAC =90°,AC =AB =4,D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE 绕点A 旋转,得到等腰Rt △AD 1E 1,记直线BD 1与CE 1的交点为P . (1)设BC 的中点为M ,求线段PM 的长; (2)求点P 到AB 所在直线的距离的最大值.E 1D 1A BC DEP【答案】(1)2)1【提示】(1)易证△E 1AC ≌△D 1AB ,所以∠E 1CA =∠D 1BA ,从而可得∠BPC =∠BAC =90°,所以PM =12BC=MPEDC BA D 1E 1(2)由题意知,点D1,E1在以A为圆心、AD为半径的圆上,而点P在直线BD1上,所以当直线BD1与⊙A相切时,点P到AB的距离最大.此时四边形AD1PE1是正方形,即PD1=AD1=2.如图,作PG⊥AB于点G,解Rt△PGB即可.B3.已知:正方形ABCD的边长为1,P为正方形内的一个动点,若点M在AB延长线上,且满足△PBC∽△PAM,延长BP交AD的延长线于点N,连结CM,是否存在满足条件的点P,使得PC=12?请说明理由.ACDPN【答案】不存在满足条件的点P,使得PC=12.【提示】因为△PBC∽△PAM,可得∠ABP+∠PAM=∠ABP+∠PBC=90°,所以AP⊥BN.以AB为直径,作半圆O,连结OC,OP,则OP+PC≥OC,从而PC件的点P,使得PC=12.ONPD CA。
旋转中的最值问题 Revised at 2 pm on December 25, 2020.
A
旋转中的最值问题
1.已知,线段AB=6,线段AC=4,将线段AC 绕A 旋转,则线段BC 的最大值为 10 最小值为 2 。
2. 如图,在△ABC 中,∠C=90°,AC=4,BC=2,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,求点离是。
找AC 中点D,O 、B 、D 三点共线时,OB 最长 3.如图,已知△ABC 中,∠ACB=90°,P 满足CP 绕C 顺时针旋转90°得到线段CD ,连DA 、DB 、PB 。
求BD 的最大值最小值。
最大:根号
最小:根号10 4.如图,已知△ABC 中,∠ACB=90°,BC=6,AC=12,点D 在,将线段AD 绕点A 旋转,D 点对应点为'D ,连接'BD ,点F 为,线段CF 的最大值为多少?
5.如图,PA=2,PB=4,以AB 为一边作正方形ABCD ,使P 、AB 的两侧,当∠APB 变化时,求PD 的最大值。
6.如图,在Rt △POQ 中,OP=OQ=4,M 是PQ M
处,以M 为旋转中心,旋转三角尺,三角尺的两直角边与△点A 、B 。
(1)求证:MA=MB ; (2)连接AB ,探究:在旋转三角尺的过程中,求△AOB。
初中数学几何旋转最值最短路径问题专题训练专练3 最短路径模型——旋转最值类基本模型图:【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是().A. B.6 C. D.4【思路探究】根据E为AB中点,BE=B′E可知,点A、B、B′在以点E为圆心,AE长为半径的圆上,D、E为定点,B′是动点,当E、B′、D三点共线时,B′D的长最小,此时B′D=DE-EB′,问题得解.【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心,AB长为直径的圆上,如图所示. B′D的长最小值= DE-EB′.故选A.22-=-【启示】此题属于动点(B′)到一定点(E )的距离为定值(“定点定长”),联想到以E 为圆心,EB′为半径的定圆,当点D 到圆上的最小距离为点D 到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如,当且仅当点E 、B′、D 三点共线B D DE B E ''≤-时,等号成立.【典例2】如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于点G ,连结BE 交AG 于点H ,若正方形的边长是2,则线段DH 长度的最小值是.【思路探究】根据正方形的轴对称性易得∠AHB =90°,故点H 在以AB 为直径的圆上.取AB 中点O ,当D 、H 、O 三点共线时,DH 的值最小,此时DH =OD -OH ,问题得解.【解析】由△ABE ≌△DCF ,得∠ABE =∠DCF ,根据正方形的轴对称性,可得∠DCF =∠DAG ,∠ABE =∠DAG ,所以∠AHB =90°,故点H 在以AB 为直径的圆弧上.取AB 中点O ,OD 交⊙O 于点H ,此时DH 最小,∵OH =,OD =,∴DH 的最小值为112AB=OD -OH .1【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H 在以AB 为直径的圆上,点D 在圆外,DH 的最小值为DO -OH .当然此题也可利用的基本模型解决.DH OD OH ≤-【针对训练 】1. 如图,在△ABC 中,∠ACB =90°,AC =2,BC =1,点A ,C 分别在x 轴,y 轴上,当点A 在轴正半轴上运动时,点C 随之在轴上运动,在运动过程中,点B 到原点O 的最大x y 距离为( ).ABC .D .312.如图,在矩形ABCD 中,AB =4,BC =6,E 是矩形内部的一个动点,且AE ⊥BE ,则线段CE 的最小值为().A . B. C. D.4323. 如图,在△ABC 中,AB =10,AC =8,BC =6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P 、Q 分别是边BC 和半圆上的运点,连接PQ ,则PQ 长的最大值与最小值的和是( ).A.6B.C.9D.1+3224.如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为().A. B. C.5 D.213-213+9165.如图,已知正方形ABCD 的边长为2,E 是BC 边上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG ,则CG 的最小值为().A B 11-1-1+6.如图,△ABC 、△EFG 是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FG 相交于点M ,当△EFG 绕点D 旋转时,线段BM 长的最小值是A . B21+1-7.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连结A′C,则A′C长度的最小值是.8.如图,△ABC为等边三角形,AB=2,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.。
九年级数学——旋转中的最值问题
1、如图,已知PA=2,PB=4,以AB为边作正方形ABCD,连PD,
且P、D在直线AB的两侧,当∠APB变化时,求PD的最大值。
2、如图△ABC中,AB=5,AC=3,以BC为边作等腰Rt△BCD,且∠BDC=90°,当BC的长度发生变化时,求出线段AD的取值范围。
3、在△PAB
中,,PB=1,以AB为边作正方形ABCD,
则PD的最小值是,PC的最大值是。
4、如图,点M是正方形ABCD对角线上的一点,当AM+BM+CM 的最小值为时,求正方形的边长。
5、Rt△ACB中,∠ACB=90°,,BC=4,P在△ACB的内部,且∠APC=120°,求的最小值。
6、如图,已知线段AB=4,C为AB的中点,CM=1,CM在
平面内绕C点逆时针旋转角(),以BM为边作
等腰直角三角形,使得PM=BM,∠PMB=90°,求AP的最
小值。
A B。
旋转综合之线段最值问题初三中考复习在即,在数学中考中,几何变换往往是中考中最令人头痛的题型,其辅助线的添加非常灵活,和其他几何知识的综合性也非常强。
在几何变换中,旋转是最为常见、也是最为重要的变换,本周我们集中讲解旋转综合中常见的模型、题型,这部分是本期内容的第五讲:旋转综合之利用旋转求线段最值,希望各位同学能从中收益。
利用旋转求线段最值的解题方法1. 使目标线段与定长线段放在三角形中,根据三角形三边关系,当三点共线时,取得最值;如图所示,当点 B 位于 B 1 时, AB 取得最小值| OA - OB | ;当点 B 位于 B 2 时, AB 取得最大值OA + OB .2. 把线段或线段和差放到同一条直线上,根据两点之间,线段最短来求最值.如图所示,定线段 OA = a , Rt △BOC 中直角边 OB = b ,锐角∠B = θ ,点 P 是斜边 BC 上的一个动点,Rt △BOC 在绕点O 旋转的过程中, AP 的最值如下:①如图,当OP ⊥ BC ,且O , A , P 三点共线时, AP 取得最小值| OB ⋅ sin θ - OA |;②如图,当 B , P 重合,且O , A , P 三点共线时, AP 取得最大值| OB + OA |例1 如图,在△ABC 中,∠C = 90︒,AC = 4 ,BC = 2 ,点A , C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是.答案 2 2 + 2 .解析作AC 的中点M ,连接OM , BM .由OB… OM +BM ,可得当O ,M ,B 三点共线且点M 在线段OB 上时,OB 取得最大值.此时OB =OM +BM = 2 + 2 2.例 2 已知,△A OB和△COD 是等腰三角形,其中BA=B O=2,CD =CO = 3 ,∠ABO=∠DCO.连接AD , BC,点M, N分别为OA, BC的中点.若固定△AOB,将△C O D绕点O 旋转,求MN 的最大值.解 取OB 的中点 E ,连接 EM , EN .则ME= 1 AB = 1,NE = 1 CO = 3.2 2 2当 M , E , N 三点共线,且点 E 在线段 MN 上时, MN 取最大值,最大值为 ME + NE = 5.2例 3 在Rt △ABC 中, ∠ACB = 90︒ , tan ∠BAC = 1.若2BC = 6 ,点 D 在边 AC 的三等分点处,将线段 AD 绕点 A 旋转,点 E 始终为 BD 中点,求线段CE 长度的最大值.解 在Rt △ABC 中,AC =BCtan ∠BAC= 12, AB = 6 5.①如图,当 AD = 1AC 时,取 AB 的中点 F ,连接 EF 和CF .3则CF =1AB = 3 5, EF =1AD = 2.2 2所以当且仅当C , E , F 三点共线且F 在线段CE 上时CE 最大,此时CE =CF +EF = 2 + 3 5.②如图,当时,同理可得CE 的最大值为4 + 3AD =2AC3.综合可得,当点D 在靠近点C 的三等分点时,线段CE 的长度取得最大值为4 + 3 .旋转变换是中考中非常重要的题型,本节课我们重点讲解了旋转中求线段最值问题,到此为止,本周我们共讲解了有关旋转的五种常见考题,希望各位同学多加体会、总结,平时遇到类似题目注意应用和练习。
利用旋转法解几何最值问题应用举例例1、在平面直角坐标系中,已知点A (4,0),点B 为y 轴正半轴上一个动点,连接AB ,以AB 为一边向下作等边△ABC ,连结OC ,则OC 的最小值为 .M解:如图,将△ABO 绕点A 逆时针旋转60°得△AACM ,并延长MC 交x 轴于点N .则点C 在直线MN 上运动,当OC ⊥MN 时,OC 最小,∴OC =AM =2,则OC 的最小值为2.例2、如图,PA =2,PB =4,将线段PA 绕P 点旋转一周,以AB 为边作正方形ABCD ,则PD 的最大值为 .解:将△PAD 绕点A 顺时针旋转90°得到△P 'AB ,PD 的最大值即为P 'B 的最大值,∴PA =PA ',∠PAP '=90°∴PP '=PA =2 ∵△P 'PB 中,P 'B <PP '+PB ,PP ′=PA =2,PB =4,且P 、D 两点落在直线AB 的两侧,∴当P '、P 、B 三点共线时,P 'B 取得最大值(如图)此时P 'B =PP '+PB =2+4,即P 'B 的最大值为2+4. 例3、(2019•马鞍山二模)如图,在等腰直角△ABC 中,∠BAC =90°,点D 是△ABC 所在平面上一点,且满足DB =3,DA =5,则CD 的最小值为( )A . B. C .2 D .1解:将△ADC绕点A顺时针旋转90°,得到△ABE.则CD=BE,△ADE是等腰直角三角形,ED=5.∵AE、AD、BD都是定值,∴当E、B、D三点共线时,BE最小,即CD最小.此时BE最小值为DE﹣BD=5﹣3.故选:A.例4、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为 .解:将线段AE绕点E逆时针旋转120°得到EH,连接HG,过点H作HM⊥AD, ∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∴∠A=120°,∵将线段AE绕点E逆时针旋转120°得到EH,将线段EF绕点E逆时针旋转120°得到EG, ∴EF=EG=4,AE=EH,∠AEH=∠FEG=120°,∴∠DEH=60°,∠AEF=∠HEG,且EF=EG,AE=EH,∴△AEF≌△HEG(SAS)∴∠A=∠EHG=120°=∠AEH,∴AD∥HG,∴点G的轨迹是过点H且平行于AD的直线, ∴当DG⊥HG时,线段GD长度有最小值,∵∠HEM=60°,EH=4,HM⊥AD,∴EM=2,MH=EM=2,∴线段GD长度的最小值为2,例5、(2019•宿迁)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动 将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=,故答案为.例6、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF 绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为( )A.3 B.2 C.4 D.2+2解:如图,取AB的中点N.连接EN,EC,GN,作EH⊥CD交CD的延长线于H. ∵四边形ABCD是菱形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等边三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GNB=180°﹣60°﹣60°=60°,∴点G的运动轨迹是射线NG,易知B,E关于射线NG对称, ∴GB=GE,∴GB+GC=GE+GC≥EC,在Rt△DEH中,∵∠H=90°,DE=2,∠EDH=60°,∴DH=DE=1,EH=,在Rt△ECH中,EC==2,∴GB+GC≥2,∴GB+GC的最小值为2.故选:B.例7、如图,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,则线段AN的最大值为 .解:如图,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP, 则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴PA=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.例8、(2019•龙岩一模)如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为 .解:如图,将△ABP绕着点B逆时针旋转60°,得到△DBE,连接EP,CD,∴△ABP≌△DBE∴∠ABP=∠DBE,BD=AB=4,∠PBE=60°,BE=PE,AP=DE,∴△BPE是等边三角形∴EP=BP∴AP+BP+PC=PC+EP+DE,∴当点D,点E,点P,点C共线时,PA+PB+PC有最小值CD ∵∠ABC=30°=∠ABP+∠PBC,∴∠DBE+∠PBC=30°,∴∠DBC=90°,∴CD==, 练习1、(2019•常熟市二模)已知x轴上一点A(1,0),B为y轴上的一动点,连接AB,以AB为边作等边△ABC如图所示,已知点C随着点B的运动形成的图形是一条直线,连接OC,则AC+OC的最小值是 .解:将△ABO绕点A逆时针旋转60°得△ACD,并作直线CD,延长AD交y轴于点A'.∵等边△ABC、等边△AOD,∴AB=AC,AO=AD,∠BAC=∠OAD=60°∴∠BAC﹣∠OAC=∠OAD﹣∠OAC,∴∠BAO=∠CAD在△BAO和△CAD中,∴△BAO≌△CAD(SAS),∴∠AOB=∠ADC∵∠AOB=90° ∴∠ADC=90°,∴CD⊥AD,∴点C随着点B的运动形成的图形是直线CD∵∠AOA'=90°,∠OAD=60°∴∠AA'O=30°∴OA=AA' ∴AD=OA=AA'∴点D是AA'的中点,∵CD⊥AD,∴CD是AA'的中垂线 ∴AC=A'C,∴AC+OC=A'C+OC又∵点C在直线CD上运动,所以点O、C、A'三点共线时,A'C+OC的值最小,最小值为OA'的长.在R△AOA'中,∠AOA'=90°,∠OAD=60°,OA=1,O A'=OA=,∴AC+OC的最小值为.2、已知:AD=2,BD=4,以AB为一边作等边三角形ABC.使C、D两点落在直线AB的两侧.当∠ADB变化时,则CD的最大值 .解:把△ADC绕点A顺时针旋转60°得到△AEB,则AE=AD,BE=DC,∠EAD=60°, ∴△ADE为等边三角形,∴DE=DA=2,∠ADE=60°,当E点在直线BD上时,BE最大,最大值为2+4=6,∴CD的最大值为6.3、如图,在等腰直角△ABC中,∠BAC=90°,点D是△ABC所在平面上一点,且满足DB=6,DA=10,则CD的最小值为解:将△ADC绕点A顺时针旋转90°,得到△ABE.则CD=BE,△ADE是等腰直角三角形,ED=10.∵AE、AD、BD都是定值,∴当E、B、D三点共线时,BE最小,即CD最小.此时BE最小值为DE﹣BD=10﹣5.故选:A.4、如图,平行四边形ABCD中,∠B=60°,BC=6,AB=5,点E在AD上,且AE=2,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为 .解:将线段AE 绕点E 逆时针旋转120°得到EH ,连接HG ,过点H 作HM ⊥AD ,∵四边形ABCD 是平行四边形,∴∠A +∠B =180°,∴∠A =120°,∵将线段AE 绕点E 逆时针旋转120°得到EH ,将线段EF 绕点E 逆时针旋转120°得到EG , ∴EF =EG ,AE =EH ,∠AEH =∠FEG =120°,∴∠DEH =60°,∠AEF =∠HEG ,且EF =EG ,AE =EH ,∴△AEF ≌△HEG (SAS )∴∠A =∠EHG =120°=∠AEH ,∴AD ∥HG ,∴点G 的轨迹是过点H 且平行于AD 的直线, ∴当DG ⊥HG 时,线段GD 长度有最小值,∵∠HEM =60°,EH =2,HM ⊥AD ,∴EM =1,MH =,∴线段GD 长度的最小值为,5、如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE =2,F 为 AB 边上的一个动点,连接 EF ,将 EF 绕着点 E 顺时针旋转 45˚到 EG 的位置,连接 FG 和 CG ,则 CG 的最小值为 .F解:由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动,将△EFB 绕点E 旋转45°,使EF 与EG 重合,得到△EFB ≌△EHG ,从而可知△EBH 为等腰直角三角形,点G 在垂直于HE 的直线HG上,作CM ⊥HG ,则CM即为CG 的最小值,作EN ⊥CM ,可知四边形HENM 为矩形,则CM =MN +CN =HE =12 6、(2019秋•海曙区校级月考)如图,菱形ABCD 的边长是6,∠A =60°,E 是AD 的中点,F 是AB 边上一个动点,EG =EF 且∠GEF =60°,则GB +GC 的最小值是AA解:取AB的中点H,连接HG、HE、HG、BE、CE,则△AEF≌△HEG∴∠GHE=∠A=60°,∴HG∥AD,可知△BHG≌△EHG,∴BG=GE,∴CE的长就是GB+GC的最小值;在Rt△EBC中,EB=3,BC=6,∴EC=3,∴GB+GC的最小值3.7、如图,AB=8,点M为线段AB外一个动点,且AM=4,MB=MN,∠BMN=90°,则线段AN的最大值为.解:如图,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP, 则△APM是等腰直角三角形,∴MA=MP=4,BP=AN,∴PA=4,∵AB=8,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=8+4.8、(2019秋•蔡甸区期中)如图,在△ABC中,∠ABC=60°,AB<AC,点P是△ABC内一点,AB=6,BC=8,则PA+PB+PC的最小值是 .解:如图,将△PBF绕点B逆时针旋转60°得到△BFE,作EH⊥CB交CB的延长线于H. ∵∠ABC=60°,∠PBF=60°,∵∠ABP=∠EBF,∴∠EBF+∠BC=60°,∴∠EBC=120°, ∵PB=BF,∠PBF=60°,∴△PBF是等边三角形,∴PB=PF,∵PA=EF,∴PA+PB+PC=CP+PF+EF,根据两点之间线段最短可知,当E,F,P,C共线时,PA+PB+PC的值最小,最小值=EC的长, 在Rt△EBH中,∵∠EBH=60°,EB=6,∴BH=BE•cos60°=3,EH=EB•sin60°=3,∴CH=BH+CB=3+8=11,∴EC===2.。
专题7 旋转之求线段最值破解策略用旋转思想解决线段最值问题的本质用三角形三边关系解决问题如图,线段OA , OB 为定长,则A , B , O 三点共线时,AB 取得最值: 当点B 位于处B 1时,AB 取得最小值OA -OB ;当点B 位于B 2处时,AB 取得最大值OA +O B .最大值最小值B 1OB 2AB常见的题型有:1. 如图,Rt △ABC 大小固定,其中∠ABC =90°,点A , B 分别在互相垂直的直线m , n 上滑 动.n mO BAC取AB 中点D , 连接OD , C D . 当O , C , D 三点共线时,OC 取得最大值OD +C D .mn D OBAC2. 如图,等边△ABC 大小固定,点A , B 分别在互相垂直的直线m , n 上滑动.mn CO BA取AB 中点D , 连接OD , C D . 当O , C , D 三点共线时,OC 取得最大值OD +C D .n mD CO B A3. 如图,Rt △ABC 大小固定,其中∠ABC =90°,点A , B 分别在互相垂直的直线m , n 上滑动.n OB AC取AB 中点D , 连接OD , C D . 当O , C , D 三点共线时,OC 取得最小值|CD –OD |.mn D OB AC例题讲解例1.已知Rt△ABC中,∠ACB=90°,tan∠BAC=12.若BC=6,点D在边AC的三等分点处,将线段AD绕A点旋转,E始终为BD的中点,求线段CE长度的最大值.解:在Rt△ABC中,AC=tan BCBAC=12,AB=①如图1,当AD=13AC时,取AB的中点F,连接EF和CF,则CF=12AB=,EF=12AD=2.所以当且仅当C,E,F三点共线且点F在线段CE上时,CE最大,此时CE=CF+EF=2+图1②如图2,当AD=23AC时,同理可得CE的最大值为4+.综上可得,当点D在靠近点C的三等分点处时,线段CE的长度的最大值为4+图2例2 以平面上一点O 为直角顶点,分别画出两个直角三角形,记作△AOB 和△COD ,其中∠ABO =30°.如图,若BO =33,点N 在线段OD 上,且NO =2,P 是线段AB 上的一个动点,在将△AOB 绕点O 旋转的过程中,线段PN 长度的最小值为________,最大值为________.BCDPNO A解:332-2;33+2. 过点O 作OE ⊥AB 于点E ,则OE =12OB =332.故当点P 在点E 处时,OP 长度取最小值332;当点P 在点B 处时,OP 长度取最大值33.A O NPDBCE①当△AOB 绕点O 旋转到O ,E ,D 三点共线,且点E 在线段OD 上时,PN 取最小值,即OE -ON =332-2; E (P )CDO A BN②当△AOB 绕点O 旋转到O ,B ,D 三点共线,且点B 在线段DO 的延长线上时,PN 取最大值,OB +ON =332.所以线段PN 长度的最小值为33-2,最大值为332.B (P )ODC AN进阶训练1. 已知△AOB 和△COD 是等腰三角形,其中BA =BO =2,CD =CO =3,∠ABO =∠DCO .连结AD ,BC ,M ,N 分别为OA ,BC 的中点.若固定△AOB ,将△COD 绕点O 旋转,求MN 的最大值.NMABCDO【答案】52. 【提示】如图,取OB 的中点E ,连结EM ,EN ,则EM ,EN 为定值,当点E 在线段MN 上时,MN 取最大值.EODCBAM N2. 已知:在R t △ABC 中,∠BAC =90°,AC =AB =4,D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE 绕点A 旋转,得到等腰Rt △AD 1E 1,记直线BD 1与CE 1的交点为P . (1)设BC 的中点为M ,求线段PM 的长; (2)求点P 到AB 所在直线的距离的最大值.E 1D 1A BC DEP【答案】(1)22;(2)13【提示】(1)易证△E 1AC ≌△D 1AB ,所以∠E 1CA =∠D 1BA ,从而可得∠BPC =∠BAC =90°,所以PM =12BC =22. MPEDC BA D 1E 1(2)由题意知,点D 1,E 1在以A 为圆心、AD 为半径的圆上,而点P 在直线BD 1上,所以当直线BD 1与⊙A 相切时,点P 到AB 的距离最大.此时四边形AD 1PE 1是正方形,即PD 1=AD 1=2.如图,作PG ⊥AB 于点G ,解Rt △PGB 即可.G P EDC BA D 1E 13. 已知:正方形ABCD 的边长为1,P 为正方形内的一个动点,若点M 在AB 延长线上,且满足△PBC ∽△PAM ,延长BP 交AD 的延长线于点N ,连结CM ,是否存在满足条件的点P ,使得PC =12?请说明理由. A B CDPMN【答案】不存在满足条件的点P ,使得PC =12. 【提示】因为△PBC ∽△PAM ,可得∠ABP +∠PAM =∠ABP +∠PBC =90°,所以AP ⊥BN .以AB 为直径,作半圆O ,连结OC ,OP ,则OP +PC ≥OC ,从而PC ≥512,所以不存在满足条件的点P ,使得PC =12.O N MPDCB A。
2020中考数学旋转求线段最值题型一.利用旋转转化为三点或四点共线求最值1.如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为.2.如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是 .3.如图,菱形ABCD的边长为4,∠ABC=60°,在菱形ABCD内部有一点P,当PA+PB+PC值最小时PB的长为.4.如图,PA=2,PB=4,将线段PA绕P点旋转一周,以AB为边作正方形ABCD,则PD的最大值为.5.如图,在四边形ABCD中,AB=6,BC=4,若AC=AD,且∠ACD=60°,则对角线BD的长的最大值为.6.如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为 .7.如图,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,则线段AN的最大值为.二.利用旋转转化为点到直线的距离垂线段最短求最值1.在平面直角坐标系中,已知点A(4,0),点B为y轴正半轴上一个动点,连接AB,以AB为一边向下作等边△ABC,连结OC,则OC的最小值为.2.如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为.3.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.4.如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为 .5.图所示,已知点C随着点B的运动形成的图形是一条直线,连接OC,则AC+OC的最小值是.6.如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE=2,F 为 AB 边上的一个动点,连接 EF,将 EF 绕着点 E 顺时针旋转45˚到 EG的位置,连接 FG 和 CG,则 CG 的最小值为.三.利用旋转转化为圆外一定点与圆上的动点的关系求最值1.如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长的最大值为.2.已知:AD=2,BD=4,以AB为一边作等边三角形ABC.使C、D两点落在直线AB的两侧.当∠ADB变化时,则CD的最大值.3.如图,在等腰直角△ABC中,∠BAC=90°,点D是△ABC所在平面上一点,且满足DB=6,DA=10,则CD的最小值为5.如图在四边形ABCD中,BC=CD,∠BCD=90°.若AB=4cm,AD=3cm,则对角线AC的最大值为cm.6.如图,已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.若∠ABC=30°,∠ACD=45°,AC=2,则B、D之间距离的最大值为.。
例5、(衢州市)如图,已知点A (-4,8)和点B (2,n )在抛物线上.(1) 求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标; (2) 平移抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.① 当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;② 当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.14年1月石景山期末 6. 已知点)2,2(-A 和点),4(n B -在抛物线)0(2≠=a ax y 上.(1)求a 的值及点B 的坐标;(2)点P 在y 轴上,且满足△ABP 是以AB 为直角边的直角三角形,求点P 的坐标;(3)平移抛物线)0(2≠=a ax y ,记平移后点A 的对应点为'A ,点B 的对应点为'B . 点M (2,0)在x 轴上,当抛物线向右平移到某个位置时,''MB M A +最短,求此时抛物线的函数解析式.练习 1、(达州)15、如图6,在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).2.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上2y ax =2y ax=有一点P,使P D P E+的和最小,则这个最小值为() A...3 D3、滨州市中考第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.4 、山西省中考第26题如图1,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.试探究:随着点P的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使△BDM的周长最小,求出点M的坐标.图1满分解答5. (年山东聊城)已知△ABC中,边BC的长与BC边上的高的和为20.(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;(2)当BC多长时,△ABC的面积最大?最大面积是多少?(3)当△ABC面积最大时,是否存在其周长最小的情形?如果存在,请说出理由,并求出其最小周长;如果不存在,请给予说明.6. (江苏苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(12,0),点P为斜边OB上的一动点,则PA+PC的最小值为【】A B C D.7. (已知点D与点A(8,0),B(0,6),C(a,-a)是一平行四边形的四个顶点,则CD长的最小值为 .8. 如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.9.如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.一、费马点、利用旋转变换求线段和最值费马点编辑本段费马点定义在一个多边形中,到每个顶点距离之和最小的点叫做这个多边形的费马点。
例5、(衢州市)如图,已知点A (-4,8)和点B (2,n )在抛物线上.(1) 求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标; (2) 平移抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.① 当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;② 当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.14年1月石景山期末 6. 已知点)2,2(-A 和点),4(n B -在抛物线)0(2≠=a ax y 上.(1)求a 的值及点B 的坐标;(2)点P 在y 轴上,且满足△ABP 是以AB 为直角边的直角三角形,求点P 的坐标;(3)平移抛物线)0(2≠=a ax y ,记平移后点A 的对应点为'A ,点B 的对应点为'B . 点M (2,0)在x轴上,当抛物线向右平移到某个位置时,''MB M A +最短,求此时抛物线的函数解析式.练习1、(达州)15、如图6,在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).2.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上2y ax =2yax=4 x 2 2 A8 -2 O -2-4 y6B CD -44有一点P,使PD PE+的和最小,则这个最小值为() A.23 B.26 C.3 D.63、滨州市中考第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.4 、山西省中考第26题如图1,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.试探究:随着点P的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使△BDM的周长最小,求出点M的坐标.图1满分解答5. (年山东聊城)已知△ABC中,边BC的长与BC边上的高的和为20.(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;(2)当BC多长时,△ABC的面积最大?最大面积是多少?(3)当△ABC面积最大时,是否存在其周长最小的情形?如果存在,请说出理由,并求出其最小周长;如果不存在,请给予说明.6. (江苏苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(12,0),点P为斜边OB上的一动点,则PA+PC的最小值为【】A.13B.31C.319+D.277. (已知点D与点A(8,0),B(0,6),C(a,-a)是一平行四边形的四个顶点,则CD长的最小值为 .8. 如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.9.如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.一、费马点、利用旋转变换求线段和最值费马点编辑本段费马点定义在一个多边形中,到每个顶点距离之和最小的点叫做这个多边形的费马点。
旋转综合之线段最值问题与旋转相关的题目是中考压轴常见考题之一,通过旋转可以把已知图形中的分散元素(边、角)集中在一个三角形中,根据三角形三边之间的关系,当三点共线时,取得最值思路:已知图形中含有共同顶点的定线段或相等线段,可考虑旋转!利用旋转求线段最值的解题方法1.使目标线段与定长线段放在三角形中,根据三边关系,当三点共线时,取得最值。
如图所示,当B位于点B1 时,AB取得最小值|OA-OB|,当点B位于B2时,AB取得最大值OA+OB例1.已知,线段AB=6,线段AC=4,将线段AC绕A旋转,则线段BC的最大值为 10 最小值为 22.把线段或线段和差放到同一条直线上,根据两点之间线段最短来求最值。
如图所示,定线段OA=a,Rt△BOC中直角边OB=b,锐角∠B=θ,点P是斜边BC上的一个动点,Rt△BOC在绕点O旋转的过程中,AP的最值如下:OxA C ①如图,当OP ⊥BC ,且O 、P 、A 三点共线时,AP 取得最小值|OBsin θ-OA|②如图,当B 、P 重合,且OAP 三点共线时,AP 取得最大值|OB+OA|例2、如图,在△ABC 中,∠C =90°,AC=4,BC=2,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点B 、C 随之在y 轴上运动,在运动过程中,求点B 到原点 C 、的最大距离是。
解析:作AC 的重点M ,连接OM 、BM.由OB OM+BM ,可得当O 、M 、B 三点 共线且点M 在线段OB 上时,OB 取得 最大值.此时OB=OM+BM=2+2练习达标 1.如图,已知△ABC 中,∠ACB=90°,动点P 满足,线段CP 绕C 顺时针旋转90°得到线段CD ,连DA 、DB 、PB 。
求BD 的最大值最小值。
2.如图,已知△ABC 中,∠ACB=90°,BC=6,AC=12,点D 在AC 上,且AD=8,将线段AD 绕点A 旋转,D 点对应点为'D ,连接'BD ,点F 为'BD 中点,连接CF ,线段CF 的最大值为多少?3.如图,PA=2,PB=4,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧,当 APB 变化时,求PD 的最大值。
《旋转之求线段最值》解题方法用旋转思想解决线段最值问题的本质用三角形三边关系解决问题如图,线段OA,OB为定长,则A,B,O三点共线时,AB取得最值:当点B位于处B1时,AB取得最小值OA-OB;当点B位于B2处时,AB取得最大值OA+O B.最小值常见的题型有:1.如图,Rt△ABC大小固定,其中∠ABC=90°,点A,B分别在互相垂直的直线m,n上滑动.m取AB中点D,连接OD,C D.当O,C,D三点共线时,OC取得最大值OD+C D.m2.如图,等边△ABC大小固定,点A,B分别在互相垂直的直线m,n上滑动.m取AB中点D,连接OD,C D.当O,C,D三点共线时,OC取得最大值OD+C D.m3.如图,Rt△ABC大小固定,其中∠ABC=90°,点A,B分别在互相垂直的直线m,n上滑动.取AB中点D,连接OD,C D.当O,C,D三点共线时,OC取得最小值|CD –OD|.m例题讲解例1.已知Rt△ABC中,∠ACB=90°,tan∠BAC=1.若BC=6,点2D在边AC的三等分点处,将线段AD绕A点旋转,E始终为BD的中点,求线段CE长度的最大值.解:在Rt△ABC中,AC=tan BCBAC=12,AB=.①如图1,当AD=13AC时,取AB的中点F,连接EF和CF,则CF=12AB=,EF=12AD=2.所以当且仅当C,E,F三点共线且点F在线段CE 上时,CE最大,此时CE=CF+EF=2+图1②如图2,当AD=23AC时,同理可得CE的最大值为4+综上可得,当点D在靠近点C的三等分点处时,线段CE的长度的最大值为4+图2例2 以平面上一点O 为直角顶点,分别画出两个直角三角形,记作△AOB 和△COD,其中∠ABO =30°.如图,若BO =N 在线段OD 上,且NO =2,P 是线段AB 上的一个动点,在将△AOB 绕点O 旋转的过程中,线段PN 长度的最小值为________,最大值为________.BCDPNOA-2;2.过点O 作OE ⊥AB 于点E ,则OE =12OB .故当点P 在点E 处时,OP ;当点P在点B 处时,OP长度取最大值A O NPDBCE①当△AOB 绕点O 旋转到O ,E ,D 三点共线,且点E 在线段OD 上时,PN 取最小值,即OE -ON -2;D②当△AOB 绕点O 旋转到O ,B ,D 三点共线,且点B 在线段DO 的延长线上时,PN 取最大值,OB +ON =2.所以线段PN-2,最大值为2.D进阶训练1. 已知△AOB 和△COD 是等腰三角形,其中BA =BO =2,CD =CO =3,∠ABO =∠DCO .连结AD ,BC ,M ,N 分别为OA ,BC 的中点.若固定△AOB ,将△COD 绕点O 旋转,求MN 的最大值.NMABCDO【答案】52.【提示】如图,取OB 的中点E ,连结EM ,EN ,则EM ,EN 为定值,当点E 在线段MN 上时,MN 取最大值.EODCBAM N2. 已知:在Rt △ABC 中,∠BAC =90°,AC =AB =4,D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE 绕点A 旋转,得到等腰Rt △AD 1E 1,记直线BD 1与CE 1的交点为P .(1)设BC 的中点为M ,求线段PM 的长; (2)求点P 到AB 所在直线的距离的最大值.E 1D 1A BC DEP【答案】(1)2)1【提示】(1)易证△E 1AC ≌△D 1AB ,所以∠E 1CA =∠D 1BA ,从而可得∠BPC =∠BAC =90°,所以PM =12BC=MPEDC BA D 1E 1(2)由题意知,点D 1,E 1在以A 为圆心、AD 为半径的圆上,而点P 在直线BD 1上,所以当直线BD 1与⊙A 相切时,点P 到AB 的距离最大.此时四边形AD 1PE 1是正方形,即PD 1=AD 1=2.如图,作PG ⊥AB 于点G ,解Rt△PGB即可.B3.已知:正方形ABCD的边长为1,P为正方形内的一个动点,若点M在AB延长线上,且满足△PBC∽△PAM,延长BP交AD的延长线于点N,连结CM,是否存在满足条件的点P,使得PC=12?请说明理由.A CDPN【答案】不存在满足条件的点P,使得PC=12.【提示】因为△PBC∽△PAM,可得∠ABP+∠PAM=∠ABP+∠PBC=90°,所以AP⊥BN.以AB为直径,作半圆O,连结OC,OP,则OP+PC≥OC,从而PC所以不存在满足条件的点P,使得PC=12.NPD CA。
旋转求线段最值(建议看前3题;4、5要用相似,可以不做。
感谢周涵和代诺同学!)1.(2012济南)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A 随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为()A.+1 B.C.D.2.已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD=_________;(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD=_________;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求CD的最大值及相应的∠ACB的度数.3.(西城25.)已知:P A=2,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.4.在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC .(1)如果AB=AC ,∠BAC=90°①当点D 在线段BC 上时(不与点B 重合),如图1,请你判断线段CE ,BD 之间的位置关系和数量关系(直接写出结论);②当点D 在线段BC 的延长线上时,请你在图2中画出图形,并判断①中的结论是否仍然成立,并证明你的判断.(2)如图3,若点D 在线段BC 上运动,DF ⊥AD 交线段CE 于点F ,且∠ACB=45°,,试求线段CF 长的最大值.5. 已知:AOB ∆中, 2AB OB ==,COD ∆中,3CD OC ==,ABO DCO ∠=∠. 连接AD 、BC ,点M 、N 、P 分别为OA 、OD 、BC 的中点.图1 图2 (1) 如图1,若A 、O 、C 三点在同一直线上,且60ABO ο∠=,则PMN ∆的形状是________________,此时ADBC =________;(2) 如图2,若A 、O 、C 三点在同一直线上,且2ABO α∠=,证明PMN ∆∽BAO ∆,并计算AD BC的值(用含的式子表示);(3) 在图2中,固定AOB ∆,将COD ∆绕点O 旋转,直接写出PM 的最大值.α部分习题详解1.考点:直角三角形斜边上的中线;三角形三边关系;勾股定理;矩形的性质。
中考数学总复习《旋转综合题之线段问题》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________1.在ABC 中,AB=AC ,∠BAC=90°,D 为平面内的一点.(1)如图1,当点D 在边BC 上时,BD=2,且30BAD ∠=︒,求AD 的长;(2)如图2,当点D 在ABC 的外部,且满足45BDC ADC ∠=︒+∠,求证:2BD D A =;(3)如图3,AB=6,当D 、E 分别为AB 、AC 的中点时,把DAE 绕点A 顺时针旋转,设旋转角为()0180αα<<︒,直线BD 与CE 的交点为P ,连接PA ,直接写出旋转中PAB 面积的最大值.2.如图,已知点D 是等边ABC 内一点,且3BD =,AD=4,CD=5.(1)求ADB ∠的度数;以下是甲,乙,丙三位同学的谈话:甲:我认为这道题的解决思路是借助旋转,我选择将BCD △绕点B 顺时针旋转60°或绕点A 逆时针旋转60°; 乙:我也赞成旋转,不过我是将ABD △进行旋转; 丙:我是将ACD 进行旋转.请你借助甲,乙,丙三位同学的提示,选择适当的方法求ADB ∠的度数;(2)若改成6BD =,AD=8,CD=10,ADB ∠的度数=______°,点A 到BD 的距离为______; 类比迁移:(3)已知90ABC ∠=︒,AB=BC ,BE=1,3CE =和5AE =,求BEC ∠的度数.3.如图,在等边三角形ABC 内有一点P .(1)若2PA =,PB =3和1PC =,求BPC ∠的度数;(2)若等边三角形边长为4,求PA PB PC ++的最小值;(3)如图,在正方形ABCD 内有一点P ,且PA =5,PB =2和1PC =,求正方形ABCD 的边长.4.如图,在ABC 中,90ACB ∠=︒和42CB CA ==,点D 始终在AC 的上方,且()0180CAD ∠αα=︒<<︒,点E 为射线AD 上任意一点(点E 与点A 不重合),连接CE ,将线段CE 绕点C 顺时针旋转90︒得到线段CF ,直线FB 交直线AD 于点M .(1)如图1,当045α︒<<︒时,求证BM AE ⊥;(2)当点Q 为AC 边的中点时,连接MQ ,求MQ 的最大值; (3)如图2,若105α=︒,2AE =时,求BCF △的面积.5.在平面直角坐标系中,点()8,0A ,点()0,8B 分别是坐标轴上的点,连接AB .把ABO 绕点B 逆时针旋转得A BO ''△.点A ,O 旋转后的对应点为A ',O ',记旋转角为α.(1)如图①,当点O '落在AB 边上时,求α的值和点O '的坐标; (2)如图②,当60α=︒时,求AA '的长和点O '的坐标; (3)连接AO ',直接写出在旋转过程中AO A ''△面积的最大值.6.综合与探究:问题情境:数学课上,老师利用两块含30角的全等三角尺进行图形变换操作探究,其中90ACB DFE ∠=∠=60,6cm BAC EDF AC DF ∠=∠===.操作探究:(1)将两个三角尺按如图1的方式在同一平面内放置,其中AC 与DF 重合,此时B ,C ,E 三点共线,点,B E 在点C 异侧,求线段BE 的长;操作探究2(2)在图1的基础上进行了如下的操作:三角尺ABC 保持不动,将三角尺DFE 绕点A 顺时针方向旋转角度(0180)αα<<,射线FE 和CB 交于点G ,如图2,认真分析旋转的过程中,解决下列问题: ①在旋转过程中,当α=_________时,DE AB ⊥; ①连接EC ,求证:EC BF .7.数学课上,老师给出了下面命题:把一个三角形绕着某点(顺时针或逆时针)旋转90︒后得到的三角形,与原三角形的对应线段(如:边、高、中线、角平分线等)都存在对应相等,且互相垂直的关系.(1)为了验证这个结论,小宇同学把ABC 绕着点A 逆时针旋转90︒得AB C ''△,如图1,显然ABC △≌AB C ''△,所以B C ''BC =.请你完成证明B C ''BC ⊥的过程.(2)为了验证这个结论,小明同学在(1)基础上,选择对应中线,于是分别取AB 、A B ''的中点G 、G '连接CG 、C G ''如图2.求证:CG =C G ''且CG ⊥C G ''.拓展应用(3)如图3,在正方形ABCD 中,把等腰Rt EFC △(∠90ECF =︒)如图放置,连接AE 、AF 点G 为AF 的中点,连接DG .请你猜想DG 与AE 的关系,并证明你的结论.8.正方形ABCD ,点E 为平面内一点,连接BE ,将BE 绕点B 顺时针旋转90︒得到BF ,连接AF ,CE ,已知点M 为CE 的中点,连接BM .(1)如图1,①若点E 为边AB 边上一点,补全图形; ①判断线段BM 和AF 的数量关系,结论为________;(2)如图2,若点E 是ABCD 的内部一点,(1)中线段BM 和AF 的数量关系是否仍然成立,如果成立,请证明;如果不成立,请说明理由.(3)正方形ABCD 中,已知2AB =,若点E 在以点B 为圆心,1为半径的圆上运动,线段DM 的最大值为:_________.9.在四边形ABCD 中,AB CD ∥和AD BC ∥,在AEF △中,点E F 、是动点AE EF = 90AEF ∠=︒.(1)如图1,当点F 与点B 重合时,连接CE 交AB 于点G ,连接AC BE=2,22BC = 120BAD ∠=︒. ①判断四边形ABCD 的形状,并说明理由. ①求点E 到BC 的距离.(2)如图2,当点F 在AB 延长线上时,将AEF △绕着点A 逆时针旋转得到AE F '',使点F '落在CD 边上,点E '在平行四边形ABCD 的内部,过点C 作CH CD ⊥,连接CH 、DH 若AF DH '=,AF D H '∠=∠求证:222BE CH CD '+=;10.ABC 是等腰直角三角形,点D 是ABC 外部的一点,连接AD ,26AB AC AD ===将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接ED CE ,,BD .(1)如图1,当点D 在线段EC 上时,线段EC 与线段BD 的数量关系是_______,位置关系是_______; (2)如图2,线段EC 交BD 于点P ,此时(1)中线段EC 与线段BD 的关系是否依然成立,请说明理由; (3)如图3,线段EC 交BD 于点P ,点Q 是AC 边的中点,连接DC PQ ,,当32DC =时,求PQ 的长.11.在平面直角坐标系中,O 为原点,点(3,0)A ,点(0,4)B ,把ABO 绕点B 逆时针旋转,得A BO ''△,点A ,O 旋转后的对应点为A ',O '记旋转角为α.(1)如图①,若90α=︒,求AA '的长; (2)如图①,若45α=︒,求点O '的坐标.12.将一块直角三角板的直角顶点绕矩形ABCD 的对角线的交点O 旋转(图①⇒图①,8,6AD AB ==图中的M 、N 分别为直角三角形的直角边与矩形ABCD 的边CD BC 、的交点.(1)如图①,当三角板一直角边与OD 重合时,求证:222CD CN BN +=. (2)如图①中5BN =、求CM DM -的值.(3)如图①,连接MN ,直接写出MN 的最小值为_______.13.【探究与证明】【问题情境】如图1,点E 为正方形ABCD 内一点2AE =,4BE =和90AEB ∠=︒,将直角三角形ABE 绕点A 逆时针方向旋转α度(0180α≤≤︒)点B 、E 的对应点分别为点B '和E '.【问题解决】(1)如图2,在旋转的过程中,点B '落在了AC 上,求此时CB '的长;(2)若90α=︒,如图3,得到ADE '△(此时B '与D 重合),延长BE 交DE '于点F ①试判断四边形AEFE '的形状,并说明理由; ①连接CE ,求CE 的长.14.已知等腰直角三角形ABC 中90ABC ∠=︒,点D 在射线CB 上移动(不与B 、C 重合),连接AD ,线段AD 绕点D 顺时针旋转()0180αα︒︒<︒≤︒得到线段DE ,连接CE AE ,.(1)如图1,当点E 落在线段AC 上时 ①直接写出BAD ∠的度数(可用α表示);①请用等式表示CE CD CB 、、的数量关系,并说明理由;(2)当点E 落在线段AC 的延长线上时,请在图2中画出符合条件的图形,则(1)中,CE CD CB 、、的数量关系仍然成立吗?若成立,请说明理由;若不成立,请直接写出正确的数量关系.15.如图,ABC 中B C α∠=∠=和()045α︒<<︒,M 为BC 的中点,D 为线段CM 上一动点()DM CD ≤,将线段DM 绕D 点顺时针旋转2α得到线段DE ,点F 是线段BM 上一点且DF DC =,连接AE ,EF .(1)小亮为了研究AEF ∠的度数,将图1中的点D 移至到CM 的中点处,使点F 与点M 重合,如图2,请直接写出AEF ∠的度数;(2)如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若30α=︒,23AB =延长AE 交BC 于点G ,若2BF CG =,请直接写出FG 的长.参考答案1.【答案】(1)22(3)929-2.【答案】(1)150ADB ∠=︒(2)150,4.(3)135BEC ∠=︒3.【答案】(1)150BPC ∠=︒(2)43(3)54.【答案】(2)422+(3)232+5.【答案】(1)()42,842O -'(2)82AA '=;()43,4O '(3)32232+ 6.【答案】(1)123cm (2)①30;(3)AE DG ⊥ 2AE DG = 8.【答案】(1)①12BM AF =(2)成立(3)152+ 9.【答案】(1)①四边形 ABCD 是菱形;①262+;10.【答案】(1)BD CE BD CE =⊥,(2)(1)中线段EC 与线段BD 的关系是否依然成立(3)PQ 的长为3211.【答案】(1)52(2)(22,422)O -'12.【答案】(2)83(3)5 13.【答案】(1)21025-(2)①四边形AEFE '是正方形;①2514.【答案】(1)①1452BAD α∠=︒-,①22CD CB CE =+(2)不成立,22CD CB CE =- 15.【答案】(1)90AEF ∠=︒(2)结论依然成立,(3)333-。