通用版2018高考物理一轮复习第6章动量第1节动量动量定理课件
- 格式:ppt
- 大小:1.47 MB
- 文档页数:41
板块三限时规范特训时间:45分钟 100分一、选择题(本题共10小题,每小题7分,共70分。
其中1~7为单选,8~10为多选) 1.[2018·湖北黄石市黄石一中模拟]有关物体的动量,下列说法正确的是( ) A .同一物体的动量改变,一定是速度大小改变 B .同一物体的动量改变,一定是速度方向改变 C .同一物体的运动速度改变,其动量一定改变 D .同一物体的运动速度改变,其动量可能不变 答案 C解析 动量为一矢量,由p =mv 知,同一物体动量改变,可能是速度大小变化、也可能是速度方向变化,所以A 、B 错误;同一物体速度改变,动量一定变化,故C 正确,D 错误。
2.[2018·山西太原五中月考]下面关于物体动量和冲量的说法错误的是( ) A .物体所受合外力冲量越大,它的动量也越大 B .物体所受合外力冲量不为零,它的动量一定要改变 C .物体动量增量的方向,就是它所受冲量的方向 D .物体所受合外力越大,它的动量变化就越快 答案 A解析 Ft 越大,Δp 越大,但动量不一定大,它还与初态的动量有关,故A 错误,B 正确;冲量不仅与Δp 大小相等,而且方向相同,所以C 正确;物体所受合外力越大,速度变化越快,即动量变化越快,D 正确。
3.把一个乒乓球竖直向上抛出,若空气阻力大小不变,则乒乓球上升到最高点和从最高点返回到抛出点的过程相比较( )A .重力在上升过程的冲量大B .合外力在上升过程的冲量大C .重力冲量在两过程中的方向相反D .空气阻力冲量在两过程中的方向相同 答案 B解析 乒乓球上升过程mg +f =ma 1,下降过程mg -f =ma 2,故a 1>a 2。
由于上升和下降通过的位移相同,由公式x =12at 2知上升用的时间小于下降用的时间,上升时重力的冲量小,A 错误;而重力的冲量,不管是上升还是下降,方向都向下,故C 错误;而空气阻力冲量的方向:上升时向下,下降时向上,故方向相反,D 错误;再由公式v =2ax 可知,上升的初速度大于下降的末速度,由动量定理知,合外力的冲量等于动量的变化量,因上升时动量的变化量大于下降时动量的变化量,故合外力在上升过程冲量大,故B 正确。
专题五 动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.关键能力·分层突破考点一 碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2. 如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m.P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L.物体P置于P1的最右端,质量为2m且可看作质点.P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起.P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内).P与P2之间的动摩擦因数为μ.求:(1)P1、P2刚碰完时的共同速度v1和P的最终速度v2;(2)此过程中弹簧的最大压缩量x和相应的弹性势能E p.教你解决问题第一步:审条件 挖隐含P的速度不变.①“与静止的P2发生碰撞,碰撞时间极短”隐含→P1、P2获得共同速度.②“碰撞后P1与P2粘连在一起”隐含→P1、P2、P三者有共同速度及整个碰撞过程③“P压缩弹簧后被弹回并停在A点”隐含→中的弹性势能变化为零.第二步:审情景 建模型①P1与P2碰撞建模碰撞模型.→②P与P2之间的相互作用建模滑块—滑板模型.→第三步:审过程 选规律①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x及弹性势能E p.模型3“子弹打木块”模型1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m +M )v ,Q 热=fL相对=12mv2-12(M +m )v 2.(2)若子弹穿出木块,有mv 0=mv 1+Mv 2,Q 热=fL 相对=12mv −0212mv −1212M v 22.例3.(多选)如图所示,一质量m 2=0.25 kg 的平顶小车,车顶右端放一质量m 3=0.30 kg 的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m 1=0.05 kg 的子弹以水平速度v 0=18 m/s 射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g 取10m s2.下列分析正确的是( )A .小物体在小车上相对小车滑行的时间为13s B .最后小物体与小车的共同速度为3 m/s C .小车的最小长度为1.0 mD .小车对小物体的摩擦力的冲量为0.45 N·s 跟进训练1.[2022·黑龙江哈尔滨模拟](多选)如图所示,两个小球A 、B 大小相等,质量分布均匀,分别为m 1、m 2,m 1<m 2,A 、B 与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A 球心等高处水平快速向右敲击A ,作用于A 的冲量大小为I 1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B 球心等高处水平快速向左敲击B ,作用于B 的冲量大小为I 2,I 1=I 2,则下列说法正确的是( )A .若两次锤子敲击完成瞬间,A 、B 两球获得的动量大小分别为p 1和p 2,则p 1=p 2B .若两次锤子敲击分别对A 、B 两球做的功为W 1和W 2,则W 1=W 2C .若两次弹簧压缩到最短时的长度分别为L 1和L 2,则L 1<L 2D .若两次弹簧压缩到最短时,A 、弹簧、B 的共同速度大小分别为v 1和v 2,则v 1>v 22.如图甲所示,质量为M =3.0 kg 的平板小车C 静止在光滑的水平面上,在t =0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v t 图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二 力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4. 如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知x bc=1 m,重力加速度g=10 m/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用关键能力·分层突破例1 解析:由题意可知,当b的速度最小时,弹簧恰好恢复原长,设此时a的速度最大为v,由动量守恒定律和机械能守恒定律得:m b v0=mb v1+m a v,12m b v2=12m b v12+12m a v2,代入数据解得:m a=0.5 kg,v=4 m/s,故A错误,B正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v0=(m a+m b)v2,E p=12mbv−212(ma+m b)v22,代入数据解得:Ep=1.5 J,故C正确;在a离开挡板前,a、b及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D错误.答案:BC例2 解析:(1)P1、P2碰撞瞬间,P的速度不受影响,根据动量守恒mv0=2mv1,解得v1=v 0 2最终三个物体具有共同速度,根据动量守恒:3mv0=4mv2,解得v2=3 4 v0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:1 2×2mv+¿1212×2mv−212×4m v22¿=2mgμ(L+x)×2解得x=v0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+x)解得E p=116mv2答案:(1)v0234v0 (2)v0232μg-L 116mv2例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v2=12(m1+m2)v2+E p,得E p=m1m2 2(m1+m2)v2,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:x A=12(2+4)×1 m=3 m,x B=12×2×1 m=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2x′A=v2−v A2-2a A=0.96 mx车=v22a车=0.16 m车的长度至少为l=x A+x B+x′A-x车=4.8 m.答案:(1)0 (2)4.8 m例4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+¿1212m2v22¿解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v,距水平面的高度为h,则有m1v1=(m1+M)v,12m1v12=12(m1+M)v2+m1gh解得h=0.1 m由于h=R(1-cos 60°),所以物块P恰好不能从滑块左侧冲出,假设成立,之后物块P沿弧形槽从滑块上滑下,设物块P返回到水平面时的速度为v3、滑块的速度为v4,由动量守恒定律和机械能守恒定律得m1v1=m1v3+Mv4,12m1v12=12m1v+¿3212M v42¿解得v3=0,v4=2 m/s.(2)若Q恰能经过d点,则Q在d点的速度v d满足m2g=m2v d2 rQ从b点运动到半圆轨道最高点d的过程,由动能定理有-μm2gx bc-2m2gr=12m2v−d212m2v22解得Q恰能经过半圆轨道最高点时μ=0.3若Q恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm2gx bc-m2gr=0−12m2v22解得Q恰能运动到与半圆轨道圆心等高点时μ=0.6若Q恰能到达c点,则由动能定理得-μm2gx bc=0−12m2v22解得Q恰能运动到c点时μ=0.8分析可知,要使Q能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C点时,有2mg+mg=m v C2R,解得v C=√3gR.小球从A到C,由机械能守恒定律得12m v2=12m vC2+mg·2R,联立解得v0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12m vC2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR (2)R。
动量6.1动量和冲量动量定理一、考点聚焦动量冲量动量定理Ⅱ级要求二、知识扫描1.动量:运动物体的质量和速度的乘积叫做物体的动量,即P = mv.动量是矢量,其方向与速度方向相同.它的单位是kg·m/s.两动量相同,必是它们大小相等,且方向相同.动量和动能都是状态量.质量为m的物体,动量大小为P,动能为E k ,它们的关系是P2=2mE k.2.冲量:力和力的作用时间的乘积称为力F的冲量.即I = Ft.冲量是矢量,若在时间t内,F方向恒定,则它的方向与F方向相同,它的单位是N·s.3.动量定理动量定理的内容是物体的动量增量等于物体所受外力的总冲量,表达式为ΔP = Σ I.在恒力作用的条件下,动量定理可由牛顿第二定律推导出来,其简要过程为ΣFt = mv2 -mv1,即ΔP = Σ I.注意:(1)在物体受变力作用时动量定理仍然成立.但此时不可用F·t表示冲量,动量定理可表达为ΣI = ΔP.(2)动量定理中的速度通常均指以地面为参照系的速度.三、好题精析例1.从塔顶以相同速率抛出A、B、C三小球,A竖直上抛,B平抛,C竖直下抛.另有D球从塔顶起自由下落,四小球质量相同,落到同一水平面上.则()A.落地时动能相同的小球是A、B、CB.落地时动量相同的小球是A、B、CC.从离开塔顶到落地过程中,动能增量相同的小球只有A、B、CD.从离开塔顶到落地过程中,动量增量相同的小球是B、D〖解析〗四个小球在运动过程中机械能均守恒.抛出时动能相同的小球,机械能相同,落地时它们机械能一定也相同,即落地时动能相同,故A对.动量是矢量,落地时B的速度方向与A、C不同,故B的动量与A、C不同,B错.四小球运动过程中的动能增量均为ΔE K = mgh,均相同,C错.小球运动过程中的动量增量为ΔP= mg · t,只有B、D运动时间相同,故D对.〖点评〗(1)动量是矢量,质量相同的物体,速率相等,动能相同.但因方向可能不同,故动量可能不相同.(2)本题中,物体只受重力作用,动能增量等于重力所做功,它与轨迹是直线还是曲线无关,当小球的部分路径重复时(如A球)仍可只计起终点高度差去计算重力的功.小球动量增量等于重力的冲量,它也与轨迹是直线还是曲线无关,但路径重复时,所经时间仍要计为重力作用的时间.例2.如图6-1-1所示,质量为m 的物体,由静止开始从A 点沿斜面从h 1高处下滑到地面,随后又沿另一斜面上滑到h 2高处B 点停止.若在B 点给物体一瞬时冲量,使物体B 点沿原路返回A 点,需给物体的最小冲量的大小是多少?〖解析〗物体从A 运动到B ,克服摩擦力做的功为)(21h h mg E W p f -=∆=物体要从B 返回A ,必需的最小动能为)(221h h mg W E E f p k -=+∆=∆根据mp E k 22=,所以最小冲量的大小为 )(2221h h g m mE p p I k -===∆= 〖点评〗注意动能与动量大小之间的关系,mp E k 22=。