通用版2018高考物理一轮复习第6章动量第1节动量动量定理课件
- 格式:ppt
- 大小:1.47 MB
- 文档页数:41
板块三限时规范特训时间:45分钟 100分一、选择题(本题共10小题,每小题7分,共70分。
其中1~7为单选,8~10为多选) 1.[2018·湖北黄石市黄石一中模拟]有关物体的动量,下列说法正确的是( ) A .同一物体的动量改变,一定是速度大小改变 B .同一物体的动量改变,一定是速度方向改变 C .同一物体的运动速度改变,其动量一定改变 D .同一物体的运动速度改变,其动量可能不变 答案 C解析 动量为一矢量,由p =mv 知,同一物体动量改变,可能是速度大小变化、也可能是速度方向变化,所以A 、B 错误;同一物体速度改变,动量一定变化,故C 正确,D 错误。
2.[2018·山西太原五中月考]下面关于物体动量和冲量的说法错误的是( ) A .物体所受合外力冲量越大,它的动量也越大 B .物体所受合外力冲量不为零,它的动量一定要改变 C .物体动量增量的方向,就是它所受冲量的方向 D .物体所受合外力越大,它的动量变化就越快 答案 A解析 Ft 越大,Δp 越大,但动量不一定大,它还与初态的动量有关,故A 错误,B 正确;冲量不仅与Δp 大小相等,而且方向相同,所以C 正确;物体所受合外力越大,速度变化越快,即动量变化越快,D 正确。
3.把一个乒乓球竖直向上抛出,若空气阻力大小不变,则乒乓球上升到最高点和从最高点返回到抛出点的过程相比较( )A .重力在上升过程的冲量大B .合外力在上升过程的冲量大C .重力冲量在两过程中的方向相反D .空气阻力冲量在两过程中的方向相同 答案 B解析 乒乓球上升过程mg +f =ma 1,下降过程mg -f =ma 2,故a 1>a 2。
由于上升和下降通过的位移相同,由公式x =12at 2知上升用的时间小于下降用的时间,上升时重力的冲量小,A 错误;而重力的冲量,不管是上升还是下降,方向都向下,故C 错误;而空气阻力冲量的方向:上升时向下,下降时向上,故方向相反,D 错误;再由公式v =2ax 可知,上升的初速度大于下降的末速度,由动量定理知,合外力的冲量等于动量的变化量,因上升时动量的变化量大于下降时动量的变化量,故合外力在上升过程冲量大,故B 正确。
专题五 动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.关键能力·分层突破考点一 碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2. 如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m.P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L.物体P置于P1的最右端,质量为2m且可看作质点.P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起.P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内).P与P2之间的动摩擦因数为μ.求:(1)P1、P2刚碰完时的共同速度v1和P的最终速度v2;(2)此过程中弹簧的最大压缩量x和相应的弹性势能E p.教你解决问题第一步:审条件 挖隐含P的速度不变.①“与静止的P2发生碰撞,碰撞时间极短”隐含→P1、P2获得共同速度.②“碰撞后P1与P2粘连在一起”隐含→P1、P2、P三者有共同速度及整个碰撞过程③“P压缩弹簧后被弹回并停在A点”隐含→中的弹性势能变化为零.第二步:审情景 建模型①P1与P2碰撞建模碰撞模型.→②P与P2之间的相互作用建模滑块—滑板模型.→第三步:审过程 选规律①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x及弹性势能E p.模型3“子弹打木块”模型1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m +M )v ,Q 热=fL相对=12mv2-12(M +m )v 2.(2)若子弹穿出木块,有mv 0=mv 1+Mv 2,Q 热=fL 相对=12mv −0212mv −1212M v 22.例3.(多选)如图所示,一质量m 2=0.25 kg 的平顶小车,车顶右端放一质量m 3=0.30 kg 的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m 1=0.05 kg 的子弹以水平速度v 0=18 m/s 射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g 取10m s2.下列分析正确的是( )A .小物体在小车上相对小车滑行的时间为13s B .最后小物体与小车的共同速度为3 m/s C .小车的最小长度为1.0 mD .小车对小物体的摩擦力的冲量为0.45 N·s 跟进训练1.[2022·黑龙江哈尔滨模拟](多选)如图所示,两个小球A 、B 大小相等,质量分布均匀,分别为m 1、m 2,m 1<m 2,A 、B 与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A 球心等高处水平快速向右敲击A ,作用于A 的冲量大小为I 1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B 球心等高处水平快速向左敲击B ,作用于B 的冲量大小为I 2,I 1=I 2,则下列说法正确的是( )A .若两次锤子敲击完成瞬间,A 、B 两球获得的动量大小分别为p 1和p 2,则p 1=p 2B .若两次锤子敲击分别对A 、B 两球做的功为W 1和W 2,则W 1=W 2C .若两次弹簧压缩到最短时的长度分别为L 1和L 2,则L 1<L 2D .若两次弹簧压缩到最短时,A 、弹簧、B 的共同速度大小分别为v 1和v 2,则v 1>v 22.如图甲所示,质量为M =3.0 kg 的平板小车C 静止在光滑的水平面上,在t =0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v t 图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二 力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4. 如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知x bc=1 m,重力加速度g=10 m/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用关键能力·分层突破例1 解析:由题意可知,当b的速度最小时,弹簧恰好恢复原长,设此时a的速度最大为v,由动量守恒定律和机械能守恒定律得:m b v0=mb v1+m a v,12m b v2=12m b v12+12m a v2,代入数据解得:m a=0.5 kg,v=4 m/s,故A错误,B正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v0=(m a+m b)v2,E p=12mbv−212(ma+m b)v22,代入数据解得:Ep=1.5 J,故C正确;在a离开挡板前,a、b及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D错误.答案:BC例2 解析:(1)P1、P2碰撞瞬间,P的速度不受影响,根据动量守恒mv0=2mv1,解得v1=v 0 2最终三个物体具有共同速度,根据动量守恒:3mv0=4mv2,解得v2=3 4 v0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:1 2×2mv+¿1212×2mv−212×4m v22¿=2mgμ(L+x)×2解得x=v0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+x)解得E p=116mv2答案:(1)v0234v0 (2)v0232μg-L 116mv2例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v2=12(m1+m2)v2+E p,得E p=m1m2 2(m1+m2)v2,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:x A=12(2+4)×1 m=3 m,x B=12×2×1 m=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2x′A=v2−v A2-2a A=0.96 mx车=v22a车=0.16 m车的长度至少为l=x A+x B+x′A-x车=4.8 m.答案:(1)0 (2)4.8 m例4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+¿1212m2v22¿解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v,距水平面的高度为h,则有m1v1=(m1+M)v,12m1v12=12(m1+M)v2+m1gh解得h=0.1 m由于h=R(1-cos 60°),所以物块P恰好不能从滑块左侧冲出,假设成立,之后物块P沿弧形槽从滑块上滑下,设物块P返回到水平面时的速度为v3、滑块的速度为v4,由动量守恒定律和机械能守恒定律得m1v1=m1v3+Mv4,12m1v12=12m1v+¿3212M v42¿解得v3=0,v4=2 m/s.(2)若Q恰能经过d点,则Q在d点的速度v d满足m2g=m2v d2 rQ从b点运动到半圆轨道最高点d的过程,由动能定理有-μm2gx bc-2m2gr=12m2v−d212m2v22解得Q恰能经过半圆轨道最高点时μ=0.3若Q恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm2gx bc-m2gr=0−12m2v22解得Q恰能运动到与半圆轨道圆心等高点时μ=0.6若Q恰能到达c点,则由动能定理得-μm2gx bc=0−12m2v22解得Q恰能运动到c点时μ=0.8分析可知,要使Q能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C点时,有2mg+mg=m v C2R,解得v C=√3gR.小球从A到C,由机械能守恒定律得12m v2=12m vC2+mg·2R,联立解得v0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12m vC2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR (2)R。
动量6.1动量和冲量动量定理一、考点聚焦动量冲量动量定理Ⅱ级要求二、知识扫描1.动量:运动物体的质量和速度的乘积叫做物体的动量,即P = mv.动量是矢量,其方向与速度方向相同.它的单位是kg·m/s.两动量相同,必是它们大小相等,且方向相同.动量和动能都是状态量.质量为m的物体,动量大小为P,动能为E k ,它们的关系是P2=2mE k.2.冲量:力和力的作用时间的乘积称为力F的冲量.即I = Ft.冲量是矢量,若在时间t内,F方向恒定,则它的方向与F方向相同,它的单位是N·s.3.动量定理动量定理的内容是物体的动量增量等于物体所受外力的总冲量,表达式为ΔP = Σ I.在恒力作用的条件下,动量定理可由牛顿第二定律推导出来,其简要过程为ΣFt = mv2 -mv1,即ΔP = Σ I.注意:(1)在物体受变力作用时动量定理仍然成立.但此时不可用F·t表示冲量,动量定理可表达为ΣI = ΔP.(2)动量定理中的速度通常均指以地面为参照系的速度.三、好题精析例1.从塔顶以相同速率抛出A、B、C三小球,A竖直上抛,B平抛,C竖直下抛.另有D球从塔顶起自由下落,四小球质量相同,落到同一水平面上.则()A.落地时动能相同的小球是A、B、CB.落地时动量相同的小球是A、B、CC.从离开塔顶到落地过程中,动能增量相同的小球只有A、B、CD.从离开塔顶到落地过程中,动量增量相同的小球是B、D〖解析〗四个小球在运动过程中机械能均守恒.抛出时动能相同的小球,机械能相同,落地时它们机械能一定也相同,即落地时动能相同,故A对.动量是矢量,落地时B的速度方向与A、C不同,故B的动量与A、C不同,B错.四小球运动过程中的动能增量均为ΔE K = mgh,均相同,C错.小球运动过程中的动量增量为ΔP= mg · t,只有B、D运动时间相同,故D对.〖点评〗(1)动量是矢量,质量相同的物体,速率相等,动能相同.但因方向可能不同,故动量可能不相同.(2)本题中,物体只受重力作用,动能增量等于重力所做功,它与轨迹是直线还是曲线无关,当小球的部分路径重复时(如A球)仍可只计起终点高度差去计算重力的功.小球动量增量等于重力的冲量,它也与轨迹是直线还是曲线无关,但路径重复时,所经时间仍要计为重力作用的时间.例2.如图6-1-1所示,质量为m 的物体,由静止开始从A 点沿斜面从h 1高处下滑到地面,随后又沿另一斜面上滑到h 2高处B 点停止.若在B 点给物体一瞬时冲量,使物体B 点沿原路返回A 点,需给物体的最小冲量的大小是多少?〖解析〗物体从A 运动到B ,克服摩擦力做的功为)(21h h mg E W p f -=∆=物体要从B 返回A ,必需的最小动能为)(221h h mg W E E f p k -=+∆=∆根据mp E k 22=,所以最小冲量的大小为 )(2221h h g m mE p p I k -===∆= 〖点评〗注意动能与动量大小之间的关系,mp E k 22=。
课时1 动量定理1.动量(1)定义:物理学中把运动物体的质量和速度的乘积叫作物体的动量。
(2)表达式:p=mv。
(3)单位:kg·m/s。
(4)矢量性:物体在某时刻的动量方向与其速度方向相同。
(5)动量与动能的比较。
物理量动量动能定义物体质量与速度的乘积物体由于运动而具有的能量定义式p=mv Ek=mv2标矢性矢量标量特征状态量状态量关联式p=Ek=2.冲量(1)定义:物理学中把力与力的作用时间的乘积叫作力的冲量。
(2)定义式:I=Ft。
(3)单位:N·s。
(4)矢量性:冲量的方向跟力的方向相同。
(5)物理意义:冲量反映力的作用对时间的累积效应。
3.动量的变化量(1)物体在某段时间内末动量与初动量的矢量差叫作物体在这段时间内的动量的变化。
(2)计算式:Δp=p2-p1。
(3)动量的变化是矢量。
4.动量定理(1)内容:物体在一个过程中动量的变化量等于其在这个过程中所受到的力的冲量。
(2)表达式:I=p2-p1。
(3)物理意义:冲量是物体动量变化的量度。
(4)动量定理与动能定理的比较物理规律动量定理动能定理内容物体在一个过程中动量的变化量等于其在此过程中所受合外力的冲量物体在某一过程中动能的变化量等于在此过程中合外力对物体所做的功表达式I=mv2-mv1W=m -m 标矢性矢量式标量式物理意义反映力的作用对时间的累积效果反映力的作用对位移的累积效果1.(2019河北邯郸高三模拟)下列情况中,物体的动量不变的是()。
A.汽车在平直的公路上匀速前进B.汽车在转弯过程中,速度的大小不变C.水平飞来的小球撞到竖直墙面后,保持速度大小不变离开墙面返回D.水平地面上匀速直线运动的洒水车正在洒水答案A2.(2018福建厦门10月模拟)(多选)一个物体的动量和动能的关系,下列说法正确的是()。
A.动量增大,动能一定增大B.动能减小,动量可能增大C.动量不变,动能就不变D.动能不变,动量就不变AC3.(2019河北沧州11月月考)(多选)下列关于冲量和动量的说法正确的是()。
第章 动量1.考纲展示:动量、动量定理Ⅱ 动量守恒定律及其应用Ⅱ 弹性碰撞和非弹性碰撞Ⅰ 实验:验证动量守恒定律.2.考纲变化:本章内容是模块3-5中的部分内容,考纲要求从2017年起由原来的“选考内容”调至“必考内容”.3.考情总结:本章内容是考纲要求由原来的“选考内容”调至“必考内容”.调整后的第一次命题,考查点为动量守恒定律、动量定理的应用,题型为选择题.4.命题预测:调至“必考内容”后,命题热点仍然集中在动量与能量、动量与牛顿运动定律的综合应用方面,也可能与电场、磁场、电磁感应综合命题,难度可能是中等难度以上或较难.5.2017年考题分布第一节 动量 动量定理(对应学生用书第104页)[教材知识速填]知识点1 动量1.定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p 来表示. 2.表达式:p =m v .3.单位:kg·m/s.4.标矢性:动量是矢量,其方向和速度方向相同.5.动量、动能、动量变化量的比较易错判断(1)物体的动能变化时动量一定变化.(√)(2)两物体的动量相等,动能也一定相等.(×)(3)动量变化的大小,不可能等于初、末状态动量大小之和.(×)知识点2动量定理1.冲量(1)定义:力和力的作用时间的乘积叫做这个力的冲量.公式:I=Ft.(2)单位:冲量的单位是牛·秒,符号是N·s.(3)方向:冲量是矢量,恒力冲量的方向与力的方向相同.2.动量定理(1)内容:物体所受合外力的冲量等于物体动量的变化.(2)表达式:Ft=Δp=p′-p.(3)矢量性:动量变化量的方向与合外力的方向相同,可以在某一方向上应用动量定理.易错判断(1)动量定理描述的是某一状态的物理规律.(×)(2)物体所受合外力的冲量方向与物体末动量的方向相同.(×)(3)物体所受合外力的冲量方向与物体动量变化的方向相同.(√)[教材习题回访]考查点:动量变化量的理解1.(沪科选修3-5P10T3)质量为5 kg的小球以5 m/s的速度竖直落到地板上,随后以3 m/s的速度反向弹回.若取竖直向下的方向为正方向,则小球动量的变化为()A.10 kg·m/s B.-10 kg·m/sC.40 kg·m/s D.-40 kg·m/s[答案] D考查点:动量和动能的比较2.(粤教选修3-5P9T5)下列关于物体的动量和动能的说法,正确的是() A.物体的动量发生变化,其动能一定发生变化B.物体的动能发生变化,其动量一定发生变化C.若两个物体的动量相同,它们的动能也一定相同D.动能大的物体,其动量也一定大[答案] B考查点:动量定理的应用3.(粤教版选修3-5P9T4)在没有空气阻力的条件下,在距地面高为h,同时以相等初速度v0分别平抛、竖直上抛、竖直下抛一质量相等的物体m,当它们从抛出到落地时,比较它们的动量的增量Δp.有()A.平抛过程较大B.竖直上抛过程最大C.竖直下抛过程较大D.三者一样大[答案] B考查点:动量定理的应用4.(人教版选修3-5P11T2改编)在光滑水平面上,原来静止的物体在水平力F的作用下,经过时间t、通过位移l后,动量变为p、动能变为E k.以下说法正确的是()A.在F作用下,这个物体若经过位移2l,其动量将等于2pB.在F作用下,这个物体若经过时间2t,其动量将等于2pC.在F作用下,这个物体若经过时间2t,其动能将等于2E kD.在F作用下,这个物体若经过位移2l,其动能将等于4E k[答案] B(对应学生用书第105页)1.冲量是矢量,它的方向是由力的方向决定的,如果力的方向在作用时间内不变,冲量的方向就跟力的方向相同.如果力的方向在不断变化,如绳子拉物体做圆周运动时绳的拉力在时间t内的冲量,这时就不能说力的方向就是冲量的方向.对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出.2.冲量是过程量,说到冲量必须明确是哪个力在哪段时间内的冲量.3.冲量和功(1)冲量反映力对时间积累的效应,功反映力对空间积累的效应.(2)冲量是矢量,功是标量.(3)冲量的正、负号表示冲量的方向,功的正、负号表示动力或阻力做功.[题组通关]1.甲、乙两个质量相等的物体,以相同的初速度在粗糙程度不同的水平面上运动,甲物体先停下来,乙物体后停下来,则()A.甲物体受到的冲量大B.乙物体受到的冲量大C.两物体受到的冲量相等D.两物体受到的冲量无法比较C[由题设可知两物体动量的变化量相等,据动量定理,两物体受到的冲量是相等的.两物体不同时停下,是因为受到的合力(即摩擦力)的大小不相等,即两接触面的动摩擦因数不相等.可知正确答案为C.]2.在一光滑的水平面上,有一轻质弹簧,弹簧一端固定在竖直墙面上,另一端紧靠着一物体A,已知物体A的质量m A=4 kg,如图6-1-1所示.现用一水平力F作用在物体A上,并向左压缩弹簧,F做功50 J后(弹簧仍处在弹性限度内),突然撤去外力F,物体从静止开始运动.则当撤去F后,弹簧弹力对A物体的冲量为()【导学号:84370253】图6-1-1A.20 N·s B.50 N·sC.25 N·s D.40 N·sA[弹簧的弹力显然是变力,因此该力的冲量不能直接求解,可以考虑运用动量定理:I=Δp,即外力的冲量等于物体动量的变化.由于弹簧储存了50 J的弹性势能,我们可以利用机械能守恒求出物体离开弹簧时的速度,然后运用动量定理求冲量.所以有:E p=12m v2,I=m v.由以上两式可解得弹簧的弹力对A物体的冲量为I=20 N·s.故选A.]图象法:如图所示,该图线与时间轴围成的内的冲量.根据动量定理求变力冲量.1.动量定理的理解(1)方程左边是物体受到的所有力的总冲量,而不是某一个力的冲量.其中的F可以是恒力,也可以是变力,如果合外力是变力,则F是合外力在t时间内的平均值.(2)动量定理说明的是合外力的冲量I合和动量的变化量Δp的关系,不仅I合与Δp大小相等而且Δp的方向与I合方向相同.(3)动量定理的研究对象是单个物体或物体系统.系统的动量变化等于在作用过程中组成系统的各个物体所受外力冲量的矢量和.而物体之间的作用力(内力),由大小相等、方向相反和等时性可知不会改变系统的总动量.(4)动力学问题中的应用.在不涉及加速度和位移的情况下,研究运动和力的关系时,用动量定理求解一般较为方便.不需要考虑运动过程的细节.2.用动量定理解释的两类现象(1)物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小.(2)作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小.[多维探究]考向1用动量定理解释生活现象1.玻璃杯从同一高度落下,掉在水泥地面上比掉在草地上容易碎,这是由于玻璃杯与水泥地撞击过程中()A.玻璃杯的动量较大B.玻璃杯受到的冲量较大C.玻璃杯的动量变化较大D.玻璃杯的动量变化较快D[玻璃杯从相同高度落下,落地时的速度大小是相同的,落地后速度变为零,所以无论落在水泥地面上还是草地上,玻璃杯动量的变化量Δp是相同的,又由动量定理I=Δp,知受到的冲量也是相同的,所以A、B、C 都错.由动量定理Ft=Δp得F=Δp/t,落到水泥地面上,作用时间短,动量变化快,受力大,容易碎,D对.]2.把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着纸带一起运动;若迅速拉动纸带,纸带就会从重物下抽出,这个现象的原因是()A.在缓缓拉动纸带时,纸带给重物的摩擦力大B.在迅速拉动纸带时,纸带给重物的摩擦力小C.在缓缓拉动纸带时,纸带给重物的冲量大D.在迅速拉动纸带时,纸带给重物的冲量大C[缓缓拉动纸带时,所用时间较长,摩擦力对物体的冲量大,故选项C 正确.]考向2用动量定理求平均作用力3.高空作业须系安全带,如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动),此后经历时间t安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为()A.m2ght+mg B.m2ght-mgC.m ght+mg D.m ght-mgA[设高空作业人员自由下落h时的速度为v,则v2=2gh,得v=2gh,设安全带对人的平均作用力为F,由动量定理得(mg-F)·t=0-m v,解得F=m2ght+mg.]4.一个质量为0.18 kg的垒球,以25 m/s的水平速度飞向球棒,被球棒打击后反向水平飞回,速度大小为45 m/s,若球棒与垒球的作用时间为0.01 s.球棒对垒球的平均作用力的大小为()A.450 N B.810 NC.1 260 N D.360 NC[取垒球飞向球棒的方向为正方向初动量p=m v=0.18×25 kg·m/s=4.5 kg·m/s末动量p′=m v′=-0.18×45 kg·m/s=-8.1 kg·m/s由动量定理得垒球所受到的平均作用力为F=p′-pΔt=-8.1-4.50.01N=-1 260 N.即所求平均作用力大小为1 260 N,方向与所选的正方向相反.](多选)在光滑水平面上有两个质量均为2 kg的质点,质点a在水平恒力F a=4 N作用下由静止开始运动4 s,质点b在水平恒力F b=4 N作用下由静止开始运动4 m,比较这两质点所经历的过程,可以得到的正确结论是()A.质点a的位移比质点b的位移大B.质点a的末速度比质点b的末速度小C.力F a做的功比力F b做的功多D.力F a的冲量比力F b的冲量小AC[质点a的位移x a=12at2=12·F am t2=4×422×2m=16 m.由动量定理F a t a=m v a,v a=F a t am=4×42m/s=8 m/s,由动能定理得F b x b=12m v2b,v b=2×4×42m/s=4 m/s.力F a做的功W a=F a×x a=4×16 J=64 J,力F b 做的功W b=F b×x b=4×4 J=16 J.力F a的冲量I a=F a t a=4×4 N·s=16 N·s,力F b的冲量I b=Δp b=m(v b-0)=2×(4-0) N·s=8 N·s.综上可得A、C选项正确.][母题](2016·全国Ⅰ卷)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g.求:(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.[题眼点拨]①“悬停在空中”表明水对其冲击力的大小等于其重力大小;②“竖直方向水的速度变为零”显示水的动量变化大小是解题的突破口.[解析](1)设Δt时间内,从喷口喷出的水的体积为ΔV,质量为Δm,则Δm=ρΔV ①ΔV=v0SΔt ②由①②式得,单位时间内从喷口喷出的水的质量为ΔmΔt=ρv0S. ③(2)设玩具悬停时其底面相对于喷口的高度为h,水从喷口喷出后到达玩具底面时的速度大小为v.对于Δt时间内喷出的水,由能量守恒得12(Δm)v2+(Δm)gh=12(Δm)v20④在h高度处,Δt时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为Δp=(Δm)v ⑤设水对玩具的作用力的大小为F,根据动量定理有FΔt=Δp ⑥由于玩具在空中悬停,由力的平衡条件得F=Mg ⑦联立③④⑤⑥⑦式得h=v202g-M2g2ρ2v20S2. ⑧[答案](1)ρv0S(2)v202g-M2g 2ρ2v20S2迁移1 动量定理与图象的结合1.(多选)(2017·全国Ⅲ卷)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动.F 随时间t 变化的图线如图6-1-2所示,则( )图6-1-2 A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零 AB [由动量定理得:t =1 s 时,v 1=F 1Δt 1m =2×12 m/s =1 m/st =2 s 时:p 2=F 1Δt 2=2×2 kg·m/s =4 kg·m/st =3 s 时:p 3=F 1Δt 2+F 2Δt 3=2×2 kg·m/s -1×1 kg·m/s =3 kg·m/s t =4 s 时:F 1Δt 2+F 2Δt 4=m v 4v 4=2×2-1×22m/s =1 m/s 选项A 、B 正确.]一个质量为3 kg 的物体所受的合外力随时间变化的情况如图所示,那么该物体在6 s 内速度的改变量是( )A .7 m/sB .6.7 m/sC .6 m/sD .5 m/sD [F -t 图线与时间轴围成的面积在量值上代表了合外力的冲量,故合外力冲量为I =⎝ ⎛⎭⎪⎫3×4+12×2×4-12×1×2N·s =15 N·s. 根据动量定理有I =m Δv ,Δv =I m =153 m/s =5 m/s.故本题选D.]迁移2 动量定理与多过程问题的结合2.如图6-1-3所示,在光滑水平面上并排放着A 、B 两木块,质量分别为m A 和m B .一颗质量为m 的子弹以水平速度v 0先后穿过木块A 、B .木块A 、B 对子弹的阻力恒为F f .子弹穿过木块A 的时间为t 1,穿过木块B 的时间为t 2.求:(1)子弹刚穿过木块A 后,木块A 的速度v A 和子弹的速度v 1分别为多大?(2)子弹穿过木块B 后,木块B 的速度v B 和子弹的速度v 2又分别为多大?【导学号:84370254】图6-1-3 [题眼点拨] ①“并排放着A 、B 两木块”要想到子弹穿过A 的过程中,A 、B 共同运动;②“阻力恒为F f ”及“时间t 1”“时间t 2”.[解析](1)从子弹刚进入A 到刚穿出A 的过程中:对A 、B :由于A 、B 的运动情况完全相同,可以看作一个整体F f t 1=(m A +m B )v A ,所以v A =F f t 1m A +m B对子弹:-F f t 1=m v 1-m v 0,所以v 1=v 0-F f t 1m .(2)子弹刚进入B 到刚穿出B 的过程中:对物体B :F f t 2=m B v B -m B v A所以v B =F f (t 1m A +m B +t 2m B )对子弹:-F f t 2=m v 2-m v 1,所以v 2=v 0-F f (t 1+t 2)m. [答案](1)F f t 1m A +m B v 0-F f t 1m(2)F f ⎝ ⎛⎭⎪⎫t 1m A +m B +t 2m B v 0-F f (t 1+t 2)m迁移3 动量定理在风力作用中的应用3.一艘帆船在湖面上顺风航行,在风力的推动下做速度为v 0=4 m/s 的匀速直线运动.若该帆船在运动状态下突然失去风力的作用,则帆船在湖面上做匀减速直线运动,经过t =8 s 才可静止.该帆船的帆面正对风的有效面积为S =10 m 2,帆船的总质量约为M =936 kg.若帆船在航行过程中受到的阻力恒定不变,空气的密度为ρ=1.3 kg/m 3,在匀速行驶状态下估算:(1)帆船受到风的推力F 的大小;(2)风速的大小v .[解析](1)风突然停止,帆船只受到阻力f 的作用,做匀减速直线运动,设帆船的加速度为a ,则a =0-v 0t =-0.5 m/s 2根据牛顿第二定律有-f =Ma ,所以f =468 N则帆船匀速运动时,有F -f =0解得F =468 N.(2)设在时间t 内,正对着吹向帆面的空气的质量为m ,根据动量定理有-Ft =m (v 0-v )又m =ρS (v -v 0)t所以Ft=ρS(v-v0)2t解得v=10 m/s.[答案](1)468 N(2)10 m/s。