休克的病理生理变化
- 格式:doc
- 大小:178.50 KB
- 文档页数:13
休克休克:是人体有效循环血量锐减,组织血液灌流不足所引起的代谢障碍和细胞受损的病理生理改变的综合征。
一、体液代谢改变:休克应激状态下,组织缺血缺氧,引起体内一系列体液因子的变化。
1、儿茶酚胺:儿茶酚胺大量分泌,其除对血管系统影响外,尚能促进胰高糖素生成,抑制胰岛素的生成,加速肌肉和肝内糖元的分解,以及刺激垂体分泌促肾上腺皮质激素,故血糖升高。
此外,细胞因受灌流不良的影响,葡萄糖在细胞内的代谢转向乏氧代谢,只能产生少量A TP,丙酮酸和乳酸增多。
乳酸不能很好地在肝内代谢,体内发生乳酸积聚,引起酸中毒。
由于蛋白质分解代谢增加,以致血中尿素、肌酐及尿酸憎加。
2醛固酮:休克时因血容量和肾血流量减少,引起肾上腺分泌醛固酮增加,使机体减少钠的排出,以保存体液与补偿部分血量。
又因低血压,血浆渗透压的改变及左心房压力降低,可使脑垂体后叶增加抗利尿激素的分泌,以保留水分,增加血浆量。
3.组织胺:在缺氧、酸中毒和补体作用下,肥大细胞释放出组织胺,引起小血管扩张及通透性增加,使血浆渗出,血液浓缩,有效循环量减少,血压下降而影响心脏功能。
4.前列腺素:在休克的病理生理过程中起重要作用。
前列腺素(PGI2)影响血管的张力及通透性,加重细胞的损害。
5.内啡呔:存在于垂体、大脑间叶、脊髓交感神经节及肾上腺髓质,休克时机体应激反应,内啡呔大量释放,引起血管扩张,血压下降。
二、内脏器官的继发性损害由于微循环障碍的持续存在和发展,内脏器官的部分组织可因严重的缺血缺氧而发生组织细胞的变性、坏死和出血而引起内脏器官功能衰竭。
1.对心脏的影响冠状A灌注量的80%发生在舒张期,由于血压下降,影响冠状A的灌注,若平均A压(MAP)降到30mmHg时,冠状血管床关闭,冠状血流接近于零,进一步加重心肌缺血和心排出量(CO)减低,形成恶性循环。
此外,低氧血症、代谢性酸中毒、高钾血症和心肌抑制因子等也可损害心肌;心肌微循环内血栓可引起心肌局灶性坏死。
三、休克的病理生理(一)微循环改变:休克早期,在交感-肾上腺轴、肾素-血管紧张素系统作用下,外周血管收缩。
因此,此阶段微循环血流特点是“少灌少流”。
临床表现为四肢厥冷、粘膜和肤色苍白、冷汗、脉细速、脉压差小、尿少。
机体代偿特点是:增加心率以维持心排血量;内脏器官血管选择性收缩以维持重要生命器官的灌注;小动脉和静脉收缩,前者增加外周阻力,后者缩小静脉容积增加回心血量。
由于毛细血管前括约肌收缩,后括约肌相对开放使毛细血管内流体静水压力下降,而有助于组织液回吸收以补充血容量。
在休克初期,代偿的回吸收液每小时可达50~120m1。
在此阶段,如能及时去除病因、积极复苏,休克可较容昐被纠正。
随休克的迚展,组织缺氧加重,大量酸性代谢产物堆积,舒血管物质如组织胺、激肽、乳酸,特别是肌酐增多,使毛细血管前括约肌舒张。
但由于微循环后括约肌对这些物质敏感性较低,处于相对收缩状态;或是由于微血栓形成,或血流滞缓、层流消失使血液成分析出聚集,从而使后阻力增加,形成“多灌少流”的特点。
结果是微循环内血流较前淤缓,静水压和通透性也有所增加,血浆外渗、血液浓缩,加剧了组织细胞缺血缺氧,并使回心血量和心排血量迚一步下降。
临床主要表现是,血压迚行性下降、意识障碍、发绀、酸中毒。
如果休克仍得不到纠正,则上述损害不但迚一步加剧,而且变成不可逆。
此时细胞变性坏死,微循环内几乎完全被微血栓所填塞,血液“不流不灌”。
此为休克晚期,即“DIC 期”。
(二)代谢变化:首先是代谢异常,由于组织灌注不足和细胞缺氧,体内的无氧糖酵解过程成为能量的主要途径。
其次是代谢性酸中毒,此时因微循环障碍而不能及时清除酸性代谢性产物,肝对乳酸的代谢能力也下降,使乳酸盐不断堆积,可致心率减慢、血管扩张和心排出量降低,呼吸加深、加快,以及意识障碍。
代谢性酸中毒和能量不足,还影响细胞膜、核膜、线粒体膜等质膜的稳定及跨膜传导、运输和细胞吞饮及吞噬等功能。
(三)内脏脏器的继发性损害1.肺39休克时,缺氧可使肺毛细血管内皮细胞和肺泡上皮受损,表面活性物质减少。
休克的主要病理生理休克由于病因不同,在病理生理方面有很大区别,但也有其共同的生理变化特点。
这些特点为:微循环障碍、代谢改变、身体重要脏器继发性损害等。
一、微循环障碍休克发生后微循环血量锐减,血管内压下降,通过应激反应,体内释放出大量的儿茶酚胺,引起周围小血管及微血管,内脏小血管及微血管的平滑肌包括毛细血管前括约肌强烈收缩,临床表现为皮肤苍白、湿冷、脉细数,尿量减少至30ml以下/小时,此期为休克的早期,亦即休克的微循环收缩期,亦称休克的代偿期。
如循环血量进一步减少时,组织因灌流量不足而发生缺氧,迅速产生大量酸性物质如丙酮酸及乳酸等,导致微血管平滑肌对儿茶酚胺反应性下降,微静脉血流缓慢而致微循环淤滞现象,大量血液潴留于毛细血管内,持续的缺氧使组胺大量产生,进一步加重已处于关闭状态的毛细血管网扩大开放范围,从而使回心血量进一步减少。
临床表现血压下降,一般认为收缩压低于10.7kPa(80mmHg)、舒张压低于8.0~9.3kPa(60~70mmHg),即视为休克的微循环扩张期口亦即休克的失代偿期。
如休克状态仍未能得到有效控制,病情进一步发展,且毛细血管内血液黏稠度增加,毛细血管壁受损,微循环内形成大量微血栓,造成所谓的病理性血管内凝血,组织器官由于细胞缺氧损害而发生的自溶导致这些组织血管发生器质性损害,此时已进入休克的晚期即微循环衰竭期(DIC期)。
二、体液代谢变化休克时体内儿茶酚胺增多,儿茶酚胺作用于p受体,引起微动静脉吻合支开放,使血流绕过毛细血管加重了组织灌流障碍的程度。
此外组胺、激肽、前列腺素、内啡肽、肿瘤坏死因子等体液因子在休克的发展中发挥不同的致病作用。
此外由于血液灌流量不足通过一系列复杂的过程导致细胞破坏自溶,并引起心肌收缩力下降,加重血流动力学障碍。
三、重要脏器受损休克持续超过l0小时,即可发生内脏器官的不可逆损害。
如有两个以上器官发生功能障碍,称为多脏器功能衰竭,这是造成休克死亡的常见原因。
简述休克的病理生理机制休克是一种严重的病理生理状态,通常由于血液循环系统的紊乱而导致。
休克的病理生理机制涉及多个方面,包括血液容量减少、心脏泵血功能受损、血管阻力改变以及细胞代谢障碍等。
下面将逐一介绍休克的病理生理机制。
休克的病理生理机制之一是血液容量减少。
血液容量减少可以由多种原因引起,例如出血、脱水、严重腹泻等。
当血液容量减少时,机体会出现低血容量状态,血液循环受到影响,导致血压下降。
低血压会引起组织灌注不足,导致器官功能障碍。
心脏泵血功能受损是休克的另一个重要病理生理机制。
心脏是泵血的主要器官,通过收缩和舒张来推动血液循环。
当心脏泵血功能受损时,血液无法充分被推送到全身各个器官和组织,导致灌注不足。
心脏泵血功能受损可以由多种原因引起,包括心肌梗死、心肌炎、心脏瓣膜病变等。
休克的病理生理机制还涉及血管阻力的改变。
血管阻力是指血液通过血管时所遇到的阻力。
在休克状态下,血管阻力通常会发生改变,导致血压下降。
一方面,休克时机体会释放一些血管扩张物质,如一氧化氮,导致血管舒张,增加了血管的通透性。
另一方面,机体也会释放一些血管收缩物质,如血管加压素,导致血管收缩,增加了血管阻力。
血管阻力的改变会影响血液的流动性,导致组织灌注不足。
休克的病理生理机制还包括细胞代谢障碍。
休克状态下,由于血液供应不足,组织细胞无法获得足够的氧气和营养物质,导致细胞代谢障碍。
细胞代谢障碍会导致细胞内能量产生减少,细胞功能受损。
此外,细胞代谢障碍还会导致酸碱平衡失调,引起酸中毒。
休克的病理生理机制主要包括血液容量减少、心脏泵血功能受损、血管阻力改变以及细胞代谢障碍等。
这些机制相互作用,导致休克时机体出现低血压、组织灌注不足、器官功能障碍等严重情况。
了解休克的病理生理机制对于预防和治疗休克具有重要意义,可以指导医生采取相应的治疗措施,提高患者的生存率和恢复率。
与休克相关的基本病理过程
休克是一个复杂的病理生理过程,其基本病理过程可以包括以下三个阶段:
1.代偿期:在此阶段,机体通过激活交感-肾上腺轴,使儿茶酚胺大
量释放,从而收缩外周血管、提高血压,以保证重要脏器的血液灌注。
同时,代谢增强、心率加快、呼吸急促,以增加氧的供应。
2.失代偿期:如果病因未得到有效缓解,机体的自我调节机制将逐
渐失效,进入失代偿期。
在此阶段,血液浓缩、黏度增大,导致血流缓慢,血小板凝固,血液不循环。
同时,由于乳酸堆积、组胺释放等原因,机体出现酸中毒、腹痛、恶心、呕吐等症状。
3.不可逆期:如果休克持续加重,将进入不可逆期。
在此阶段,由
于血液高度浓缩、血管麻痹,形成血栓,导致血流停止,引发休克。
同时,由于细胞代谢紊乱和功能受损,器官功能将受到严重损害。
需要注意的是,不同类型的休克可能具有不同的病理过程和表现形式。
因此,对于休克的治疗,需要根据不同类型的休克和不同的病理阶段采取不同的治疗方案。
休克的病理生理变化一、微循环变化各种休克虽然由于致休克的动因不同,在各自发生发展过程中各有特点,但微循环障碍(缺血、淤血、播散性血管内凝血)致微循环动脉血灌流不足,重要的生命器官因缺氧而发生功能与代谢障碍,就是它们的共同规律。
休克时微循环的变化,大致可分为三期,即微循环缺血期、微循环淤血期与微循环凝血期。
下面以低血容量性休克为例阐述微循环障碍的发展过程及其发生机理。
低血容量性休克常见于大出血、严重的创伤、烧伤与脱水。
其微循环变化发展过程比较典型(图10-1)。
(一)微循环缺血期(缺血性缺氧期)此期微循环变化的特点就是:①微动脉、后微动脉与毛细血管前括约肌收缩,微循环灌流量急剧减少,压力降低;②微静脉与小静脉对儿茶酚胺敏感性较低,收缩较轻;③动静脉吻合支可能有不同程度的开放,血液从微动脉经动静脉吻合支直接流入小静脉。
引起微循环缺血的关键性变化就是交感神经——肾上腺髓质系统强烈兴奋。
不同类型的休克可以通过不同机制引起交感——肾上腺髓质性休克与心源性休克时,心输出量减少与动脉血压降低可通过窦弓反射使交感——肾上腺髓质系统兴奋;在大多数内毒素性休克时,内毒素可直接剌激交感——肾上腺髓质系统使之发生强烈兴奋。
交感神经兴奋、儿茶酚胺释放增加对心血管系统的总的效应就是使外周总阻力增高与心输出量增加。
但就是不同器官血管的反应却有很大的差别。
皮肤、腹腔内脏与肾的血管,由于具有丰富的交感缩血管纤维支配,。
而且α受体又占有优势,因而在交感神经兴奋、儿茶酚胺增多时,这些部位的小动脉、小静脉、微动脉与毛细血管前括红肌都发生收缩,其中由于微动脉的交感缩血管纤维分布最密,毛细血管前括约肌对儿茶酚胺的反应性最强,因此它们收缩最为强烈。
结果就是毛细血管前阻力明显升高,微循环灌流量急剧减少,毛细血管的平均血压明显降低,只有少量血液经直捷通路与少数真毛细血管流入微静脉、小静脉,组织因而发生严重的缺血性缺氧。
脑血管的交感缩血管纤维分布最少,α受体密度也低,口径可无明显变化。
休克得病理生理变化一、微循环变化各种休克虽然由于致休克得动因不同,在各自发生发展过程中各有特点,但微循环障碍(缺血、淤血、播散性血管内凝血)致微循环动脉血灌流不足,重要得生命器官因缺氧而发生功能与代谢障碍,就是它们得共同规律。
休克时微循环得变化,大致可分为三期,即微循环缺血期、微循环淤血期与微循环凝血期、下面以低血容量性休克为例阐述微循环障碍得发展过程及其发生机理、低血容量性休克常见于大出血、严重得创伤、烧伤与脱水。
其微循环变化发展过程比较典型(图10-1)。
(一)微循环缺血期(缺血性缺氧期)此期微循环变化得特点就是:①微动脉、后微动脉与毛细血管前括约肌收缩,微循环灌流量急剧减少,压力降低;②微静脉与小静脉对儿茶酚胺敏感性较低,收缩较轻;③动静脉吻合支可能有不同程度得开放,血液从微动脉经动静脉吻合支直接流入小静脉。
引起微循环缺血得关键性变化就是交感神经—-肾上腺髓质系统强烈兴奋。
不同类型得休克可以通过不同机制引起交感——肾上腺髓质性休克与心源性休克时,心输出量减少与动脉血压降低可通过窦弓反射使交感--肾上腺髓质系统兴奋;在大多数内毒素性休克时,内毒素可直接剌激交感—-肾上腺髓质系统使之发生强烈兴奋。
交感神经兴奋、儿茶酚胺释放增加对心血管系统得总得效应就是使外周总阻力增高与心输出量增加。
但就是不同器官血管得反应却有很大得差别、皮肤、腹腔内脏与肾得血管,由于具有丰富得交感缩血管纤维支配,。
而且α受体又占有优势,因而在交感神经兴奋、儿茶酚胺增多时,这些部位得小动脉、小静脉、微动脉与毛细血管前括红肌都发生收缩,其中由于微动脉得交感缩血管纤维分布最密,毛细血管前括约肌对儿茶酚胺得反应性最强,因此它们收缩最为强烈、结果就是毛细血管前阻力明显升高,微循环灌流量急剧减少,毛细血管得平均血压明显降低,只有少量血液经直捷通路与少数真毛细血管流入微静脉、小静脉,组织因而发生严重得缺血性缺氧。
脑血管得交感缩血管纤维分布最少,α受体密度也低,口径可无明显变化、冠状动脉虽然也有交感神经支配,也有α与β受体,但交感神经兴奋与儿茶酚胺增多却可通过心脏活动加强,代谢水平提高以致扩血管代谢产物特别就是腺苷得增多而使冠状动脉扩张。
交感兴奋与血容量得减少还可激活肾素—血管紧张素-醛固酮系统,而血管紧张素Ⅱ有较强得缩血管作用,包括对冠状动脉得收缩作用。
此外,增多得儿茶酚胺还能剌激血小板产生更多得血栓素A2(thromboxane A2,TX A2),而。
TXA2也有强烈得缩血管作用。
图10-1微循环障碍得发展过程模式图1.正常情况⑴动静脉吻合支就是关闭得。
⑵只有20%毛细血管轮流开放,有血液灌流、⑶毛细血管开放与关闭受毛细血管前括约肌得舒张与收缩得调节。
2、微循环缺血期⑴交感神经兴奋与肾上腺素、去甲肾上腺素分泌增多,小动脉、微动脉、后微动脉,毛细血管前括约肌收缩。
⑵动静脉吻合支开放,血液由微动脉直接流入小静脉。
⑶毛细血管血液灌流不足,组织缺氧。
3、微循环淤血期⑴小动脉与微动脉收缩,动静脉吻合支仍处于开放状态,进入毛细血管得血液仍很少、⑵由于组织缺氧,组织胺、缓激肽、氢离子等舒血管物质增多,后微动脉与毛细血管前括约肌舒张,毛细血管开放,血管容积扩大,进入毛细血管内得血液流动很慢、⑶由于交感神经兴奋,肾上腺素与去甲肾上腺素分泌增多(可能还有组织胺得作用),使微静脉与小静脉收缩,毛细血管后阻力增加,结果毛细血管扩张淤血、4.微循环凝血期⑴由于组织严重缺氧、酸中毒,毛细血管壁受损害与通透性升高,毛细血管内血液浓缩,血流淤滞;另外血凝固性升高,结果在微循环内产生播散性血管内凝血。
⑵由于微血栓形成,更加重组织缺氧与代谢障碍,细胞内溶酶体破裂,组织细胞坏死,引起各器官严重功能障碍、⑶由于凝血,凝血因子(如凝血酶原、纤维蛋白原等)与血小板大量被消耗,纤维蛋白降解产物增多,又使血液凝固性降低;血管壁又受损害,继而发生广泛性出血。
而TXA2也有强烈得缩血管作用。
还有,溶酶体水解酶-心肌抑制因子系统在休克Ⅰ期微循环缺血得发生中也起一定得作用。
休克时,主要由于胰腺血液灌流量减少所引起得缺血、缺氧与酸中毒可使胰腺外分泌细胞得溶酶体破裂而释出组织蛋白酶,后者即可分解组织蛋白而生成心肌抑制因子(myocardial depressant factor, MDF)。
小分子肽MDF进入血流后,除了引起心肌收缩力减弱、抑制单核吞噬细胞系统得吞噬功能以外,还能使腹腔内脏得小血管收缩,从而进一步加重这些部位微循环得缺血。
本期得主要临床表现就是:皮肤苍白,四肢厥冷,出冷汗,尿量减少;因为外周阻力增加,收缩压可以没有明显降低,而舒张压有所升高,脉压减小,脉搏细速;神志清楚,烦躁不安等。
此期微循环变化具有一定得代偿意义、皮肤与腹腔器官等小动脉收缩,既可增加外周阻力,以维持血压,又可减少这些组织器官得血流量,以保证心脑等重要器官得血液供给;毛细血管前阻力增加,毛细血管流体静压降低,促使组织液进入血管,以增加血浆容量;另外,动静脉吻合支开放,静脉收缩使静脉容量缩小(正常约有70%血液在静脉内),可以加快与增加回心血量,也有利于血压得维持与心脑得血液供给。
但就是由于大部分组织器官因微循环动脉血灌流不足而发生缺氧,将导致休克进一步发展、如能及早发现,积极抢救,及时补充血量,降低过剧得应激反应,可以很快改善微循环与恢复血压,阻止休克进一步恶化,而转危为安。
这时微循环变化得机理可概括如下(图10-2):(二)微循环淤血期(淤血性缺氧期)在休克得循循环缺血期,如未能及早进行抢救,改善微循环,则因组织持续而严重得缺氧,而使局部舒血管物质(如组织胺、激肽、乳酸、腺苷等)增多,后微动脉与毛细血管前括约肌舒张,微循环容量扩大,淤血,发展为休克微循环淤血期。
此期微循环变化得特点就是:①后微动脉与毛细血管前括约肌舒张(因局部酸中毒,对儿茶酚胺反应性降低),毛细血管大量开放,有得呈不规侧囊形扩张(微血池形成),而使微循环容积扩大;②微静脉与小静脉对局部酸中毒耐受性较大,儿茶酚胺仍能使其收缩(组织胺还能使肝、肺等微静脉与小静脉收缩),毛细血管后阻力增加,而使微循环血流缓慢;③微血管壁通透性升高,血浆渗出,血流淤滞;④由于血液浓缩,血细胞压积增大,红细胞聚集,白细胞嵌塞,血小板粘附与聚集等血液流变学得改变,可使微循环血流变慢甚至停止。
⑤由于微循环淤血,压力升高,进入微循环得动脉血更少(此时小动脉与微动脉因交感神经作用仍处于收缩状态)。
由于大量血液淤积在微循环内,回心血量减少,使心输出量进一步降低,加重休克得发展。
图10-2 缺血性缺氧期微循环变化机理由于上述微循环变化,虽然微循环内积有大量血液,但动脉血灌流量将更加减少,病人皮肤颜色由苍白而逐渐发绀,特别就是口辰与指端。
因为静脉回流量与心输出量更加减少,病人静脉萎陷,充盈缓慢;动脉压明显降低,脉压小,脉细速;心脑因血液供给不足,ATP生成减少,而表现为心收缩力减弱(心音低),表情淡漠或神志不清。
严重得可发生心、肾、肺功能衰竭。
这就是休克得危急状态,应立即抢救,补液,解除小血管痉挛,给氧,纠正酸中毒,以疏通微循环与防止播散性血管内凝血、这时微循环变化得机理可概括如下(图10-3):图10—3 淤血性缺氧期微循环变化机理(三)微循环凝血期(播散性血管内凝血)从微循环得淤血期发展为微循环凝血期就是休克恶化得表现。
其特点就是:在微循环淤血得基础上,于微循环内(特别就是毛细血管静脉端、微静脉、小静脉)有纤维蛋白性血栓形成,并常有局灶性或弥漫性出血;组织细胞因严重缺氧而发生变性坏死。
播散性血管内凝血与休克得联系极为密切。
关于播散性血管内凝血引起得病理变化以及它如何引起休克或加重休克得发展,已在《播散性血管内凝血》一章讨论过了,这里再概要地归纳一下休克如何引起播散性血管内凝血。
1、应激反应使血液凝固性升高。
致休克得动因(如创伤、烧伤、出血等)与休克本身都就是一种强烈得剌激,可引起应激反应,交感神经兴奋与垂体-肾上腺皮质活动加强,使血液内血小板与凝血因子增加,血小板粘附与聚集能力加强,为凝血提供必要得物质基础、2。
凝血因子得释放与激活。
有得致休克动因(如创伤、烧伤等)本身就能使凝血因子释放与激活。
例如,受损伤得组织可释放出大量得组织凝血活素,起动外源性凝血过程;大面积烧伤使大量红细胞破坏,红细胞膜内得磷脂与红细胞破坏释出得ADP,促进凝血过程。
3。
微循环障碍,组织缺氧,局部组织胺、激肽、乳酸等增多、这些物质一方面引起毛细血管扩张淤血,通透性升高,血流缓慢,血液浓缩红细胞粘滞性增加,有利于血栓形成;另一方面损害毛细血管内皮细胞,暴露胶元,激活凝血因子Ⅻ与使血小板粘附与聚集、4。
缺氧使单核吞噬细胞系统功能降低,不能及时清除凝血酶元酶、凝血酶与纤维蛋白。
结果在上述因素作用下,而发生播散性血管内凝血(图10-4)。
图10-4创伤性休克引起播散性血管内凝血得机理应当指出,在不同类型得休克,播散性血管内凝血形成得早晚可不相同。
例如,在烧伤性与创伤性休克时,由于有大量得组织破坏,感染中毒性休克时,由于内毒素对血管内皮得直接损伤,因而都可较早地发生播散性血管内凝血,而在失血性休克等,则播散性血管内凝血发生较晚、播散性血管内凝血一旦发生,将使微循环障碍更加严重,休克病情进一步恶化,这就是因为:①广泛得微血管阻塞进一步加重微循环障碍,使回心血量进一步减少;②凝血物质消耗、继发纤溶得激活等因素引起出血,从而使血容量减少;③可溶性纤维蛋白多聚体与其裂解产物等都能封闭单核吞噬细胞系统,因而使来自肠道得内毒素不能被充分清除。
由于播散性血管内凝血得发生与微循环淤血得不断加重,由于血压降低所致得全身微循环灌流量得严重不足,全身性得缺氧与酸中毒也将愈益严重;严重得酸中毒又可使细胞内得溶酶体膜破裂,释出得溶酶体酶(如蛋白水解酶等)与某些休克动因(如内毒素等)都可使细胞发生严重得乃至不可逆得损害,从而使包括心、脑在内得各重要器官得机能代谢障碍也更加严重(详后),这样就给治疗造成极大得困难,故本期又称休克难治期。
二、血液流变学得变化血液流变学(hemorheology)就是研究血液流动与变形得科学,或者说就是研究血液得流变性、凝固性、血液有形成分(主要就是红细胞)粘弹性以及心血管得粘弹性与变形得科学。
物体在一定外力作用下能流动或变形得特性,称为该物体流变性。
一切流体在一定外力作用下,都具有流动性,但流动得难易,则主要取决于流体内部对于流动起阻抗作用得分子之间与颗粒之间得内摩擦力(即流体得粘度)。
例如,水得粘度低,容易流动,即流度大;血液得粘度大(红为蒸馏水得4-5倍),不易流动,即流度小。
由于流体得流动就是以物体得变形为基础,所以流体得粘度就是映流体流变性得重要指标、血液就是由水、无机盐、蛋白质、脂类、糖等大小分子所组成得混合液,其中还悬浮着大量具有可塑性得红细胞,所以血液就是一种高浓度得悬浊液、因此能够影响血液流变性得因素主要有:血细胞压积(血液粘度随血细胞得压积增加而升高)、血细胞得分散程度(血细胞处于分散状态,血液粘度较低;红细胞或血小板发生聚集,血液粘度升高)、红细胞得可塑性(红细胞可塑性降低,不易变形,血液粘度增加)、血浆内高分子化合物得浓度(血浆粘度大小与其所含蛋白质、脂类、糖等得浓度呈正比)、血管内壁平滑度(血管内皮受损、变形,流经得血液粘度升高)、此外,与血管得长度、口径、血管壁得弹性与张力也有关系。