高中数学新人教A版一轮复习:解析几何
- 格式:pptx
- 大小:17.30 MB
- 文档页数:521
8.6双曲线必备知识预案自诊知识梳理1.双曲线的定义平面内与两个定点F1,F2的等于非零常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做,两焦点间的距离叫做.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数.(1)若a c,则点M的轨迹是双曲线;(2)若a c,则点M的轨迹是两条射线;(3)若a c,则点M不存在.2.标准方程(1)中心在坐标原点,焦点在x轴上的双曲线的标准方程为x2a2−y2b2=1(a>0,b>0);(2)中心在坐标原点,焦点在y轴上的双曲线的标准方程为y2a2−x2b2=1(a>0,b>0).3.双曲线的性质图形续表2 2−y2b2=1(a>0,b>0)y2a2−x2b2=1(a>0,b>1.过双曲线x2a 2−y 2b 2=1(a>0,b>0)上一点M (x 0,y 0)的切线方程为x 0xa 2−y 0y b 2=1.2.双曲线x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,点P (x 0,y 0)为双曲线上任意一点,且不与点F 1,F 2共线,∠F 1PF 2=θ,则△F 1PF 2的面积为b 2tanθ2.3.若点P (x 0,y 0)在双曲线x 2a2−y 2b 2=1(a>0,b>0)内,则被点P 所平分的中点弦的方程为x 0x a 2−y 0y b 2=x 02a 2−y 02b 2.4.双曲线中点弦的斜率公式设点M (x 0,y 0)为双曲线x 2a 2−y 2b2=1(a>0,b>0)的弦AB (不平行y 轴)的中点,则k AB ·k OM =b 2a2,即k AB =b 2x0a 2y 0.5.双曲线的焦半径公式双曲线x 2a 2−y 2b 2=1(a>0,b>0)的焦点为F 1(-c ,0),F 2(c ,0),当点M (x 0,y 0)在双曲线右支上时,|MF 1|=ex 0+a ,|MF 2|=ex 0-a ;当点M (x 0,y 0)在双曲线左支上时,|MF 1|=-ex 0-a ,|MF 2|=-ex 0+a.6.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a+c ,|PF 2|min =c-a.7.双曲线的同支的焦点弦中最短的为通径(过焦点且垂直于实轴所在直线的弦),其长为2b 2a;异支的弦中最短的为实轴,其长为2a.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.()(2)双曲线x2m2−y2n2=λ(m>0,n>0,λ≠0)的渐近线方程是x2m2−y2n2=0,即xm±yn=0.()(3)关于x,y的方程x2m −y2n=1(mn>0)表示焦点在x轴上的双曲线.()(4)与双曲线x2m −y2n=1(其中mn>0)共渐近线的双曲线方程可设为x2m−y2n=λ(λ≠0).()(5)若双曲线x2a2−y2b2=1(a>0,b>0)与x2b2−y2a2=1(a>0,b>0)的离心率分别是e1,e2,则1e12+1e22=1.()2.“m>0”是“方程x2m −y2m+2=1表示双曲线”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知双曲线C:x2a2−y2b2=1(a>0,b>0)过点(√2,√3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C的标准方程为()A.x212-y2=1 B.x29−y23=1C.x2-y23=1 D.x223−y232=14.(2019北京,5)已知双曲线x2a2-y2=1(a>0)的离心率是√5,则a=() A.√6 B.4C.2D.125.若双曲线x2a2−y2b2=1(a>0,b>0)的一条渐近线经过点(3,-4),则此双曲线的离心率为.关键能力学案突破考点双曲线的定义【例1】(1)已知点F2为双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点,直线y=kx交双曲线C于A,B两点,若∠AF2B=2π3,S△AF2B=2√3,则双曲线C的虚轴长为.(2)已知双曲线E :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,过点F 1的直线l 与双曲线的左、右两支分别交于A ,B 两点.若△ABF 2的内切圆与边AB ,BF 2,AF 2分别相切于点M ,N ,P ,且|AP|=4,则a 的值为 .解题心得双曲线定义的应用主要有两个方面:一是判定平面内动点轨迹是否为双曲线,进而求出曲线方程;二是在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.对点训练1(1)(2020河南非凡联盟4月联考)已知双曲线C :x 2a 2−y 29=1(a>0)的左、右焦点分别为F 1,F 2,一条渐近线与直线4x+3y=0垂直,点M 在双曲线C 上,且|MF 2|=6,则|MF 1|=( )A.2或14B.2C.14D.2或10(2)(2020河北廊坊省级示范学校联考)设F 1,F 2分别为双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,过点F 1的直线交双曲线C 的左支于A ,B 两点,且|AF 2|=3,|BF 2|=5,|AB|=4,则△BF 1F 2的面积为 .考点双曲线的标准方程【例2】(1)已知动圆M 与圆C 1:(x+4)2+y 2=2外切,与圆C 2:(x-4)2+y 2=2内切,则动圆圆心M 的轨迹方程为( )A.x 22−y 214=1(x ≥√2) B.x 22−y 214=1(x ≤-√2) C.x 22+y 214=1(x ≥√2) D.x 22+y 214=1(x ≤-√2)(2)在平面直角坐标系中,经过点P (2√2,-√2),渐近线方程为y=±√2x 的双曲线的标准方程为( )A.x 24−y 22=1 B.x 27−y 214=1C.x 23−y 26=1D.y 214−x 27=1(3)已知双曲线x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,过点F 2且斜率为247的直线与双曲线在第一象限的交点为A ,若(F 2F 1⃗⃗⃗⃗⃗⃗⃗⃗ +F 2A ⃗⃗⃗⃗⃗⃗⃗ )·F 1A ⃗⃗⃗⃗⃗⃗⃗ =0,则双曲线的标准方程可能为( ) A.x 24−y 23=1B.x 23−y 24=1C.x 216−y 29=1D.x 29−y 216=1解题心得1.求双曲线标准方程的答题模板2.利用待定系数法求双曲线方程的常用方法 (1)与双曲线x 2a 2−y 2b 2=1共渐近线的方程可设为x 2a 2−y 2b 2=λ(λ≠0);(2)若双曲线的渐近线方程为y=±bax ,则双曲线的方程可设为x 2a2−y 2b 2=λ(λ≠0);(3)若双曲线过两个已知点,则双曲线的方程可设为x 2m +y 2n=1(mn<0)或mx 2+ny 2=1(mn<0).对点训练2(1)(2020河南安阳模拟)过双曲线x 2a 2−y 2b 2=1(a>0,b>0)的右焦点F (c ,0)作其渐近线y=√32x 的垂线,垂足为M ,若S △OMF =4√3(O 为坐标原点),则双曲线的标准方程为( )A.x 24−y 23=1 B.x 28−y 26=1 C.x 216−y 212=1D.x 232−y 224=1(2)过双曲线C :x 2a 2−y 2b 2=1的右顶点作x 轴的垂线,与双曲线C 的一条渐近线相交于点A.若以双曲线C 的右焦点F 为圆心,4为半径的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24−y 212=1 B.x 27−y 29=1 C.x 28−y 28=1 D.x 212−y 24=1(3)经过点P (3,2√7),Q (-6√2,7)的双曲线的标准方程为 .考点双曲线的几何性质(多考向探究)考向1 求双曲线的渐近线方程【例3】(2020福建厦门一模)已知双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的一个焦点为F ,点A ,B 是双曲线C 的一条渐近线上关于原点对称的两点,以AB 为直径的圆过点F 且交双曲线C 的左支于M ,N 两点,若|MN|=2,△ABF 的面积为8,则双曲线C 的渐近线方程为( )A.y=±√3xB.y=±√33x C.y=±2xD.y=±12x解题心得求双曲线的渐近线方程的方法依据题设条件,求出双曲线方程x 2a 2−y 2b 2=1(a>0,b>0)中a ,b 的值或a 与b 的比值,进而得出双曲线的渐近线方程.对点训练3(2020山东德州高三第二次模拟)已知椭圆x 2a 2+y 2b 2=1(a>b>0)与双曲线x 2a 2−y 2b 2=12的焦点相同,则双曲线渐近线方程为( )A.y=±√33x B.y=±√3x C.y=±√22xD.y=±√2x考向2 求双曲线的离心率【例4】(2020广东汕尾一模)已知双曲线C :x 2a 2−y 2b 2=1(a>0,b>0),F 为双曲线C 的右焦点,A 为双曲线C 的右顶点,过点F 作x 轴的垂线,交双曲线C 于M ,N 两点.若tan ∠MAN=-34,则双曲线C 的离心率为( )A.3B.2C.43D.√2解题心得求双曲线离心率的值或取值范围的方法 (1)求a ,b ,c 的值,由e=ca =√1+b 2a 2直接求出e.(2)列出含有a ,b ,c 的齐次方程(或不等式),借助b 2=c 2-a 2消去b ,然后转化为关于e 的方程(或不等式)求解.对点训练4(2019全国2,理11)设F 为双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ|=|OF|,则C 的离心率为( )A.√2B.√3C.2D.√5考向3 与双曲线有关的取值范围问题【例5】已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是双曲线C 的两个焦点,若MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ <0,则y 0的取值范围是( )A.(-√33,√33) B.(-√36,√36) C.(-2√23,2√23) D.(-2√33,2√33)解题心得与双曲线有关的取值范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接转化为不等式求解.(2)若条件中没有明显的不等关系,则要善于发现隐含的不等关系来解决. 对点训练5已知焦点在x 轴上的双曲线x 28-m+y 24-m=1,它的焦点到渐近线的距离的取值范围是 .考点双曲线与圆的综合问题【例6】已知点P 为双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)上一点,F 1,F 2为双曲线C 的左、右焦点,若|PF 1|=|F 1F 2|,且直线PF 2与以双曲线C 的实轴为直径的圆相切,则双曲线C 的渐近线方程为( )A.y=±43x B.y=±34xC.y=±35xD.y=±53x对点训练6过双曲线x 2a 2−y 2b 2=1(a>0,b>0)的左焦点F 作圆O :x 2+y 2=a 2的两条切线,切点为A ,B ,双曲线的左顶点为C ,若∠ACB=120°,则双曲线的渐近线方程为( )A.y=±√3xB.y=±√33x C.y=±√2x D.y=±√22x8.6 双曲线 必备知识·预案自诊知识梳理1.距离的差的绝对值 双曲线的焦点 双曲线的焦距 (1)< (2)= (3)> 3.坐标轴 原点 (-a ,0) (a ,0) (0,-a )(0,a)a2+b22a2b考点自诊1.(1)×(2)√(3)×(4)√(5)√2.A由“方程x2m −y2m+2=1表示双曲线”得m(m+2)>0,即m>0或m<-2,又“m>0”是“m>0或m<-2”的充分不必要条件,故“m>0”是“方程x 2m −y2m+2=1表示双曲线”的充分不必要条件.故选A.3.C由双曲线C:x2a2−y2b2=1(a>0,b>0)过点(√2,√3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,可得{2a2-3b2=1,b a =√3,解得{a=1,b=√3.故双曲线C的标准方程为x2-y23=1.4.D∵双曲线的离心率e=ca =√5,c=√a2+b2,∴√a2+1a=√5,解得a=12.故选D.5.5 3由题意知直线y=-bax过点(3,-4),所以3ba=4,即ba=43,所以e=ca=√1+b2a2=√1+169=53.关键能力·学案突破例1(1)2√2(2)2(1)设双曲线C的左焦点为F1,连接AF1,BF1,由对称性可知四边形AF1BF2为平行四边形,因为∠AF2B=2π3,S△AF2B=2√3,所以S△AF1F2=2√3,∠F1AF2=π3.设|AF1|=r1,|AF2|=r2,则4c2=r12+r22-2r1r2cosπ3,又|r1-r2|=2a,故r1r2=4b2.又S△AF1F2=12r1r2sinπ3=2√3,所以b2=2,所以该双曲线的虚轴长为2√2.(2)由题意知|BM|=|BN|,|PF2|=|NF2|,|AM|=|AP|=4.根据双曲线的定义,知|BF1|-|BF2|=|MF1|-|NF2|=2a,|AF2|-|AF1|=2a,则|AF1|=|AF2|-2a,所以|BF1|-|BF2|=|AM|+|AF1|-|NF2|=|AM|+|AP|+|PF2|-2a-|NF2|=8-2a=2a,所以a=2.对点训练1(1)C(2)92(1)由题意知3a=34,故a=4,则c=5.由|MF2|=6<a+c=9,知点M在双曲线C的右支上.由双曲线的定义知|MF1|-|MF2|=2a=8,所以|MF1|=14.(2)因为|AF2|=3,|BF2|=5,|AF2|-|AF1|=2a,|BF2|-|BF1|=2a,所以|AF2|+|BF2|-|AB|=3+5-4=4=4a,所以a=1,所以|BF1|=3.又|AF2|2+|AB|2=|BF2|2,所以∠F2AB=90°,所以S△BF1F2=12|BF1||AF2|=12×3×3=92.例2(1)A(2)B(3)D(1)设动圆M的半径为r,由题意可得|MC1|=r+√2,|MC2|=r-√2,|C1C2|=8,所以|MC1|-|MC2|=2√2<|C1C2|,所以由双曲线的定义可知动点M在以C1(-4,0),C2(4,0)为焦点,实轴长为2√2的双曲线的右支上,所以a=√2,c=4,所以b2=16-2=14,故动圆圆心M的轨迹方程为x22−y214=1(x≥√2).(2)因为双曲线的渐近线方程为y=±√2x ,所以可设所求双曲线的方程为2x 2-y 2=k (k ≠0).又点P (2√2,-√2)在双曲线上,所以k=16-2=14,所以双曲线的方程为2x 2-y 2=14,所以双曲线的标准方程为x 27−y 214=1.故选B .(3)由(F 2F 1⃗⃗⃗⃗⃗⃗⃗⃗ +F 2A ⃗⃗⃗⃗⃗⃗⃗ )·F 1A ⃗⃗⃗⃗⃗⃗⃗ =0,可知(F 2F 1⃗⃗⃗⃗⃗⃗⃗⃗ +F 2A ⃗⃗⃗⃗⃗⃗⃗ )·(F 2A ⃗⃗⃗⃗⃗⃗⃗ −F 2F 1⃗⃗⃗⃗⃗⃗⃗⃗ )=0,即|F 2A ⃗⃗⃗⃗⃗⃗⃗ |2-|F 2F 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |2=0,所以|F 2A|=|F 1F 2|=2c.又AF 2的斜率为247,所以cos ∠AF 2F 1=-725.在△AF 1F 2中,由余弦定理得|AF 1|=165c.由双曲线的定义得165c-2c=2a ,即c a=53,所以a ∶b=3∶4.所以此双曲线的标准方程可能为x 29−y 216=1.故选D .对点训练2(1)C (2)A (3)y 225−x 275=1(1)由题意易得|FM|=b ,又|OF|=c ,FM ⊥OM ,所以|OM|=√|OF |2-|FM |2=a.联立{ba =√32,12ab =4√3,解得{a =4,b =2√3, 所以双曲线的标准方程为x 216−y 212=1.故选C .(2)不妨设渐近线y=ba x 与直线x=a 交于点A ,则点A (a ,b ).依题意,c=4,√(4-a )2+b 2=4,a 2+b 2=c 2=16,解得a 2=4,b 2=12,故双曲线的标准方程为F 24−y 212=1.(3)设双曲线的方程为mx 2+ny 2=1(mn<0).因为所求双曲线经过点P (3,2√7),Q (-6√2,7), 所以{9m +28n =1,72m +49n =1,解得{m =-175,n =125.故所求双曲线的方程为y 225−x 275=1.例3B 不妨设点A ,B 在直线y=b a x 上,点F (c ,0),则设点A (x 0,b a x 0),B -x 0,-bax 0.因为以AB 为直径的圆过点F ,所以AF ⃗⃗⃗⃗⃗ ⊥BF ⃗⃗⃗⃗⃗ ,所以AF ⃗⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗⃗ =c 2-x 02−b 2a2x 02=c 2-c 2a2x 02=0,所以x 0=±a.所以S △ABF =12·c·|2bax 0|=bc=8.由{x 2+y 2=c 2,x 2a 2-y 2b 2=1,得y=±b 2c ,则|MN|=2b 2F=2,即b 2=c.所以b=2,c=4,所以a=√c 2-b 2=2√3.所以双曲线C 的渐近线方程为y=±√33x.故选B .对点训练3A 由椭圆x 2a 2+y 2b 2=1(a>b>0)与双曲线x 2a 2−y 2b 2=12,即x 2a 22−y 2b 22=1的焦点相同,可得a 2-b 2=a 22+b 22,即a 2=3b 2,所以ba =√33.所以双曲线的渐近线方程为y=±√33x.故选A .例4B 由题意可知tan ∠MAN=2tan∠MAF1-tan 2∠MAF =-34,解得tan ∠MAF=3.令x=c ,则y=±b 2a , 可得tan ∠MAF=b 2ac -a =c 2-a 2ac -a=c+a a=3,则e=ca =2.故选B .对点训练4A 如图,设PQ 与x 轴交于点A ,由对称性可知PQ ⊥x 轴.∵|PQ|=|OF|=c ,∴|PA|=c2.∴PA 为以OF 为直径的圆的半径,A 为圆心,∴|OA|=c2. ∴Pc 2,c 2.又点P 在圆x 2+y 2=a 2上,∴c24+c 24=a 2,即c22=a 2,∴e 2=c2a 2=2,∴e=√2.故选A .例5A 因为点F 1(-√3,0),F 2(√3,0),x 022−y 02=1,所以MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =(-√3-x 0,-y 0)·(√3-x 0,-y 0)=x 02+y 02-3<0,即3y 02-1<0,解得-√33<y 0<√33.对点训练5(0,2) 因为双曲线x 28-m+y 24-m =1的焦点在x 轴上,所以{8-m >0,4-m <0,解得4<m<8.所以焦点到渐近线的距离d=√m -4∈(0,2).例6A 如图.由已知得|PF1|=|F1F2|=2c.因为直线PF2与以双曲线C的实轴为直径的圆相切,设切点为M,所以|OM|=a,OM⊥PF2,所以|MF2|=√c2-a2=b.由双曲线的定义可得|PF2|-|PF1|=2a,所以|PF2|=2a+2c,所以cos∠OF2M=bc =(2c)2+(2a+2c)2-(2c)22×2c×(2a+2c),整理得c=2b-a.又c2=a2+b2,解得ba=43.所以双曲线C的渐近线方程为y=±43x.故选A.对点训练6A如图,连接OA,OB.设双曲线x 2a2−y2b2=1(a>0,b>0)的焦距为2c(c>0),则点C(-a,0),F(-c,0).由双曲线和圆的对称性,可知点A与点B关于x轴对称,则∠ACO=∠BCO=12∠ACB=12×120°=60°.因为|OA|=|OC|=a,所以△ACO为等边三角形,所以∠AOC=60°.因为FA与圆O相切于点A,所以OA⊥FA.在Rt△AOF中,因为∠AOC=60°,所以|OF|=2|OA|,即c=2a,所以b=√c2-a2=√(2a)2-a2=√3a.所以双曲线x 2a2−y2b2=1(a>0,b>0)的渐近线方程为y=±√3x.。
第1节 直线的方程考试要求 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知 识 梳 理1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0; (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan__α. (2)计算公式:①经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率k =y 2-y 1x 2-x 1. ②若直线的方向向量为a =(x ,y )(x ≠0),则直线的斜率k =y x. 3.直线方程的五种形式名称 几何条件 方程适用条件 斜截式 纵截距、斜率 y =kx +b 与x 轴不垂直的直线点斜式 过一点、斜率 y -y 0=k (x -x 0) 两点式过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线截距式 纵、横截距x a +y b =1 不过原点且与两坐标轴均不垂直的直线 一般式Ax +By +C =0(A 2+B 2≠0)所有直线[常用结论与微点提醒]1.直线的倾斜角α和斜率k 之间的对应关系:α 0 0<α<π2π2 π2<α<π kk >0 不存在k <02.截距和距离的不同之处“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,则其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k 1=-1,k 2=1,k 1<k 2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°. (3)两直线的斜率相等,则其倾斜角一定相等. 答案 (1)× (2)× (3)× (4)√2.(老教材必修2P89B5改编)若过两点A (-m ,6),B (1,3m )的直线的斜率为12,则直线的方程为________.解析 由题意得3m -61+m =12,解得m =-2,∴A (2,6),∴直线AB 的方程为y -6=12(x -2), 整理得12x -y -18=0. 答案 12x -y -18=03.(老教材必修2P101B2改编)若方程Ax +By +C =0表示与两条坐标轴都相交的直线(不与坐标轴重合),则应满足的条件是________.解析 由题意知,直线斜率存在且斜率不为零,所以A ≠0且B ≠0. 答案 A ≠0且B ≠04.(2020·西安调研)直线x -y +1=0的倾斜角为( ) A.30°B.45°C.120°D.150°解析 由题意得,直线y =x +1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°,故α=45°. 答案 B5.(2020·昆明诊断)已知直线l 经过A (2,1),B (1,m 2)两点(m ∈R ),那么直线l 的倾斜角的取值范围是( ) A.[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π2,π解析 直线l 的斜率k =1-m 22-1=1-m 2,因为m ∈R ,所以k ∈(-∞,1],所以直线的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π.答案 B6.(2020·合肥调研)过点(-3,4),在x 轴上的截距为负数,且在两坐标轴上的截距之和为12的直线方程为______.解析 由题设知,横、纵截距均不为0,设直线的方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9(舍).故所求直线的方程为4x -y +16=0.答案 4x -y +16=0考点一 直线的倾斜角与斜率典例迁移【例1】 (一题多解)(经典母题)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析 法一 设PA 与PB 的倾斜角分别为α,β,直线PA 的斜率是k AP =1,直线PB 的斜率是k BP =-3,当直线l 由PA 变化到与y 轴平行的位置PC 时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l 由PC 变化到PB 的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,-3].故斜率的取值范围是(-∞,-3]∪[1,+∞). 法二 设直线l 的斜率为k ,则直线l 的方程为y =k (x -1),即kx -y -k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1-k )(-3-k )≤0,即(k -1)(k +3)≥0,解得k ≥1或k ≤- 3.即直线l 的斜率k 的取值范围是(-∞,-3]∪[1,+∞). 答案 (-∞,-3]∪[1,+∞)【迁移1】 若将例1中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围. 解 设直线l 的斜率为k ,则直线l 的方程为y =k (x +1),即kx -y +k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1+k )(-3+k )≤0,即(3k -1)(k -3)≤0,解得13≤k ≤ 3.即直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤13,3. 【迁移2】 若将例1中的B 点坐标改为B (2,-1),其他条件不变,求直线l 倾斜角的取值范围.解 由例1知直线l 的方程kx -y -k =0,∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1-k )(2k +1-k )≤0, 即(k -1)(k +1)≤0,解得-1≤k ≤1.即直线l 倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.规律方法 1.由直线倾斜角的取值范围求斜率的取值范围或由斜率的取值范围求直线倾斜角的取值范围时,常借助正切函数y =tan x 在⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π上的单调性求解,这里特别要注意,正切函数在⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π上并不是单调的.2.过一定点作直线与已知线段相交,求直线斜率范围时,应注意倾斜角为π2时,直线斜率不存在.【训练1】 如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2. 答案 D考点二 直线方程的求法【例2】 求适合下列条件的直线方程: (1)经过点P (1,2),倾斜角α的正弦值为45;(2)(一题多解)经过点P (2,3),并且在两坐标轴上截距相等;(3)经过两条直线l 1:x +y =2,l 2:2x -y =1的交点,且直线的一个方向向量v =(-3,2). 解 (1)由题可知sin α=45,则tan α=±43,∵直线l 经过点P (1,2),∴直线l 的方程为y -2=±43(x -1),即y =±43(x -1)+2,整理得4x -3y +2=0或4x +3y -10=0.(2)法一 ①当截距为0时,直线l 过点(0,0),(2,3), 则直线l 的斜率为k =3-02-0=32,因此,直线l 的方程为y =32x ,即3x -2y =0.②当截距不为0时,可设直线l 的方程为x a +y a=1. 因为直线l 过点P (2,3),所以2a +3a=1,所以a =5.所以直线l 的方程为x +y -5=0.综上可知,直线l 的方程为3x -2y =0或x +y -5=0. 法二 由题意可知所求直线斜率存在, 则可设y -3=k (x -2),且k ≠0.令x =0,得y =-2k +3.令y =0,得x =-3k+2.于是-2k +3=-3k +2,解得k =32或k =-1.则直线l 的方程为y -3=32(x -2)或y -3=-(x -2),即直线l 的方程为3x -2y =0或x +y -5=0.(3)联立⎩⎪⎨⎪⎧x +y =2,2x -y =1,得x =1,y =1,∴直线过点(1,1),∵直线的方向向量v =(-3,2), ∴直线的斜率k =-23.则直线的方程为y -1=-23(x -1),即2x +3y -5=0.规律方法 1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).【训练2】 (1)求经过点B (3,4),且与两坐标轴围成一个等腰直角三角形的直线方程; (2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 解 (1)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0.(2)当直线不过原点时,设所求直线方程为x 2a +y a =1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k=-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0.考点三 直线方程的综合应用 多维探究角度1 直线过定点问题【例3-1】 已知k ∈R ,写出以下动直线所过的定点坐标: (1)若直线方程为y =kx +3,则直线过定点________; (2)若直线方程为y =kx +3k ,则直线过定点________; (3)若直线方程为x =ky +3,则直线过定点________. 解析 (1)当x =0时,y =3,所以直线过定点(0,3). (2)直线方程可化为y =k (x +3),故直线过定点(-3,0). (3)当y =0时,x =3,所以直线过定点(3,0). 答案 (1)(0,3) (2)(-3,0) (3)(3,0)规律方法 1.直线过定点问题,可以根据方程的结构特征,得出直线过的定点坐标. 2.含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.角度2 与直线方程有关的多边形面积的最值问题【例3-2】 已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a =________.解析 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2(2-a )+12×2(a 2+2)=a 2-a +4=⎝ ⎛⎭⎪⎫a -122+154,又0<a <2,所以当a =12时,面积最小.答案 12规律方法 1.求解与直线方程有关的面积问题,应根据直线方程求解相应坐标或者相关长度,进而求得多边形面积.2.求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解.【训练3】 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1. ∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0; 当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.A 级 基础巩固一、选择题1.(2020·安阳模拟)若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =( ) A.1±2或0 B.2-52或0 C.2±52D.2+52或0解析 由题意知k AB =k AC ,即a 2+a 2-1=a 3+a3-1,即a (a 2-2a -1)=0,解得a =0或a =1± 2.答案 A2.(2020·广东七校联考)若过点P (1-a ,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是( ) A.(-2,1) B.(-1,2)C.(-∞,0)D.(-∞,-2)∪(1,+∞)解析 由题意知2a -1-a 3-1+a <0,即a -12+a <0,解得-2<a <1.答案 A3.(2020·福建六校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析 当a >0,b >0时,-a <0,-b <0,结合选项知B 符合,其他均不符合. 答案 B4.(2020·成都诊断)过点(2,1),且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( ) A.x =2 B.y =1 C.x =1D.y =2解析 直线y =-x -1的倾斜角为3π4,则所求直线的倾斜角为π2,故所求直线斜率不存在,又直线过点(2,1),所以所求直线方程为x =2. 答案 A5.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( ) A.y =3x +2 B.y =3x -2 C.y =3x +12D.y =-3x +2解析 因为直线x -2y -4=0的斜率为12,所以直线l 在y 轴上的截距为2,所以直线l 的方程为y =3x +2.答案 A6.(2020·湖北四地七校联考)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝ ⎛⎭⎪⎫π4-x =f ⎝⎛⎭⎪⎫π4+x ,则直线ax -by +c =0的倾斜角为( )A.π4B.π3C.2π3D.3π4解析 由f ⎝⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x 知函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π2,所以a =-b ,由直线ax -by +c =0知其斜率k =a b =-1,所以直线的倾斜角为3π4,故选D.答案 D7.直线x sin α+y +2=0的倾斜角的取值范围是( ) A.[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫π2,π解析 设直线的倾斜角为θ,则有tan θ=-sin α.又sin α∈[-1,1],θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π.答案 B8.(2020·东北三省四校调研)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-12B.[-1,0]C.[0,1]D.⎣⎢⎡⎦⎥⎤12,1解析 由题意知,y ′=2x +2,设P (x 0,y 0),则在点P 处的切线的斜率k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案 A 二、填空题9.直线l 的倾斜角为60°,且在x 轴上的截距为-13,则直线l 的方程为________.解析 由题意可知,直线l 的斜率为3,且该直线过⎝ ⎛⎭⎪⎫-13,0,∴直线l 的方程为y =3⎝ ⎛⎭⎪⎫x +13,即3x -3y +1=0. 答案 3x -3y +1=010.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.答案 x +13y +5=011.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.所以b 的取值范围是[-2,2].答案 [-2,2]12.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角是直线4x -3y +2 020=0的倾斜角的一半,则y 的值为________.解析 因为直线4x -3y +2 020=0的斜率为43,所以由倾斜角的定义可知直线4x -3y +2 020=0的倾斜角α满足tan α=43,因为α∈[0,π),所以α2∈⎣⎢⎡⎭⎪⎫0,π2,所以2tanα21-tan 2α2=43,解得tan α2=12,由已知及倾斜角与斜率的关系得2y +1+34-2=12,所以y =-32.答案 -32B 级 能力提升13.(2019·湖南长郡中学月考)已知点(-1,2)和⎝ ⎛⎭⎪⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎭⎪⎫π4,π3B.⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫34π,πC.⎝ ⎛⎭⎪⎫34π,56πD.⎝ ⎛⎭⎪⎫23π,34π解析 因为点(-1,2)和⎝ ⎛⎭⎪⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,所以(-a -2+1)·⎝⎛⎭⎪⎫33a -0+1>0,即(a +1)(a +3)<0,所以-3<a <-1,又知直线l 的斜率k =a ,即-3<k <-1,又因为直线倾斜角的范围是[0,π),所以直线l 的倾斜角的取值范围为⎝ ⎛⎭⎪⎫23π,34π,故选D. 答案 D14.(2020·兰州模拟)若直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( ) A.ab >0,bc <0 B.ab >0,bc >0 C.ab <0,bc >0D.ab <0,bc <0解析 易知直线的斜率存在,则直线方程可化为y =-a b x -cb ,由题意知⎩⎪⎨⎪⎧-ab <0,-cb >0,所以ab >0,bc <0.答案 A15.已知数列{a n }的通项公式为a n =1n (n +1)(n ∈N *),其前n 项和S n =910,则直线x n +1+y n=1与坐标轴所围成的三角形的面积为________. 解析 由a n =1n (n +1)可知a n =1n -1n +1,所以S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 又知S n =910,所以1-1n +1=910,所以n =9.所以直线方程为x 10+y9=1,且与坐标轴的交点为(10,0)和(0,9),所以直线与坐标轴所围成的三角形的面积为12×10×9=45.答案 4516.(2020·豫北名校调研)直线l 过点P (6,4),且分别与两坐标轴的正半轴交于A ,B 两点,当△ABO 的面积最小时,直线l 的方程为________.解析 设直线l 的方程为y -4=k (x -6)(k ≠0),则A ⎝⎛⎭⎪⎫6-4k,0,B (0,4-6k ),由题意知k <0,则S △ABO =12×|OA |·|OB |=12⎝ ⎛⎭⎪⎫6-4k ·(4-6k )=24-18k -8k ,∵k <0,∴-18k >0,-8k >0,∴-18k -8k≥2(-18k )·⎝ ⎛⎭⎪⎫-8k =24,当且仅当-18k =-8k ,即k 2=49,也即k =-23时取得等号,所以△ABO 的面积的最小值为48,此时直线l 的方程为y -4=-23(x -6),即2x +3y -24=0.答案 2x +3y -24=0C 级 创新猜想17.(多填题)设点A (-2,3),B (3,2),已知直线l 的方程为ax +y +2=0,则直线l 过定点________,若直线l 与线段AB 没有交点,则实数a 的取值范围是________.解析 直线ax +y +2=0恒过点M (0,-2),且斜率为-a ,∵k MA =3-(-2)-2-0=-52,k MB =2-(-2)3-0=43,结合题意可知-a >-52,且-a <43,∴a ∈⎝ ⎛⎭⎪⎫-43,52.答案 (0,-2) ⎝⎛⎭⎪⎫-43,52。
高中数学一轮总复习解析几何重点知识整理解析几何是高中数学中的一门重要的分支,它通过代数方法研究几何问题,是数学与几何相结合的产物。
在高中数学的学习中,解析几何占据着很重要的地位。
本文将为大家总结解析几何的重点知识,并进行整理。
一、直线与圆的方程在解析几何中,直线和圆是最基本的几何图形。
直线的方程可以通过点斜式、两点式、截距式等不同的表达方式来表示。
其中最常用的是点斜式,表示为 y - y₁ = k(x - x₁)。
其中 (x₁, y₁) 是直线上的一点,k 是直线的斜率。
圆的方程有两种形式,一是标准方程:(x - a)² + (y - b)² = r²,其中 (a,b) 是圆心坐标,r 是半径;二是一般方程:x² + y² + Dx + Ey + F= 0。
二、直线与圆的交点直线与圆的交点是解析几何的一个重要概念。
当直线与圆相交时,可以通过解方程的方法求得交点的坐标。
例如,已知直线 L: 2x + y - 3 = 0 和圆 C: x² + y² - 4x - 2y - 8 = 0,求直线 L 与圆 C 的交点坐标。
解:将直线的方程代入圆的方程中,得到 x² + (2x + 3)² - 4x - 2(2x + 3) - 8 = 0。
整理得到 5x² + 10x - 10 = 0,解得 x₁ = 1,x₂ = -2。
将 x 的值代入直线的方程中,得到 y₁ = 1,y₂ = 5。
所以直线 L 和圆 C 的交点坐标为 (1, 1) 和 (-2, 5)。
三、圆与圆的位置关系圆与圆之间的位置关系有三种情况:相离、相切、相交。
当两个圆相离时,它们的半径之和小于两圆之间的距离。
当两个圆相切时,它们的半径之和等于两圆之间的距离。
当两个圆相交时,它们的半径之和大于两圆之间的距离。
四、直线与平面的位置关系直线与平面之间的位置关系有两种情况:平行和相交。
第8讲 曲线与方程配套课时作业1.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线 答案 D解析 由已知知|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.2.(2019·某某模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 答案 B解析 由题意知,|EA |+|EO |=|EB |+|EO |=r (r 为圆的半径)且r >|OA |,故E 的轨迹为以O ,A 为焦点的椭圆.故选B.3.到点F (0,4)的距离比到直线y =-5的距离小1的动点M 的轨迹方程为( ) A .y =16x 2B .y =-16x 2C .x 2=16y D .x 2=-16y 答案 C解析 由条件知,动点M 到F (0,4)的距离与到直线y =-4的距离相等,所以点M 的轨迹是以F (0,4)为焦点,直线y =-4为准线的抛物线,其标准方程为x 2=16y .4.(2019·某某模拟)设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .y 2=2x B .(x -1)2+y 2=4 C .y 2=-2x D .(x -1)2+y 2=2 答案 D解析 如图,设P (x ,y ),圆心为M (1,0),连接MA ,则MA ⊥PA ,且|MA |=1.又∵|PA |=1,∴|PM |=|MA |2+|PA |2=2,即|PM |2=2,∴(x -1)2+y 2=2.5.在△ABC 中,已知A (-1,0),C (1,0),且|BC |,|CA |,|AB |成等差数列,则顶点B 的轨迹方程是( )A.x 23+y 24=1B.x 23+y 24=1(x ≠±3)C.x 24+y 23=1 D.x 24+y 23=1(x ≠±2) 答案 D解析 因为|BC |,|CA |,|AB |成等差数列,所以|BC |+|BA |=2|CA |=4.所以点B 的轨迹是以A ,C 为焦点,半焦距c =1,长轴长2a =4的椭圆.又B 是三角形的顶点,A ,B ,C 三点不能共线,故所求的轨迹方程为x 24+y 23=1,且x ≠±2.故选D.6.动圆M 经过双曲线x 2-y 23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( )A .y 2=8x B .y 2=-8x C .y 2=4x D .y 2=-4x 答案 B解析 设双曲线x 2-y 23=1的左焦点为F (-2,0),因为动圆M 经过F 且与直线x =2相切,所以圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y 2=-8x .7.(2019·某某某某检测)已知F 1,F 2是双曲线的两个焦点,Q 是双曲线上任意一点,从焦点F 1引∠F 1QF 2的平分线的垂线,垂足为P ,则点P 的轨迹为( )A .直线B .圆C .椭圆D .双曲线 答案 B解析 不妨设点Q 在双曲线的右支上,延长F 1P 交直线QF 2于点S ,∵QP 是∠F 1QF 2的平分线,且QP ⊥F 1S ,∴P 是F 1S 的中点.∵O 是F 1F 2的中点,∴PO 是△F 1SF 2的中位线,∴|PO |=12|F 2S |=12(|QS |-|QF 2|)=12(|QF 1|-|QF 2|)=a (定值),∴点P 的轨迹为圆. 8.设线段AB 的两个端点A ,B 分别在x 轴、y 轴上滑动,且|AB |=5,OM →=35OA →+25OB →,则点M 的轨迹方程为( )A.x 29+y 24=1B.y 29+x 24=1C.x 225+y 29=1 D.y 225+x 29=1 答案 A解析 设M (x ,y ),A (x 0,0),B (0,y 0),由OM →=35OA →+25OB →,得(x ,y )=35(x 0,0)+25(0,y 0),则⎩⎪⎨⎪⎧x =35x 0,y =25y 0,解得⎩⎪⎨⎪⎧x 0=53x ,y 0=52y ,由|AB |=5,得⎝ ⎛⎭⎪⎫53x 2+⎝ ⎛⎭⎪⎫52y 2=25,化简得x 29+y 24=1.9.已知A ,B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( )A .圆B .椭圆C .抛物线D .双曲线 答案 C解析 以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立坐标系,设M (x ,y ),A (-a,0),B (a,0),则N (x,0).因为MN →2=λAN →·NB →,所以y 2=λ(x +a )(a -x ),即λx 2+y 2=λa 2,当λ=1时,轨迹是圆;当λ>0且λ≠1时,轨迹是椭圆;当λ<0时,轨迹是双曲线;当λ=0时,轨迹是直线.综上,动点M 的轨迹不可能是抛物线.10.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,椭圆的另一个焦点F 的轨迹方程是( )A .y 2-x 248=1(y ≤-1) B .y 2-x 248=1C .y 2-x 248=-1 D .x 2-y 248=1 答案 A解析 由题意,得|AC |=13,|BC |=15,|AB |=14,又|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|AC |=2.故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线的下支.∵双曲线中c =7,a =1,∴b 2=48,∴焦点F 的轨迹方程为y 2-x 248=1(y ≤-1).11.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在AB 上,且AM =13,点P 在平面ABCD内,且动点P 到直线A 1D 1的距离与动点P 到点M 的距离的平方差为1,则动点P 的轨迹是( )A .直线B .圆C .双曲线D .抛物线 答案 D解析 在平面ABCD 内过点P 作PF ⊥AD ,垂足为F ,过点F 在平面AA 1D 1D 内作FE ⊥A 1D 1,垂足为E ,连接PE ,则有PE ⊥A 1D 1,即PE 为点P 到A 1D 1的距离.由题意知|PE |2-|PM |2=1,又因为|PE |2=|PF |2+|EF |2,所以|PF |2+|EF |2-|PM |2=1,即|PF |2=|PM |2,即|PF |=|PM |,所以点P 满足到点M 的距离等于点P 到直线AD 的距离.由抛物线的定义知点P 的轨迹是以点M 为焦点,AD 为准线的抛物线,所以点P 的轨迹为抛物线.12.(2019·某某质量检查)已知A (-2,0),B (2,0),斜率为k 的直线l 上存在不同的两点M ,N 满足|MA |-|MB |=23,|NA |-|NB |=23,且线段MN 的中点为(6,1),则k 的值为( )A .-2B .-12 C.12 D .2答案 D解析 因为|MA |-|MB |=23,|NA |-|NB |=23,由双曲线的定义知,点M ,N 在以A ,B 为焦点的双曲线的右支上,且c =2,a =3,所以b =1,所以该双曲线的方程为x 23-y 2=1.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12,y 1+y 2=2.设直线l 的方程为y =kx +m ,代入双曲线的方程,消去y ,得(1-3k 2)x 2-6mkx -3m 2-3=0,所以x 1+x 2=6mk 1-3k 2=12①,y 1+y 2=k (x 1+x 2)+2m =12k +2m =2②,由①②解得k =2,故选D.13.由动点P 向圆x 2+y 2=1引两条切线PA ,PB ,切点分别为A ,B ,∠APB =60°,则动点P 的轨迹方程为________.答案 x 2+y 2=4解析 设P (x ,y ),x 2+y 2=1的圆心为O ,因为∠APB =60°,OP 平分∠APB ,所以∠OPB =30°,因为|OB |=1,∠OBP 为直角,所以|OP |=2,所以x 2+y 2=4.14.(2019·某某模拟)△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.答案x 29-y 216=1(x >3)解析 如图,令内切圆与三边的切点分别为D ,E ,F ,可知|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |,所以|CA |-|CB |=|AE |-|BE |=8-2=6<|AB |=10.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,其方程为x 29-y 216=1(x >3).15.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C ,则曲线C 的方程为________.答案x 24+y 23=1(x ≠-2) 解析 设圆M 的半径为r 1,圆N 的半径为r 2,圆P 的半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).16.若过抛物线y 2=4x 的焦点作直线与其交于M ,N 两点,作平行四边形MONP ,则点P的轨迹方程为________.答案 y 2=4(x -2)解析 (1)当直线斜率k 存在时,设直线方程为y =k (x -1),点M (x 1,y 1),N (x 2,y 2),P (x ,y ),由OM →=NP →,得(x 1,y 1)=(x -x 2,y -y 2).得x 1+x 2=x ,y 1+y 2=y .由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,联立得x =x 1+x 2=2k 2+4k2.y =y 1+y 2=4kk 2,消去参数k ,得y 2=4(x -2).(2)当直线斜率k 不存在时,直线方程为x =1,由O P →=2O F →得P (2,0),适合y 2=4(x -2).综合(1)(2),点P 的轨迹方程为y 2=4(x -2).17.(2019·某某质检)如图所示,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左、右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积; (2)求直线AA 1与直线A 2B 交点M 的轨迹方程. 解 (1)设A (x 0,y 0),则S 矩形ABCD =4|x 0y 0|, 由x 209+y 20=1,得y 20=1-x 209, 从而x 20y 2=x 20⎝ ⎛⎭⎪⎫1-x 209=-19⎝ ⎛⎭⎪⎫x 20-922+94.当x 20=92,y 20=12时,S max =6.从而t 2=x 20+y 20=5,t =5,所以当t =5时,矩形ABCD 的面积取到最大值6. (2)由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0),由曲线的对称性及A (x 0,y 0),得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3),①直线A 2B 的方程为y =-y 0x 0-3(x -3),② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③,得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).18.(2019·某某某某模拟)已知动点M (x ,y )满足:x +12+y 2+x -12+y 2=2 2.(1)求动点M 的轨迹E 的方程;(2)设过点N (-1,0)的直线l 与曲线E 交于A ,B 两点,点A 关于x 轴的对称点为C (点C 与点B 不重合).证明:直线BC 恒过定点,并求该定点的坐标.解 (1)由已知,动点M 到点P (-1,0),Q (1,0)的距离之和为22,且 |PQ |<22,所以动点M 的轨迹为椭圆,且a =2,c =1,所以b =1,所以动点M 的轨迹E 的方程为x 22+y 2=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),则C (x 1,-y 1), 由已知得直线l 的斜率存在,设斜率为k , 则直线l 的方程为y =k (x +1).由⎩⎪⎨⎪⎧y =k x +1,x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0,所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.又直线BC 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2), 即y =y 2+y 1x 2-x 1x -x 1y 2+x 2y 1x 2-x 1, 令y =0,得x =x 1y 2+x 2y 1y 2+y 1=2kx 1x 2+k x 1+x 2k x 1+x 2+2k=2x 1x 2+x 1+x 2x 1+x 2+2=4k 2-41+2k 2-4k21+2k 2-4k 21+2k 2+2=-2, 所以直线BC 恒过定点D (-2,0).19.(2016·全国卷Ⅲ)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.解 由题意知F ⎝ ⎛⎭⎪⎫12,0. 设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b , R ⎝ ⎛ -12,⎭⎪⎫a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. (1)证明:由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba=-b =k 2.所以AR ∥FQ .(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a |·|FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题设可得2×12|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=0(舍去)或x 1=1.设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时, 由k AB =k DE 可得2a +b =yx -1(x ≠1). 而a +b2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合.所以所求轨迹方程为y 2=x -1.20.(2019·某某模拟)已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O 为坐标原点.(1)求椭圆Γ的方程;(2)设点A 在椭圆Γ上,点B 在直线y =2上,且OA ⊥OB ,求证:1|OA |2+1|OB |2为定值;(3)设点C 在椭圆Γ上运动,OC ⊥OD ,且点O 到直线CD 的距离为常数3,求动点D 的轨迹方程.解 (1)∵椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O 为坐标原点,∴b =c =2,∴a =2+2=2,∴椭圆Γ的方程为x 24+y 22=1.(2)证明:设A (x 0,y 0),则OB 的方程为x 0x +y 0y =0,由y =2,得B ⎝⎛⎭⎪⎫-2y 0x 0,2,∴1|OA |2+1|OB |2=1x 20+y 20+14+4y 20x 2=4+x 24x 20+y 2=4+x 24⎝⎛⎭⎪⎫x 20+2-x 22=12, ∴1|OA |2+1|OB |2为定值12. (3)设C (x 1,y 1),D (x ,y ),由OC ⊥OD ,得x 1x +y 1y =0,①由点C 在椭圆上,得x 214+y 212=1,②联立①②,得x 21=4y 22x 2+y 2,y 21=4x 22x 2+y2.③由OC ⊥OD ,点O 到CD 的距离为3,得|OC |·|OD |=3|CD |, ∴|OC |2·|OD |2=3(|OC |2+|OD |2).将③代入得 1|OC |2+1|OD |2=1x 21+y 21+1x 2+y2 =14y 22x 2+y 2+4x 22x 2+y2+1x 2+y 2=2x 2+y 2+44x 2+y 2=13, 化简,得点D 的轨迹方程为y 212-x 26=1.。