间直角坐标系,
则
√3 1
A(0,0,0),D(0,√3,0),E(0, 2 , 2),B(1,0,0),C(1,√3,0),于是
√3 1
=(0, 2 , 2), =(1,√3,0).
设 n=(x,y,z)为平面 ACE 的法向量,
+ √3 = 0,
· = 0,
则
即 √3
1
+ 2 = 0,
所以平面 PCD 的一个法向量为(0,1,√3).
规律方法
求平面的法向量的注意事项
(1)选向量:在选取平面内的向量时,要选取不共线的两个向量.
(2)取特值:在求n的坐标时,可令x,y,z中的一个为特殊值得另两个值, 便可得
到平面的一个法向量.
(3)注意0:提前假定法向量n=(x,y,z)的某个坐标为某特定值时一定要注意这
轴,建立空间直角坐标系Oxyz,
则 B(1,0,0),D(-1,1,0),A1(0,2,√3),A(0,0,√3),B1(1,2,0),所以1 =(1,2,-√3),
1 =(-1,2,√3),=(-2,1,0).
因为1 ·1 =1×(-1)+2×2+(-√3)×√3=0,
1 ·=1×(-2)+2×1+(-√3)×0=0,
2
取z=6,则x=4,y=3,
所以n=(4,3,6)是平面ACD1的一个法向量.
由 A1,C,B1 的坐标分别为(3,0,2),(0,4,0),(3,4,2),得1 1 =(0,4,0),1 =(-3,0,-2).
设点 P 满足1 =λ1 (0≤λ≤1),则1 =(-3λ,0,-2λ).
所以1 = 1 1 + 1 =(-3λ,4,-2λ).