基于PLC的机械手控制设计
- 格式:docx
- 大小:11.00 KB
- 文档页数:2
基于PLC的搬运机械手控制系统设计搬运机械手是一种自动化设备,广泛应用于工业生产中的物料搬运、装卸、组装等工序。
为了实现搬运机械手的自动化控制,可以采用基于可编程逻辑控制器(PLC)的控制系统。
本文将介绍一个基于PLC的搬运机械手控制系统的设计。
搬运机械手控制系统的主要功能是对机械手的运动进行控制。
基于PLC的控制系统可以实现对机械手的运动、速度和位置等参数进行精确控制,从而提升机械手的工作效率和准确性。
首先,需要确定搬运机械手的运动方式和结构。
常见的机械手运动方式包括直线运动、旋转运动和联动运动等。
根据任务需求,可以选择合适的运动方式和结构。
然后,需要选择合适的PLC设备。
PLC是一种专门用于工业自动化控制的设备,具有高可靠性、灵活性和可扩展性等特点。
根据机械手的规模和工作要求,选择适当的PLC设备。
接下来,需要设计搬运机械手的控制电路。
控制电路是实现机械手运动控制的关键部分,包括传感器、电磁阀、继电器等元件的连接和控制逻辑的设计。
在设计控制逻辑时,可以使用PLC提供的编程软件进行编程。
根据机械手的工作要求和操作流程,编写PLC程序,实现对机械手的自动控制。
此外,还需要设计人机界面(HMI)用于操作和监控机械手的运行状态。
HMI通常使用触摸屏或按钮等输入设备,以及显示屏或指示灯等输出设备。
通过HMI,操作人员可以控制机械手的运动和监控运行状态。
最后,进行系统调试和测试。
在将系统投入使用之前,需要进行调试和测试,确保搬运机械手的运动控制正常,并满足工作要求。
总结起来,基于PLC的搬运机械手控制系统设计包括确定运动方式和结构、选择合适的PLC设备、设计控制电路、编写PLC程序、设计人机界面以及进行系统调试和测试等步骤。
通过PLC控制系统的应用,可以提高机械手的自动化程度,提升生产效率和产品质量。
基于PLC的搬运机械手控制系统设计搬运机械手是工业生产中常用的一种机器人,目的是为了将物品从一个地方搬到另一个地方,以实现生产线的自动化生产。
为了方便操作和控制机械手的运动,我们常使用PLC进行控制。
本文将详细介绍基于PLC的搬运机械手控制系统设计并分为以下几个部分:系统设计、硬件设计、软件设计和测试与优化。
系统设计在设计搬运机械手的控制系统前,需要明确其基本能力以及操作条件。
本文需要实现的是一个能够在工业生产上自动完成货物的移动,如从一个点到达另一个点,或从一个点将货物取下并放入另一个点的机械手控制系统。
硬件设计在硬件方面,机械手的结构以及体积会影响到设计的复杂度和控制的难度。
机械手的操作部分包括控制电路、执行器驱动电路、电源等。
现在,我们来介绍每个部分的主要内容。
控制电路部分包括PLC、IO模块等。
PLC是机械手控制的核心,负责读取传感器信号并控制执行器的动作。
IO模块则负责将信号转换为PLC能接受的信号进行处理。
执行器驱动电路部分主要负责控制电机动作。
电机的选择与应用需要根据机械手的具体要求而定,需要注意的是,电机的转矩和功率需要协调匹配,还需要注意电机的供电和控制电路之间的配合问题。
电源系统是机械手控制系统的基础之一,电源的大小和控制器的匹配与应用直接关系到系统的正常运行。
需要根据需要提供相应的电压以及功率供给系统。
软件设计在软件设计方面,我们借助PLC程序进行控制,根据机械手的执行需要编写相应的程序,实现机械手的移动、旋转、夹取或放置操作。
具体流程如下:1. 初始化- 设定初始位置和状态等参数;2. 等待操作信号- 根据设定的信号进行等待;3. 传感器检测- 检测对象的位置和状态;4. 判断操作- 根据传感器检测结果进行相应操作;5. 输出控制信号- 控制执行器动作,改变机械手所处的位置和状态。
测试与优化测试与优化是机械手控制系统设计的重要一步,目的是检查系统的稳定性和准确性。
在测试过程中,需要测试机械手的各种运动状态,比如加速度、负载、速度等参数,以确定机械手的质量和性能优化方向。
基于PLC机械手控制系统设计工业机械手是一种高科技自动化生产设备,也是工业机器人的一个重要分支。
它通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。
机械手作业的准确性和在各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。
机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。
通用机械手是一种能够独立按程序控制实现重复操作的机械手,适用范围比较广。
由于通用机械手能够很快地改变工作程序,适应性较强,因此在不断变换生产品种的中小批量生产中得到了广泛的应用。
机械手的发展得益于其积极作用:一方面,它能够部分代替人工操作;另一方面,它能够按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;还能够操作必要的机具进行焊接和装配,从而改善了工人的劳动条件,显著提高了劳动生产率,加快了实现工业生产机械化和自动化的步伐。
因此,机械手受到了很多国家的重视,投入了大量的人力物力来研究和应用。
尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,机械手的应用更为广泛。
近年来,在我国也有较快的发展,并取得了一定的效果,受到了机械工业的关注。
机械手是一种能够自动控制并可重新编程以变动的多功能机器,具有多个自由度,可以搬运物体以完成在不同环境中的工作。
随着工业技术的发展,机械手的结构形式开始比较简单,专用性较强。
但现在,制成了能够独立按程序控制实现重复操作,适用范围比较广的通用机械手。
本文介绍了机械手的分类和应用,其中第一类是通用机械手,可以根据任务需要编制程序完成各项规定工作。
本项目要求设计的机械手模型也属于这一类,通过设计可以增强对工业机械手的认识,并熟悉掌握PLC技术、位置控制技术、气动技术等工业控制常用的技术。
机械手控制系统的设计步骤包括确定被控系统必须完成的动作和它们之间的关系、分配输入输出设备、设计PLC用户程序、对程序进行调试和修改,最后保存已完成的程序。
基于PLC的气动机械手控制系统设计一、本文概述随着工业自动化技术的飞速发展,气动机械手作为实现生产自动化、提高生产效率的重要工具,在各个领域得到了广泛应用。
基于可编程逻辑控制器(PLC)的气动机械手控制系统,以其稳定可靠、易于编程和维护的特性,成为当前研究的热点之一。
本文旨在探讨基于PLC 的气动机械手控制系统的设计方法,包括系统构成、硬件选择、软件编程以及调试与优化等方面,以期为我国工业自动化领域的发展提供参考和借鉴。
本文将简要介绍气动机械手及其控制系统的基本原理和特点,为后续的设计工作奠定理论基础。
将详细阐述PLC在气动机械手控制系统中的应用优势,包括其可靠性、灵活性以及扩展性等方面的优势。
在此基础上,本文将深入探讨基于PLC的气动机械手控制系统的设计方法,包括系统架构的设计、硬件设备的选择、软件编程的实现以及系统调试与优化等方面。
本文将总结基于PLC的气动机械手控制系统的设计要点和注意事项,为相关工程实践提供指导和借鉴。
通过本文的研究,旨在为我国工业自动化领域的发展提供新的思路和方法,推动气动机械手控制系统的技术进步和应用推广。
也期望本文的研究成果能对相关领域的学者和工程师产生一定的启示和借鉴作用,共同推动工业自动化技术的发展和创新。
二、气动机械手控制系统概述气动机械手控制系统是以可编程逻辑控制器(PLC)为核心,结合气动执行元件、传感器以及相应的控制逻辑,实现对机械手的精确控制。
该系统结合了气动技术的快速响应和PLC的灵活编程特性,使得机械手的动作更加准确、迅速且易于调整。
PLC控制器:作为整个控制系统的核心,PLC负责接收和处理来自传感器的信号,根据预设的程序逻辑,控制气动执行元件的动作。
PLC 具有高度的可靠性和稳定性,能够适应各种复杂的工作环境。
气动执行元件:包括气缸、气阀和气压调节器等。
气缸是实现机械手抓取、移动等动作的主要执行机构;气阀用于控制气缸的运动方向和速度;气压调节器则用于调节气缸的工作压力,以保证机械手的稳定性和精确性。
plc机械手控制设计方案PLC机械手控制设计方案一、方案背景随着工业自动化的不断发展,机械手的应用越来越广泛。
机械手通常由电动机、控制系统、机械结构等组成,其中控制系统的设计对机械手的性能和稳定性至关重要。
本方案旨在设计一种基于PLC的机械手控制系统,通过PLC的硬件和软件结合实现机械手的运动控制和位置定位。
二、方案设计1. 系统硬件设计选择适当的PLC型号作为控制系统的核心,确保其具备足够的输入/输出接口和高性能的运算能力。
根据机械手的运动形式,确定所需的电机数量和种类,并选择适当的驱动器和传感器。
设计相应的电路板和连接线路,确保电机和传感器可以正确连接到PLC的输入/输出接口。
2. 系统软件设计编写PLC的控制程序,包括机械手的运动轨迹规划和控制算法等。
根据机械手的要求,将其各个部分和功能模块拆分,确定适当的控制策略和步骤。
使用PLC的编程软件进行程序的编写和调试,确保控制系统的可靠性和实时性。
3. 用户界面设计设计人机界面,使操作者可以通过触摸屏或按键进行机械手的控制和监测。
界面可以包括机械手的各个状态、位置信息、运动速度等显示,以及机械手的运动模式选择和参数调整等功能。
为便于日常维护和故障排除,还可以在界面上添加诊断和故障检测功能。
4. 系统集成和调试将硬件组装好,并根据设计的连接线路进行接线。
将编写好的控制程序下载到PLC中,并进行调试和测试。
调试时,可通过人机界面监测机械手的位置和状态,检查控制算法的准确性和系统的稳定性。
调试过程中发现问题,进行相应的排除和修改,直到系统正常运行。
三、预期效果1. 机械手的运动控制和位置定位可靠准确,满足工作要求。
2. 机械手的控制系统稳定性好,能够长时间稳定运行。
3. 人机界面友好,操作和监测方便快捷。
4. 系统的调试过程顺利,可以快速投入使用。
四、风险和应对措施1. 硬件选型不当,导致系统性能不佳。
解决办法是在选型前充分了解硬件规格和性能,选择品牌可靠的产品。
基于PLC的机械手控制设计在现代工业生产中,机器人和自动化装置起着越来越重要的作用。
对于大型企业来说,使用机器人和自动化装置有助于提高生产效率、降低生产成本。
机械手是目前自动化装置中最常见的一种,它能够完成各种生产任务,如搬运、装配、焊接等。
在机械手的控制中,PLC(可编程逻辑控制器)起着至关重要的作用。
PLC是一种基于数字逻辑技术的专门控制装置。
它集成了控制、计算、调度、查询等多种功能,可广泛应用于各种工业场合。
PLC通过读取输入信号(例如传感器、开关等),经过处理后向外发出控制信号,控制输出设备(例如电机、执行器等)。
PLC工作时,处于实时控制状态,能够实时读取和处理输入信号,并在极短的时间内输出正确的控制信号,从而完成各种控制操作。
在机械手控制设计中,PLC的作用是控制机械手动作的起止、速度、强度等属性。
通常,PLC控制机械手的过程可分为以下几个步骤:1. 传感器检测输入信号:PLC通过传感器读取机械手操作时的输入信号,例如机械手需要哪个方向进行操作、物体是否到达终点等信号。
2. 工艺控制:PLC通过工艺控制程序对输入信号进行处理,例如根据工艺控制程序确定机械手需要进行哪种动作、动作需要执行多少时间等。
3. 电气信号输出:PLC通过输出电气信号控制电机和执行器输出相应的动力,例如机械手需要向某个方向移动,PLC通过输出相应的电气信号控制电机输出动力推动机械手移动。
4. 成品线检测输出:机械手动作完成时将完成信号传递给PLC,PLC进行成品线检测并根据工艺控制程序确定机械手的下一步动作。
通过PLC,机械手控制可以实现自动化、高效率、精准性和可靠性等多种优点。
此外,PLC的可编程性也可以使机械手系统更加灵活,适应不同工艺条件的变化。
同时,PLC还具有良好的扩展性和可维护性,可以方便地进行程序升级和故障排除。
总体来说,PLC在机械手控制设计中起着至关重要的作用。
它通过控制机械手的各种动作实现生产自动化,提高了生产效率和质量,减少了人力投入和生产成本。
基于PLC的机械手控制设计PLC(可编程逻辑控制器)是一种广泛应用于工业自动化领域的电子设备,其功能类似于计算机,可以通过编程来控制和监控机械系统的运行。
在机械手控制设计中,PLC可以起到关键的作用,提高机械手的灵活性和生产效率。
基于PLC的机械手控制设计首先需要进行硬件配置。
通常,PLC由中央处理器、输入输出模块和通信模块组成。
中央处理器是PLC的大脑,负责执行编写的程序,并控制输入输出模块的工作。
输入输出模块可以连接不同的传感器和执行器,例如触点传感器、光电传感器和电磁阀。
通信模块可以用于与其他设备进行数据交换。
在机械手控制设计中,需要将机械手的运动控制功能与PLC的编程功能进行结合。
通过传感器获取机械手所处的位置和姿态信息,并传输给PLC进行处理。
PLC根据编写的程序,计算出机械手下一步的运动轨迹,并控制执行器使机械手按照计算出的轨迹进行运动。
PLC还可以监控机械手的运行状态,并根据需要进行报警或故障检测。
在编写PLC程序时,需要考虑机械手的运动范围、速度和加速度等因素。
通过合理地设置参数,可以使机械手在安全范围内自由运动,并能够满足生产任务的要求。
还可以将PLC与人机界面(HMI)相连接,实现对机械手的远程监控和操作。
基于PLC的机械手控制设计具有以下优势:1. 灵活性高:PLC的程序可以根据生产需求进行调整和修改,使机械手能够适应不同的工作任务。
2. 生产效率高:PLC可以实现机械手的自动化控制,提高生产效率和产品质量。
3. 可靠性强:PLC具有较高的抗干扰能力和稳定性,可以确保机械手的正常运行。
4. 易于维护:PLC的硬件和软件都比较易于维护和更换,降低了维护成本和停机时间。
基于PLC的机械手控制设计可以提高机械手的灵活性和生产效率,适用于各种工业自动化领域。
随着PLC技术的不断发展,机械手的控制功能将会越来越强大,为工业生产带来更多便利和经济效益。
《基于PLC的气动机械手控制系统设计》篇一一、引言随着工业自动化技术的不断发展,气动机械手因其结构简单、维护方便、成本低廉等优点,在工业生产中得到了广泛应用。
为了进一步提高气动机械手的工作效率、稳定性和可靠性,基于PLC的气动机械手控制系统设计成为了重要的研究方向。
本文旨在设计一个基于PLC的气动机械手控制系统,以提高生产效率和自动化水平。
二、系统需求分析首先,我们需要对气动机械手控制系统进行需求分析。
该系统需要实现以下功能:1. 精确控制:系统应能精确控制机械手的运动轨迹和速度,以满足不同生产需求。
2. 稳定性:系统应具有较高的稳定性,以确保机械手在长时间工作过程中不会出现故障。
3. 安全性:系统应具备安全保护功能,如遇紧急情况能及时停止机械手运动。
4. 扩展性:系统应具有良好的扩展性,以便未来增加功能或与其他设备进行集成。
三、硬件设计硬件设计是气动机械手控制系统的基础。
本系统采用PLC作为核心控制器,搭配气动元件、传感器、执行器等设备组成。
具体设计如下:1. PLC控制器:选用高性能的PLC控制器,负责接收上位机指令、处理数据、控制机械手运动。
2. 气动元件:包括气缸、电磁阀、气动管道等,负责实现机械手的运动。
3. 传感器:包括位置传感器、压力传感器等,用于检测机械手的位置、压力等状态信息。
4. 执行器:根据传感器信号和控制信号,驱动气缸等执行机构实现机械手的运动。
四、软件设计软件设计是实现气动机械手控制系统功能的关键。
本系统采用结构化程序设计方法,将程序分为多个模块,便于后期维护和扩展。
具体设计如下:1. 主程序:负责初始化系统、读取传感器数据、处理数据、控制机械手运动等。
2. 控制模块:根据上位机指令和传感器数据,计算控制信号,驱动执行器实现机械手的精确控制。
3. 通信模块:负责与上位机进行通信,接收指令、发送状态信息等。
4. 保护模块:具备安全保护功能,如遇紧急情况能及时停止机械手运动。
基于PLC的机械手控制设计一、引言机械手是一种在工业生产中广泛应用的自动化设备,它能够替代人工完成一系列反复繁琐的作业,提高生产效率和产品质量。
在机械手的控制方式中,PLC(可编程逻辑控制器)技术得到了广泛的应用。
PLC具有稳定可靠、易于编程和操作、适应性强等优势,使得它成为机械手控制领域的首选之一。
本文将以基于PLC的机械手控制设计为主题,介绍机械手控制系统的组成、PLC控制原理和方法、控制程序设计等内容,旨在为相关领域的工程师和研究人员提供一些技术参考和指导。
二、机械手控制系统的组成1.机械手机械手是机器人的一种,它通常由伺服电机、控制器、传感器、执行器等组成,用于完成各种工业生产线的装配和搬运任务。
2.PLC控制器PLC是一种专门用于工业控制领域的可编程控制器,它能够实现对各种工业设备和机械手的精确控制。
3.传感器传感器是机械手控制系统中的重要组成部分,它能够实时感知物体位置、姿态等信息,并将这些信息传输给PLC控制器。
4.执行器以上组成部分共同构成了一个完整的机械手控制系统,它能够实现对物体的精确操控,并在工业自动化生产线中发挥重要作用。
三、PLC控制原理和方法PLC控制系统的工作原理是根据预先设定的控制程序,对输入输出设备进行逻辑运算和控制指令的转换,从而实现对工业设备和机械手的精确控制。
PLC控制方法主要包括控制程序设计、硬件接线、参数设置和调试等环节。
控制程序设计是PLC控制系统的核心,它需要根据机械手的具体任务和工作流程,编写相应的逻辑控制程序来实现对机械手的精确控制。
四、控制程序设计1.功能模块划分在进行控制程序设计之前,首先需要对机械手的功能模块进行划分,例如抓取、放置、旋转等功能。
然后,针对每个功能模块,设计相应的逻辑控制程序。
在进行逻辑控制程序设计时,需要根据实际控制要求,采用Ladder图或者其他编程语言,将机械手的控制过程进行精确描述,并将其转化为PLC可读取的指令。
图3-5 定位模块EM253与原则驱动器接线图械手处在何种工位,按下复位按钮开始调用复位子程序,机械手完毕复位动作,回到机械手原点。
复位子程序框图如图4-3所示。
复位子程序入口伺服1正方向找零点伺服2正方向找零点停机图4-3 系统复位子程序框图机械手在寻找原点是调用S7-200PLC定位模块EM253回零子程序,定义机械手在寻找原点时两个伺服电机都正转,沿正方向寻找。
EM253回零子程序梯形图如图4-4所示:图4-4伺服电机运营回零子程序梯形图4.2.4 报警子程序设计报警子程序则用来完毕故障显示和初步诊断功能,当机械手运动超过上下左右极限、在运动过程中机械手松开则自动调用此程序。
当故障解除后,按下报警解除按钮则报警消除。
4.2.5 手动运营子程序设计手动子程序用于控制机械手与生产线断开通信后单步动作,通过控制面板上选取开关进行机械手工作方式选取,通过控制面板上按钮进行手动操作。
当控制面板处在手动状态,且各部位处在原位,各电机处在停止状态时,按下控制面板上上升、下降、迈进、后退、夹紧、松开按钮时进行相应动作,再次按下相应按钮则停止动作。
此时,除急停信号外,其她输入信号无效。
系统手动子程序框图如图4-5所示。
前进后退夹紧松开下降上升伺服1正转伺服1反转伺服2正转伺服2反转阀1通阀2通复位复位子程序手动子程序入口图4-5 手动运营子程序框图机械手在运动时靠伺服电机驱动,伺服电机正反转靠伺服定位模块EM253控制,在实现机械手升降进退时调用定位模块EM253运营子程序,实现伺服已固定速度行驶固定距离。
EM253运营子程序如图4-6所示:图4-6 伺服电机运营子程序梯形图4.2.6 半自动运营子程序半自动子程序用来控制与生产线断开通信时单循环持续动作,通过控制面板上选取开关选取状态,通过启动按钮进行操作,当按下启动按钮后机械手一方面沿正方向寻找原点,到达原点后按照在自动工作方式下动作顺序进行工作。
半自动操作在普通使用中比较少用,重要是在系统浮现故障时才会使用,系统半自动程序框图如图4-7所示。
摘要关键词:机械手;PLC;控制系统;设计第一章引言1.1 研究背景随着我国工业自动化水平的不断提高,机械手在制造业中的应用越来越广泛。
机械手作为一种自动化设备,能够替代人工完成重复性、危险性较大的工作,提高生产效率,降低生产成本。
可编程逻辑控制器(PLC)作为一种广泛应用于工业自动化领域的控制设备,具有可靠性高、编程灵活、易于维护等优点,成为机械手控制系统的首选。
1.2 研究目的与意义本文旨在设计并实现一个基于PLC的机械手控制系统,提高机械手在工业生产中的应用效果。
通过研究,掌握机械手和PLC的基本原理,分析机械手控制系统的需求,设计并实现一个高效、可靠的控制系统,为机械手在工业生产中的应用提供有力支持。
第二章机械手与PLC的基本原理2.1 机械手的基本原理机械手是一种能够模拟人手进行抓取、搬运等操作的自动化设备。
其基本原理包括机械结构、驱动系统、控制系统和传感器等部分。
机械手通过机械结构实现抓取、搬运等动作,驱动系统提供动力,控制系统控制机械手的运动轨迹和速度,传感器检测机械手的运动状态。
2.2 PLC的基本原理PLC是一种广泛应用于工业自动化领域的控制设备,其基本原理是利用可编程的存储器来存储用户编写的程序,实现对输入信号的逻辑运算,输出控制信号,从而实现对工业过程的控制。
PLC具有可靠性高、编程灵活、易于维护等优点。
第三章机械手控制系统的需求分析3.1 机械手控制系统的功能需求(1)抓取、搬运、放置等基本动作;(2)运动轨迹控制;(3)速度控制;(4)位置检测与反馈;(5)故障诊断与报警。
3.2 机械手控制系统的性能需求(1)响应速度快;(2)控制精度高;(3)稳定性好;(4)易于维护。
第四章机械手PLC控制系统的设计4.1 系统总体设计根据机械手控制系统的需求分析,设计了一个基于PLC的机械手控制系统。
系统主要由PLC、驱动器、传感器、机械手等组成。
PLC作为控制核心,负责接收传感器信号,输出控制信号,实现对机械手的控制。
基于PLC的机械手控制摘要在工业生产和其他领域内,由于工作的需要,人们经常受到高温、腐蚀及有毒气体等因素的危害,增加了工人的劳动强度,甚至于危及生命。
工业机械手就这样诞生了,机械手是工业机器人系统中传统的任务执行机构,是机器人的关键部件之一。
电气方面有电机、开关电源、电磁阀、等电子器件组成。
该装置涵盖了可编程控制技术,位置控制技术、气动技术等,是机电一体化的典型代表仪器之一。
本文介绍的机械手是由PLC输出四路来分别驱动横轴、竖轴、底盘转动、手转动电机,控制机械手横轴、竖轴和手爪顺逆旋转的精确定位,微动开关将位置信号传给PLC主机;电机拖动底盘旋转;电磁阀控制气阀的开关来控制机械手手爪的张合,从而实现机械手精确运动的功能。
本文设计的工业机械手模型可在空间抓放物体,动作灵活多样,可代替人工在高温和危险的作业区进行作业,并可根据工件的变化及运动流程的要求随时更改相关参数。
关键词:可编程控制器PLC,机械手,电机,任意位置!!所有下载了本文的注意:本论文附有CAD图纸,凡下载了本文的读者请留下你的联系方式(QQ邮箱),或加我百度用户名QQ,我把图纸发给你。
最后,希望此文能够帮到你!The control of manipulater by PLCABSTRACTIn industrial production and other domains, because works need, the people frequently receive factor the and so on high temperature,corrosion and virulent gas harm, increased worker's labor intensity,even endangers life. The industry manipulator like this was born, the manipulator is in theindustry robot assembly system the traditional duty implementingagency, is one of robot key components. The electrical aspect has theelectrical machinery, the switching power supply, the solenoid valve,and so on the electronic device composition. This equipment has covered the programmable control technology, theposition control technology, the air operated technology and so on, isthe integration of machinery model represents one of instruments. Thisarticle introduced the manipulator is outputs four groups by PLCseparately to actuate the abscissa axis, the z-axis, the chassisrotation, hand turns an electric motor, controls the manipulatorabscissa axis and the z-axis pintpointing, the microswitch bequeathsthe position signal the PLC main engine; The electrical machinerydrives the hand fingernail and the chassis revolves; The solenoidvalve controls the air valve the switch to control the manipulatorhand fingernail to gather, thus realizes the manipulator proper motionfunction. This topic plans the industry manipulator model which develops to bepossible in the space to grasp puts the object nimbly, the movement isdiverse, may replace artificially carries on the work in hightemperature and the dangerous operation area, and may changes therelated parameter as necessary according to the work piece change and the movement flow request.KEY WORDS: Programmable controller PLC, manipulator,electrical machinery,freeposition目录前言 (1)第1章机械手各功能实现形式与控制方式 (2)1.1机械手概述 (2)1.1.1机械手的定义与发展 (2)1.1.2机械手分类及控制方法 (3)1.1.3机械手的结构原理 (3)1.2本机械手模型的机能和特性 (5)1.3夹紧机构 (5)1.4躯干 (6)1.5设计要求 (6)1.5.1控制方式及要求 (7)1.6旋转编码盘 (9)第2章控制系统硬件设计 (10)2.1 PLC的定义及特点 (10)2.2 PLC的选型 (12)2.2.1常用PLC介绍 (12)2.2.2常用PLC介绍 (14)2.2.3确定型号FX1N-60MR (16)2.2.4 FX1N所具有优越性能 (17)2.2.5 FX系列PLC型号的说明 (17)2.3三菱FX系列的结构功能 (18)2.3.1 PLC内部功能 (19)2.3.2 PLC输入输出接口的安全保护 (20)2.4 FX1N PLC梯形图中的编程元件 (21)第3章软件设计 (23)3.1程序的总体结构 (23)3.2各部分程序如下 (24)结论 (33)谢辞 (34)参考文献 (35)附录 (37)外文资料翻译 (45)前言随着现代工业技术的发展,工业自动化技术越来越高,工人工作环境和工作内容也要求理想化简单化,对于一些往复的工作由机械手远程控制或自动完成显得非常重要。
基于plc的机械手控制系统设计开题报告一、引言随着工业化发展的不断加快,机械手在生产过程中越来越多地受到重视,它能够实现效率高、成本低的自动化装配。
而机械手控制系统的设计一直是当今最具前景的研究课题之一。
现代机械手控制系统一般采用PLC作为控制器,因为PLC具有快速反应、可靠性高、灵活性强等优势,能够快速准确地实现机械手的控制。
本文将从以下几个方面对基于PLC的机械手控制系统设计进行研究: 1. 简要介绍机械手及其控制原理;2.PLC技术及其在机械手控制中的应用;3. 设计机械手控制系统的主要步骤;4.对机械手控制系统的有效性进行分析。
二、机械手及其控制原理机械手是一种具有多轴运动的装置,由传感器、传动机构和控制系统组成,能够根据信号或者程序实现多轴运动,完成特定的操作任务。
机械手的控制原理是根据转子位置信号控制传动机构,使机械手实现多轴运动,从而完成操作任务。
具体来说,机械手的控制系统一般由传感器、控制器、传动机构等组成,传感器负责采集转子位置信号,控制器根据信号计算出控制命令,传动机构接收并执行控制命令,从而实现机械手的多轴运动。
三、PLC技术及其在机械手控制中的应用PLC(Programmable Logic Controller)是一种可编程的逻辑控制器,它由微处理器、存储器、I/O模块和外围设备组成。
它具有快速反应、可靠性高、灵活性强等特点,能够快速准确地实现机械手的控制。
PLC在机械手控制中的主要应用有:1. PLC可以根据传感器输入的转子位置信号,快速准确地计算出控制命令,从而实现机械手的多轴运动;2.PLC可以根据程序自动执行多个机械手操作步骤,实现连续化生产;3. PLC可以根据实时输入的信号,实现机械手的自适应控制,使之能够在不同的环境中运行。
四、设计机械手控制系统的主要步骤1. 需求分析:根据实际工况,分析机械手控制系统的功能需求,确定系统的性能要求;2. 系统结构设计:确定机械手控制系统的结构,并设计控制器、传感器、传动机构等硬件的选型;3. 系统软件设计:根据系统的功能特点,设计PLC程序,使机械手能够根据信号或者程序实现多轴运动;4. 系统调试:调试机械手控制系统,完成系统的调试工作,使机械手能够正常运行;5. 系统实施:将机械手控制系统投入到实际工况中,实施系统,使机械手能够实现自动化装配。
《基于PLC的气动机械手控制系统设计》篇一一、引言随着工业自动化技术的不断发展,气动机械手因其结构简单、操作方便、成本低廉等优点,在工业生产中得到了广泛应用。
然而,传统的气动机械手控制系统往往存在控制精度低、可靠性差等问题。
为了解决这些问题,本文提出了一种基于PLC的气动机械手控制系统设计方法。
该设计方法能够提高机械手的控制精度和可靠性,满足工业生产的需求。
二、系统设计1. 硬件设计基于PLC的气动机械手控制系统主要由PLC控制器、气动执行机构、传感器和人机界面等部分组成。
其中,PLC控制器是整个系统的核心,负责接收传感器信号、控制气动执行机构的动作以及与人机界面进行通信。
气动执行机构包括气缸、气阀等部件,负责实现机械手的抓取、移动等动作。
传感器用于检测机械手的位置、速度等状态信息,为PLC控制器提供反馈信号。
人机界面用于实现操作人员与机械手的交互,包括参数设置、状态显示等功能。
2. 软件设计软件设计主要包括PLC控制程序的编写和人机界面的开发。
PLC控制程序采用梯形图或指令表等形式进行编写,实现机械手的控制逻辑。
具体包括机械手的启动、停止、抓取、释放等动作的控制,以及根据传感器信号进行位置、速度等状态的检测和处理。
人机界面的开发主要包括界面设计、数据交互等部分,实现操作人员与机械手的交互功能。
三、控制系统设计要点1. 可靠性设计为了保证机械手控制系统的可靠性,需要采取一系列措施。
首先,选用高质量的PLC控制器和传感器等部件,确保其性能稳定、可靠。
其次,对控制系统进行合理的布局和接线,避免电磁干扰和电气故障等问题。
此外,还需要对控制系统进行定期维护和检修,及时发现和解决问题。
2. 控制精度设计为了提高机械手的控制精度,需要采取精确的控制系统设计方法。
首先,需要对机械手的运动轨迹进行精确的规划和计算,确保其运动轨迹的准确性和稳定性。
其次,需要采用高精度的传感器和控制器,实现对机械手位置、速度等状态的精确检测和控制。
基于PLC的机械手控制设计PLC(可编程逻辑控制器)是一种专门用于工业自动化控制的电子设备,它具有高可靠性、高性能和高可编程性的特点,广泛应用于各类工业生产设备中。
在机械手控制系统中,PLC可以实现对机械手的各项功能进行自动控制和协调。
PLC通过与机械手控制电路相连,可以接收来自传感器的信号。
通过安装在机械手上的传感器,可以感知外部环境的变化,如物体的位置、尺寸、形状等。
当传感器检测到信号时,PLC可以接收这些信号,并根据预先编程的逻辑规则进行处理。
PLC可以根据接收到的传感器信号,判断机械手当前的状态,并根据需要进行相应的动作控制。
当传感器检测到有物体需要抓取时,PLC可以控制机械手的臂和手部进行协调运动,将物体准确地抓取起来。
PLC还可以根据预设的路径规划和运动规划算法,控制机械手的运动轨迹和速度,以确保机械手的运动稳定和安全。
PLC还可以实现对机械手的力、速度、位置等参数的调节和控制。
通过在PLC中设定相应的参数和逻辑规则,可以根据不同的工作需求,对机械手的运动特性进行调整。
对于需要进行精确操作的任务,可以通过PLC对机械手的位置精度和速度进行调节,以实现更精确的控制和操作。
PLC还可以与其他设备进行联动控制。
在工业生产过程中,通常需要将机械手与其他设备进行协作,以完成复杂的任务。
通过PLC,可以实现机械手与其他设备之间的信息交换和联动控制。
在装配生产线上,机械手可以与传送带、加工设备等其他设备进行协作,实现物料的传递和加工。
PLC可以实时监控和调度各个设备的状态,根据当前的工作情况和优先级,合理安排机械手和其他设备的工作顺序和时间。
基于PLC的机械手控制设计可以实现对机械手的各项功能进行自动控制和协调,提高生产效率,降低操作难度,具有广泛的应用前景。
随着自动化技术的不断发展和PLC性能的提升,基于PLC的机械手控制设计将呈现出更多的创新和应用。
基于PLC的机械手控制设计
基于PLC的机械手控制设计,是一种智能化的机械手控
制方法,它利用PLC 控制器进行逻辑控制,使机械手能够
自主地完成多种工作任务。
本文将介绍本方法的具体实现
过程,包括机械结构设计、PLC程序设计以及控制算法设计。
一、机械结构设计
机械结构是机械手的核心,合理的机械结构设计将为实
现机械手的自主运动提供必要的保障。
机械手一般由控制
系统、机械部分和执行机构三部分组成。
机械部分一般包
含基座和移动结构,执行机构包括手臂和手指。
这里我们
以一款三轴机械手为例进行介绍。
1. 机械手构造
机械手采用了一种比较简单的三轴结构,主要有三个关节——一个旋转关节和两个平移关节。
机械手的底座固定
在工作台上,三个关节通过模拟伺服电机的方式进行控制。
2. 机械手控制器
机械手采用PLC控制器进行逻辑控制,PLC控制器由三
个部分组成:输入接口、中央处理器和输出接口。
输入接
口用于读取传感器信号,输出接口用于控制执行机构,中
央处理器则用于控制机械手的运动。
二、PLC程序设计
机械手的PLC程序设计主要分为四个部分:程序初始化、数据采集、运动控制和异常处理。
1.程序初始化
机械手程序初始化主要包括程序开头的自诊断和状态检测,并根据检测结果自动执行不同的控制程序。
自诊断可
以避免因器件故障等原因引起的机械手操作异常。
2.数据采集
机械手需要收集外部环境数据和操作数据。
外部环境数据包括工作物品的坐标、大小、形状等信息,操作数据包括机械手应该执行的命令。
在采集数据时,机械手需要通过传感器或外部设备接口实现。
3.运动控制
机械手的运动控制分为机械手移位运动和执行机构运动两个部分。
机械手移位运动需要根据采集到的工作物品信息以及执行机构的操作命令来控制机械手的运动轨迹。
执行机构运动控制则是将机械手的控制信号转换为电机运动信号。
4.异常处理
机械手运动过程中可能会出现异常情况,例如碰撞、误差等,需要通过对异常情况的处理来保证机械手的安全和可靠性。
异常处理主要分为三个阶段:异常检测、异常诊断和异常处理,诊断机械手运动状态,以及保证异常情况下机械手的及时停止。
三、控制算法设计
PLC控制器中的控制算法主要包括正向运动学算法和反向运动学算法。
其中,正向运动学算法是根据关节坐标和手臂长度求解机械手末端点的位置和姿态,反向运动学算法则是通过末端点的位置和姿态计算各个关节的坐标。
据此,我们可以设计出适用于三轴机械手的正向运动学和反向运动学控制算法。
正向运动学算法可以采用三角函数以及位移矩阵来计算机械手的末端点位置和姿态,反向运动学算法则是通过末端点的位置和姿态计算出各个关节的坐标。