OSPF+BGP实验
- 格式:doc
- 大小:461.50 KB
- 文档页数:12
BGP综合实验基本配置略。
注意的是我的RT1上的源地址是12.12.12.1所有ipv6地址是2002:c0c:c01:2::1(你自己的是什么就写什么)同理RT5上我用的源地址是5.5.5.5,ipv6地址是2002:505:505:2:1BGP配置Ospf配置略。
加入验证增加安全注意把12.12.12.0网段发布下不然IPV6隧道路由你还得引入什么的6TO4隧道RT1(注意先开启ipv6功能)ipv6 route-static 2002:: 16 Tunnel 0两边加入静态路由可以看到没有问题选路问题选路有多种方法我这里修改的通过BGP修改下一跳,别的方法我也迷糊,- -!首先我们看RT2的路由表,我只是截取了部分我们想看的太多我们先做RT1到RT5的路由选路,原理是做一个route-policy的过滤器,在第一个节点匹配10.0.0.1和11.0.0.1这个网段的或者这个IP,动作是修改下一跳为3.3.3.3(这个3.3.3.3可以让你断一条链路的情况下也能互通)我这个是为了方便在这RT5的一边做的同样匹配10.0.1.1和11.0.1.1这个,动作是修改下一跳为4.4.4.4应用到import和export两个方向上还需要注意的是11.0.0.1和11.0.1.1这两条路由产生了黑洞,黑洞在RT3和RT4上我没还需要在RT3和RT4上加入静态路由解决黑洞[RT3]ip route-static 11.0.0.0 24 5.5.5.5[RT4]ip route-static 11.0.1.0 24 5.5.5.5这样我们再看路由表RT2上RT5上OK了命令简单想费劲RT1上测试RT5上来回路径一致。
ospf多区域实验报告OSPF多区域实验报告引言:本次实验旨在深入理解和掌握OSPF(Open Shortest Path First)协议的多区域功能。
OSPF是一种内部网关协议(IGP),用于在大型网络中进行路由选择和路径计算。
通过将网络划分为多个区域,可以提高网络的可扩展性和性能。
本文将介绍实验的背景和目的,详细描述实验的步骤和结果,并对实验进行总结和讨论。
1. 实验背景在大型企业网络中,网络拓扑往往非常复杂,包含大量的子网和路由器。
当网络规模扩大时,单一区域的OSPF可能无法满足需求,因为单一区域的路由计算复杂度较高,且可能导致路由器负载过大。
为了解决这个问题,OSPF引入了多区域的概念,将网络划分为多个区域,每个区域有自己的区域边界路由器(ABR),负责与其他区域交换路由信息。
2. 实验目的本次实验的目的是通过搭建一个包含多个区域的网络拓扑,验证OSPF多区域的工作原理和效果。
具体目标包括:- 理解OSPF多区域的概念和原理;- 配置和验证OSPF多区域的路由信息交换;- 观察和分析多区域对网络性能和可扩展性的影响。
3. 实验步骤3.1 搭建实验环境我们使用GNS3模拟器搭建了一个包含多个区域的网络拓扑。
拓扑包括两个区域,每个区域都有多个子网和路由器,区域之间通过区域边界路由器连接。
我们使用虚拟机作为路由器,并在每个路由器上安装了OSPF协议。
3.2 配置OSPF多区域在每个路由器上,我们配置了OSPF协议,并将相应的接口划分到不同的区域。
在区域边界路由器上,我们配置了区域间的路由信息交换。
通过这样的配置,每个区域内的路由器只需关注自己所在区域的路由信息,大大减轻了路由计算的负担。
3.3 验证实验结果我们通过在路由器上查看OSPF邻居关系和路由表,以及通过ping命令测试不同子网之间的连通性,来验证实验结果。
我们还观察了区域边界路由器之间的路由信息交换情况,以及网络的性能和可扩展性。
4. 实验结果实验结果表明,OSPF多区域功能能够有效提高网络的可扩展性和性能。
ospf协议实验报告OSPF协议实验报告引言在计算机网络领域,路由协议是实现网络通信的重要组成部分。
其中,OSPF (Open Shortest Path First)协议是一种内部网关协议(IGP),被广泛应用于大型企业网络和互联网中。
本实验旨在深入了解OSPF协议的工作原理、特点和应用场景,并通过实际操作和观察验证其性能和可靠性。
一、OSPF协议概述OSPF协议是一种链路状态路由协议,通过计算最短路径来实现数据包的转发。
它基于Dijkstra算法,具有高度可靠性和快速收敛的特点。
OSPF协议支持IPv4和IPv6,并提供了多种类型的路由器之间交换信息的方式,如Hello报文、LSA (链路状态广告)等。
二、实验环境搭建为了进行OSPF协议的实验,我们搭建了一个小型网络拓扑,包括四台路由器和若干台主机。
路由器之间通过以太网连接,主机通过交换机与路由器相连。
在每台路由器上配置OSPF协议,并设置相应的参数,如区域ID、路由器ID、接口地址等。
三、OSPF协议的工作原理OSPF协议的工作原理可以简要概括为以下几个步骤:1. 邻居发现:路由器通过发送Hello报文来寻找相邻的路由器,并建立邻居关系。
Hello报文包含了路由器的ID、接口IP地址等信息,用于判断是否属于同一区域。
2. LSA交换:邻居路由器之间通过发送LSA报文来交换链路状态信息。
LSA报文包含了路由器所知道的网络拓扑信息,如链路状态、度量值等。
3. SPF计算:每台路由器根据收到的LSA报文,计算出最短路径树。
SPF计算使用Dijkstra算法,通过比较路径的度量值来选择最优路径。
4. 路由表更新:根据最短路径树,每台路由器更新自己的路由表。
路由表包含了目的网络的下一跳路由器和度量值等信息。
四、实验结果与分析通过实验观察和数据分析,我们得出以下结论:1. OSPF协议具有快速收敛的特点,当网络拓扑发生变化时,路由器能够迅速更新路由表,确保数据包能够按最优路径传输。
bgp实验报告总结
BGP实验报告总结
背景
BGP(Border Gateway Protocol)是用于在互联网中交换路由信息的协议。
它是一种路径矢量协议,用于确定最佳路径,并且能够适应网络拓扑的变化。
在本次实验中,我们对BGP进行了实验,并对实验结果进行了总结和分析。
实验过程
在实验中,我们使用了模拟器来模拟网络环境,并配置了多个路由器和主机。
我们通过配置BGP协议来模拟网络中的路由器之间的路由信息交换。
我们还模拟了网络中的故障情况,以观察BGP协议对网络拓扑变化的适应能力。
实验结果
通过实验,我们观察到BGP协议在网络拓扑变化时能够快速地重新计算最佳路径,并更新路由表。
当网络中发生故障时,BGP能够及时地发现并通知其他路由器,从而保证了网络的稳定性和可靠性。
此外,我们还观察到BGP协议在处理大规模网络时的效率和性能表现良好。
总结与分析
通过本次实验,我们对BGP协议的工作原理和性能有了更深入的了解。
BGP作为互联网中最重要的路由协议之一,具有很强的稳定性和可靠性。
它能够适应网络拓扑的变化,并且能够处理大规模网络的路由信息交换。
因此,BGP协议在互联网中扮演着至关重要的角色。
结论
通过本次实验,我们对BGP协议有了更深入的了解,并且验证了其在网络中的
稳定性和可靠性。
BGP协议的高效性和性能表现使其成为互联网中不可或缺的一部分,对于构建稳定和可靠的互联网具有重要意义。
我们将继续深入研究BGP协议,并将其应用于实际网络中,以提高网络的稳定性和可靠性。
BGP配置实验案例BGP(边界网关协议)是一个用于在互联网中交换路由信息的协议。
在本篇文章中,我们将探讨一个BGP配置实验案例,其中包括两个自治系统(AS)之间的BGP邻居关系的建立和路由的传递。
这个实验案例可以帮助读者更好地理解BGP协议的工作原理和配置步骤。
在这个实验案例中,我们有两个自治系统:AS1和AS2、AS1拥有IP 地址段192.168.0.0/24,AS2拥有IP地址段10.0.0.0/24、我们的目标是在两个自治系统之间建立BGP邻居关系,并实现路由的传递。
首先,我们需要在两个自治系统中配置BGP路由器。
在AS1中,我们选择一个路由器作为BGP路由器,并配置其Loopback接口的IP地址为192.168.0.1、在AS2中,选择另一个路由器作为BGP路由器,并配置其Loopback接口的IP地址为10.0.0.1、这些Loopback接口的IP地址将用作BGP邻居之间的通信地址。
接下来,我们开始配置BGP邻居关系。
在AS1中,我们需要告诉BGP 路由器与AS2的BGP路由器建立邻居关系。
假设AS2的BGP路由器的IP 地址为10.0.0.2,我们将在AS1的BGP路由器上执行以下命令:``````同样地,在AS2的BGP路由器上,我们需要告诉其与AS1的BGP路由器建立邻居关系。
假设AS1的BGP路由器的IP地址为192.168.0.1,我们将在AS2的BGP路由器上执行以下命令:``````配置完BGP邻居关系后,我们可以开始传递路由信息。
在AS1中,我们希望将本地的IP地址段192.168.0.0/24传输给AS2、我们需要在AS1的BGP路由器上执行以下命令:```network 192.168.0.0 mask 255.255.255.0```这些命令告诉AS1的BGP路由器将地址段192.168.0.0/24传输给BGP邻居。
同样地,在AS2中,我们希望将本地的IP地址段10.0.0.0/24传输给AS1、我们需要在AS2的BGP路由器上执行以下命令:```network 10.0.0.0 mask 255.255.255.0```这些命令告诉AS2的BGP路由器将地址段10.0.0.0/24传输给BGP邻居。
BGP状态机实验报告一、实验目的通过BGP状态机实验,加深对协议状态机描述的理解,并掌握状态机的设计实验方法,同时也可加深对BGP路由协议的理解二、实验要求根据系统的各种输入事件,进行BGP状态的变迁,并根据BGP 协议在适当情况下进行相应的处理。
三、状态转移情况BGP状态机一共有6个状态,分别是Idle,Connect,Active,OpenSent,OpenConfirm,Established本实验要求处理的状态转移事件有收到open消息:stud_bgp_FsmEventOpen收到Keepalive消息:stud_bgp_FsmEventKeepAlive收到Notification消息:stud_bgp_FsmEventNotification收到Update消息:stud_bgp_FsmEventUpdateTCP连接异常:stud_bgp_FsmEventTcpException,又细分为BGP_TCP_CLOSE,BGP_TCP_FATAL_ERROR,BGP_TCP_RETRANSMISSION_TIMEOUT三种子情况计时器超时:stud_bgp_FsmEventTimerProcess,又细分为BGP_CONNECTRETRY_TIMEOUT,BGP_HOLD_TIMEOUT,BGP_KEEPALIVE_TIMEOUT三种子情况BGP开始:stud_bgp_FsmEventStartBGP结束:stud_bgp_FsmEventStop收到连接结果:stud_bgp_FsmEventConnect整理后的状态转移表如下编程时,只要在事件处理函数中完成对应状态的变换即可四、包的发送1.open将BGP消息头的标记全部置为1,表示不包含认证信息●设置长度●设置消息类型●设置版本●设置自治系统号●设置保持时间●设置BGP标志符●调用bgp_FsmSendTcpData函数发送包2.notification●BGP消息头的标记全部置为1●设置BGP消息头的长度●设置BGP消息头的类型●设置NOTIFICATION消息的错误编码●设置NOTIFICATION消息的错误字码●调用bgp_FsmSendTcpData函数发送包3.keepalive●BGP消息头的标记全部置为1●设置BGP消息头的长度●设置BGP消息头的类型●调用TCP段发送函数bgp_FsmSendTcpData发送五、遇到的问题●包头的格式marker要设置为全一,表示不包含认证信息。
Bgp实验报告
1 路由协议相互引入
2 bgp属性设置
3 bgp同步设置
4 bgp反射器
1 路由协议相互引入
配置ip地址,如图所示。
在1上开启bgp协议
在2、3和4上也开启bgp协议并宣告网段
查看路由情况
因为内部没有开启协议,不知道路怎么走。
所以不能建立关系,要在20内部开启协议这里开ospf
在次查看邻居关系
查看路由情况
用ping命令测试一下
在2上宣告网段(也可以引入直连)
再次用ping命令测试
2 bgp属性设置本地优先级
在4上修改本地优先级
在3上查看路由情况
修改med值
先从1上查看路由情况
在2和4上都修改med值
再次查看路由
Med值越小。
优先走这条路
修改首选值
先在1上查看路由
在1修改首选值
查看路由情况
3 bgp同步
如图配置ip地址并开启协议宣告网段(这里只在4上和5建立关系就行了)
在5上开启协议
查看路由条目
在2和4上开启同步
查看路由情况
同步是把都有的往下传递,没有的则不传递相互引入路由
查看路由条目
在4上也引入路由
查看路由
在引入直连网络,1和5就都可以学到全部的路由了
4 反射器
在20里面的2 4 5都开启内部路由协议和3建立关系
在3上先建立关系
查看下路由
和其他建立关系
在建立客户端
查看路由情况
反射器从客户端学到的地址要发给其他客户端和非客户端,从非客户端学到的要发给客户端,客户端之间不能相互学习,要通过反射器才能学到。
网络路由协议实验结果分析近年来,随着互联网的快速发展,网络路由协议成为了保障网络通信的重要技术之一。
在网络中,路由协议负责确定数据包传输的最佳路径,确保网络的高效运行。
本文将就网络路由协议实验结果进行详细分析,探讨其在实际应用中的优缺点及改进方向。
一、实验环境概述本次实验采用了常见的路由器设备和网络模拟器软件搭建了一个小规模网络环境。
在该环境下,使用了多种常见的路由协议,包括RIP、OSPF和BGP等,分别在不同拓扑结构下进行了实验。
二、实验结果分析1. RIP协议实验结果分析RIP(Routing Information Protocol)是一种基于距离向量的内部网关协议,其路由选择依据跳数。
实验结果显示,RIP协议在小规模网络中运行良好,具有较低的计算复杂度,并且对于网络拓扑变化能够快速适应。
然而,由于其传输的只是路由表中的距离信息,无法满足大规模网络中的高效路由需求。
2. OSPF协议实验结果分析OSPF(Open Shortest Path First)协议是一种链路状态协议,通过收集邻居节点的链路状态信息来构建网络拓扑,通过计算最短路径来进行路由选择。
实验结果表明,OSPF协议在大规模网络中的性能较好,具有较低的路由计算复杂度和较快的收敛速度。
但是,OSPF协议对网络资源的开销较大,需要额外的带宽和路由器计算资源。
3. BGP协议实验结果分析BGP(Border Gateway Protocol)协议是一种用于互联网自治系统之间的路由选择协议,其路由策略基于路径。
实验结果显示,BGP协议适用于大规模互联网环境中,能够提供高度的可靠性和灵活性,能够根据策略来选择最佳的路径。
然而,BGP协议的路由选择时间较长,收敛速度较慢,存在一定的安全风险。
三、实验结论及改进方向通过实验结果的分析,我们可以得出以下结论:首先,不同的路由协议适用于不同规模和需求的网络环境。
RIP协议适用于小规模网络,OSPF协议适用于大规模网络,而BGP协议适用于互联网环境。
实验3 BGP协议实验1.查看R1和R2的路由表,注入路由信息前,是否有对方loopback的路由信息?注入路由信息后,是否有对方loopback的路由信息?为什么?答:注入路由信息前,没有对方的loopback;注入路由信息后,有对方的loopback;因为没有注入路由信息前,5.5.5.5的路由信息不会被BGP转发。
2.[R2]ping –a 4.4.4.4 5.5.5.5 能否ping通?如果不用ping命令的-a参数是否能ping通?为什么?答:能ping通,如果不用-a不能ping通。
-a参数指定源地址,而如果不指定4.4.4.4为源地址,则源地址为2.1.1.2,而R1中没有2.1.1.2的路由信息,所以ping消息无法返回。
3.把所截报文命名为BGP1-学号,并上传到服务器。
根据截获的BGP报文的顺序和结构,312UPDATE 1.1.1.2:179 1.1.1.1:3950携带路由更新信息4. 思考题:在实验截获的报文中是否有NOTIFICATION报文?为什么?答:没有,因为BGP运行正常没有出错。
5. 写出一个Update报文的完整结构,并指出报文中路由信息所携带的路由属性。
答:Marker(16 byte) 全1 检测BGP对等体之间的同步是否丢失Length(2 byte) 55 整个报文长度Type(1 byte) 2(UPDATE) 报文类型Withdrawn Routes Length(2 byte) 0 撤销路由长度Withdrawn Routes(变长0 byte) - 撤销路由Path Attribute Length(2 byte) 27 路径属性长度Path Attribute(27 byte) 见下路径属性ORIGIN(3+1=4 byte) 0(IGP) 起点属性AS_PATH(3+6=9 byte) 见下AS路径属性Segment type(1 byte) 2(AS_SEQUENCE)Segment length(1 byte) 1AS4(4byte) 100NEXT_HOP(3+4=7 byte) 1.1.1.1 下一跳属性MED(3+4=7 byte) 0 部邻居路由器进AS内的优先路径此Update报文共携带以上4个路由属性。
动态路由实验心得
一、实验目的
1. 了解动态路由协议的原理和工作流程;
2. 掌握 RIP、OSPF 和 BGP 的工作原理;
3. 进一步深入掌握路由技术的应用。
二、实验内容
本次实验主要是实现局域网3层结构,结合 RIP、OSPF 和 BGP 对网络实现路由的选择,实现局域网的动态路由。
1. 熟悉网路层结构:本次实验是实现一个3层结构的网络,第一层是本地网络,第二层是局域网,第三层是因特网。
在实验中,每一层都设置相应的路由器,以便实现路由的分发。
2. 实现动态路由:利用RIP、OSPF和BGP等动态路由协议实现路由的自动分发和选择,从而使得网络中的数据分发更加安全、可靠和稳定。
3. 路由表记录:记录不同动态路由协议下的路由表,从而比较不同的协议在数据分发和网络安全性上的不同表现。
三、实验结论
本次实验中,我们使用了RIP、OSPF和BGP等动态路由协议,实现了3层网络的路由选择,从而使得网络的性能和安全性得到了极大的改善。
此外,我们还记录了不同动态路由协议下的路由表,从而比较了它们在数据路由分发和网络安全性上的表现,从而确定在局域网中的路由协议。
通过本次实验,我们不仅加深了对动态路由协议的理解,而且深入掌握了不同协议在实际应用中的一些技巧,使我们对路由技术更加熟悉,能够更加高效、安全地管理网络。
mininet实验-BGP和OSPF路由协议一、自治系统自治系统AS(Autonomous System):自治系统就是几个路由器组成了一个小团体,小团体内部使用专用的协议进行通信,而小团体和小团体之间也使用专用的协议进行通信。
就像这样一样:值得一提的是,尽管一个AS内部使用了路由选择协议,但是一个AS对其他AS还是相当于两个普通的路由器在通信。
二、路由选择协议互联网中有两大类路由选择协议,他们分别是:1️⃣内部网关协议IGP(Interior Gateway Protocol)2️⃣外部网关协议EGP(External Gateway Protocol)其中内部网关协议就是我们之前说的在路由器的小团体之间进行通信所使用的协议,如RIP和OSPF等。
而外部网关协议则是小团体与小团体之间交流所使用的协议,目前使用的协议就是BGP。
到此为止我们要讲述的猪脚就登场了!自治系统之间的路由选择也叫作域间路由选择(interdomain routing),在自治系统内部的路由选择叫作域内路由选择(intradomain routing)。
三、内部网关协议RIP好了,下面我们进入第一块内容RIP协议。
1、工作原理全称是路由信息协议RIP(Routing Information Protocol)。
✅它是一种分布式的、基于距离向量的路由选择协议。
✅它要求网络中的每一个路由器都要维护从它自己到其他每一个目的网络的距离记录。
关于距离的定义:从一个路由器到直接连接的网络的距离定义为1。
从一个路由器到非直接连接的网络的距离定义为所经过的路由器数加1。
“距离”也称为“跳数”(hop count),因为每经过一个路由器,跳数就加1。
这里的“距离”实际上指的是“最短距离”。
RIP认为一个好的路由就是它通过的路由器的数目少,即“距离短”。
RIP允许一条路径最多只能包含15个路由器。
❌这意味着RIP只会选择一个具有最少路由器的路由(即最短路由),哪怕还存在另一条高速(低时延)但路由器较多的路由。
ospf协议的实验一、实验目的本实验的目的是通过搭建OSPF(Open Shortest Path First)协议实验环境,掌握OSPF协议的配置与运行原理,深入理解动态路由协议的工作机制和网络拓扑变化对路由表的影响。
二、实验环境1. 路由器:至少两台支持OSPF协议的路由器,如Cisco系列路由器。
2. 网络交换机:用于连接路由器和主机,提供网络通信功能。
3. 主机:用于模拟网络上的真实设备,可以是PC机或虚拟机。
三、实验步骤1. 搭建实验环境:a. 将路由器和交换机连接起来,并连接至主机。
b. 配置各个设备的IP地址,保证网络连通性。
c. 确保路由器上的OSPF协议已开启。
2. 配置OSPF协议:a. 在路由器上配置OSPF协议,通过以下命令启用OSPF进程:```router ospf <process-id>```b. 配置OSPF协议的区域和网络:```network <network-address> <wildcard-mask> area <area-id> ```c. 配置路由器的接口类型:```interface <interface-type> <interface-number>```d. 配置OSPF协议的优先级:```ip ospf priority <priority-value>```3. 验证OSPF协议配置:a. 查看OSPF邻居关系:```show ip ospf neighbor```b. 查看路由表:```show ip route```c. 查看OSPF协议配置信息:```show ip ospf```四、实验结果分析通过以上步骤,我们搭建了OSPF协议的实验环境,并进行了相应的配置。
可以通过查看OSPF邻居关系、路由表以及OSPF协议配置信息等命令来验证配置的正确性。
第三章 BGP协议特性与配置实验3-1 IBGP与EBGP学习目的掌握区域内部BGP的配置方法掌握多区域BGP的配置方法观察BGP的邻居表和数据库掌握BGP更新源的配置方法掌握EBGP多跳的配置方法观察IBGP和EBGP中路由的下一跳的变化掌握IBGP中下一跳的配置掌握BGP的Network命令的配置方法拓扑图场景学习任务步骤一.基础配置与IP编址与布置IGP这里IP和OSPF已经配置好,平时大家自己配置好IP的后,配置好后记得测试直连是否能通步骤二.AR1、AR5、AR7建立EBGP邻居(使用直连接口建立)[R1]bgp 200 (进入BGP进程)[R1-bgp]router-id 1.1.1.1 (指定BGP的router-id)[R1-bgp]peer 15.1.1.5 as-number 100 (指定与哪个AS的对等体建立邻居)[R1-bgp]peer 17.1.1.7 as-number 400 (指定与哪个AS的对等体建立邻居)[R5]bgp 100[R5-bgp]router-id 5.5.5.5[R5-bgp]peer 15.1.1.1 as-number 200(指定与哪个AS的对等体建立邻居)[R7]bgp 400[R7-bgp]router-id 7.7.7.7[R7-bgp]peer 17.1.1.1 as-number 200(指定与哪个AS的对等体建立邻居)对等体关系建立完成后,使用display bgp peer检查对等体关系状态。
[R1-bgp]dis bgp peer(截图,可以看到AR1和AR5、AR7均建立了EBGP邻居关系)步骤三.建立IBGP对等体在R1、R3、R4上配置IBG。
使用Loopback0地址作为更新源。
IBGP建立之前,需要布置IGP,AR1、AR3、AR4需要建立OSPF(这里OSPF已经配置好)[R1]bgp 200(AR1、AR3、AR4使用回环口建立IBGP对等体关系)[R1-bgp] peer 3.3.3.3 as-number 200[R1-bgp] peer 3.3.3.3 connect-interface LoopBack 0 (更新源检测)[R1-bgp] peer 4.4.4.4 as-number 200[R1-bgp] peer 4.4.4.4connect-interface LoopBack 0(更新源检测)用同样的方法在AR3、AR4上配置,使得R1、、R3、R4 建立IBGP关系使用display bgp peer察看各路由器BGP邻居关系状态。
1 OSPF实验1.1 实验一:单区域OSPF
1.1.1 实验目的
1.了解OSPF的工作原理
2.掌握单区域OSPF的配置
3.掌握修改网络类型、链路cost、重发布外部路由。
1.1.2 实验拓扑图
1.1.3 实验设备
两台三层交换机,两台路由器
本文档中使用了RSR20-04两台,版本10.3(3),S3750-24两台,版本10.2(4)。
1.1.4 实验场景及要求
两台三层3750-24交换机,作为下连用户的网关。
路由器R4连接外网
172.17.0.0——172.17.7.0/24。
1.所有路由设备启用ospf,进程号为100,除连接外网的接口外,所有
接口都在区域10内。
2.修改点对点连接的以太网链路类型
3.修改172.16.0.0/24和172.16.1.0/24的开销。
4.在R4上配置静态路由,目标网络172.17.0.0—172.17.7.0/24,通过重
发布引入外部路由
1.1.5 实验步骤及主要配置
1.按照规划,完成基本配置,配置接口IP
☺测试PC到网关的连通性和路由器之间链路的连通性
2.启用OSPF进程100,并指定router-id
3.把设备互联接口和要通告的用户网关放入OSPF进程,并和区域10
绑定
☺在SW1查看邻居表,路由表,并使用ping命令测试PC的连通性
在R1上能看到哪几个邻居,状态是:
4.把连接用户的接口配置为被动接口
5.如果设备互联链路是以太网链路,修改网络类型为Point-to-Point
6.在SW1上的SVI接口下修改开销,其中172.16.0.0/24的开销为100,
172.16.1.0/24的开销是500.
☺修改前后使用show ip ospf interface查看接口的ospf信息,关注接口的网络类型和cost、等信息
7.在R4配置静态路由,通过重发布把这8条静态路由引入ospf进程
100的网络中,重发布时指定metric值为100
8.对引入的路由进行路由汇总
9.在R4上向OSPF进程100引入缺省路由,metric指定为200
☺在SW1上查看路由表,有多少条OSPF学习到的路由?路由类型是什么?
其中外部路由的cost为多少?为什么?
1.1.6 实验作业
1.在OSPF中只有通过哪种协议包形成邻居,才能交换路由?影响邻居
关系形成的因素有哪些?
2.点对点互联的以太网链路缺省网络类型是什么?有DR的选举吗?在
SW1和R1之间谁是DR?SW2和R2之间呢?如何控制DR的选举?
在本实验中为什么要修改网络类型为P-P?
3.重发布时如果不指定metric,缺省metric是多少?外部路由的缺省类
型是什么?类型1和类型2的区别是什么?
4.修改cost的目的是什么?假设在SW2上也有172.16.0.0 172.16.1.0的
路由,但csot分别是500和100,会出现什么现象?
1.1.7 实验中遇到问题及解决方法
1.1.8 实验心得
1.2 实验二:多区域OSPF
1.2.1 实验目的
1.了解多区域的原理掌
2.握多区域的配置、路由汇总。
1.2.2 实验拓扑图
1.2.3 实验设备
同实验一
1.2.4 实验场景及要求
为减轻协议压力,把原有划分为多个OSFP区域。
1.2.5 实验步骤及主要配置
1.按照规划,配置接口IP
2.启用OSPF进程,并指定router-id
3.把相关接口放入OSPF进程,并和相关的区域绑定
4.把连接用户的接口配置为被动接口,如果设备互联链路是以太网链
路,修改网络类型为Point-to-Point
☺在SW1上查看路由表,相对于单区域,172.16.2.0/24的路由类型发生了什么改变
5.在ABR上进行路由汇总
6.在R4配置静态路由,通过重发布把这8条静态路由引入ospf进程
100的网络中,重发布时指定metric值为100
7.对引入的路由进行路由汇总
☺汇总前后,对比查看路由表、链路状态数据库
8.把区域10配置为Stub区域,区域20配置为NSSA区域
1.2.6 实验作业
1.如实验一,17
2.16.0.0/24 172.16.1.0/24的cost值修改的不同,分别为
100,5000,那么,汇总后的汇总路由cost值是多少?如果还希望
这两类业务的cost值不同,如何实现?
2.如果区域20只希望向其他区域通告172.16.2.0/24的路由,如何实现?
R4上配置了8条静态路由,如果只希望引入172.17.0.0—
172.17.6.0/24的网络,如何实现?
3.NSSA区域的ABR是否会自动生成缺省路由,如何解决?NSSA区域
生成的外部路由以类型几的形式存在?
4.在哪些路由器上可以针对哪些路由汇总?
1.2.7 实验中遇到问题及解决方法
1.2.8 实验心得
2 BGP实验2.1 实验一:BGP
2.1.1 实验目的
1.了解BGP的作用
2.掌握BGP的工作原理:邻居建立、路由注入、路由通告、属性与路
由优选原则
3.掌握BGP的配置与排错
2.1.2 实验拓扑图
2.1.3 实验设备
四台路由器
本文档中使用了RSR20-14四台,版本10.3(4)
2.1.4 实验场景及要求
企业内部有生产和办公两种业务,其中生产业务对应的网络号是
172.16.0.0/24,172.16.10.0/24,办公业务对应的网络号是172.16.1.0/24和
172.16.11.0/24。
要求使用BGP实现基于业务的数据分流
2.1.5 实验步骤及主要配置
1.按照规划,配置接口IP
☺测试路由器间链路连通性
2.在R2 R3 R4上配置OSPF进程,解决Loopback地址的可达性
☺查看路由表,测试R2 R3 R4 Loopback地址的可达性
3.在R1和R2 、R3之间建立EBGP对等体
4.在R2 R3 R4之间建立IBGP对等体,使用Loopback地址作为源地址,
把下一跳改为自己。
☺在R2上使用show ip bgp summary查看BGP的邻居表,能看到哪些信息:
☺使用show ip bgp neighbor ××××查看特定邻居的详细情况
5.在R1 R4上分别注入路由172.1
6.0.0/24 172.16.1.0/24和192.168.0.0/24
192.168.1.0/24
☺在R2上使用show ip bgp查看BGP表,能看到哪些信息? 使用show ip bgp ××××查看特定的路由。
☺在R2上使用show ip route查看路由表,EBGP和IBGP的管理距离各是多少?到172.16.0.0/24 1.0/24的下一跳是谁?为什么会选择这条路径?
☺使用扩展ping测试连通性。
使用tracert测试数据路径。
6.通过操纵属性,使得生产业务的主路径为R4---R2---R1,备份路径为
R4----R3----R1;办公业务的主备路径正好相反。
☺查看路由表、BGP表,使用traceroute测试主备链路
有哪些属性可以操纵,写出具体的配置命令:
7.在始发路由器上为生产业务的路由打上64520:100的团体标记,办
公业务的路由打上64520:200的团体标记,并通告到全网的所有
BGP路由器。
8.把R2 R3配置为R4的路由反射器,并配置对等体组。
2.1.6 实验作业
1.什么时候要使用BGP?BGP被哪种协议承载,端口号是多少?源目标
IP是多少?
2.在配置BGP对等体之前,为什么要先配置OSPF?IGP与BGP的关
系是什么?建立BGP对等体的条件是什么?
3.在BGP中如何注入路由?对应的路由起源是什么?在配置IBGP对端
体时往往要修改源地址为Loopback地址,并且把下一跳修改为自
己,结合本实验拓扑,举例说明为什么?
4.BGP通告路由时要遵循哪些原则?
5.BGP有哪些常见的属性?
6.BGP的选路原则有哪些?
2.1.7 实验中遇到问题及解决方法2.1.8 实验心得。