2021年河北省中考数学试题(含答案解析)
- 格式:doc
- 大小:34.00 KB
- 文档页数:13
2021年河北中考数学试题分析1、命题模式突破,强调实战能力今年的中考数学试卷改革力度较大,打破了多年的命题模式。
整套试卷“起点低,坡度缓,尾巴翘”。
试题覆盖面广,内容新颖,较好的落实了“狠抓基础,渗透思想,突出能力,着重创新”新课改的理念。
2、以夯实基础为出发点基本题以常规题型为主,采用了直接考查数与式的运算、有理数大小的比较、二次根式的意义、函数的图像与性质、正方体的展开与折叠、圆的有关知识,方差的特征量、统计与概率等的基本知识。
这类试题的特点,起点低,考查的知识相对单一,内容大都来源于课本,是对教材内容的深入考查,学生很容易上手并正确解答。
如1-8题、13-15题、19-21题,都能在课本上找到源头,这对中学数学教学有良好的导向作用。
3、专项试题突出能力今年试题设计精心,立意凸现了对中学数学的通性通法的重点考查。
如:第14、17题体现了转化的思想,第18题考查了特殊到一般的归纳思想,第19、22题考查了方程思想,第12、20题考查了数形结合的思想,第11、24题考查了函数思想,第25、26题用运动变化中特殊数量关系寻找的研究,这使得整套试卷突出能力立意,为初中数学教学指明了方向。
4、“多思少算”命题新倾向今年开放性、探究性试题的设置分布广泛,通过设置操作、观察、探究、应用等方面的问题,给学生提供了一定的思考研究空间。
如第17题留给学生的思考空间较大,虽然其中一个图形处于运动状态,但是通过转化,使阴影部分的周长形成规律,巧妙解题。
第25题以学生熟悉的平行线为原型,通过扇形的改变和运动,形成一个探究性题目,图形的设置减少了文字量,降低了对学生文字阅读能力的要求。
题目发掘并串联了点与直线的距离、直线与圆的位置关系、三角函数等重要内容,侧重考查了运动变化中的不变量问题、解直角三角形问题、垂径定理和圆心角问题,本题带有浓郁的探究成分,要求学生善于对新情景、新信息进行有效的加工和整合,完成本题要求学生有较好的现场学习、迁移和应用的能力,这类试题多有较好的区分度和可推广性。
2021年河北中考数学试题分析1、命题模式突破,强调实战能力今年的中考数学试卷改革力度较大,打破了多年的命题模式。
整套试卷“起点低,坡度缓,尾巴翘”。
试题覆盖面广,内容新颖,较好的落实了“狠抓基础,渗透思想,突出能力,着重创新”新课改的理念。
2、以夯实基础为出发点基本题以常规题型为主,采用了直接考查数与式的运算、有理数大小的比较、二次根式的意义、函数的图像与性质、正方体的展开与折叠、圆的有关知识,方差的特征量、统计与概率等的基本知识。
这类试题的特点,起点低,考查的知识相对单一,内容大都来源于课本,是对教材内容的深入考查,学生很容易上手并正确解答。
如1-8题、13-15题、19-21题,都能在课本上找到源头,这对中学数学教学有良好的导向作用。
3、专项试题突出能力今年试题设计精心,立意凸现了对中学数学的通性通法的重点考查。
如:第14、17题体现了转化的思想,第18题考查了特殊到一般的归纳思想,第19、22题考查了方程思想,第12、20题考查了数形结合的思想,第11、24题考查了函数思想,第25、26题用运动变化中特殊数量关系寻找的研究,这使得整套试卷突出能力立意,为初中数学教学指明了方向。
4、“多思少算”命题新倾向今年开放性、探究性试题的设置分布广泛,通过设置操作、观察、探究、应用等方面的问题,给学生提供了一定的思考研究空间。
如第17题留给学生的思考空间较大,虽然其中一个图形处于运动状态,但是通过转化,使阴影部分的周长形成规律,巧妙解题。
第25题以学生熟悉的平行线为原型,通过扇形的改变和运动,形成一个探究性题目,图形的设置减少了文字量,降低了对学生文字阅读能力的要求。
题目发掘并串联了点与直线的距离、直线与圆的位置关系、三角函数等重要内容,侧重考查了运动变化中的不变量问题、解直角三角形问题、垂径定理和圆心角问题,本题带有浓郁的探究成分,要求学生善于对新情景、新信息进行有效的加工和整合,完成本题要求学生有较好的现场学习、迁移和应用的能力,这类试题多有较好的区分度和可推广性。
河北省2021年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分。
1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1。
下列图形具有稳定性的是( )A .B .C .D .2。
一个整数8155500用科学记数法表示为108.155510 ,则原数中“0”的个数为( )A .4B .6C .7D .103。
图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4。
将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C 。
2229.5102100.50.5=-⨯⨯+D .2229.5990.50.5=+⨯+5。
图2中三视图对应的几何体是( )A .B .C 。
D .6。
尺规作图要求:Ⅰ。
过直线外一点作这条直线的垂线;Ⅱ。
作线段的垂直平分线;Ⅲ。
过直线上一点作这条直线的垂线;Ⅳ。
作角的平分线。
图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC。
①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7。
有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C。
D.。
求证:点P在线段AB的垂直平分线8。
已知:如图4,点P在线段AB外,且PA PB上。
在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C 。
取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9。
为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙。
全国各地中考数学实数试题归总(含答案)以下是查字典数学网为您推荐的全国各地中考数学实数试题归总(含答案),希望本篇文章对您学习有所帮助。
全国各地中考数学实数试题归总(含答案)1. (2021江苏盐城,3,3分)4的平方根是A. 2B.16C.D. 16【解析】本题考查了平方根的概念.掌握有平方根的定义是关键.选项A是4的算术平方根;选项B是4的平方,选项C 是4的平方根,表示为:【答案】4的平方根是,故选C【点评】本题主要考查平方根的定义,解决本题的关键是正确区分一个非负数的算术平方根与平方根.8.2. 实数1. (2021江苏盐城,5,3分)下列四个实数中,是无理数的为A.0B. C.-2D.【解析】本题考查了无理数的概念,掌握无理数的三种构成形式是解答本题的关键.无限不循环小数称为无理数,无理数有三种构成形式:①开放开不尽的数;②与有关的数;③构造性无理数. 属于开放开不尽的数,是无理数;【答案】选项A,C是整数,而D是分数,它们都是有理数,应选B.【点评】本题主要考查了无理数的概念,要注意区分有理数和无理数2.(2021山东泰安,2,3分)下列运算正确正确的是( )A. B. C. D.【解析】因为,,,,所以B项为正确选项。
【答案】B【点评】本题主要考查了非负数的算术平方根,负指数幂,同底数幂的除法,幂的乘方,掌握这些相关运算的基本性质是解题的基础。
3.(2021山东德州中考,1,3,) 下列运算正确的是( )(A) (B) = (C) (D)【解析】根据算术平方根的定义,4的算术平方根为4,故A 正确;负数的偶次方为正数, =9,故B错误;根据公式(a0),,故C错误; ,故D错误.【答案】A.【点评】正数的算术平方根为正数,0的算术平方根为0,负数的偶次方为正数,奇次方为负数,任何不等于0的数的负指数幂等于这个数的正指数幂的倒数;任何不等于0的数的0次方都为1.4.(2021山东省聊城,10,3分)如右图所示的数轴上,点B 与点C关于点A对称,A、B两点对应的实数是和-1,则点C所对应的实数是( )A. 1+B. 2+C. 2 -1D. 2 +1解析:因为点B与点C关于点A对称,所以B、C到点A的距离相等.由于点C在x轴正半轴上,所以c对应的实数是 + +1=2 +1.5. ( 2021年浙江省宁波市,6,3)下列计算正确的是(A)a6a2=a3 (B)(a3)2=a5 (C)25 =5 (D) 3-8 =-2【解析】根据幂的运算性质可排除A和B,由算术平方根的定义可排除C,而D计算正确,故选D【答案】D【点评】本题考查幂的运算性质、算术平方根、立方根的性质掌握情况,是比较基础的题目.6. ( 2021年浙江省宁波市,7,3)已知实数x,y满足x-2+(y+1)2=0,则x-y等于(A)3 (B)-3 (C)1 (D) -1【解析】由算术平方根及平方数的非负性,两个非负数之和为零时,这两个非负数同时为零,易得x-2=0,y+1=0,解得x=2,y= -1.【答案】A【点评】本题是一个比较常见题型,考查非负数的一个性质: 两个非负数之和为零时,这两个非负数同时为零.7. (2021浙江丽水4分,11题)写出一个比-3大的无理数是_______.【解析】:只要比-3大的无理数均可.【答案】:答案不唯一,如- 、、等【点评】:无理数是无限不循环小数,其类型主要有三种:①开方开不尽的数,如;②含型,如③无限不循环小数,如-0.1010010001.8.(2021广州市,6, 3分)已知,则a+b=( )A. -8B. -6C. 6D.8【解析】根据非负数的性质,得到两个代数式的值均为0.从而列出二元一次方程组,求出a,b的值。
2023年河北省中考数学试卷试卷考试总分:111 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 16 小题 ,每题 2 分 ,共计32分 )1. 某商品进价为每件a 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以8折的价格开展促销活动,这时该商品每件的售价为( )A.a 元B.0.8a 元C.1.04a 元D.0.92a 元2. 如图,在A ,B 两地之间要修一条笔直的公路,从A 地测得公路走向是北偏东48∘,A ,B 两地同时开工,若干天后公路准确接通,若公路AB 长8千米,另一条公路BC 长是6千米,且BC 的走向是北偏西42∘,则A 地到公路BC 的距离是( )A.6千米B.8千米C.10千米D.14千米3. 化简m 2+mnm−n ÷mnm−n 的结果是( )A.m+nn B.m 2m−n C.m−nn D.m 24. 四张形状大小完全一致的卡片,放在不透明的箱子中,每张卡片正反面上分别标的点的坐标如下表所示:第一张第二张第三张第四张正面(2,3)(1,3)(−1,2)(2,4)反面(−2,1)(−1,−3)(1,2)(−3,4)若从中随机抽取一张,其正反面上两点正好关于原点中心对称的概率是( )A.14a 30%8a0.8a1.04a0.92a A B A 48∘A B AB8BC 6BC 42∘A BC ()681014÷+mn m 2m−n mn m−n m+nn m 2m−n m−nn m 2(2,3)(1,3)(−1,2)(2,4)(−2,1)(−1,−3)(1,2)(−3,4)14B.12C.34D.15. 一个等腰三角形的两边长分别为3和7,则它的周长是( )A.17B.15C.13D.13或176. 计算(−2)11+(−2)10的值是( )A. −2 B. (−2)21 C.0D. −2107. 已知a =2+√3,b =2−√3,则代数式a 2b −ab 2的值为( )A.6B.4C.4√3D.2√38. 已知(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形是平行四边形的依据( )A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形9. 已知正六边形的边长为6,则它的边心距( )A.3√3B.6C.3D.√31234137()1715131317(−2+(−2)11)10−2(−2)21−210a =2+3–√b =2−3–√b −a a 2b 26443–√23–√12633–√633–√10. 某大学为提倡“厉行节约,反对浪费”的社会风尚,制止餐饮浪费行为,深入推进“光盘行动”,对校园浪费现象进行调查.调查后发现,有48.29%的学生表示每天大概会吃剩50g −100g 的饭菜,33.86%的学生每天大概会吃剩100g −150g 的饭菜,只有4.86%的学生大概吃剩0g −50g 的饭菜.若该校有一万人,平均每天每个人浪费50g 粮食,则该校学生一学期(按120天)浪费的粮食用科学记数法可表示为( )A.6.0×103kgB.6.0×107kgC.6.0×104kgD.6.0×105kg11. 如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是( )A.√5B.√10C.3√22D.2 12. 如图是由若干个相同的小正方体搭成一个几何体的主视图和俯视图,则所需的小正方体的个数最多是( )A.6B.5C.4D.313. 如图,△AOB ≅ΔADC ,点B 和点C 是对应顶点,∠O =∠D =90∘,记∠OAD =α,∠ABO =β,当BC//OA 时,α与β之间的数量关系为( )48.29%50g−100g 33.86%100g−150g 4.86%0g−50g 50g 1206.0×kg1036.0×kg1076.0×kg1046.0×kg 105ABCD CEFG D CG BC =1CE =3H AF CH5–√10−−√32–√226543△AOB ≅ΔADC B C ∠O =∠D =90∘∠OAD =α∠ABO =βBC//OA αβA. α=βB. α=2βC. α+β=90∘D. α+β=180∘14. 边长都为4的正方形ABCD 和正三角形EFG 如图放置,AB 与EF 在一条直线上,点A 与点F 重合.现将△EFG 沿AB 方向以每秒1个单位的速度匀速运动,当点F 与B 重合时停止.在这个运动过程中,正方形ABCD 和△EFG 重叠部分的面积S 与运动时间t 的函数图象大致是( ) A.B.C.D.15. 如图,在菱形ABCD 中,AB =4cm ,∠ADC =120∘,点E ,F 同时由A ,C 两点出发,分别沿AB ,CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为( )α=βα=2βα+β=90∘α+β=180∘4ABCD EFG AB EF A F △EFG AB 1F B ABCD △EFG S tABCD AB =4cm ∠ADC =120∘E F A C AB CB B B E 1cm/s F 2cm/s t △DEF tA.1sB.34sC.43sD.2s16. 如图,二次函数y =ax 2+bx +c(a >0)的图象与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =−1.则下列选项中正确的是( )A.abc <0B.4ac −b 2>0C.c −a >0D.当x =−n 2−2(n 为实数)时,y ≥c 二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )17. 若A (x 1,y 1),B (x 2,y 2)是双曲线y =−5x 上的两点,且x 1>x 2>0,则y 1________y 2.18. 已知a =b −2,则b −(3+a)=________.19. 如图,AC 是⊙O 的内接正六边形的一边,点B 在^AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n =________.三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )20. 列方程解应用题:为提高学生的计算能力,我县某学校八年级在元旦之前组织了一次数学速算比赛。
2021年河北省初中毕业生升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共30分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共12个小题,1~6小题,每小题2分;7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中,为负数的是( )A .0 B.2- C.1 D.122.计算3()ab 的结果是( )A .3ab B.3a b C.33a b D.3ab 3.图1中几何体的主视图是( )4.下列各数中,为不等式组23040x x ->⎧⎨-<⎩解的是( )A .1- B.0 C.2 D.45.如图2,CD 是O ⊙的直径,AB 是弦(不是直径),AB CD ⊥于点E ,则下列结论正确的是( )A .AE BE > B.AD BC = C.12D AEC =∠∠ D.ADE CBE △∽△ 6.掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每2次必有1次正面向上 B .可能有5次正面向上 C .必有5次正面向上 D .不可能有10次正面向上7.如图3,点C 在AOB ∠的OB 边上,用尺规作出了CN OA ∥,作图痕迹中,FG 是( )A .以点C 为圆心,OD 为半径的弧 B.以点C 为圆心,DM 为半径弧 C.以点E 为圆心,OD 为半径的弧 D.以点E 为圆心,DM 为半径的 8.用配方法解方程2410x x ++=,配方后的方程是( )A .2(2)3x += B.2(2)3x -= C.2(2)5x -= D.2(2)5x += 9.如图4,在ABCD 中,70A ∠=︒,将ABCD 折叠,使点D C 、分别落在点F 、E处(点,F E 都在AB 所在的直线上),折痕为MN ,则AMF ∠等于( )A .70 B.40 C.30 D.20 10.化简22111x x ÷--的结果是( ) A .21x - B.321x - C.21x + D.2(1)x +11.如图5,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b ()a b >,则()a b -等于( )A .7 B.6 C.5 D.412.如图6,抛物线21(2)3y a x =+-与221(3)12y x =-+交于点(13)A ,,过点A 作x 轴的平行线,分别交两条抛物线于点B C ,.则以下结论: ①无论x 取何值,2y 的值总是正数. ②1a =.③当0x =时,214y y -=.④23AB AC =. 其中正确结论是( )A .①② B.②③ C.③④ D.①④2021年河北省初中毕业生升学文化课考试数 学 试 卷 卷Ⅱ(非选择题,共9 0分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上) 13.5-的相反数是 .14.如图7,AB CD ,相交于点O ,AC CD ⊥于点C ,若BOD ∠=38,则A ∠等于 . 15.已知1y x =-,则2()()1x y y x -+-+的值为 .16.在12⨯的正方形网格格点上放三枚棋子,按图8所示的位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为 .17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报111⎛⎫+ ⎪⎝⎭,第2位同学报112⎛⎫+⎪⎝⎭,第3位同学报113⎛⎫+⎪⎝⎭……这样得到的20个数的积为 . 18.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图91-,用n 个全等的正六边形按这种方式拼接,如图92-,若围成一圈后中间也形成一个正多边形,则n 的值为 .三、解答题(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)计算:021153)6(1)32⎛⎫--+⨯-+- ⎪⎝⎭.20.(本小题满分8分)如图10,某市A B ,两地之间有两条公路,一条是市区公路AB ,另一条是外环公路AD DC CB --.这两条公路转成等腰梯形ABCD ,其中DC AB AB AD DC ∥,::=10:5:2.(1) 求外环公路总长和市区公路长的比;(2) 某人驾车从A 地出发,沿市区公路去B 地,平均速度是40km/h ,返回时沿外环公路行驶,平均速度是80km/h ,结果比去时少用了110h ,求市区公路的长.21.(本小题满分8分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了如下尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).(1)a ___________,x 乙=__________;(2)请完成图11中表示乙成绩变化情况的折线;(3)①观察图11,可看出______的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.22.(本小题满分8分)如图12,四边形ABCD 是平行四边形,点(10)(31)(33)A B C ,,,,,.反比例函数(0)my x x=>的图象经过点D ,点P 是一次函数33(0)y kx k k =+-≠的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数33(0)y kx k k =+-≠的图象一定过点C ;(3)对于一次函数33(0)y kx k k =+-≠,当y x 随的增大而增大时,确定点P 横坐标的取值范围(不必写出过程).23.(本小题满分9分)如图131-,点E 是线段BC 的中点,分别以B C ,为直角顶点的EAB EDC △和△均是等腰直角三角形,且在BC 的同侧.(1)AE ED 和的数量关系为___________,AE ED 和的位置关系为___________;(2)在图131-中,以点E 为位似中心,作EGF △与EAB △位似,点H 是BC 所在直线上的一点,连接GH HD ,,分别得到了图132-和图133-; ①在图132-中,点F 在BE 上,EGF EAB △与△的相似比是1:2,H 是EC的中点.求证:.GH HD GH HD =⊥,②在图133-中,点F 在BE 的延长线上,EGF EAB △与△的相似比是k :1,若2BC =,请直接写出CH 的长为多少时,恰好使得GH HD GH HD =⊥且(用含k 的代数式表示).24.(本小题满分9分)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:2cm )成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据.(1) 求一张薄板的出厂价与边长之间满足的函数关系式;(2) 已知出厂一张边长为40cm 的薄板,获得的利润是26元(利润=出厂价-成本价).① 求一张薄板的利润与边长之间满足的函数关系式;② 当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.25.(本小题满分10分)如图14,(50)(30).A B --,,,点C 在y 轴的正半轴上,CBO ∠=45,CD AB ∥,90CDA =∠.点P 从点(40)Q ,出发,沿x 轴向左以每秒1个单位长的速度运动,运动时间为t 秒.(1) 求点C 的坐标;(2) 当15BCP =∠时,求t 的值;(3) 以点P 为圆心,PC 为半径的P ⊙随点P 的运动而变化,当P ⊙与四边形ABCD 的边(或边所在的直线)相切时,求t 的值.26.(本小题满分12分)如图151-和图152-,在ABC △中,51314cos .13AB BC ABC ===,,∠ 探究在如图151-,AH BC ⊥于点H ,则AH =_______,AC =_______, ABC △的面积ABC S △=___________.。
2021年河北省邢台市、邯郸市中考数学大联考试卷(二)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.近似数3.20精确的数位是()A.十分位B.百分位C.千分位D.十位2.下列图形中,不是中心对称图形的是()A.B.C.D.3.若﹣a>|﹣3|,则a的值可以是()A.﹣4B.﹣2C.2D.44.如图,∠MON的度数可能是()A.50°B.60°C.70°D.120°5.表示的意义是()A.B.C.D.6.墨迹覆盖了“计算”=”中的右边计算结果,则覆盖的是()A.a2B.﹣a2C.a D.﹣a7.用图1所示的平面图形可以围成图2所示的正方体,则与A点重合的点是()A.点B B.点C C.点D D.点E8.如图,点A(1,n)在双曲线上,点A'从点A开始,沿双曲线向右滑动,则在滑动过程中,OA'的长()A.增大B.减小C.先增大,再减小D.先减小,再增大9.如图,四边形ABCD为菱形,若CE为边AB的垂直平分线,则∠ADB的度数为()A.20°B.25°C.30°D.40°10.有三个角是直角的四边形是矩形,已知:如图,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=∠C=90°,∴∠A+∠B=180°,∠C+∠B=180°,∴AD∥BC,AB∥DC(①),∵∠B=90°,∴四边形ABCD是矩形(②),在证明过程中,依据①、②分别表示()A.①表示两直线平行,同旁内角互补;②表示对角线相等的平行四边形是矩形B.①表示两直线平行,同旁内角互补;②表示有一个角是直角的平行四边形是矩形C.①表示同旁内角互补,两直线平行;②表示有一个角是直角的平行四边形是矩形D.①表示同旁内角互补,两直线平行;②表示对角线相等的平行四边形是矩形11.点D、点E分别是△ABC边AB、AC(AB>AC)的中点,沿直线DE将△ABC折叠若点A的对应点为A',则()A.A'点落在△ABC内B.A'点落在△ABC外C.A'点落在BC边上,且A'B>A'CD.A'点落在BC边所在的直线上,且A'B>A'C12.已知:直线AB及AB外一点P.如图求作:经过点P,且垂直AB的直线,作法:①以点P为圆心,适当的长为半径画弧,交直线AB于点C,D.②分别以点C、D为圆心,适当的长为半径,在直线AB的另一侧画弧,两弧交于点Q.③过点P、Q作直线.直线PQ即为所求.在作法过程中,出现了两次“适当的长”,对于这两次“适当的长”,下列理解正确的是()A.这两个适当的长相等B.①中“适当的长”指大于点P到直线AB的距离C.②中“适当的长”指大于线段CD的长D.②中“适当的长”指大于点P到直线AB的距离13.在一个不透明的口袋中,放置3个黄球、1个红球和n个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了蓝球出现的频率,如图,则n的值是()A.4B.5C.6D.814.如图1,在边长为2的正六边形ABCDEF中,M是BC的中点,设AM=a,则表示实数a的点落在数轴上(如图2)标有四段中的()A.段①B.段②C.段③D.段④15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点M是△ABC内一点,连接BM交AD于点N,已知∠AMB=108°,若点M是△CAN的内心,则∠BAC的度数为()A.36°B.48°C.60°D.72°16.对于题目,“线段与抛物线y=ax2﹣2a2x(a≠0)有唯一公共点,确定a的取值范围”.甲的结果是,乙的结果是,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17小题4分,18~19小题各2个空,每空2分)17.若=20,则a=.18.已知a2+ab=0,b2﹣3ab=4.(1)3ab﹣b2=;(2)a﹣b=.19.清代数学家梅文鼎在《勾股举隅》一书中,用四个全等的直角三角形拼出正方形ABDE 的方法证明了勾股定理(如图),连接DM并延长交AB于点N,已知AB=10,BC=6,(1)CM=;(2)BN=.三、解答题(本大题有7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)20.嘉淇准备完成题目:计算:27×(﹣)﹣□÷3+(﹣3)2.发现有一个数“□”印刷不清楚.(1)他把“□”猜成18,请你计算:27×(﹣)﹣18÷3+(﹣3)2;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是﹣32.”通过计算说明原题中“□”是几?21.发现:把一个两位数的十位上数字与个数上的数字交换得到一个新的两位数,新的两位数与原两位数的差是9的倍数;验证:①51﹣15=9×.②设这个两位数十位上数字为a,个位上数字为b,且a+b≠9,说明新的两位数与原两位数的差是9的倍数;延伸:判断新的两位数与原两位数的和是否是9的倍数,并说明理由.22.某篮球队,全员进行定点投篮训练,每人投五次,训练结束后,发现命中的结果只有2次、3次、4次、5次,并把结果制成了如图1,图2所示不完整的条形统计图和扇形统计图.(1)“命中4次”所在扇形的圆心角是;请补充完整条形统计图;(2)若有一名队员新加入篮球队,经过五次定点投篮后,把命中结果与原命中结果组成一组新数据,发现平均数变小,求此队员命中结果的最大值;(3)若有n名队员加入篮球队,经过五次定点投篮后,把命中结果与原命中结果组成一组新数据,发现中位数发生了变化,求n的最小值.23.如图,点C在长为6的线段BE上,以C点为圆心,分别以CB、CE为半径在BE的上方作圆心角均为钝角且相等的扇形BCD、扇形ACE.(1)求证:△ACB≌△ECD;(2)已知BC=2CE,若AD是扇形ACE所在圆的切线,①求的长;②求阴影部分的面积.(注:结果不求近似值)24.如图,在平面直角坐标系中,点A(2,a),B(a+2,a),其中a>0,直线y=kx﹣2与y轴相交于C点.(1)已知a=2,①求S△ABC;②若点A和点B在直线y=kx﹣2的两侧,求k的取值范围;(2)当k=2时,若直线y=kx﹣2与线段AB的交点为D点(不与A点、B点重合),且AD<3,求a的取值范围.25.某农场计划种植一种新型农作物,经过调查发现,种植x亩的总成本y(万元)由三部分组成,分别是农机成本,管理成本,其他成本;其中农机成本固定不变为100万元,管理成本(万元)与x成正比例,其他成本(万元)与x的平方成正比例,在生产过程中,获得如下数据:x(单位:亩)1030y(单位:万元)160340(1)求y与x之间的函数关系式;(2)已知每亩的平均成本为11.5万元,求农场计划种植新型农作物的亩数是多少?(3)设每亩的收益为Q(万元)且有Q=kx+b(k、b均为常数),已知当x=50时,Q 为12.5万元,且此时农场总利润最大,求k、b的值.【注:总利润=总收益﹣总成本】26.如图,在平行四边形ABCD中,AB=2,BC=4,∠BCD=120°,把边BC绕点B逆时针旋转α(0°<α<180°)、得到线段BC',连接CC',DC'.(1)求平行线AD与BC之间的距离以及C'D的最小值;(2)若BC'交直线AD于E,∠C'BA=30°,则AE=;(3)若CC'⊥DC′于点C',求cos∠CDC'的值.参考答案一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.近似数3.20精确的数位是()A.十分位B.百分位C.千分位D.十位【分析】根据近似数的精确度求解.解:近似数3.20精确到百分位.故选:B.2.下列图形中,不是中心对称图形的是()A.B.C.D.【分析】一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.根据中心对称图形的概念对各选项分析判断即可得解.解:A.不是中心对称图形,故本选项符合题意;B.是中心对称图形,故本选项不合题意;C.是中心对称图形,故本选项不合题意;D.是中心对称图形,故本选项不合题意.故选:A.3.若﹣a>|﹣3|,则a的值可以是()A.﹣4B.﹣2C.2D.4【分析】根据绝对值性质解答即可.解:∵﹣a>|﹣3|,∴﹣a>3∴a<﹣3,在A、B、C、D选项中,比﹣3小的只有﹣4,故选:A.4.如图,∠MON的度数可能是()A.50°B.60°C.70°D.120°【分析】根据量角器的用法将量角器移至正确位置即可判定求解.解:由量角器的位置可判断ON与70°的刻度线接近平行,∴将量角器右移,使点O与量角器的中心点位置重合时,ON与70°刻度线接近重合,∴∠MON是70°,故选:C.5.表示的意义是()A.B.C.D.【分析】根据乘方的意义即可得出结果.解:∵表示3个(﹣)相乘,∴表示的意义是(﹣)×(﹣)×(﹣),故选:A.6.墨迹覆盖了“计算”=”中的右边计算结果,则覆盖的是()A.a2B.﹣a2C.a D.﹣a【分析】将除法转化为乘法,然后进行约分计算.解:原式==﹣a,故选:D.7.用图1所示的平面图形可以围成图2所示的正方体,则与A点重合的点是()A.点B B.点C C.点D D.点E【分析】根据正方体的平面展开图与正方形的关系,正确找到与A点重合的点即可.解:将图1所示的平面图形可以围成图2所示的正方体,则与A点重合的点是点B.故选:A.8.如图,点A(1,n)在双曲线上,点A'从点A开始,沿双曲线向右滑动,则在滑动过程中,OA'的长()A.增大B.减小C.先增大,再减小D.先减小,再增大【分析】先求出双曲线与直线y=x的交点坐标,然后结合图象可判断OA′的长度随x的变换情况.解:把A(1,n)代入y=得n=3,则A(1,3),∵双曲线关于直线y=x对称,与直线y=x的交点坐标为(,),∴当1≤x<时,OA′的长减小,当x≥时,OA'的长增大.故选:D.9.如图,四边形ABCD为菱形,若CE为边AB的垂直平分线,则∠ADB的度数为()A.20°B.25°C.30°D.40°【分析】连接AC,根据菱形的性质和线段垂直平分线的性质可得△ABC是等边三角形,所以∠ABC=60°,进而可得∠ADB的度数.解:如图,连接AC,∵四边形ABCD为菱形,∴AB=BC=AD,∵CE为边AB的垂直平分线,∴AC=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠ABD=30°,∵AB=AD,∴∠ADB=∠ABD=30°,故选:C.10.有三个角是直角的四边形是矩形,已知:如图,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=∠C=90°,∴∠A+∠B=180°,∠C+∠B=180°,∴AD∥BC,AB∥DC(①),∵∠B=90°,∴四边形ABCD是矩形(②),在证明过程中,依据①、②分别表示()A.①表示两直线平行,同旁内角互补;②表示对角线相等的平行四边形是矩形B.①表示两直线平行,同旁内角互补;②表示有一个角是直角的平行四边形是矩形C.①表示同旁内角互补,两直线平行;②表示有一个角是直角的平行四边形是矩形D.①表示同旁内角互补,两直线平行;②表示对角线相等的平行四边形是矩形【分析】根据矩形的判定解答即可.解:∵∠A=∠B=∠C=90°,∴∠A+∠B=180°,∠C+∠B=180°,∴AD∥BC,AB∥DC(同旁内角互补,两直线平行),∵∠B=90°,∴四边形ABCD是矩形(有一个角是直角的平行四边形是矩形),故选:C.11.点D、点E分别是△ABC边AB、AC(AB>AC)的中点,沿直线DE将△ABC折叠若点A的对应点为A',则()A.A'点落在△ABC内B.A'点落在△ABC外C.A'点落在BC边上,且A'B>A'CD.A'点落在BC边所在的直线上,且A'B>A'C【分析】由三角形中位线定理可得DE∥BC,AD=AB,可证△ADE∽△ABC,可得==2,由折叠的性质可得点A到DE的距离=点A'到DE的距离,A'B'=AB,A'C'=AC,即可求解.解:∵点D、点E分别是△ABC边AB、AC(AB>AC)的中点,∴DE∥BC,AD=AB,∴△ADE∽△ABC,∴==2,∵沿直线DE将△ABC折叠若点A的对应点为A',∴点A到DE的距离=点A'到DE的距离,A'B'=AB,A'C'=AC∴点A'在直线BC上,A'B'>A'C',故选:D.12.已知:直线AB及AB外一点P.如图求作:经过点P,且垂直AB的直线,作法:①以点P为圆心,适当的长为半径画弧,交直线AB于点C,D.②分别以点C、D为圆心,适当的长为半径,在直线AB的另一侧画弧,两弧交于点Q.③过点P、Q作直线.直线PQ即为所求.在作法过程中,出现了两次“适当的长”,对于这两次“适当的长”,下列理解正确的是()A.这两个适当的长相等B.①中“适当的长”指大于点P到直线AB的距离C.②中“适当的长”指大于线段CD的长D.②中“适当的长”指大于点P到直线AB的距离【分析】利用基本作图进行判断.解:①中“适当的长”指大于点P到直线AB的距离;②中“适当的长”指大于线段CD 的长的一半.故选:B.13.在一个不透明的口袋中,放置3个黄球、1个红球和n个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了蓝球出现的频率,如图,则n的值是()A.4B.5C.6D.8【分析】利用频率估计概率,由概率列方程求解即可.解:由频率分布图可知,当实验的次数逐渐增大时,摸到蓝球的频率越稳定在0.6附近,因此摸到蓝球的概率为0.6,所以有=0.6,解得n=6,经检验,n=6是原方程的解,因此蓝球有6个,故选:C.14.如图1,在边长为2的正六边形ABCDEF中,M是BC的中点,设AM=a,则表示实数a的点落在数轴上(如图2)标有四段中的()A.段①B.段②C.段③D.段④【分析】过点A作AH⊥BC交CB延长线于点H,可求AH=,HB=1,BM=1,在Rt△AHM中,求得AM=,再估算出2.6<<2.7,即可求解.解:∵四边形ABCDEF是正六边形,∴∠ABC=120°,∵边长为2,M是BC的中点,∴AB=2,BM=1,过点A作A、HA⊥BC交CB延长线于点H,∴∠ABH=60°,∴AH=,HB=1,∴HM=2,在Rt△AHM中,AM===,∵2.6<<2.7.故选:A.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点M是△ABC内一点,连接BM交AD于点N,已知∠AMB=108°,若点M是△CAN的内心,则∠BAC的度数为()A.36°B.48°C.60°D.72°【分析】过点M作ME⊥AD于点E,根据已知条件可得△ABC是等腰三角形,AD是BC 边的中垂线,证明ME∥BC,可得∠NME=∠NBD,由点M是△CAN的内心,可得点M 在∠NAC和∠ANC的角平分线上,设∠NAM=x,∠NBD=y,所以∠BAC=4x,∠NBD =∠NCD=∠NME=y,∠ENM=∠CNM=2y,然后利用∠AMB=108°,列出方程组,求解即可得结论.解:如图,过点M作ME⊥AD于点E,∵AB=AC,AD⊥BC,∴△ABC是等腰三角形,AD是BC边的中垂线,∴NB=NC,∠BAD=∠CAD,∴∠NBD=∠NCD,∵ME⊥AD,AD⊥BC,∴ME∥BC,∴∠NME=∠NBD,∵点M是△CAN的内心,∴点M在∠NAC和∠ANC的角平分线上,∴∠NAM=∠CAM,∠ANM=∠CNM,设∠NAM=x,∠NBD=y,∴∠BAC=4x,∠NBD=∠NCD=∠NME=y,∴∠ENM=∠CNM=∠NBC+∠NCB=2y,∵∠AMB=108°,∴∠AME=∠AMB﹣EMN=108°﹣y,在Rt△AEM中,∠EAM+∠AME=90°,∴x+108°﹣y=90°,∴y﹣x=18°,在Rt△ANM中,∠NAM+∠ANM=180°﹣108°,∴x+2y=72°,,解得,∴∠BAC=4x=48°.故选:B.16.对于题目,“线段与抛物线y=ax2﹣2a2x(a≠0)有唯一公共点,确定a的取值范围”.甲的结果是,乙的结果是,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【分析】分类讨论a>0,a<0两种情况,通过数形结合方法,列不等式求解.解:如图,点A坐标为(﹣1,3),点B坐标为(3,0),①a>0时,抛物线开口向上,经过定点(0,0),抛物线与直线x=﹣1交点坐标为C(﹣1,a+2a2),与直线x=3交点坐标为(3,9a﹣6a2),当点C在点A下方,点D在点B上方时满足题意,即,解得0<a<,②a<0时,抛物线开口向下,经过定点(0,0),当点C与点A重合或在A上方时满足题意,即,解得a≤﹣.综上所述,0<a<或a≤﹣.故选:D.二、填空题(本大题有3个小题,共12分.17小题4分,18~19小题各2个空,每空2分)17.若=20,则a=1.【分析】根据算术平方根的定义和零次幂的意义解答即可.解:∵=20=1,∴a=1.故答案为:1.18.已知a2+ab=0,b2﹣3ab=4.(1)3ab﹣b2=﹣4;(2)a﹣b=±2.【分析】(1)加上一个负括号,然后整体代入;(2)已知两式相加,构成完全平方式,利用直接开平方法求解.解:(1)3ab﹣b2=﹣(b2﹣3ab)=﹣4;故答案为:﹣4;(2)∵a2+ab=0,b2﹣3ab=4,∴a2+ab+b2﹣3ab=4.即a2﹣2ab+b2=4.∴(a﹣b)2=4.∴a﹣b=±2.故答案为:±2.19.清代数学家梅文鼎在《勾股举隅》一书中,用四个全等的直角三角形拼出正方形ABDE 的方法证明了勾股定理(如图),连接DM并延长交AB于点N,已知AB=10,BC=6,(1)CM=2;(2)BN=.【分析】(1)根据勾股定理得出AC,进而解答即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.解:(1)由题意可知,四个全等的直角三角形,∴AM=BC,∵AB=10,BC=6,∠ACB=90°,∴AC=,∴CM=AC﹣AM=AC﹣BC=8﹣6=2;故答案为:2;(2)过M作MF⊥AB于F,在△AMF与△ABC中,∠ACB=∠AFM=90°,∠MAF=∠BAC,∴△AMF∽△ABC,∴=,∴,∴,,设BN为x,则AN为10﹣x,∴,在△NMF和△NDB中,∠NMF=∠NDB,∠MFN=∠DBN=90°,∴△NMF∽△NDB,∴,即,∴x=,∴BN=.故答案为:.三、解答题(本大题有7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)20.嘉淇准备完成题目:计算:27×(﹣)﹣□÷3+(﹣3)2.发现有一个数“□”印刷不清楚.(1)他把“□”猜成18,请你计算:27×(﹣)﹣18÷3+(﹣3)2;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是﹣32.”通过计算说明原题中“□”是几?【分析】(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(2)设原题中“□”为x,从而可以得到方程,然后求解即可.解:(1)27×(﹣)﹣18÷3+(﹣3)2=27×(﹣)﹣6+9=﹣45+(﹣6)+9=﹣42;(2)设原题中“□”为x,则27×(﹣)﹣x÷3+(﹣3)2=﹣32,解得x=﹣12,即原题中“□”为﹣12.21.发现:把一个两位数的十位上数字与个数上的数字交换得到一个新的两位数,新的两位数与原两位数的差是9的倍数;验证:①51﹣15=9×4.②设这个两位数十位上数字为a,个位上数字为b,且a+b≠9,说明新的两位数与原两位数的差是9的倍数;延伸:判断新的两位数与原两位数的和是否是9的倍数,并说明理由.【分析】①根据有理数的减法和乘法运算法则进行计算;②设这个两位数十位上数字为a,个位上数字为b,则这个两位数是10a+b,新两位数为10b+a,然后根据整式的加减运算法则进行分析计算;延伸:设这个两位数十位上数字为a,个位上数字为b,则这个两位数是10a+b,新两位数为10b+a,然后根据整式的加减运算法则进行分析计算.解:①51﹣15=36=9×4,故答案为:4;②设这个两位数十位上数字为a,个位上数字为b,新两位数与原两位数的差=(10a+b)﹣(10b+a)=9(b﹣a),∵a,b均为整数,∴b﹣a是整数,∴新的两位数与原两位数的差是9的倍数.延伸:不是9的倍数,理由如下:∵一个两位数,十位数字为a,个位数字为b,∴这个两位数是10a+b;∵若把这两位数十位上的数字与个位上的数字颠倒位置,得到一个新的两位数为10b+a,∴新两位数与原两位数的和=(10a+b)+(10b+a)=11(a+b),∵a+b≠9,∴新的两位数与原两位数的和不是9的倍数,是11的倍数.22.某篮球队,全员进行定点投篮训练,每人投五次,训练结束后,发现命中的结果只有2次、3次、4次、5次,并把结果制成了如图1,图2所示不完整的条形统计图和扇形统计图.(1)“命中4次”所在扇形的圆心角是135°;请补充完整条形统计图;(2)若有一名队员新加入篮球队,经过五次定点投篮后,把命中结果与原命中结果组成一组新数据,发现平均数变小,求此队员命中结果的最大值;(3)若有n名队员加入篮球队,经过五次定点投篮后,把命中结果与原命中结果组成一组新数据,发现中位数发生了变化,求n的最小值.【分析】(1)根据频率=求出样本容量,再求出命中“4次”所占的百分比,即可求出相应的圆心角的度数,求出命中“5次”的人数即可补全条形统计图;(2)求出原命中结果的平均数,再根据加入1名新队员,其平均数变小了,得出此时命中结果的最大值;(3)利用中位数的意义,得出n的值即可.解:(1)调查人数为:10÷25%=40(人),“命中4次”所对应的圆心角度数为360°×=135°,“命中5次”的人数为40﹣10﹣12﹣15=3(人),故答案为:135°,补全条形统计图如下:(2)原命中结果的平均数为=3.275,∵一名队员新加入篮球队,结果五次定点投篮后,把命中结果与原命中结果组成一组新数据,发现平均数变小了,∴此队员命中结果的最大值为3;(3)若n名队员加入篮球队,命中结果均为3,此时中位数不会变化,若n名队员加入篮球队,命中结果均大于3,当中位数为=3.5时,n的值为4,当命中结果为其它情况时,n的值均大于4,所以n的最小值为4.23.如图,点C在长为6的线段BE上,以C点为圆心,分别以CB、CE为半径在BE的上方作圆心角均为钝角且相等的扇形BCD、扇形ACE.(1)求证:△ACB≌△ECD;(2)已知BC=2CE,若AD是扇形ACE所在圆的切线,①求的长;②求阴影部分的面积.(注:结果不求近似值)【分析】(1)根据题意得到∠BCA=∠DCE,利用SAS定理证明△ACB≌△ECD;(2)①根据切线的性质得到∠CAD=90°,根据正弦的定义求出∠ADC=30°,根据弧长公式计算,得到答案;②过点A作AF⊥BC于F,根据扇形面积公式、三角形面积公式计算即可.【解答】(1)证明:∵∠BCD=∠ACE,∴∠BCD﹣∠ACD=∠ACE﹣∠ACD,即∠BCA=∠DCE,在△ACB和△ECD中,,∴△ACB≌△ECD(SAS);(2)解:①∵BC=2CE,BE=6,∴CE=2,BC=4,∵AD是扇形ACE所在圆的切线,∴∠CAD=90°,∴sin∠ADC==,∴∠ADC=30°,∴∠ACD=60°,∴∠BCA=∠DCE=60°,∴∠ACE=120°,∴的长==π;②过点A作AF⊥BC于F,∵AC=2,∠ACB=60°,∴AF=AC•sin∠ACF=2×=,∴阴影部分的面积=﹣×4×﹣=π﹣2.24.如图,在平面直角坐标系中,点A(2,a),B(a+2,a),其中a>0,直线y=kx﹣2与y轴相交于C点.(1)已知a=2,①求S△ABC;②若点A和点B在直线y=kx﹣2的两侧,求k的取值范围;(2)当k=2时,若直线y=kx﹣2与线段AB的交点为D点(不与A点、B点重合),且AD<3,求a的取值范围.【分析】(1)①把a=2代入,先求解A,B的坐标及AB的长,再求解C的坐标,利用面积公式求解三角形的面积即可;②分别求解y=kx﹣2过A,B时,k的值,从而可得答案;(2)先求解直线AB的解析式为:y=a,DC的解析式为直线y=2x﹣2,再求解D的坐标及AD的长,再利用D在线段AB上,AD<3列不等式组即可得到答案.解:(1)①∵a=2,∴A(2,2),B(4,2),∴AB=2,∵直线y=kx﹣2与y轴相交于C点,∴C(0,﹣2),如图,∴S△ABC=AB×(2+2)=×2×4=4.②当直线y=kx﹣2经过点A(2,2)时,2k﹣2=2,解得k=2,当直线y=kx﹣2经过点B(4,2)时,4k﹣2=2,解得k=1,∴点A和点B在直线y=kx﹣2的两侧时,1<k<2.(2)直线AB的解析式为:y=a,当k=2时,直线y=2x﹣2,∴2x﹣2=a,即x=,∴D(,a),∴2<<a+2,解得a>2,又∵AD=,解得a<8,所以a的取值范围为2<a<8.25.某农场计划种植一种新型农作物,经过调查发现,种植x亩的总成本y(万元)由三部分组成,分别是农机成本,管理成本,其他成本;其中农机成本固定不变为100万元,管理成本(万元)与x成正比例,其他成本(万元)与x的平方成正比例,在生产过程中,获得如下数据:x(单位:亩)1030y(单位:万元)160340(1)求y与x之间的函数关系式;(2)已知每亩的平均成本为11.5万元,求农场计划种植新型农作物的亩数是多少?(3)设每亩的收益为Q(万元)且有Q=kx+b(k、b均为常数),已知当x=50时,Q 为12.5万元,且此时农场总利润最大,求k、b的值.【注:总利润=总收益﹣总成本】【分析】(1)利用待定系数法求函数关系式;(2)根据题意列出方程11.5x=0.1x2+5x+100,解之可得答案;(3)设销售总利润为W,根据销售利润=总收益﹣总成本列出函数关系式,然后根据二次函数的性质分析其即可.解:(1)设y=ax2+bx+100,把(10,160)、(30,340)代入得,,解得,∴y=0.1x2+5x+100;(2)由题意得,11.5x=0.1x2+5x+100,解得x1=25,x2=40,答:农场计划种植新型农作物的亩数是25亩或40亩;(3)设总收益为W元,则W=x(kx+b)﹣(0.1x2+5x+100)=(k﹣0.1)x2+(b﹣5)x ﹣100,当x=﹣时,W有最大值,即﹣=50,∵x=50时,Q=12,5=50k+b,解得k=0.05,b=10.26.如图,在平行四边形ABCD中,AB=2,BC=4,∠BCD=120°,把边BC绕点B逆时针旋转α(0°<α<180°)、得到线段BC',连接CC',DC'.(1)求平行线AD与BC之间的距离以及C'D的最小值;(2)若BC'交直线AD于E,∠C'BA=30°,则AE=2或1;(3)若CC'⊥DC′于点C',求cos∠CDC'的值.【分析】(1)连接BD,作DF⊥BC交BC的延长线于点F,由∠BCD=120°得∠DCF =60°,在Rt△CDF中可求得DF的长,即为平行线AD与BC之间的距离;在Rt△BDF 中可求出BD的长,由于BC′+C′D≥BD,则点C′落在对角线BD上时,C′D的长最小,求出此时C′D的长即可;(2)按点E在边AD上和点E在边DA的延长线上这两种情况分类讨论,由等腰三角形的性质和直角三角形的性质可求出AE的长;(3)取CD的中点Q,作QG⊥BC交BC的延长线于点G,连接BQ交CC′于点P,连接C′Q,先证明BQ垂直平分CC′,则PQ是△CDC′的中位线,由勾股定理求出BQ 的长,由相似三角形的性质求出BP的长,即可得到PQ的长,进而求出C′D的长,再求cos∠CDC'的值.解:(1)如图1,连接BD,作DF⊥BC交BC的延长线于点F,则∠F=90°,∵四边形ABCD是平行四边形,∴AD∥CB,CD=AB=2,∵∠BCD=120°,∴∠DCF=180°﹣∠BCD=60°,∴∠CDF=30°,∴CF=CD=1,∵=tan∠DCF=tan60°=,∴DF=CF=,∴平行线AD与BC之间的距离为;由旋转得BC′=BC=4,∴BF=4+1=5,∴BD===2,∵BC′+C′D≥BD,∴4+C′D≥2,∴C′D≥,当点C′落在对角线BD上时,C′D的长最小,此时C′D=,∴C'D的最小值为.(2)如图2,点E在边AD上,∵AB∥CD,∴∠ABC=180°﹣∠BCD=180°﹣120°=60°,∵∠C'BA=30°,∴∠EBC=60°﹣30°=30°,∴∠AEB=∠EBC=30°,∴∠ABE=∠AEB,∴AE=AB=2;如图3,点E在边DA的延长线上,∵∠C'BA=30°,∠EAB=∠ABC=60°,∴∠AEB=90°,∴AE=AB=1,综上所述,AE=2或AE=1,故答案为:2或1.(3)如图4,取CD的中点Q,作QG⊥BC交BC的延长线于点G,连接BQ交CC′于点P,连接C′Q,∴CC'⊥DC′于点C',∴∠CC′D=90°,∴C′Q=CD=CQ=DQ=1,∵BC′=BC,∴点Q、点B都在CC′的垂直平分线上,∴BQ垂直平分CC′,∴CP=C′P,∠BPC=∠G=90°,∵∠PBC=∠GBQ,∴△PBC∽△GBQ,∴;∵∠G=90°,∠QCG=60°,∴∠CQG=30°,∴CG=CQ=,∴BG=4+=,GQ=CG•tan60°=×=,∴BQ===,∴,∴BP=,∴PQ==,∴C′D=2PQ=2×=,∴cos∠CDC'===.。
河北省2021年中考数学试题(含答案解析) 河北省2021年中考数学试题一、单选题1.如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A。
aB。
bC。
cD。
d2.不一定相等的一组是()A。
a+b与b+aB。
3a与a+a+aC。
a3与a×a×aD。
3(a+b)与3a+b3.已知a>b,则一定有-4a□-4b,“□”中应填的符号是()A。
B。
<C。
≥D。
=4.与32-22-12结果相同的是()A。
3-2+1B。
3+2-1C。
3+2+1D。
3-2-15.能与-3/4+6/5相加得的是()A。
-3/4-6/5B。
6/5-3/4C。
-6/5-3/4D。
-3/4+6/56.一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A。
A代表4B。
B代表3C。
C代表2D。
D代表17.如图1,ABCD中,AD>AB,∠ABC为锐角。
要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案是()A。
甲、乙、丙都是B。
只有甲、乙才是C。
只有甲、丙才是D。
只有乙、丙才是8.图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=()A。
1cmB。
2cmC。
3cmD。
4cm9.若33取1.442,计算33-333-9833的结果是()A。
-100B。
-144.2C。
144.2D。
-0.10.如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO=2,则S正六边形ABCDEF的值是()A。
20B。
30C。
40D。
随点O位置而变化11.如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a3,a4,a5,则下列正确的是()A。
a3>a5B。
a1=a4C。
a1+a2+a3+a4+a5=D。
a2+a5<a312.如图,直线l,m相交于点O。
2021年河北省中考数学试题(含答案解析)2021年河北省中考数学试卷(共26题,满分120分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如图,在平面内作已知直线m的垂线,可作垂线的条数有() A.0条 B.1条 C.2条 D.无数条 2.墨迹覆盖了等式“_3_=_2(_≠0)”中的运算符号,则覆盖的是() A.+ B.﹣ C.× D.÷ 3.对于①_﹣3_y=_(1﹣3y),②(_+3)(_﹣1)=_2+2_﹣3,从左到右的变形,表述正确的是()A.都是因式分解 B.都是乘法运算 C.①是因式分解,②是乘法运算 D.①是乘法运算,②是因式分解 4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是() A.仅主视图不同 B.仅俯视图不同 C.仅左视图不同 D.主视图、左视图和俯视图都相同 5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=() A.9 B.8 C.7 D.6 6.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是() A.a,b 均无限制 B.a>0,bDE的长 C.a有最小限制,b无限制 D.a≥0,bDE的长7.若a≠b,则下列分式化简正确的是() A. B. C. D. 8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是() A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 9.若8×10×12,则k=() A.12 B.10 C.8 D.6 10.如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是() A.嘉淇推理严谨,不必补充B.应补充:且AB=CD C.应补充:且A B∥CD D.应补充:且OA=OC 11.(2分)若k为正整数,则() A.k2k B.k2k+1 C.2kk D.k2+k 12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是() A.从点P向北偏西45°走3km到达l B.公路l的走向是南偏西45° C.公路l的走向是北偏东45° D.从点P向北走3km后,再向西走3km到达l 13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为() A.5 B.6 C.5或6 D.5或6或7 14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是() A.淇淇说的对,且∠A的另一个值是115° B.淇淇说的不对,∠A就得65° C.嘉嘉求的结果不对,∠A应得50° D.两人都不对,∠A应有3个不同值 15.(2分)如图,现要在抛物线y=_(4﹣_)上找点P (a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是() A.乙错,丙对 B.甲和乙都错 C.乙对,丙错 D.甲错,丙对 16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是() A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4 二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:ab,则ab=. 18.正六边形的一个内角是正n边形一个外角的4倍,则n=. 19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作Tm(m为1~8的整数).函数y (_<0)的图象为曲线L.(1)若L过点T1,则k=;(2)若L过点T4,则它必定还过另一点Tm,则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m 的值. 21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由. 22.(9分)如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△P OC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA =2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π). 23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度_(厘米)的平方成正比,当_=3时,W=3.(1)求W与_的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为_(厘米),Q=W厚﹣W薄.①求Q与_的函数关系式;②_为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写_的取值范围] 24.(10分)表格中的两组对应值满足一次函数y =k_+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'. _ ﹣1 0 y ﹣2 1 (1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值. 25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值. 26.(12分)如图1和图2,在△ABC中,AB=AC,BC =8,tanC.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP 的长;(3)设点P移动的路程为_,当0≤_≤3及3≤_≤9时,分别求点P到直线AC的距离(用含_的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK,请直接写出点K被扫描到的总时长. 2021年河北省中考数学试卷答案解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如图,在平面内作已知直线m的垂线,可作垂线的条数有() A.0条 B.1条 C.2条 D.无数条【解答】解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.故选:D. 2.墨迹覆盖了等式“_3_=_2(_≠0)”中的运算符号,则覆盖的是()A.+ B.﹣ C.× D.÷ 【解答】解:∵_3_=_2(_≠0),∴覆盖的是:÷.故选:D. 3.对于①_﹣3_y=_(1﹣3y),②(_+3)(_﹣1)=_2+2_﹣3,从左到右的变形,表述正确的是()A.都是因式分解 B.都是乘法运算 C.①是因式分解,②是乘法运算 D.①是乘法运算,②是因式分解【解答】解:①_﹣3_y=_(1﹣3y),从左到右的变形是因式分解;②(_+3)(_﹣1)=_2+2_﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C. 4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是() A.仅主视图不同B.仅俯视图不同 C.仅左视图不同 D.主视图、左视图和俯视图都相同【解答】解:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.故选:D. 5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9 B.8 C.7 D.6 【解答】解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B. 6.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是() A.a,b 均无限制 B.a>0,bDE的长 C.a有最小限制,b无限制 D.a≥0,bDE的长【解答】解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b 为半径画弧时,b必须大于DE,否则没有交点,故选:B. 7.若a≠b,则下列分式化简正确的是() A. B. C. D.【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D. 8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是() A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 【解答】解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC,OM2,OD,OB,OA,OR,OQ=2,OP2,OH3,ON2,∵2,∴点D对应点Q,点B对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A. 9.若8×10×12,则k=()A.12 B.10 C.8 D.6 【解答】解:方程两边都乘以k,得(92﹣1)(112﹣1)=8×10×12k,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k,∴80×120=8×10×12k,∴k=10.经检验k=10是原方程的解.故选:B. 10.如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是() A.嘉淇推理严谨,不必补充B.应补充:且AB=CD C.应补充:且AB∥CD D.应补充:且OA=OC 【解答】解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故选:B. 11.(2分)若k为正整数,则() A.k2k B.k2k+1 C.2kk D.k2+k 【解答】解:((k•k)k=(k2)k=k2k,故选:A. 12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是() A.从点P向北偏西45°走3km到达l B.公路l的走向是南偏西45° C.公路l的走向是北偏东45° D.从点P向北走3km后,再向西走3km到达l 【解答】解:如图,由题意可得△PAB是腰长6km的等腰直角三角形,则AB=6km,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后,再向西走3km到达l,选项D正确.故选:A. 13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为() A.5 B.6 C.5或6 D.5或6或7 【解答】解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n =6.因为1≤t≤10,所以n可能为5或6,故选:C. 14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是() A.淇淇说的对,且∠A的另一个值是115° B.淇淇说的不对,∠A就得65° C.嘉嘉求的结果不对,∠A应得50° D.两人都不对,∠A应有3个不同值【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A. 15.(2分)如图,现要在抛物线y=_(4﹣_)上找点P(a,b),针对b的不同取值,所找点P 的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是() A.乙错,丙对 B.甲和乙都错 C.乙对,丙错 D.甲错,丙对【解答】解:y=_(4﹣_)=﹣_2+4_=﹣(_﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C. 16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是() A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4 【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分) 17.已知:ab,则ab= 6 .【解答】解:原式=3ab,故a=3,b=2,则ab=6.故答案为:6. 18.正六边形的一个内角是正n边形一个外角的4倍,则n=12 .【解答】解:正六边形的一个内角为:,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.故答案为:12. 19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作Tm(m为1~8的整数).函数y(_<0)的图象为曲线L.(1)若L过点T1,则k=﹣16 ;(2)若L过点T4,则它必定还过另一点Tm,则m= 5 ;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7 个.【解答】解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y,当_=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L 过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L过点T4(﹣10,4),T5(﹣8,5)时,k=﹣40,∵曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,∴﹣36<k<﹣28,∴整数k=﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个,∴答案为:7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m 的值.【解答】解:(1)2;(2)根据题意得, m,∴﹣4+m<3m,∴m﹣3m<4,∴﹣2m<4,∴m>﹣2,∵m是负整数,∴m=﹣1. 21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.【解答】解:(1)A区显示的结果为:25+2a2,B区显示的结果为:﹣16﹣6a;(2)这个和不能为负数,理由:根据题意得,25+4a2+(﹣16﹣12a)=25+4a2﹣16﹣12a=4a2﹣12a+9;∵(2a﹣3)2≥0,∴这个和不能为负数. 22.(9分)如图,点O为AB 中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC 为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA =2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π).【解答】解:(1)①在△AOE和△POC中,,∴△AOE≌△POC(SAS);②∵△AOE≌△POC,∴∠E=∠C,∵∠1+∠E=∠2,∴∠1+∠C=∠2;(2)当∠C最大时,CP与小半圆相切,如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴. 23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度_(厘米)的平方成正比,当_=3时,W=3.(1)求W 与_的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为_(厘米),Q=W厚﹣W薄.①求Q与_的函数关系式;②_为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写_的取值范围] 【解答】解:(1)设W=k_2(k≠0).∵当_=3时,W=3,∴3=9k,解得k,∴W与_的函数关系式为W_2;(2)①设薄板的厚度为_厘米,则厚板的厚度为(6﹣_)厘米,∴Q=W厚﹣W薄(6﹣_)2_2=﹣4_+12,即Q与_的函数关系式为Q=﹣4_+12;②∵Q是W薄的3倍,∴﹣4_+12=3_2,整理得,_2+4_﹣12=0,解得,_1=2,_2=﹣6(不合题意舍去),故_为2时,Q是W薄的3倍. 24.(10分)表格中的两组对应值满足一次函数y=k_+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'. _ ﹣1 0 y ﹣2 1 (1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【解答】解:(1)∵直线l:y=k_+b中,当_=﹣1时,y=﹣2;当_=0时,y=1,∴,解得,∴直线l的解析式为y=3_+1;∴直线l′的解析式为y=_+3;(2)如图,解得,∴两直线的交点为(1,4),∵直线l′:y=_+3与y 轴的交点为(0,3),∴直线l'被直线l和y轴所截线段的长为:;(3)把y=a代入y=3_+1得,a=3_+1,解得_;把y=a代入y=_+3得,a=_+3,解得_=a﹣3;当a﹣30时,a,当(a﹣3+0)时,a=7,当(0)=a﹣3时,a,∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a 的值为或7或. 25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.【解答】解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,∴P甲对乙错.(2)由题意m=5﹣4n+2(10﹣n)=25﹣6n. n =4时,离原点最近.(3)不妨设甲连续k次正确后两人相距2个单位,则有|8+2k﹣4k|=2,解得k=3或5.如果k次中,有1次两人都对都错,则有|6+2(k﹣1)﹣4(k﹣1)|=2,解得k=3或5,如果k次中,有2次两人都对都错,则有|4+2(k﹣2)﹣4(k﹣2)|=2,解得k=3或5,…,综上所述,满足条件的k的值为3或5. 26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tanC.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M 出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP 的长;(3)设点P移动的路程为_,当0≤_≤3及3≤_≤9时,分别求点P到直线AC的距离(用含_的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK,请直接写出点K被扫描到的总时长.【解答】解:(1)如图1中,过点A作AH⊥BC于H.∵AB=AC,AH⊥BC,∴BH=CH=4,∠B=∠C,∴tan∠B=tan∠C,∴AH=3,AB=AC5.∴当点P在BC上时,点P到A的最短距离为3.(2)如图1中,∵∠APQ =∠B,∴PQ∥BC,∴△APQ∽△ABC,∵PQ将△ABC的面积分成上下4:5,∴()2,∴,∴AP,∴PM=AP=AM2.(3)当0≤_≤3时,如图1﹣1中,过点P作PJ⊥CA交CA的延长线于J.∵PQ∥BC,∴,∠AQP=∠C,∴,∴PQ (_+2),∵sin∠AQP=sin∠C,∴PJ=PQ•sin∠AQP(_+2).当3≤_≤9时,如图2中,过点P作PJ⊥AC于J.同法可得PJ=PC•sin∠C(11﹣_).(4)由题意点P的运动速度单位长度/秒.当3<_≤9时,设CQ=y.∵∠APC=∠B+∠BAP=∠APQ+∠CPQ,∠APQ=∠B,∴∠BAP=∠CPQ,∵∠B=∠C,∴△ABP∽△PCQ,∴,∴,∴y(_﹣7)2,∵0,∴_=7时,y有最大值,最大值,∵AK,∴CK=5 当y时,(_﹣7)2,解得_=7±,∴点K被扫描到的总时长=(6﹣3)23秒.方法二:①点P在AB上的时候,有11/4个单位长度都能扫描到点K;②在BN阶段,当_在3~5.5(即7﹣1.5)的过程,是能扫到K点的,在5.5~8.5(即7+1.5)的过程是扫不到点K的,但在8.5~9(即点M到N全部的路程)能扫到点K.所以扫到的时间是[(9﹣8.5)+(5.5﹣3)]23(秒).。
2021年河北省中考数学试题(含答案解析)2021年河北省中考数学试卷(共26题,满分120分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如图,在平面内作已知直线m的垂线,可作垂线的条数有() A.0条 B.1条 C.2条 D.无数条 2.墨迹覆盖了等式“_3_=_2(_≠0)”中的运算符号,则覆盖的是() A.+ B.﹣ C.× D.÷ 3.对于①_﹣3_y=_(1﹣3y),②(_+3)(_﹣1)=_2+2_﹣3,从左到右的变形,表述正确的是()A.都是因式分解 B.都是乘法运算 C.①是因式分解,②是乘法运算 D.①是乘法运算,②是因式分解 4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是() A.仅主视图不同 B.仅俯视图不同 C.仅左视图不同 D.主视图、左视图和俯视图都相同 5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=() A.9 B.8 C.7 D.6 6.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是() A.a,b 均无限制 B.a>0,bDE的长 C.a有最小限制,b无限制 D.a≥0,bDE的长7.若a≠b,则下列分式化简正确的是() A. B. C. D. 8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是() A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 9.若8×10×12,则k=() A.12 B.10 C.8 D.6 10.如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是() A.嘉淇推理严谨,不必补充B.应补充:且AB=CD C.应补充:且A B∥CD D.应补充:且OA=OC 11.(2分)若k为正整数,则() A.k2k B.k2k+1 C.2kk D.k2+k 12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是() A.从点P向北偏西45°走3km到达l B.公路l的走向是南偏西45° C.公路l的走向是北偏东45° D.从点P向北走3km后,再向西走3km到达l 13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为() A.5 B.6 C.5或6 D.5或6或7 14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是() A.淇淇说的对,且∠A的另一个值是115° B.淇淇说的不对,∠A就得65° C.嘉嘉求的结果不对,∠A应得50° D.两人都不对,∠A应有3个不同值 15.(2分)如图,现要在抛物线y=_(4﹣_)上找点P (a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是() A.乙错,丙对 B.甲和乙都错 C.乙对,丙错 D.甲错,丙对 16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是() A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4 二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.已知:ab,则ab=. 18.正六边形的一个内角是正n边形一个外角的4倍,则n=. 19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作Tm(m为1~8的整数).函数y (_<0)的图象为曲线L.(1)若L过点T1,则k=;(2)若L过点T4,则它必定还过另一点Tm,则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m 的值. 21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由. 22.(9分)如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△P OC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA =2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π). 23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度_(厘米)的平方成正比,当_=3时,W=3.(1)求W与_的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为_(厘米),Q=W厚﹣W薄.①求Q与_的函数关系式;②_为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写_的取值范围] 24.(10分)表格中的两组对应值满足一次函数y =k_+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'. _ ﹣1 0 y ﹣2 1 (1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值. 25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值. 26.(12分)如图1和图2,在△ABC中,AB=AC,BC =8,tanC.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP 的长;(3)设点P移动的路程为_,当0≤_≤3及3≤_≤9时,分别求点P到直线AC的距离(用含_的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK,请直接写出点K被扫描到的总时长. 2021年河北省中考数学试卷答案解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如图,在平面内作已知直线m的垂线,可作垂线的条数有() A.0条 B.1条 C.2条 D.无数条【解答】解:在平面内,与已知直线垂直的直线有无数条,所以作已知直线的垂线,可作无数条.故选:D. 2.墨迹覆盖了等式“_3_=_2(_≠0)”中的运算符号,则覆盖的是()A.+ B.﹣ C.× D.÷ 【解答】解:∵_3_=_2(_≠0),∴覆盖的是:÷.故选:D. 3.对于①_﹣3_y=_(1﹣3y),②(_+3)(_﹣1)=_2+2_﹣3,从左到右的变形,表述正确的是()A.都是因式分解 B.都是乘法运算 C.①是因式分解,②是乘法运算 D.①是乘法运算,②是因式分解【解答】解:①_﹣3_y=_(1﹣3y),从左到右的变形是因式分解;②(_+3)(_﹣1)=_2+2_﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C. 4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是() A.仅主视图不同B.仅俯视图不同 C.仅左视图不同 D.主视图、左视图和俯视图都相同【解答】解:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.故选:D. 5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9 B.8 C.7 D.6 【解答】解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B. 6.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是() A.a,b 均无限制 B.a>0,bDE的长 C.a有最小限制,b无限制 D.a≥0,bDE的长【解答】解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b 为半径画弧时,b必须大于DE,否则没有交点,故选:B. 7.若a≠b,则下列分式化简正确的是() A. B. C. D.【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D. 8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是() A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 【解答】解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC,OM2,OD,OB,OA,OR,OQ=2,OP2,OH3,ON2,∵2,∴点D对应点Q,点B对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A. 9.若8×10×12,则k=()A.12 B.10 C.8 D.6 【解答】解:方程两边都乘以k,得(92﹣1)(112﹣1)=8×10×12k,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k,∴80×120=8×10×12k,∴k=10.经检验k=10是原方程的解.故选:B. 10.如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是() A.嘉淇推理严谨,不必补充B.应补充:且AB=CD C.应补充:且AB∥CD D.应补充:且OA=OC 【解答】解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故选:B. 11.(2分)若k为正整数,则() A.k2k B.k2k+1 C.2kk D.k2+k 【解答】解:((k•k)k=(k2)k=k2k,故选:A. 12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是() A.从点P向北偏西45°走3km到达l B.公路l的走向是南偏西45° C.公路l的走向是北偏东45° D.从点P向北走3km后,再向西走3km到达l 【解答】解:如图,由题意可得△PAB是腰长6km的等腰直角三角形,则AB=6km,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后,再向西走3km到达l,选项D正确.故选:A. 13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为() A.5 B.6 C.5或6 D.5或6或7 【解答】解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n =6.因为1≤t≤10,所以n可能为5或6,故选:C. 14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是() A.淇淇说的对,且∠A的另一个值是115° B.淇淇说的不对,∠A就得65° C.嘉嘉求的结果不对,∠A应得50° D.两人都不对,∠A应有3个不同值【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A. 15.(2分)如图,现要在抛物线y=_(4﹣_)上找点P(a,b),针对b的不同取值,所找点P 的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是() A.乙错,丙对 B.甲和乙都错 C.乙对,丙错 D.甲错,丙对【解答】解:y=_(4﹣_)=﹣_2+4_=﹣(_﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C. 16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是() A.1,4,5 B.2,3,5 C.3,4,5 D.2,2,4 【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分) 17.已知:ab,则ab= 6 .【解答】解:原式=3ab,故a=3,b=2,则ab=6.故答案为:6. 18.正六边形的一个内角是正n边形一个外角的4倍,则n=12 .【解答】解:正六边形的一个内角为:,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.故答案为:12. 19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作Tm(m为1~8的整数).函数y(_<0)的图象为曲线L.(1)若L过点T1,则k=﹣16 ;(2)若L过点T4,则它必定还过另一点Tm,则m= 5 ;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7 个.【解答】解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y,当_=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L 过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L过点T4(﹣10,4),T5(﹣8,5)时,k=﹣40,∵曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,∴﹣36<k<﹣28,∴整数k=﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个,∴答案为:7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m 的值.【解答】解:(1)2;(2)根据题意得, m,∴﹣4+m<3m,∴m﹣3m<4,∴﹣2m<4,∴m>﹣2,∵m是负整数,∴m=﹣1. 21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.【解答】解:(1)A区显示的结果为:25+2a2,B区显示的结果为:﹣16﹣6a;(2)这个和不能为负数,理由:根据题意得,25+4a2+(﹣16﹣12a)=25+4a2﹣16﹣12a=4a2﹣12a+9;∵(2a﹣3)2≥0,∴这个和不能为负数. 22.(9分)如图,点O为AB 中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC 为半径在CD上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠l,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA =2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π).【解答】解:(1)①在△AOE和△POC中,,∴△AOE≌△POC(SAS);②∵△AOE≌△POC,∴∠E=∠C,∵∠1+∠E=∠2,∴∠1+∠C=∠2;(2)当∠C最大时,CP与小半圆相切,如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴. 23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度_(厘米)的平方成正比,当_=3时,W=3.(1)求W 与_的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为_(厘米),Q=W厚﹣W薄.①求Q与_的函数关系式;②_为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写_的取值范围] 【解答】解:(1)设W=k_2(k≠0).∵当_=3时,W=3,∴3=9k,解得k,∴W与_的函数关系式为W_2;(2)①设薄板的厚度为_厘米,则厚板的厚度为(6﹣_)厘米,∴Q=W厚﹣W薄(6﹣_)2_2=﹣4_+12,即Q与_的函数关系式为Q=﹣4_+12;②∵Q是W薄的3倍,∴﹣4_+12=3_2,整理得,_2+4_﹣12=0,解得,_1=2,_2=﹣6(不合题意舍去),故_为2时,Q是W薄的3倍. 24.(10分)表格中的两组对应值满足一次函数y=k_+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'. _ ﹣1 0 y ﹣2 1 (1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【解答】解:(1)∵直线l:y=k_+b中,当_=﹣1时,y=﹣2;当_=0时,y=1,∴,解得,∴直线l的解析式为y=3_+1;∴直线l′的解析式为y=_+3;(2)如图,解得,∴两直线的交点为(1,4),∵直线l′:y=_+3与y 轴的交点为(0,3),∴直线l'被直线l和y轴所截线段的长为:;(3)把y=a代入y=3_+1得,a=3_+1,解得_;把y=a代入y=_+3得,a=_+3,解得_=a﹣3;当a﹣30时,a,当(a﹣3+0)时,a=7,当(0)=a﹣3时,a,∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a 的值为或7或. 25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.【解答】解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,∴P甲对乙错.(2)由题意m=5﹣4n+2(10﹣n)=25﹣6n. n =4时,离原点最近.(3)不妨设甲连续k次正确后两人相距2个单位,则有|8+2k﹣4k|=2,解得k=3或5.如果k次中,有1次两人都对都错,则有|6+2(k﹣1)﹣4(k﹣1)|=2,解得k=3或5,如果k次中,有2次两人都对都错,则有|4+2(k﹣2)﹣4(k﹣2)|=2,解得k=3或5,…,综上所述,满足条件的k的值为3或5. 26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tanC.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M 出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP 的长;(3)设点P移动的路程为_,当0≤_≤3及3≤_≤9时,分别求点P到直线AC的距离(用含_的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK,请直接写出点K被扫描到的总时长.【解答】解:(1)如图1中,过点A作AH⊥BC于H.∵AB=AC,AH⊥BC,∴BH=CH=4,∠B=∠C,∴tan∠B=tan∠C,∴AH=3,AB=AC5.∴当点P在BC上时,点P到A的最短距离为3.(2)如图1中,∵∠APQ =∠B,∴PQ∥BC,∴△APQ∽△ABC,∵PQ将△ABC的面积分成上下4:5,∴()2,∴,∴AP,∴PM=AP=AM2.(3)当0≤_≤3时,如图1﹣1中,过点P作PJ⊥CA交CA的延长线于J.∵PQ∥BC,∴,∠AQP=∠C,∴,∴PQ (_+2),∵sin∠AQP=sin∠C,∴PJ=PQ•sin∠AQP(_+2).当3≤_≤9时,如图2中,过点P作PJ⊥AC于J.同法可得PJ=PC•sin∠C(11﹣_).(4)由题意点P的运动速度单位长度/秒.当3<_≤9时,设CQ=y.∵∠APC=∠B+∠BAP=∠APQ+∠CPQ,∠APQ=∠B,∴∠BAP=∠CPQ,∵∠B=∠C,∴△ABP∽△PCQ,∴,∴,∴y(_﹣7)2,∵0,∴_=7时,y有最大值,最大值,∵AK,∴CK=5 当y时,(_﹣7)2,解得_=7±,∴点K被扫描到的总时长=(6﹣3)23秒.方法二:①点P在AB上的时候,有11/4个单位长度都能扫描到点K;②在BN阶段,当_在3~5.5(即7﹣1.5)的过程,是能扫到K点的,在5.5~8.5(即7+1.5)的过程是扫不到点K的,但在8.5~9(即点M到N全部的路程)能扫到点K.所以扫到的时间是[(9﹣8.5)+(5.5﹣3)]23(秒).。