D磁性物理基础-各向异性
- 格式:ppt
- 大小:4.22 MB
- 文档页数:65
各向异性材料的物理性质各向异性材料是指在其内部结构或分子构成上存在着明显的方向性差异,从而导致其物理性质在不同方向上表现出差异性的材料。
相较于各向同性材料,各向异性材料在很多方面具有独特的性质和应用潜力。
本文将围绕各向异性材料的物理性质展开论述,并介绍其在材料科学领域中的重要性。
一、光学性质各向异性材料在光学性质方面表现出明显差异。
例如,晶体材料具有光学各向异性,这意味着光线传播在不同晶向上的速度不同,产生折射和偏振现象。
这使得晶体材料在光学设备领域中有着广泛的应用,并且成为许多光电器件的基础。
二、磁性性质各向异性材料的磁性性质也具有显著的差异。
磁性材料中存在着磁畴的形成和磁畴壁的运动,而各向异性则会影响磁畴的排列方向和磁畴壁的稳定性。
这使得各向异性材料在磁存储、传感器和磁性材料制备等领域具有重要应用。
三、电子性质在电子性质方面,各向异性材料的电导率、电子迁移率和载流子输运性质等均会受到方向性的影响。
例如,某些有机半导体材料因其分子排列的各向异性特性而表现出不同的电子传导行为。
这使得各向异性材料在有机电子学领域中有着广泛的应用前景。
四、力学性质各向异性材料的力学性质通常会因材料内部的各向异性结构而产生方向性差异。
例如,纤维增强复合材料中的纤维方向和矩阵材料之间的界面结合强度具有方向性差异。
这使得各向异性材料在结构工程、航空航天等领域中广泛应用,能够提供更高的强度和刚度。
五、热学性质各向异性材料的热学性质也会受到方向性的影响。
例如,晶体材料的热导率在不同晶向上会有所不同。
此外,各向异性材料在热膨胀和热收缩等方面也表现出不同的特性。
这使得各向异性材料在热管理和热传导领域有着广泛的应用。
各向异性材料的物理性质不仅在基础科学研究中具有重要作用,而且在工程应用中也具有广泛的潜力。
通过深入研究各向异性材料的物理性质,可以更好地理解材料行为和性能,并为创新材料设计和应用提供有益的指导。
因此,持续深入研究各向异性材料的物理性质对于材料科学和工程领域的发展至关重要。
磁晶各向异性1基本概念实验表明磁体在某些方向易被磁化而在另一些方向较难被磁化.如铁单晶的[100]晶轴方向磁化很容易达到饱和而[111]晶轴难以达到饱和。
这说明铁单晶在磁性上式各向异性的。
为了表示这种磁各向异性,把最易磁化的方向称为磁各向异性,该方向的晶轴称为易磁化轴。
图1.1铁单晶沿不同 图1.2镍单晶沿不同 图1.3Co 单晶在不同 方向的磁化曲线 方向的磁化曲线 方向的磁化曲线如图1.1,铁单晶的易磁化轴为[100]轴。
从能量的观点而言,铁磁体从退磁化状态达到饱和状态,M -H 曲线与M 轴之间所包围的面积等于磁化过程中所作的功。
00MW HdM μ=⎰ 1.1)该磁化功即铁磁体磁化时所需要的能量。
显然,沿着易磁化轴和难磁化轴达到磁化饱和所需要的磁化能大小不同,即磁化能和晶轴有关,因此我们将这种与磁化轴方向有关的能量称为磁各向异性能。
磁各向异性能定义为在铁磁体从退磁化状态中沿不同方向达到饱和状态所需要的能量。
显然磁各向异性能与晶轴取向有关。
图1.4立方晶体 图1.5六角晶体磁晶各向异性大小用磁晶各向异性常数来衡量。
对于立方晶体,磁晶各向异性常数这样来定义:单位体积的铁磁单晶体沿[111]轴和[100]轴达到饱和磁化所需要的能量。
000[111]0[100]1()ss M M K HdM HdM V μμ=-⎰⎰ 1.2)同理六角晶体的磁晶各向异性常数定义为:单位体积的铁磁单晶体沿[1010]轴和[0001]轴达到饱和磁化所需要的能量。
000[1010]0[0001]1()ss M M K HdM HdM V μμ=-⎰⎰ 1.3)结合图1.1、图1.2、图1.3可知铁单晶、钴单晶的K 为正值而镍单晶的K 为负值。
2单轴磁晶各向异性磁晶各向异性可以为单轴磁晶各向异性和多轴磁晶各向异性。
单轴各向异性是磁晶各向异性的最简单形式,即自发磁化的稳定方向即易磁化方向平行于某一特殊晶轴。
如六方晶系钴的自发磁化方向平行于 C 轴,这就表现出强的单轴各向异性。
各向同性与各向异性磁性材料的行为磁性材料是一种在磁场中表现出磁性行为的物质,根据其磁性行为的不同特点,可以将磁性材料分为各向同性和各向异性。
各向同性材料是指在各个方向上其磁性行为都是相同的,而各向异性材料则是指其磁性行为在不同方向上具有差异。
各向同性材料的磁性行为相对简单,没有明显的取向特性。
它们在外加磁场下,磁化强度和磁场强度的关系是线性的,即磁化强度与磁场强度成正比。
这种线性关系可以通过磁化率来描述,磁化率是材料在磁场中磁化强度与磁场强度之比。
不同于各向同性材料,各向异性材料的磁性行为对外磁场的方向有一定的依赖性。
各向异性材料在磁场中会出现磁化方向的取向特性,也就是磁化强度在不同方向上的不同表现。
这种不同方向上的磁化强度之差可以通过磁各向异性来描述。
磁各向异性是材料在磁场中,不同取向上磁化强度的差异。
各向异性的形成主要是由于材料内部存在着有序的磁畴结构。
在各向异性材料中,磁性原子或磁矩会在晶体结构中形成一个或多个排列有序的磁畴,而这些磁畴的磁化方向会随着外磁场的变化而发生旋转或翻转。
这种磁畴结构使得各向异性材料在不同的磁场方向下表现出不同的磁性行为。
各向异性材料的磁性行为对于应用有着重要的意义。
例如,在磁存储器件中,各向异性材料的使用可以实现数据的高密度存储,通过调节外加磁场的方向,可以控制数据的读写操作。
此外,各向异性材料还可以应用于传感器、电动机、磁体等领域。
除了各向同性和各向异性之外,还存在一种特殊的磁性行为,即超顺磁性。
超顺磁性是指在外加磁场中,磁矩远远大于给定温度下的热激励能够产生的磁矩。
这种行为在某些特殊的材料中出现,例如由过渡金属离子组成的配合物。
超顺磁性材料的磁化行为是非线性的,且磁化强度与磁场强度的关系不再是简单的比例关系。
磁化强度的变化可以用磁飘移来描述,磁飘移是材料在外加磁场下磁化强度随时间的演化。
除了磁飘移外,超顺磁性材料还具有磁滞效应和角度依存性等特殊的磁性行为。
各向同性和各向异性材料的研究对于理解和应用磁性材料具有重要意义。
第四章磁各向异性,磁畴和超顺磁(Lisa Tauxe著,刘青松译)推荐读物关于专业背景知识,可以阅读Butler (1992) 第三章(pp. 41 55)关于统计力学的背景知识,参见/wiki/Statistical mechanics更多信息详见Dunlop and Özdemir (1997) 第2.8和5章4.1 前言由第3章我们得知,即使在无外场的情况下,一些晶体中的电子自旋也会按照一定方式排列,从而产生自发磁化强度。
这些铁磁性的颗粒能够携带古地磁场信息,这便是古地磁学的基础。
到底是什么原因使得这些磁性颗粒能够沿着古地磁场方向排列并达到平衡状态?是什么原因使得岩石最终锁定这些剩磁,以至于在数百万甚至数十亿年后还能被地质学家测得?我们将再下面几章回答这些问题。
图4.1:a) 磁铁矿八面体。
b) 晶体内部结构。
大个的红球代表氧离子,蓝色和黄色小球是在八面体和四面体中的铁离子。
在A区只有Fe3+,在B区有Fe3+和Fe2+。
c) 在一个磁铁矿晶体内部随方向变化的磁晶体各向异性能。
易磁化轴(能量最低)沿着晶体对角线方向(改自Williams和Dunlop, 1995)。
d) 一个磁铁矿立方晶体的磁化强度随外场变化的模拟结果。
外场从饱和状态逐渐减小到0,然后变号并且朝反方向逐渐增大。
[111]为易磁化轴,沿对角线方向且能量最低。
[001]为边线方向,是难磁化轴,能量最高。
首先我们讨论第二个问题:磁化强度沿某一特定方向排列的机制是什么?简单说来就是在磁晶体中,某些方向处于低能状态,而在另外一些方向则处于高能状态。
因此,为了使得磁化强度从一个易磁化轴转换到另外一个易磁化轴,就需要能量。
如果这个能垒(energy barrier)比较高,那么磁性颗粒就能够在非常长的时期内在某一特定方向保持磁化状态。
下面我们将讨论是什么造成了这一能垒。
4.2 颗粒的磁能4.2.1 磁矩与外场由经验得知,磁场对应着某种能量。
磁性材料的各向异性研究一提出背景和意义磁性材料作为重要的功能性材料,在现代科技应用中扮演着重要的角色。
磁性材料具有各种特殊的磁性性质,如磁导率、磁饱和强度等。
而这些特性的核心源于磁性材料的各向异性,即材料在不同方向上的磁性行为存在差异。
因此,磁性材料的各向异性研究对于深入了解其磁性行为以及在应用中的调控具有重要意义。
二各向异性的定义和原理各向异性是指材料在不同方向上的结构和性能存在差异。
在磁性材料中,各向异性导致了磁性行为在不同方向上的差异。
这种差异主要体现在各向异性磁场、各向异性磁滞回线以及磁各向异性常数等方面。
各向异性的产生可以追溯到磁矩的形成和排列。
在磁性材料中,磁矩的方向和排列对于磁性行为起着决定性作用。
当材料内部的晶体结构存在对称性破缺时,磁矩的排列也会发生相应的变化,进而导致各向异性的出现。
三各向异性的研究方法研究磁性材料的各向异性需要使用各种表征和测试方法。
其中最常见的方法之一是磁滞回线的测量。
磁滞回线是通过改变外部磁场的方向和强度来研究材料磁化曲线的闭合轨迹。
通过分析不同方向上的磁滞回线,可以获得各向异性磁化曲线以及磁滞回线形状的变化规律。
此外,还可以通过磁化返磁曲线和磁化强度的测量来揭示材料的各向异性差异。
这些测量方法能够提供关于材料磁性行为分布的详细信息,为研究各向异性提供了重要的数据支持。
四各向异性的应用磁性材料的各向异性具有重要的应用潜力。
首先,各向异性能够用于调控磁性材料的磁场分布和磁性行为。
通过研究各向异性,可以优化材料的磁导率、磁滞回线以及磁场各向异性,从而改善材料在电子工程、电磁波吸收和磁存储等领域的性能。
其次,各向异性的研究还可以为设计和制造具有特定磁性性质的材料提供指导。
例如,通过控制磁矩的方向和排列,可以实现磁性材料在不同方向上具有不同的磁性特性,从而得到具有更高灵活性和可调控性的材料。
再次,各向异性的研究也为磁性材料的应力磁电耦合效应提供了理论基础。
磁性材料在外界应力的作用下,其晶格结构会发生改变,进而影响磁性行为。
磁各向异性能磁各向异性(Magneto-crystallineAnisotropy,简称MCA),是一种被广泛应用于磁性材料中的物理现象,它是指磁性材料在不同方位上具有不同的磁性特性。
它是磁性材料中磁晶结构及本征磁矩与应变结构和拓扑结构的综合效应。
在磁性材料中,微小的内部应变可以引起位错的构建,从而调节磁畴的能量,影响磁畴的取向,从而改变磁畴中的磁性特性。
在应用中,这种现象被用来控制磁性材料的性能。
MCA是一种由应力、拓扑和磁场综合作用导致的磁畴取向现象,它有助于理解材料中的磁性行为,也可以用来调控材料的磁性特性。
MCA可以被划分为简单磁各向异性、拓扑各向异性和电荷各向异性。
简单磁各向异性是由材料的结构所引起的,由磁晶结构及本征磁矩所决定,该类各向异性是最基本的形式,对对噪声效应不敏感。
拓扑各向异性受内部拓扑和外部应力影响,因此它更容易受到环境因素或应力影响,它可以用来改变材料磁性特性,从而被用于磁性存储器中。
电荷各向异性是由材料中电荷层状分布引起的一种现象,该类磁畴取向主要由电子自旋对材料中电荷密度所产生的磁场所引起,因此它可以用来改变材料的磁性特性。
MCA是目前磁性材料中最重要的磁性特性,它不仅可以控制磁性材料的磁畴取向,而且也可以控制磁性材料的磁性特性。
它广泛应用于磁性存储器,它使得磁性存储器可以在同一晶体中实现自动反转的功能,从而改善存储器的效能和寿命。
此外,MCA还可以用来改变磁性材料的放大器特性,以及用于动态过程控制。
随着材料科学技术的发展,MCA受到了越来越多的关注,它在电子科技中有着重要的应用。
例如,磁性存储器中的磁性涂层可以得到改善,而这种改善得益于MCA的用途,从而提高了性能的可靠性,从而增强了存储系统的可靠性。
此外,MCA也可以被用于电子设备中的磁畴检测和定位,从而提高系统性能。
以上,就是关于磁各向异性的相关介绍。
从该介绍可以看出,MCA 是当今磁性材料研究中非常重要的现象,它不仅可以改善磁性材料的性能,而且还有助于提高存储系统的可靠性。
第四章磁各向异性,磁畴和超顺磁(Lisa Tauxe著,刘青松译)推荐读物关于专业背景知识,可以阅读Butler (1992) 第三章(pp. 41 55)关于统计力学的背景知识,参见/wiki/Statistical mechanics更多信息详见Dunlop and Özdemir (1997) 第2.8和5章4.1 前言由第3章我们得知,即使在无外场的情况下,一些晶体中的电子自旋也会按照一定方式排列,从而产生自发磁化强度。
这些铁磁性的颗粒能够携带古地磁场信息,这便是古地磁学的基础。
到底是什么原因使得这些磁性颗粒能够沿着古地磁场方向排列并达到平衡状态?是什么原因使得岩石最终锁定这些剩磁,以至于在数百万甚至数十亿年后还能被地质学家测得?我们将再下面几章回答这些问题。
图4.1:a) 磁铁矿八面体。
b) 晶体内部结构。
大个的红球代表氧离子,蓝色和黄色小球是在八面体和四面体中的铁离子。
在A区只有Fe3+,在B区有Fe3+和Fe2+。
c) 在一个磁铁矿晶体内部随方向变化的磁晶体各向异性能。
易磁化轴(能量最低)沿着晶体对角线方向(改自Williams和Dunlop, 1995)。
d) 一个磁铁矿立方晶体的磁化强度随外场变化的模拟结果。
外场从饱和状态逐渐减小到0,然后变号并且朝反方向逐渐增大。
[111]为易磁化轴,沿对角线方向且能量最低。
[001]为边线方向,是难磁化轴,能量最高。
首先我们讨论第二个问题:磁化强度沿某一特定方向排列的机制是什么?简单说来就是在磁晶体中,某些方向处于低能状态,而在另外一些方向则处于高能状态。
因此,为了使得磁化强度从一个易磁化轴转换到另外一个易磁化轴,就需要能量。
如果这个能垒(energy barrier)比较高,那么磁性颗粒就能够在非常长的时期内在某一特定方向保持磁化状态。
下面我们将讨论是什么造成了这一能垒。
4.2 颗粒的磁能4.2.1 磁矩与外场由经验得知,磁场对应着某种能量。
关于磁晶各向异性06080 杨芳在磁性物质中,自发磁化主要来源于自旋间的交换作用,这种交换作用本质上是各向同性的,如果没有附加的相互作用存在,在晶体中,自发磁化强度可以指向任意方向而不改变体系的内能。
实际上在磁性材料中,自发磁化强度总是处于一个或几个特定方向,该方向称为易轴。
当施加外场时,磁化强度才能从易轴方向转出,此现象称为磁晶各向异性。
磁各向异性按其来源分成:形状各向性;磁晶各向异性;生长感生各向异性;应力感生各向异性;磁场感生各向异性;其中只有磁晶各向异性是磁性晶体中固有的。
其他各种广义地说都是感生出来的。
定域磁矩是如何辨别不同的结晶学方向呢?μJ是怎样耦合到晶格的?答案在于磁矩的自旋部分与电子轨道形状和取向的耦合(自旋-轨道耦合) ,以及给定原子轨道和它们的局部环境(晶体电场)的化学成键。
如果一个原子看到的局部晶体场有较低对称性,并且如果原子的成键电子具有不对称的电荷分布(LZ≠0) ,那么,原子轨道与晶体场的相互作用是各向异性的。
分子轨道的某种取向,或成键电子电荷的某种分布在能量上是择优的。
对于磁晶各向异性这是十分重要的,即成键具有明显的方向特性。
磁晶各向异性是磁性材料的内能随磁化强度方向的变化而发生的变化。
当自发磁化强度从一个方向转向另一个方向。
相邻自旋保持平行,这是因为自旋间存在强的交换作用,要解释磁晶各向异性,必须考虑含有晶轴的能量项。
假设自旋与原子连线的夹角为 ,则自旋对的能量经勒让德多项式展开为:真正的机理是:部分未淬灭的轨道矩与自旋相互耦合,随着磁化强度的转动,通过轨道波函数重叠的变化,导致交换能或静电能发生变化,这种相互作用被称为赝偶极相互作用。
磁晶各向异性可以通过对晶体中所有自旋对的能量相加而计算出耒,这模型称为自旋对(spin-pair)模型。
自旋对模型对金属和合金是适用的,对氧化物和化合物不适用。
晶体场理论的基本思想是认为中心金属离子的电子波函数同周围离子(称为配位子)的电子波函数不相重叠,因而可以把组成晶体的离子分为两部分:基本部分是中心金属离子,我们将其外层未满壳层的电子作为量子体系处理;非基本部分是周围的配位子离子,我们将它们作为产生静电场的经典体系处理,配位子所产生的静电场称为晶体场。
各向异性与各向同性总体概念与具体分支磁各向异性magnetic anisotropy物质的磁性随方向而变的现象。
主要表现为弱磁体的磁化率及铁磁体的磁化曲线随磁化方向而变。
铁磁体的磁各向异性尤为突出,是铁磁体的基本磁性之一。
磁各向异性来源于磁晶体的各向异性。
温度低于居里温度(见铁磁性)的铁磁体受外磁场作用时,单位体积物质达到磁饱和所需的能量称为磁晶能,由于晶体的各向异性,沿不同方向磁化所需的磁晶能不同。
对每种铁磁体都存在一个所需磁晶能最小和最大的方向,前者称易磁化方向,后者称难磁化方向。
铁磁体受外力作用时,由于磁弹性效应(见磁致伸缩),体内应力和应变的各向异性会导致磁各向异性。
在外磁场或应力作用下的铁磁体进行冷、热加工处理时,均可产生感生磁各向异性。
铁磁薄膜材料在一定外界条件影响下进行晶体生长时,也会引入生长磁各向异性。
体的宏观特点是由晶体的内部结构决定的,人们从对晶体微观结构的探索中,建立起了晶体的空间点阵结构理论。
根据这一理论,组成晶体的物质微粒按照一定的规律规则排列在空间结点上。
组成结点结构的物质微粒间具有很强的相互作用,这使得处在结点上的物质微粒只能在结点附近做微小的振动。
这就是晶体的微观结构模型。
晶体具有各向异性,是由于在结点结构中,任一物质微粒与周围微粒之间并不处于球形对称状态,因而晶体中沿不同方向上物质微粒的排列情况有所不同,造成了不同方向上物理性质的不同。
这即是晶体在宏观上表现出具有各向异性的原因文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
现在指的是公司或企业中从事文字工作的职位,就是以文字来表现已经制定的创意策略。
文案它不同于设计师用画面或其他手段的表现手法,它是一个与广告创意先后相继的表现的过程、发展的过程、深化的过程,多存在于广告公司,企业宣传,新闻策划等。
基本信息中文名称文案外文名称Copy目录1发展历程2主要工作3分类构成4基本要求5工作范围6文案写法7实际应用折叠编辑本段发展历程汉字"文案"(wén àn)是指古代官衙中掌管档案、负责起草文书的幕友,亦指官署中的公文、书信等;在现代,文案的称呼主要用在商业领域,其意义与中国古代所说的文案是有区别的。