一元二次方程中整体代入练习
- 格式:doc
- 大小:52.50 KB
- 文档页数:1
一元二次方程竞赛解题方法一元二次方程是初中教材的重点内容,也是竞赛题的特点。
除了掌握常规解法外,注意一些特殊或灵活的解法,往往能事半功倍。
以下是一些解题方法:一、换元法例如,考虑方程$x^2-2x-5|x-1|+7=0$的所有根的和。
我们可以令$y=|x-1|$,则原方程变为$y^2-2y-5y+7=0$,化简后得到$y=1$或$y=-5$,即$|x-1|=1$或$|x-1|=5$。
进一步解得$x=-1.0.2.6$,因此所有根的和为$7$,选项C。
二、降次法例如,考虑已知$\alpha。
\beta$是方程$x^2-x-1=0$的两个实数根,求$a^4+3\beta$的值。
我们可以利用方程$x^2-x-1=0$的性质,即$x^2=x+1$,将$a^4+3\beta$表示为$a^2(a^2+3\beta)$,再用$\alpha^2=\alpha+1$和$\beta^2=\beta+1$代入,得到$a^2(a^2+3\beta)=a^2(\alpha+1)(\alpha^2+3\beta^2)=a^2(\alpha+ 1)(4\alpha+3)$,因此$a^4+3\beta=4a^3+4a^2+a^2(\alpha+1)(4\alpha+3)=4a^3+4a^2+3 a^2+4a^3+3a^2=8a^3+6a^2$,选项B。
三、整体代入法例如,考虑二次方程$ax^2+bx+c=0$的两根为$x_1.x_2$,记$S_1=x_1+1993x_2.S_2=x_1^2+1993x_2^2.\dots。
S_n=x_1^n+1993x_2^n$,求证$aS_{1993}+bS_{1992}+cS_{1991}=0$。
我们可以将$x_1.x_2$表示为$x_1=\frac{-b+\sqrt{b^2-4ac}}{2a}$和$x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}$,然后利用数列求和公式,得到$S_1=-\frac{b}{a}+1993\frac{-b-\sqrt{b^2-4ac}}{2a}$,$S_2=\frac{b^2-2ac}{a^2}+1993\frac{b^2-2ac+2b\sqrt{b^2-4ac}}{4a^2}$,$S_3=-\frac{b^3-3abc+2a\sqrt{b^2-4ac}(b^2-ac)}{a^3}+\dots$。
一元二次方程中整体代入思想一.用整体代入解一元二次方程例:如果(2+b 2) 2-2(2+b 2)-3=0,那么2+b 2的值。
解:令2+b 2=m,则原方程变形为m 2-2m-3=0,因式分解为(m-3)(m+1)=0,解得:m 1=3,m 2=-1 因为2+b 2=m 恒大于等于0,所以2+b 2=3模拟练习:1.用换元法解方程(x 2+x) 2+2(x 2+x)-1=0,若设y=x 2+x ,则原方程可变形为 ( )A .y 2+2y+1=0B .y 2-2y+1=0C .y 2+2y -1=0D .y 2-2y -1=02.解方程 22523423x x x x+-=+二.用方程的解能代入方程和整体代入思想化简求值例:已知m 是方程220x x --=的一个实数根,求代数式22()(1)m m m m --+的值 解:因为m 是方程220x x --=的一个实数根所以m 2-m -2=0 变形为m 2=m+2 整体代入22()(1)m m m m --+= (m+2-m)(m+2-2/m+1)=4模拟练习:已知是方程一个根,求的值.三、用整体代入降次的方法求代数式的值例1:已知012=-+x x ,求代数式3223++x x 的值。
由x 2+x -1=0变形为X 2=1-x ;再整体代入降次x 3+2x 2+3=x x 2+2x 2+3=x(1-x)+2(1-x)+3=x -x 2+2-2x+3=x -(1-x)-2x+5=x -1+x -2x+5=4模拟练习:已知0132=+-x x ,计算下列各式的值:(1)2122++x x ; (2)200973223+--x x x典型练习:1、已知m 是方程2250x x +-=的一个根,求32259m m m +--的值.a a a a a a2、已知m 是方程2310x x -+=的根,求代数式10214+-m m 的值.3.已知x 2+x -1=0, 求x 3+2x 2+3的值4、已知0332=-+x x ,求代数式103523-++x x x 的值。
一元二次方程及根与系数学习重难点:1、配方法解方程,涉及最值问题2、方程有无实根的判定3、韦达定理的灵活运用思想方法:整体代入、换元法 1、概念掌握一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)(系数、次数、方程的解)例1、下列方程中不一定是一元二次方程的是( ) A.(a-3)x 2=8 (a ≠3) B.ax 2+bx+c=0C.(x+3)(x-2)=x+5D.2332057x x +-=例2、已知方程05)3()2(4=+++++x m x m m 是一元二次方程,则m 的值是 例3、在关于x 的方程01)2()4(232=++--+-m mx x m x m 中,要使这个方程为一元二次方程,则m 的值为_________.练1、当m 是何值时,关于x 的方程(m 2+2)x 2+(m-1)x-4=3x 2 (1)是一元二次方程; (2)是一元一次方程; (3)若x=-2是它的一个根,求m 的值。
2、解一元二次方程: 1)直接开平方法形如(x-m)2=n (n≥0)的方程,其解为x=±√n+m ; 例1、 (1)(x+5)2=6 (2)(x-8)2=-32)配方法将方程一般形式化为(x±m)2=n 的形式,再用直接开平方法。
(详细过程,包括推导过程)例1、配方:(a )x 2+6x +( )=(x + )2;(b )x 2-8x +( )=(x - )2; (c )x 2+23x +( )=(x + )2例2、用配方法解题:(1)x 2-5x+9=1 (2)08222=-+a ax x (3)1322=+x x3)公式法将方程化简成ax 2+bx+c=0的形式,当b²-4ac≥0时,方程有解,a acb b x 242-±-=;当b²-4ac <0时,方程无解。
例1、公式法解题:(1)(1-3x )2=1; (2)x 2+8x -2=0 (3)2x 2-6x -3=0;4)因式分解法(十字相乘法)①()()()22x px q x a b x ab x a x b ++=+++=++②ax 2+bx+c=0 a(x-p)(x-q)=0例1、(1)232x x ++=0 (2) 2421x x --=0例2、(1) 2273x x -+=0 (2) 2675x x --=0(3) 03522=--x x (4)22157x x ++=03、一元二次方程的根的判别式:ac b 42-=∆当Δ>0时⇔方程有两个不相等的实数根;当Δ=0时⇔方程有两个相等的实数根; 当Δ< 0时⇔方程没有实数根,无解;例1、已知x =1是关于x 的二次方程(m 2-1)x 2-mx +m 2=0的一个根,则m 的值是_________.例2、说明不论m 取何值,关于x 的方程(x -1)(x -2)=m 2总有两个不相等的实根.例3、若关于x 的一元二次方程0122=--x kx 有两个不相等的实数根,则k 的取值范围是例4、关于x 的二次方程(m -3)x 2-5x +1=2有两个正实根,求m 的取值范围练习1、关于x 的方程01)12(22=+-+x k x k 有实数根,则k 的取值范围是练习2、已知关于x 的方程(1)有两个不相等的实数根,且关于x 的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?4、根与系数的关系若21,x x 是一元二次方程02=++c bx ax 的两个根,(解题时注意隐藏条件有两根)那么: a b x x -=+21, a c x x =⋅21例1、已知、是方程的两个实数根,求的值。
人教版2020年第一单元《一元二次方程》真题再现一.一元二次方程的解(共2小题)1.(2019•兰州)x =1是关于x 的一元二次方程x 2+ax +2b =0的解,则2a +4b =( )A .﹣2B .﹣3C .﹣1D .﹣6【分析】先把x =1代入方程x 2+ax +2b =0得a +2b =﹣1,然后利用整体代入的方法计算2a +4b 的值.【解答】解:把x =1代入方程x 2+ax +2b =0得1+a +2b =0,所以a +2b =﹣1,所以2a +4b =2(a +2b )=2×(﹣1)=﹣2.故选:A .2.(2016•攀枝花)若x =﹣2是关于x 的一元二次方程x 2+23ax ﹣a 2=0的一个根,则a 的值为( ) A .﹣1或4 B .﹣1或﹣4 C .1或﹣4D .1或4 【分析】把x =﹣2代入已知方程,列出关于a 的新方程,通过解新方程可以求得a 的值.【解答】解:根据题意,将x =﹣2代入方程x 2+23ax ﹣a 2=0,得: 4﹣3a ﹣a 2=0,即a 2+3a ﹣4=0,左边因式分解得:(a ﹣1)(a +4)=0,∴a ﹣1=0,或a +4=0,解得:a =1或﹣4,故选:C .二.解一元二次方程-配方法(共1小题)3.(2019•南通)用配方法解方程x 2+8x +9=0,变形后的结果正确的是( )A .(x +4)2=﹣9B .(x +4)2=﹣7C .(x +4)2=25D .(x +4)2=7【分析】方程移项后,利用完全平方公式配方即可得到结果.【解答】解:方程x 2+8x +9=0,整理得:x 2+8x =﹣9,配方得:x 2+8x +16=7,即(x +4)2=7,故选:D .三.根的判别式(共5小题)4.(2020•自贡)关于x 的一元二次方程ax 2﹣2x +2=0有两个相等实数根,则a 的值为( )A .21B .﹣21C .1D .﹣1【分析】根据一元二次方程的定义及根的判别式△=0,即可得出关于a 的一元一次不等式及一元一次方程,解之即可得出a 的值.【解答】解:∵关于x 的一元二次方程ax 2﹣2x +2=0有两个相等实数根,∴()⎩⎨⎧=⨯⨯--=∆≠024202a a , ∴a =21. 故选:A .5.(2020•湖州)已知关于x 的一元二次方程x 2+bx ﹣1=0,则下列关于该方程根的判断,正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关【分析】先计算出判别式的值,再根据非负数的性质判断△>0,然后利用判别式的意义对各选项进行判断.【解答】解:∵△=b2﹣4×(﹣1)=b2+4>0,∴方程有两个不相等的实数根.故选:A.6.(2020•铜仁市)已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x的一元二次方程x2﹣6x+k+2=0的两个根,则k的值等于()A.7B.7或6C.6或﹣7D.6【分析】当m=4或n=4时,即x=4,代入方程即可得到结论,当m=n时,即△=(﹣6)2﹣4×(k+2)=0,解方程即可得到结论.【解答】解:当m=4或n=4时,即x=4,∴方程为42﹣6×4+k+2=0,解得:k=6,当m=n时,即△=(﹣6)2﹣4×(k+2)=0,解得:k=7,综上所述,k的值等于6或7,故选:B.7.(2020•黔西南州)已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2B.m≤2C.m<2且m≠1D.m≤2且m≠1【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式组,解之即可得出m 的取值范围.【解答】解:∵关于x 的一元二次方程(m ﹣1)x 2﹣2x +1=0有实数根,∴()⎩⎨⎧≥-⨯⨯-=∆≠-01142012m m ,解得:m ≤2且m ≠1.故选:D .8.(2018•鄂州)已知关于x 的方程x 2﹣(3k +3)x +2k 2+4k +2=0(1)求证:无论k 为何值,原方程都有实数根;(2)若该方程的两实数根x 1、x 2为一菱形的两条对角线之长,且x 1x 2+2x 1+2x 2=36,求k 值及该菱形的面积.【分析】(1)根据根的判别式的意义得到当△=[﹣(3k +3)]2﹣4(4k +2)≥0时,方程有实数根;(2)根据根与系数的关系得到x 1+x 2=3k +3,x 1x 2=4k +2,则代入所求的代数式进行求值;然后根据菱形的面积公式进行计算即可.【解答】(1)证明:根据题意得:△=[﹣(3k +3)]2﹣4(2k 2+4k +2)=(k +1)2.∵无论k 为何值,总有(k +1)2≥0,∴无论k 为何值,原方程都有实数根;(2)∵关于x 的方程x 2﹣(3k +3)x +2k 2+4k +2=0的两实数根是x 1、x 2,∴x 1+x 2=3k +3,x 1x 2=2k 2+4k +2,∴由x 1x 2+2x 1+2x 2=36,得2k 2+4k +2+2(3k +3)=36,整理,得(k +7)(k ﹣2)=0.解得k 1=﹣7(舍去),k 2=2. ∴21x 1x 2=21×2(k +1)2=(2+1)2=9. 即菱形的面积是9.四.根与系数的关系(共5小题)9.(2020•黔东南州)已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A.﹣7B.7C.3D.﹣3【分析】根据根与系数的关系即可求出答案.【解答】解:设另一个根为x,则x+2=﹣5,解得x=﹣7.故选:A.10.(2020•遵义)已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为()A.5B.10C.11D.13【分析】利用根与系数的关系得到x1+x2=3,x1x2=﹣2,再利用完全平方公式得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故选:D.11.(2019•遵义)一元二次方程x2﹣3x+1=0的两个根为x1,x2,则x12+3x2+x1x2﹣2的值是()A.10B.9C.8D.7【分析】先利用一元二次方程的解的定义得到x12=3x1﹣1,则x12+3x2+x1x2﹣2=3(x1+x2)+x1x2﹣3,接着利用根与系数的关系得到x1+x2=3,x1x2=1,然后利用整体代入的方法计算.【解答】解:∵x1为一元二次方程x2﹣3x+1=0的根,∴x12﹣3x1+1=0,∴x 12=3x 1﹣1,∴x 12+3x 2+x 1x 2﹣2=3x 1﹣1+3x 2+x 1x 2﹣2=3(x 1+x 2)+x 1x 2﹣3,根据题意得x 1+x 2=3,x 1x 2=1,∴x 12+3x 2+x 1x 2﹣2=3×3+1﹣3=7.故选:D .12.(2019•绥化)已知关于x 的方程kx 2﹣3x +1=0有实数根.(1)求k 的取值范围;(2)若该方程有两个实数根,分别为x 1和x 2,当x 1+x 2+x 1x 2=4时,求k 的值.【分析】(1)分k =0及k ≠0两种情况考虑:当k =0时,原方程为一元一次方程,通过解方程可求出方程的解,进而可得出k =0符合题意;当k ≠0时,由根的判别式△≥0可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.综上,此问得解;(2)利用根与系数的关系可得出x 1+x 2=k 3,x 1x 2=k1,结合x 1+x 2+x 1x 2=4可得出关于k 的分式方程,解之经检验后即可得出结论. 【解答】解:(1)当k =0时,原方程为﹣3x +1=0,解得:x =31, ∴k =0符合题意;当k ≠0时,原方程为一元二次方程,∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k ×1≥0,解得:k ≤49. 综上所述,k 的取值范围为k ≤49.(2)∵x 1和x 2是方程kx 2﹣3x +1=0的两个根,x 1+x 2=k 3,x 1x 2=k1. ∵x 1+x 2+x 1x 2=4, ∴k 3+k1=4, 解得:k =1,经检验,k =1是分式方程的解,且符合题意.∴k 的值为1.13.(2019•巴中)已知关于x 的一元二次方程x 2+(2m +1)x +m 2﹣1=0有两不相等的实数根. ①求m 的取值范围.②设x 1,x 2是方程的两根且x 12+x 22+x 1x 2﹣17=0,求m 的值.【分析】①根据“关于x 的一元二次方程x 2+(2m +1)x +m 2﹣1=0有两不相等的实数根”,结合判别式公式,得到关于m 的不等式,解之即可,②根据“x 1,x 2是方程的两根且x 12+x 22+x 1x 2﹣17=0”,结合根与系数的关系,列出关于m 的一元二次方程,解之,结合(1)的结果,即可得到答案.【解答】解:①根据题意得:△=(2m +1)2﹣4(m 2﹣1)>0, 解得:45 >m , ②根据题意得:x 1+x 2=﹣(2m +1),x 1x 2=m 2﹣1,x 12+x 22+x 1x 2﹣17()()()17112172221221=---+=--+=m m x x x x 解得:m 1=35,m 2=﹣3(不合题意,舍去), ∴m 的值为35. 五.由实际问题抽象出一元二次方程(共3小题)14.(2020•衢州)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .180(1﹣x )2=461B .180(1+x )2=461C .368(1﹣x )2=442D .368(1+x )2=442 【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x ,根据“2月份的180万只,4月份的利润将达到461万只”,即可得出方程.【解答】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程:180(1+x )2=461,故选:B .15.(2020•遵义)如图,把一块长为40cm ,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则可列方程为()A.(30﹣2x)(40﹣x)=600B.(30﹣x)(40﹣x)=600C.(30﹣x)(40﹣2x)=600D.(30﹣2x)(40﹣2x)=600【分析】设剪去小正方形的边长是x cm,则纸盒底面的长为(40﹣2x)cm,宽为(30﹣2x)cm,根据长方形的面积公式结合纸盒的底面积是600cm2,即可得出关于x的一元二次方程,此题得解.【解答】解:设剪去小正方形的边长是x cm,则纸盒底面的长为(40﹣2x)cm,宽为(30﹣2x)cm,根据题意得:(30﹣2x)(40﹣2x)=600.故选:D.16.(2019•日照)某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x,那么可列出的方程是()A.1000(1+x)2=3990B.1000+1000(1+x)+1000(1+x)2=3990C.1000(1+2x)=3990D.1000+1000(1+x)+1000(1+2x)=3990【分析】设月平均增长的百分率是x,则该超市二月份的营业额为1000(1+x)万元,三月份的营业额为1000(1+x)2万元,根据该超市第一季度的总营业额是3990万元,即可得出关于x的一元二次方程,此题得解.【解答】解:设月平均增长的百分率是x,则该超市二月份的营业额为1000(1+x)万元,三月份的营业额为1000(1+x)2万元,依题意,得1000+1000(1+x )+1000(1+x )2=3990.故选:B .六.一元二次方程的应用(共3小题)17.(2019•徐州)如图,有一块矩形硬纸板,长30cm ,宽20cm .在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm 2?【分析】设剪去正方形的边长为x cm ,则做成无盖长方体盒子的底面长为(30﹣2x )cm ,宽为(20﹣2x )cm ,高为x cm ,根据长方体盒子的侧面积为200cm 2,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【解答】解:设剪去正方形的边长为x cm ,则做成无盖长方体盒子的底面长为(30﹣2x )cm ,宽为(20﹣2x )cm ,高为x cm ,依题意,得:2×[(30﹣2x )+(20﹣2x )]x =200,整理,得:2x 2﹣25x +50=0,解得:x 1=25,x 2=10. 当x =10时,20﹣2x =0,不合题意,舍去. 答:当剪去正方形的边长为25cm 时,所得长方体盒子的侧面积为200cm 2. 18.(2019•东营)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?【分析】设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,依题意,得:(x﹣100)[300+5(200﹣x)]=32000,整理,得:x2﹣360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.19.(2019•广州)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.【分析】(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=﹣2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.。
一、选择题1.下列方程是关于x 的一元二次方程的是( )A .20ax bx c ++=B .210x y -+=C .2120x x +-=D .(1)(2)1x x x -+=-D 解析:D【分析】利用一元二次方程定义进行解答即可.【详解】A 、当a =0时,不是一元二次方程,故此选项不合题意;B 、含有两个未知数,不是一元二次方程,故此选项不合题意;C 、不是整式方程,故此选项不合题意;D 、是一元二次方程,故此选项符合题意;故选:D .【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( )A .k-4且k≠0B .k≥-4C .k>-4且k≠0D .k>-4B 解析:B【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m 的一元一次不等式,解不等式即可得出k 的取值范围.结合上面两者情况即可得出结论.【详解】解:当k=0时,原方程为-4x+1=0,解得:x=14, ∴k=0符合题意;当k≠0时,∵方程kx 2-4x-1=0有实数根,∴△=(-4)2+4k≥0,解得:k≥-4且k≠0.综上可知:k 的取值范围是k≥-4.故选:B .【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.当分式2369x x x --+的值为0时,则x 等于( ) A .3B .0C .3±D .-3D 解析:D【分析】 先根据分式的值为0的条件列出关于x 的不等式组,求出x 的值即可.【详解】依题意得:230690x x x ⎧-⎨-+≠⎩=,解得x =−3.故选:D【点睛】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.4.《代数学》中记载,形如2833x x +=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为2x 的矩形,得到大正方形的面积为331649+=,则该方程的正数解为743-=.”小聪按此方法解关于x 的方程2100x x m ++=时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为( ).A .6B .3532C .532D .535D解析:D【分析】 仿照题目中的做法可得空白部分小正方形的边长为52,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,从而可得大正方形的边长,再用其减去两个空白正方形的边长即可.【详解】解:如图2,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为52x 的矩形,得到大正方形的面积为255045025752⎛⎫+⨯=+= ⎪⎝⎭,∴5252⨯=. 故选:D .【点睛】本题考查了一元二次方程的几何解法,读懂题意并数形结合是解题的关键.5.用一条长40cm 的绳子怎样围成一个面积为75cm 2的矩形?设矩形的一边为x 米,根据题意,可列方程为( )A .x (40-x )=75B .x (20-x )=75C .x (x +40)=75D .x (x +20)=7B解析:B【分析】根据长方形的周长可以用x 表示另一边,然后根据面积公式即可列出方程.【详解】解:设矩形的一边为x 米,则另一边为(20-x )米,∴x (20-x )=75,故选:B.【点睛】此题考查一元二次方程的实际应用,根据题意抽象出一元二次方程是解题的关键. 6.一元二次方程x 2﹣4x ﹣1=0配方后正确的是( )A .(x ﹣2)2=1B .(x ﹣2)2=5C .(x ﹣4)2=1D .(x ﹣4)2=5B 解析:B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:x 2﹣4x ﹣1=0x 2-4x=1x 2-4x+4=1+4(x-2)2=5,故选:B .【点睛】本题考查了解一元二次方程-配方法,解题的关键是会用配方法解答方程.7.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022B .2021C .2020D .2019A 解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.8.已知一元二次方程x 2﹣6x+c =0有一个根为2,则另一根及c 的值分别为( ) A .2,8B .3,4C .4,3D .4,8D 解析:D【分析】设方程的另一个根为t ,根据根与系数的关系得到t +2=6,2t =c ,然后先求出t ,再计算c 的值.【详解】解:设方程的另一个根为t ,根据题意得t +2=6,2t =c ,解得t =4,c =8.故选:D .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 9.一元二次方程(x ﹣3)2﹣4=0的解是( ) A .x =5B .x =1C .x 1=5,x 2=﹣5D .x 1=1,x 2=5D 解析:D【分析】利用直接开平方法求解即可.【详解】解:∵(x ﹣3)2﹣4=0,∴(x ﹣3)2=4,则x ﹣3=2或x ﹣3=﹣2,解得x 1=5,x 2=1,故选:D .【点睛】本题考查了用直接开平方法解一元二次方程,掌握解法是关键.10.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3B .-1C .3或1D .3或-1A 解析:A【分析】 用22a x y =+,解出关于a 的方程,取正值即为22xy +的值是. 【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题11.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019.【详解】解:对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020,所以at 2+bt-1=0有一个根为t=2020,则x+1=2020,解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019.故答案为:x=2019.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的 解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况.【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3, 该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根,故答案为:2;-6;3;12;有两个不相等的实数根.【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式.13.已知关于x 的一元二次方程230x mx +=+的一个根为1,则方程的另一个根为________.3【分析】先将x=1代入求得m 的值然后解一元二次方程即可求出另一根【详解】解:∵一元二次方程的一个根为1∴1+m+3=0即m=-4∴(x-1)(x-3)=0x-1=0x-3=0∴x=1或x=3即该方解析:3【分析】先将x=1代入求得m 的值,然后解一元二次方程即可求出另一根.【详解】解:∵一元二次方程230x mx +=+的一个根为1∴1+m+3=0,即m=-4∴2430x x -+=(x-1)(x-3)=0x-1=0,x-3=0∴x=1或x=3,即该方程的另一根为3.故答案为3.【点睛】本题主要考查了一元二次方程的解和解一元二次方程,关于x 的一元二次方程230x mx +=+的一个根为1求得m 的值成为解答本题的关键.14.一元二次方程(x +2)(x ﹣3)=0的解是:_____.x1=﹣2x2=3【分析】利用因式分解法把原方程化为x+2=0或x ﹣3=0然后解两个一次方程即可【详解】(x+2)(x ﹣3)=0x+2=0或x ﹣3=0所以x1=﹣2x2=3故答案为x1=﹣2x2=3解析:x 1=﹣2,x 2=3【分析】利用因式分解法把原方程化为x+2=0或x ﹣3=0,然后解两个一次方程即可.【详解】(x +2)(x ﹣3)=0,x +2=0或x ﹣3=0,所以x 1=﹣2,x 2=3.故答案为x 1=﹣2,x 2=3.【点睛】本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).15.一元二次方程()10x x -=的根是________________________.【分析】利用因式分解法把原方程转化为x=0或x-1=0然后解两个一次方程即可;【详解】∵∴x=0或x-1=0解得故答案为:【点睛】本题考查了一元二次方程的解法先把方程的右边化为0再把左边通过因式分解解析:120,1x x ==【分析】利用因式分解法把原方程转化为x=0或x-1=0,然后解两个一次方程即可;【详解】∵()10x x -= ,∴ x=0或x-1=0,解得1x =0,21x = ,故答案为:1x =0,21x =【点睛】本题考查了一元二次方程的解法,先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,求解即可;16.已知x =2是关于x 一元二次方程x 2+kx ﹣6=0的一个根,则另一根是_____.-3【分析】设方程的另一个根为x2根据两根之积列出关于x2的方程解之可得答案【详解】解:设方程的另一个根为x2则2x2=﹣6解得x2=﹣3故答案为:﹣3【点睛】本题考查了一元二次方程ax2+bx+c解析:-3.【分析】设方程的另一个根为x 2,根据两根之积列出关于x 2的方程,解之可得答案.【详解】解:设方程的另一个根为x 2,则2x 2=﹣6,解得x 2=﹣3,故答案为:﹣3.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅=. 17.当m ______时,关于x 的一元二次方程2350mx x -+=有两个不相等的实数根.m <且m≠0【分析】根据一元二次方程的定义及判别式的意义得出m≠0且△=(-3)2-4m×5=9-20m >0解不等式组确定m 的取值范围【详解】解:∵关于x 的一元二次方程mx2-3x+5=0有两个不相解析:m <920且m≠0. 【分析】根据一元二次方程的定义及判别式的意义得出m≠0,且△=(-3)2-4m×5=9-20m >0,解不等式组,确定m 的取值范围.【详解】解:∵关于x 的一元二次方程mx 2-3x+5=0有两个不相等的实数根,∴m≠0,且△=(-3)2-4m×5=9-20m >0,解得m <920且m≠0, 故当m <920且m≠0时,关于x 的一元二次方程mx 2-3x+5=0有两个不相等的实数根. 故答案是:m <920且m≠0. 【点睛】本题考查了根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系: (1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.已知1x ,2x 是关于x 的一元二次方程260x x a -+=的两个实数根,且221212x x -=,则a =________.8【分析】由一元二次方程根与系数的关系得:解方程可得进一步可得结论【详解】解:由一元二次方程根与系数的关系得:又∴∴∴解得故答案为:8【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是解析:8【分析】由一元二次方程根与系数的关系得:126x x +=,12x x a =,解方程221212x x -=可得122x x -=,进一步可得结论.【详解】解:由一元二次方程根与系数的关系得:126x x +=,12x x a =,又221212x x -=,∴1212()()12x x x x +-=∴122x x -=,∴22121212()()43644x x x x x x a -=+-=-=解得,8a =,故答案为:8.【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a ”是解题的关键. 19.已知a 2+1=3a ,b 2+1=3b ,且a ≠b ,则11a b+=_____.【分析】根据一元二次方程根的定义得到ab 是一元二次方程的两根得到a 和b 的和与积再把两根和与两根积求出代入所求的式子中即可求出结果【详解】解:∵a2+1=3ab2+1=3b 且a≠b ∴ab 是一元二次方程解析:3【分析】根据一元二次方程根的定义得到a 、b 是一元二次方程的两根,得到a 和b 的和与积,再把两根和与两根积求出,代入所求的式子中即可求出结果.【详解】解:∵a 2+1=3a ,b 2+1=3b ,且a ≠b∴a ,b 是一元二次方程x 2﹣3x +1=0的两个根,∴由韦达定理得:a +b =3,ab =1, ∴113a b a b ab++==. 故答案为:3.【点睛】 本题考查一元二次方程根与系数关系、一元二次方程根的定义、分式的通分,对一元二次方程根的定义的理解是解题的关键.20.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m =0(m >0),当m =1、2、3、…2020时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2020、β2020,则112220202020111111αβαβαβ++++++的值为_____.【分析】由一元二次方程根与系数的关系解题即【详解】解:∵x2+2x ﹣m2﹣m =0m =123…2020∴由根与系数的关系得:α1+β1=﹣2α1β1=﹣1×2;α2+β2=﹣2α2β2=﹣2×3;…α 解析:40402021【分析】由一元二次方程根与系数的关系解题,即+=-b c a a αβαβ=,. 【详解】解:∵x 2+2x ﹣m 2﹣m =0,m =1,2,3, (2020)∴由根与系数的关系得:α1+β1=﹣2,α1β1=﹣1×2;α2+β2=﹣2,α2β2=﹣2×3;…α2020+β2020=﹣2,α2020β2021=﹣2020×2021;∴原式=3320202020112211223320202020++++++++αβαβαβαβαβαβαβαβ 2222=++++12233420202021⨯⨯⨯⨯ 1111111=2(1)2233420202021⨯-+-+-++- 1=2(1)2021⨯-4040=2021故答案为:40402021. 【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题21.解下列方程:(1)2x 2﹣4x +1=0;(2)(2x﹣1)2=(3﹣x )2.解析:(1)x 1=1+2,x 2=1﹣2;(2)x 1=﹣2,x 2=43 【分析】(1)利用配方法解一元二次方程;(2)利用因式分解法解方程.【详解】(1)解:2x 2﹣4x +1=0,x 2﹣2x =﹣12, x 2﹣2x +1=﹣12+1,即(x ﹣1)2=12,∴x ﹣1=±2,∴x 1=1+2,x 2=1﹣2; (2)解:(2x ﹣1)2=(3﹣x )2.(2x ﹣1)2﹣(3﹣x )2=0,[(2x ﹣1)+(3﹣x )][(2x ﹣1)﹣(3﹣x )]=0,∴x +2=0或3x ﹣4=0,∴x 1=﹣2,x 2=43. 【点睛】本题考查一元二次方程的解法,熟练掌握配方法、因式分解法、公式法,并熟练运用是关键.22.用适当的方法解下列方程:(1)22580x x --=;(2)23(5)2(5)x x -=-.解析:(1)125544x x +-==;(2)12175,3x x == 【分析】 (1)用公式法求解即可;(2)用因式分解法求解即可.【详解】解:(1)2,5,8a b c ==-=-,2(5)42(8)890∴∆=--⨯⨯-=>,x ∴==,12x x ∴== (2)23(5)2(5)0x x ---=, 移项得,23(5)2(5)0x x ---=,因式分解得,(5)(317)0x x --=,50x ∴-=或3170x -=,12175,3x x ∴== 【点睛】本题主要考查解一元二次方程的解法,熟练掌握解一元二次方程的几种常用方法:直接开平方法、配方法、公式法、因式分解法,结合方程的特点选择合适、简便的方法是解题的关键.23.已知关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0.(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个根x 1,x 2,且x 12+x 22=8,求k 的值.解析:(1)见解析;(2)-1或13 【分析】(1)根据方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0计算判别式的值得到△=(k +1)2≥0,即可证明结论;(2)利用根与系数的关系得到x 1+x 2=31k k -,x 1x 2=()21k k -,再根据x 12+x 22=8得出(31k k -)2﹣2•()21k k-=8,解此方程即可求解. 【详解】(1)证明:关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0中,∵a =k ,b =﹣(3k ﹣1),c =2(k ﹣1),△()()231421k k k ⋅⋅=-﹣- 2296188k k k k ++=--221k k =++2(1)k =+,∴无论k 为任何实数,△0≥.∴无论k 为任何实数,方程总有实数根;(2)解:根据题意得x 1+x 2=31k k -,x 1x 2=()21k k -, ∵x 12+x 22=8,∴(x 1+x 2)2﹣2x 1x 2=8,∴(31k k -)2﹣2•()21k k-=8, 整理得3k 2+2k ﹣1=0,解得k 1=13,k 2=﹣1, 经检验k 1=13,k 2=﹣1为原方程的解,∵k ≠0,∴k 的值为﹣1或13. 【点睛】本题考查了根的判别式及根与系数关系,掌握一元二次方程根的判别式及根与系数的关系是解题的关键.24.解方程:2x²-4x-3=0.解析:12x x == 【分析】 利用公式法解一元二次方程即可求解.【详解】解:2x²-4x-3=0∵ a=2,b=-4,c=-3,∴()()22=b 4442340ac ∆-=--⨯⨯-=>0, ∴一元二次方程有两个不相等的实数根,∴42242b x a -±±===,∴122222x x +==. 【点睛】本题考查了公式法解一元二次方程,熟练掌握一元二次方程的求根公式是解题关键. 25.回答下列问题.(1(2|1-. (3)计算:102(1)-++. (4)解方程:2(1)90x +-=.解析:(13;(2)12+;(3)44)12x =,24x =-. 【分析】 (1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可; (3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可; (4)移项,利用直接开平方法即可求解.【详解】(13 =+3 =;(2|11)=-1=12=+;(3)102(1)-++121=+-4=-(4)2(1)90x+-=,移项得:2(1)9x+=,∴13x+=或13x+=-,12x=,24x=-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.26.解方程:(1)2x2+1=3x(配方法)(2)(2x-1)2=(3-x)2(因式分解法)解析:(1)11x=,212x=;(2)12x=-,243x=【分析】(1)首先把方程移项变形为2x2-3x=-1的形式,二次项系数化为1,再进行配方即可;(2)根据平方差公式可以解答此方程.【详解】(1)解:移项,得2x2-3x=-1二次项系数化为1,得x 2-32x =12- 配方,得x 2-32x +234⎛⎫ ⎪⎝⎭=12-+234⎛⎫ ⎪⎝⎭231416x ⎛⎫-= ⎪⎝⎭ 解得11x =,212x =. (2)解:原方程化为: ()()222130x x ---=()()2132130x x x x -+---+=()()2340x x +-=20x +=或340x -=解得 12x =-,243x =. 【点睛】 此题考查了解一元二次方程-因式分解法(公式法),配方法,熟练掌握各种解法是解本题的关键.27.解下列方程(1)2210x x ++= (2)233x x解析:(1)121x x ==-;(2)123,4x x ==.【分析】(1)利用配方法解一元二次方程即可得;(2)利用因式分解法解一元二次方程即可得.【详解】(1)2210x x ++=,2(1)0x +=,解得121x x ==-;(2)233x x ,2330x x , 3310x x ,即()()340x x --=,30x -=或40x -=,3x =或4x =,即123,4x x ==.【点睛】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、因式分解法、公式法、换元法等,熟练掌握各解法是解题关键.28.(12. (2)解一元二次方程:x 2﹣4x ﹣5=0.解析:(1)2;(2)125, 1.x x ==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.【详解】解:(1|2|3+23=2 (2)x 2﹣4x ﹣5=0,(x ﹣5)(x +1)=0,∴x ﹣5=0或x +1=0,∴x 1=5,x 2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题 。
《一元二次方程》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)已知关于x的方程x2+mx﹣6=0的一个根为x=3,则实数m的值为()A.﹣2B.﹣1C.1D.22.(5分)若方程x2+mx﹣3=0的一根为3,则m等于()A.﹣2B.﹣1C.1D.23.(5分)关于x的一元二次方程(m﹣2)x2+5x+m2﹣4=0的常数项是0,则()A.m=4B.m=2C.m=2或m=﹣2D.m=﹣24.(5分)已知x=a是方程x2﹣3x﹣5=0的根,代数式a2﹣3a+4的值为()A.6B.9C.14D.﹣65.(5分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=0二、填空题(本大题共5小题,共25.0分)6.(5分)若x=﹣2是关于x的一元二次方程ax2﹣bx+6=0的一个根,则代数式2018﹣2a ﹣b的值为.7.(5分)若关于x的一元二次方程x2+mx+2n=0有一个根是﹣2,则m﹣n=.8.(5分)已知关于x的一元二次方程(m+2)x2+2x+m2﹣4=0的一个根是零,则m=.9.(5分)已知a,b,c为实数,且a+b+c=,a2+b2+c2=2,则2a﹣b﹣c=.10.(5分)已知a是方程x2﹣2017x+1=0的一个根,则a3﹣2017a2﹣=.三、解答题(本大题共5小题,共50.0分)11.(10分)已知2是关于x的方程x2﹣2mx+3m=0的一个根,而这个方程的两个根恰好是等腰△ABC的两条边长.(1)求m的值;(2)求△ABC的周长.12.(10分)已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是等腰三角形,求此时m的值.13.(10分)观察下列一组方程:①x2﹣x=0;②x2﹣3x+2=0;③x2﹣5x+6=0;④x2﹣7x+12=0;…它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.(1)若x2+kx+56=0也是“连根一元二次方程”,写出k的值,并解这个一元二次方程;(2)请写出第n个方程和它的根.14.(10分)阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=,=,=;(2)2x2﹣7x+2=0(x≠0),求的值.15.(10分)已知关于x的方程(k+1)+(k﹣3)x﹣1=0(1)当k取何值时,它是一元一次方程?(2)当k取何值时,它是一元二次方程?《一元二次方程》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)已知关于x的方程x2+mx﹣6=0的一个根为x=3,则实数m的值为()A.﹣2B.﹣1C.1D.2【分析】把x=3代入方程x2+mx﹣6=0得9+3m﹣6=0,然后解关于m的方程即可.【解答】解:把x=3代入方程x2+mx﹣6=0得9+3m﹣6=0,解得m=﹣1.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2.(5分)若方程x2+mx﹣3=0的一根为3,则m等于()A.﹣2B.﹣1C.1D.2【分析】把x=3代入方程x2+mx﹣3=0得9+3m﹣3=0,然后解关于m的方程即可.【解答】解:把x=3代入方程x2+mx﹣3=0得9+3m﹣3=0,解得m=﹣2.故选:A.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.(5分)关于x的一元二次方程(m﹣2)x2+5x+m2﹣4=0的常数项是0,则()A.m=4B.m=2C.m=2或m=﹣2D.m=﹣2【分析】根据常数项为0可得m2﹣4=0,同时还要保证m﹣2≠0,再解即可.【解答】解:根据题意知,解得m=﹣2,故选:D.【点评】此题主要考查了一元二次方程的一般形式,关键是掌握ax2+bx+c=0(a,b,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.4.(5分)已知x=a是方程x2﹣3x﹣5=0的根,代数式a2﹣3a+4的值为()A.6B.9C.14D.﹣6【分析】利用一元二次方程根的定义得到a2﹣3a=5,然后利用整体代入的方法计算代数式的值.【解答】解:∵x=a是方程x2﹣3x﹣5=0的根,∴a2﹣3a﹣5=0,∴a2﹣3a=5,∴a2﹣3a+4=5+4=9.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5.(5分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=0【分析】依据一元二次方程的定义进行判断即可.【解答】解:A.x+2y=0含有两个未知数,不合题意;B.x2﹣4y=0含有两个未知数,不合题意;C.x2+3x=0是一元二次方程,符合题意;D.x+1=0中未知数的最高次数不是2次,不合题意;故选:C.【点评】本题主要考查的是一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)若x=﹣2是关于x的一元二次方程ax2﹣bx+6=0的一个根,则代数式2018﹣2a ﹣b的值为2021.【分析】把x=﹣2代入方程,求出2a+b=﹣3,再变形后代入,即可求出答案.【解答】解:∵x=﹣2是关于x的一元二次方程ax2﹣bx+6=0的一个根,∴代入得:4a+2b+6=0,4a+2b=﹣6,2a+b=﹣3,∴2018﹣2a﹣b=2018﹣(2a+b)=2018﹣(﹣3)=2021,故答案为:2021.【点评】本题考查了求代数式的值和一元二次方程的解,能求出2a+b=﹣3是解此题的关键.7.(5分)若关于x的一元二次方程x2+mx+2n=0有一个根是﹣2,则m﹣n=2.【分析】把x=﹣2代入方程x2+mx+2n=0得出4﹣2m+2n=0,再求出即可.【解答】解:把x=﹣2代入方程x2+mx+2n=0得:4﹣2m+2n=0,即﹣2m+2n=﹣4,m﹣n=2,故答案为:2.【点评】本题考查了一元二次方程的解,能理解一元二次方程的解的定义是解此题的关键.8.(5分)已知关于x的一元二次方程(m+2)x2+2x+m2﹣4=0的一个根是零,则m=2.【分析】把x=0代入方程,求出m,再判断即可.【解答】解:把x=0代入方程(m+2)x2+2x+m2﹣4=0得:0+0+m2﹣4=0,解得:m=±2,∵方程(m+2)x2+2x+m2﹣4=0是关于x的一元二次方程,∴m+2≠0,即m≠﹣2,所以m=2,故答案为:2.【点评】本题考查了一元二次方程的解和一元二次方程的定义,能根据题意得出m2﹣4=0和m+2≠0是解此题的关键.9.(5分)已知a,b,c为实数,且a+b+c=,a2+b2+c2=2,则2a﹣b﹣c=0.【分析】利用换元法构造一元二次方程,然后利用根与系数的关系解答.【解答】解:由已知得a+b=﹣c①(a+b)2+c2﹣2ab=2 ②将①代入②得(﹣c)2+c2﹣2ab=2,∴ab=c2﹣c+2 ③由①③可知,a、b是关于t的方程t2﹣(﹣c)t+c2﹣c+2=0 ④的两个实数根.∴△=(﹣c)2﹣4(c2﹣c+2)≥0,化简得(c﹣)2≤0,而(c﹣)2≥0,∴c=.将c=代入④,解得t1=t2=,∴a=b=,∴a=b=c=,∴2a﹣b﹣c=0,故答案是:0.【点评】考查了利用换元法根据根与系数的关系构造一元二次方程,还涉及非负数的性质等内容,需要认真对待.10.(5分)已知a是方程x2﹣2017x+1=0的一个根,则a3﹣2017a2﹣=﹣2017.【分析】由方程的根的定义得a2﹣2017a=﹣1、a2+1=2017a,代入原式=a(a2﹣2017a)﹣逐步化简可得.【解答】解:∵a是方程x2﹣2017x+1=0的一个根,∴a2﹣2017a+1=0,即a2﹣2017a=﹣1,a2+1=2017a,则原式=a(a2﹣2017a)﹣=﹣a﹣=﹣=﹣=﹣2017,故答案为:﹣2017.【点评】本题主要考查方程的解的定义,熟练掌握整体代入思想是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)已知2是关于x的方程x2﹣2mx+3m=0的一个根,而这个方程的两个根恰好是等腰△ABC的两条边长.(1)求m的值;(2)求△ABC的周长.【分析】(1)直接把x=2代入方程x2﹣2mx+3m=0可求出m的值;(2)先解方程x2﹣8x+12=0,解得x1=2,x2=6,再利用三角形三边的关系确定等腰三角形的腰与底,然后计算它的周长.【解答】解:(1)把x=2代入方程得4﹣4m+3m=0,解得m=4;(2)当m=4时,原方程变为x2﹣8x+12=0,解得x1=2,x2=6,∵该方程的两个根恰好是等腰△ABC的两条边长,且不存在三边为2,2,6的等腰三角形∴△ABC的腰为6,底边为2,∴△ABC的周长为6+6+2=14.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.12.(10分)已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是等腰三角形,求此时m的值.【分析】(1)把x=2代入方程x2﹣(2m+3)x+m2+3m+2=0得到关于m的一元二次方程,然后解关于m的方程即可;(2)先计算出判别式,再利用求根公式得到x1=m+2,x2=m+1,则AC=m+2,AB=m+1.然后讨论:当AB=BC时,有m+1=;当AC=BC时,有m+2=,再分别解关于m 的一次方程即可.【解答】解:(1)∵x=2是方程的一个根,∴4﹣2(2m+3)+m2+3m+2=0,∴m=0或m=1;(2)∵△=(2m+3)2﹣4(m2+3m+2)=1,=1;∴x=∴x1=m+2,x2=m+1,∵AB、AC(AB<AC)的长是这个方程的两个实数根,∴AC=m+2,AB=m+1.∵BC=,△ABC是等腰三角形,∴当AB=BC时,有m+1=,∴m=﹣1;当AC=BC时,有m+2=,∴m=﹣2,综上所述,当m=﹣1或m=﹣2时,△ABC是等腰三角形.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了等腰三角形的判定.13.(10分)观察下列一组方程:①x2﹣x=0;②x2﹣3x+2=0;③x2﹣5x+6=0;④x2﹣7x+12=0;…它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.(1)若x2+kx+56=0也是“连根一元二次方程”,写出k的值,并解这个一元二次方程;(2)请写出第n个方程和它的根.【分析】(1)直接利用连根一元二次方程得出k的值;(2)利用因式分解法得出符合题意的值.【解答】解:(1)由题意可得:k=﹣15,则原方程为:x2﹣15x+56=0,则(x﹣7)(x﹣8)=0,解得:x1=7,x2=8;(2)第n个方程为:x2+(2n﹣1)x+n(n﹣1)=0,(x﹣n)(x﹣n+1)=0,解得:x1=n﹣1,x2=n.【点评】此题主要考查了一元二次方程的解法以及新定义,正确得出规律是解题关键.14.(10分)阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=4,=14,=194;(2)2x2﹣7x+2=0(x≠0),求的值.【分析】(1)模仿例题利用完全平方公式即可解决.(2)模仿例题利用完全平方公式以及立方和公式即可.【解答】解;(1)∵x2﹣4x+1=0,∴x+=4,∴(x+)2=16,∴x2+2+=16,∴x2+=14,∴(x2+)2=196,∴x4++2=196,∴x4+=194.故答案为4,14,194.(2)∵2x2﹣7x+2=0,∴x+=,x2+=,∴=(x+)(x2﹣1+)=×(﹣1)=.【点评】本题考查一元一次方程的解、完全平方公式、立方和公式,解决问题的关键是灵活应用完全平方公式,记住两边平方不能漏项(利用完全平方公式整体平方),属于中考常考题型.15.(10分)已知关于x的方程(k+1)+(k﹣3)x﹣1=0(1)当k取何值时,它是一元一次方程?(2)当k取何值时,它是一元二次方程?【分析】(1)根据二次项的系数为零且一次项的系数不为零是一元一次方程,可得答案;(2)根据一元二次方程:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数,可得答案.【解答】解:(1)由关于x的(k+1)+(k﹣3)x﹣1=0一元一次方程,得或,解得k=﹣1或k=0,当k=﹣1或k=0时,关于x的(k+1)+(k﹣3)x﹣1=0一元一次方程;(2)由关于x的(k+1)+(k﹣3)x﹣1=0一元二次方程,得,解得k=1,当k=1时,关于x的(k+1)+(k﹣3)x﹣1=0一元二次方程.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.。
专题03 整体代入法【规律总结】整体代入法,在求代数式值中应用求代数式的值最常用的方法,即把字母所表示的数值直接代入,计算求值。
有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难求出字母的值或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入,求值时方便又快捷,这种整体代入的技法经常用到。
【典例分析】例1、在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD−AB=2时,S2−S1的值为()A. 2aB. 2bC. 2a−2bD. −2b【答案】B【解析】解:S1=(AB−a)⋅a+(CD−b)(AD−a)=(AB−a)⋅a+(AB−b)(AD−a),S2=AB(AD−a)+(a−b)(AB−a),∴S2−S1=AB(AD−a)+(a−b)(AB−a)−(AB−a)⋅a−(AB−b)(AD−a)=(AD−a)(AB−AB+b)+(AB−a)(a−b−a)=b⋅AD−ab−b⋅AB+ab=b(AD−AB)=2b.故选:B.利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.本题考查了整式的混合运算:“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.例2、若m是方程2x2−3x−1=0的一个根,则6m2−9m+2015的值为______.【答案】2018【解析】解:由题意可知:2m2−3m−1=0,∴2m2−3m=1∴原式=3(2m2−3m)+2015=2018故答案为:2018根据一元二次方程的解的定义即可求出答案.本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.例3、解下列各题:(1)若n满足(n−2023)(2021−n)=−6,求(n−2023)2+(2021−n)2的值.(2)已知:m2=n+2,n2=m+2(m≠n),求:m3−2mn+n3的值.【答案】解:(1)∵(n−2023)(2021−n)=−6,∴原式=(n−2023+2021−n)2−2(n−2023)(2021−n)=(−2)2−2×(−6)=4+12=16;(2)∵m2=n+2①,n2=m+2(m≠n)②,∴m2−n=2,n2−m=2,∵m≠n,∴m−n≠0,∴①−②得m2−n2=n−m∴(m−n)(m+n)=−(m−n),∵m−n≠0,∴m+n=−1∴原式=m3−mn−mn+n3=m(m2−n)+n(n2−m)=2m +2n =2(m +n) =2×(−1) =−2.【解析】本题主要考查的是代数式求值,完全平方公式,运用了整体代入法的有关知识. (1)将给出的代数式进行变形为(n −2023+2021−n)2−2(n −2023)(2021−n),然后整体代入求值即可;(2)先根据m 2=n +2,n 2=m +2(m ≠n),求出m +n =−1,然后将给出的代数式进行变形,最后整体代入求解即可.【好题演练】一、选择题1. 已知a +b =12,则代数式2a +2b −3的值是( )A. 2B. −2C. −4D. −312【答案】B【解析】解:∵2a +2b −3=2(a +b)−3, ∴将a +b =12代入得:2×12−3=−2 故选:B .注意到2a +2b −3只需变形得2(a +b)−3,再将a +b =12,整体代入即可 此题考查代数式求值的整体代入,只需通过因式解进行变形,再整体代入即可.2. 若α、β为方程2x 2−5x −1=0的两个实数根,则2α2+3αβ+5β的值为( )A. −13B. 12C. 14D. 15【答案】B 【解析】 【分析】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−b a,x 1x 2=ca .也考查了一元二次方程解的定义.根据一元二次方程解的定义得到2α2−5α−1=0,即2α2=5α+1,则2α2+3αβ+5β可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=52,αβ=−12,然后利用整体代入的方法计算. 【解答】解:∵α为2x 2−5x −1=0的实数根, ∴2α2−5α−1=0,即2α2=5α+1,∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1, ∵α、β为方程2x 2−5x −1=0的两个实数根, ∴α+β=52,αβ=−12,∴2α2+3αβ+5β=5×52+3×(−12)+1=12.故选B .3. 如果a 2+2a −1=0,那么代数式(a −4a ).a 2a−2的值是( )A. −3B. −1C. 1D. 3【答案】C 【解析】 【分析】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.根据分式的减法和乘法可以化简题目中的式子,然后根据a 2+2a −1=0,可以得到a 2+2a =1,从而可以求得所求式子的值. 【解答】解:(a −4a )⋅a 2a−2=a 2−4a⋅a 2a−2=(a+2)(a−2)a⋅a 2a−2=a 2+2a ,由a 2+2a −1=0得a 2+2a =1,故原式=1. 故选C .4.已知1x −1y=3,则代数式2x+3xy−2yx−xy−y的值是()A. −72B. −112C. 92D. 34【答案】D【解析】解:∵1x−1y=3,∴y−xxy=3,∴x−y=−3xy,则原式=2(x−y)+3xy(x−y)−xy=−6xy+3xy−3xy−xy=−3xy−4xy=34,故选:D.由1x −1y=3得出y−xxy=3,即x−y=−3xy,整体代入原式=2(x−y)+3xy(x−y)−xy,计算可得.本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.5.已知x1,x2是方程x2−3x−2=0的两根,则x12+x22的值为()A. 5B. 10C. 11D. 13【答案】D【解析】【分析】本题考查了完全平方公式以及根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca,利用根与系数的关系得到x1+x2=3,x1x2=−2,再利用完全平方公式得到x12+x22=(x1+x2)2−2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=−2,所以x12+x22=(x1+x2)2−2x1x2=32−2×(−2)=13.故选:D.6.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A. 31元B. 30元C. 25元D. 19元【答案】A【解析】【分析】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.设每支玫瑰x元,每支百合y元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x,y的二元一次方程,整理后可得出y=x+7,再将其代入5x+3y+10−8x中即可求出结论.【解答】解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y−4,∴y=x+7,∴5x+3y+10−8x=5x+3(x+7)+10−8x=31.故选A.二、填空题7.已知ab=a+b+1,则(a−1)(b−1)=______.【答案】2【解析】【分析】本题考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用,属于基础题.将ab=a+b+1代入原式=ab−a−b+1,合并即可得.【解答】解:当ab=a+b+1时,原式=ab−a−b+1=a+b+1−a−b+1=2,故答案为:2.8.将抛物线y=ax2+bx−1向上平移3个单位长度后,经过点(−2,5),则8a−4b−11的值是______.【答案】−5【解析】解:将抛物线y=ax2+bx−1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(−2,5),代入得:4a−2b=3,则8a−4b−11=2(4a−2b)−11=2×3−11=−5,故答案为:−5.根据二次函数的平移得出平移后的表达式,再将点(−2,5)代入,得到4a−2b=3,最后将8a−4b−11变形求值即可.本题考查了二次函数的平移,二次函数图象上点的坐标特征,解题的关键是得出平移后的表达式.9.若a+b=1,则a2−b2+2b−2=______.【答案】−1【解析】解:∵a+b=1,∴a2−b2+2b−2=(a+b)(a−b)+2b−2=a−b+2b−2=a+b−2=1−2=−1.故答案为:−1.由于a+b=1,将a2−b2+2b−2变形为a+b的形式,整体代入计算即可求解.本题考查了平方差公式,注意整体思想的应用.10.若实数x满足x2−2x−1=0,则2x3−7x2+4x−2017=______.【答案】−2020【解析】【分析】把−7x2分解成−4x2与−3x2相加,然后把所求代数式整理成用x2−2x表示的形式,然后代入数据计算求解即可.本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要.【解答】解:∵x2−2x−1=0,∴x2−2x=1,2x3−7x2+4x−2017=2x3−4x2−3x2+4x−2017,=2x(x2−2x)−3x2+4x−2017,=6x−3x2−2017,=−3(x2−2x)−2017=−3−2017=−2020,故答案为−2020.11.已知|x−y+2|+√x+y−2=0,则x2−y2的值为________.【答案】−4【解析】【分析】本题考查了非负数的性质,解题关键是掌握几个非负数的和等于0,那么这几个非负数都等于0.由非负数的性质得出x、y的值,再代入所求代数式求解即可.【解答】解:∵|x−y+2|+√x+y−2=0,∴x−y+2=0,x+y−2=0,即x−y=−2,x+y=2,∴x 2−y 2=(x +y)(x −y)=2×(−2)=−4, 故答案为−4.12. 已知m +n =3mn ,则1m +1n 的值为______.【答案】3 【解析】 【试题解析】 【分析】本题考查了分式的化简求值,利用通分将原式变形为m+nmn 是解题的关键. 原式通分后可得出m+nmn ,代入m +n =3mn 即可求出结论. 【解答】 解:原式=1m +1n =m+n mn ,又∵m +n =3mn , ∴原式=m+n mn=3.故答案为:3.三、解答题13. 已知x =√2+1,y =√2−1,分别求下列代数式的值;(1)x 2+y 2; (2)yx +xy .【答案】解:(1)∵x =2+1=√2−1,y =2−1=√2+1, ∴x −y =−2,xy =2−1=1,∴x 2+y 2=(x −y)2+2xy =(−2)2+2×1=6;(2)∵x 2+y 2=6,xy =1, ∴原式=x 2+y 2xy=61=6.【解析】本题考查二次根式的化简求值,分母有理化,解题的关键是运用完全平方公式以及整体思想,本题属于基础题型.(1)先将x 、y 进行分母有理化,得到x =√2−1,y =√2+1,再求出x −y 与xy 的值,然后根据完全平方公式得出x 2+y 2=(x −y)2+2xy ,再整体代入即可; (2)将所求式子变形为x 2+y 2xy,再整体代入即可.14. 阅读材料,然后解方程组.材料:解方程组{x −y −1=0, ①4(x −y)−y =5. ②由①得x −y③,把③代入②,得4×1−y =5. 解得y =−1.把y =−1代入③,得x =0. ∴{x =0y =−1这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用这种方法解方程组{2x −3y −2=0,①2x−3y+57+2y =9.②.【答案】解:由①得:2x −3y =2③, 将③代入②得:1+2y =9,即y =4, 将y =4代入③得:x =7, 则方程组的解为{x =7y =4.【解析】由第一个方程求出2x −3y 的值,代入第二个方程求出y 的值,进而求出x 的值,即可确定出方程组的解.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15. 阅读材料,善于思考的小军在解方程组{2x +5y =3①4x +11y =5②时,采用了一种“整体代换”的解法:解:将方程②变形:4x +10y +y =5即2(2x +5y)+y =5③ 把方程①代入③得2×3+y =5 ∴y =−1把y =−1代入①得x =4 ∴方程组的解为{x =4y =−1 请你解决以下问题:(1)模仿小军的“整体代换”法解方程组{3x −2y =5 ①9x −4y =19②(2)已知x 、y 满足方程组{5x 2−2xy +20y 2=822x 2−xy +8y 2=32,求x 2+4y 2的值; 【答案】解:(1)由②得:3x +6x −4y =19,即3x +2(3x −2y)=19③, 把①代入③得:3x +10=19,即x =3, 把x =3代入①得:y =2, 则方程组的解为{x =3y =2;(2)由5x 2−2xy +20y 2=82得:5(x 2+4y 2)−2xy =82,即x 2+4y 2=82+2xy5,由2x 2−xy +8y 2=32得:2(x 2+4y 2)−xy =32,即2×82+2xy5−xy =32,整理得:xy =4, ∴x 2+4y 2=82+2xy5=82+85=18.【解析】此题考查了解二元一次方程组,弄清阅读材料中的“整体代入”方法是解本题的关键.(1)模仿小军的“整体代换”法,求出方程组的解即可;(2)方程组第一个方程变形表示出x 2+4y 2,第二个方程变形后代入求出xy 的值,进而求出x 2+4y 2的值.16. (1)已知x 3⋅x a ⋅x 2a+1=x 31求a 的值;(2)若n 为正整数,且x 2n =4,求(3x 3n )2−4⋅(x 2)2n 的值。
初中数学一元二次方程根与系数关系专项练习题(附答案详解)1.若一个关于x 的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是( )A .x 2﹣7x+12=0B .x 2+7x+12=0C .x 2﹣9x+20=0D .x 2+9x+20=02.关于x 的方程kx 2+2x ﹣1=0有两个实数根,则k 的取值范围是( )A .k≥1B .k≥﹣1C .k≥1且k≠0D .k≥﹣1且k≠03.若m ,n 是方程2250x x --=两根,则()()22m m m n -+的值为( ) A .5 B .10 C .5- D .10-4.已知x 1,x 2是一元二次方程x 2-6x- 15=0的两个根,则x 1+x 2等于( )A .-6B .6C .-15D .155.在数轴上用点B 表示实数b .若关于x 的一元二次方程x 2+bx +1=0有两个相等的实数根,则( )A .2OB = B .2OB >C .2OB ≥D .2OB <6.若方程x 2 +x-1 = 0的两实根为α、β,那么下列说法不正确的是( ) .A .α+β=-1B .αβ=-1C .11+αβ=1D .α2+β2=1 7.已知x 1,x 2是关于x 的方程x 2+bx ﹣3=0的两根,且满足x 1+x 2﹣3x 1x 2=5,那么b 的值为( )A .4B .﹣4C .3D .﹣38.下列关于x 的一元二次方程中,有两个不相等的实数的是( ).A .2x +2 =0B .2x +x-1=0C .2x +x+3=0D .42x -4x+1=0. 9.已知关于x 的一元二次方程x 2+mx +n =0的两个实数根分别为x 1=-2,x 2=4,则m ,n 的值分别为()A .m =-2,n =8B .m =-2,n =-8C .m =2,n =-8D .m =2,n =8 10.已知α,β是方程2201610x x ++=的两个根,则()()221201812018ααββ++++的值为( ) A .1 B .2 C .3 D .411.已知1x ,2x 分别是一元二次方程260x x --=的两个实数根,则12x x +=________.12.已知,,a b c 是等腰ABC ∆的三条边,其中2b =,如果 ,a c 是关于y 的一元二次方程 260y y n -+=的两个根,则n 的值是__.13.已知a 、b 是一元二次方程2410x x --=的两根,则a +b =_____.14.有一个一元二次方程,它的一个根 x 1=1,另一个根-2<x 2<0. 请你写出一个符合这样条件的方程:_________.15.已知方程 x 2﹣4x+3=0 的两根分别为 x 1、x 2,则 x 1+x 2=______.16.已知x 1,x 2是一元二次方程x 2﹣3x ﹣2=0的两实数根,则1132x ++2132x +的值是_____.17.已知x 1,x 2是关于x 的方程x 2-(2m -2)x +(m 2-2m )=0的两根,且满足x 1•x 2+2(x 1+x 2)=-1,那么m 的值为( )A .1-或3B .3-或1C .3-D .118.设一元二次方程2230x x --=的两个实数根为x 1,x 2,则x 1+x 1x 2+x 2等于( ). A .1 B .-1 C .0 D .319.已知方程x 2+kx ﹣6=0有一个根是2,则k =_____,另一个根为_____.20.求作一个方程,使它的两个根分别是4-和3,这个方程的一般式是________. 21.关于x 的一元二次方程226250x x p p -+-+=的一个根为2。
一、选择题1.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x米,则x 的值为()A.3 B.4 C.3或5 D.3或4.5D解析:D【分析】设AD长为x米,四边形ABCD是矩形,根据矩形的性质,即可求得AB的长;根据题意可得方程x(30−4x)=54,解此方程即可求得x的值.【详解】解:设与墙头垂直的边AD长为x米,四边形ABCD是矩形,∴BC=MN=PQ=x米,∴AB=30−AD−MN−PQ−BC=30−4x(米),根据题意得:x(30−4x)=54,解得:x=3或x=4.5,AD的长为3或4.5米.故选:D.【点睛】考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.2.用配方法解方程x2﹣6x﹣3=0,此方程可变形为()A.(x﹣3)2=3 B.(x﹣3)2=6C.(x+3)2=12 D.(x﹣3)2=12D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.3.一元二次方程2610x x +-=配方后可变形为( )A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=A 解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.4.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根A 解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.5.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( )A .6人B .7人C .8人D .9人B 解析:B【分析】设参加活动的同学有x 人,从而可得每位同学赠送的贺卡张数为(1)x -张,再根据“共送贺卡42张”建立方程,然后解方程即可得.【详解】设参加活动的同学有x 人,由题意得:(1)42x x -=,解得7x =或6x =-(不符题意,舍去),即参加活动的同学有7人,故选:B .【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键.6.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .9D 解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.7.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( ) A .1B .-1C .1或-1D .0B解析:B【分析】把0x =代入,求出a 的值即可.【详解】解:把0x =代入可得210a -=,解得1a =±,∵一元二次方程二次项系数不为0,∴1a ≠,∴1a =-,故选:B .【点睛】本题考查一元二次方程的解,注意二次项系数不为0.8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-=D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误;C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.9.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022B .2021C .2020D .2019A解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2A解析:A【分析】利用根与系数的关系得到x 1+x 2=4,x 1x 2=m ,AB +12BC =4,m =AB×12BC ,再利用折叠的性质和平行线的性质得到∠EBD =∠EDB ,则EB =ED =3,所以AE =AD−DE =5−2AB ,利用勾股定理得到AB 2+(5−2AB )2=32,解得AB 1025-或AB 1025+(舍去),则BC 2045+,然后计算m 的值. 【详解】 ∵x 1、x 2是关于x 的方程x 2−4x +m =0的两个实根,∴x 1+x 2=4,x 1x 2=m ,即AB +12BC =4,m =AB×12BC , ∵△BCD 沿BD 翻折得到△BC′D ,BC′与边AD 交于点E ,∴∠CBD =∠EBD ,∵AD ∥BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC−3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB 1025-或AB 1025+(舍去), ∴BC =8−2AB =2055+, ∴m =121025-2045+=165.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a.也考查了矩形的性质和折叠的性质. 二、填空题11.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根,∴224440b ac k ∆=-=-=,解得:4k =;故答案为:4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.12.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____.【分析】根据根与系数关系即可得出a+b 和ab 的值再对代数式变形整体代入即可【详解】解:∵ab 是方程的两个实数根∴∴故答案为:【点睛】本题考查根与系数关系熟记根与系数关系的公式是解题关键 解析:22019【分析】根据根与系数关系即可得出a+b 和ab 的值,再对代数式11a b+变形整体代入即可. 【详解】解:∵a ,b 是方程2220190+-=x x 的两个实数根,∴2a b +=-,2019ab =-, ∴112220192019a b a b ab +-+===-. 故答案为:22019.本题考查根与系数关系.熟记根与系数关系的公式是解题关键.13.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.-1【分析】根据方程的根的判别式得出m 的取值范围然后根据根与系数的关系可得α+β=-2(m-1)α•β=m2-m 结合α2+β2=12即可得出关于m 的一元二次方程解之即可得出结论【详解】解:∵关于x 的解析:-1【分析】根据方程的根的判别式,得出m 的取值范围,然后根据根与系数的关系可得α+β=-2(m-1),α•β=m 2-m ,结合α2+β2=12即可得出关于m 的一元二次方程,解之即可得出结论.【详解】解:∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根,∴△=[2(m-1)]2-4×1×(m 2-m )=-4m+4≥0,解得:m≤1.∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根α,β,∴α+β=-2(m-1),α•β=m 2-m ,∴α2+β2=(α+β)2-2α•β=[-2(m-1)]2-2(m 2-m )=12,即m 2-3m-4=0,解得:m=-1或m=4(舍去).故答案为:-1.【点睛】本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系得出关于m 的一元二次方程.14.一元二次方程x 2-10x+25=2(x ﹣5)的解为____________.x1=5x2=7【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0∴(x ﹣5)(x ﹣7)=0则x ﹣5=0或x ﹣7=0解得x1=5x2=7故答解析:x 1=5,x 2=7【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0,∴(x ﹣5)(x ﹣7)=0,则x ﹣5=0或x ﹣7=0,解得x 1=5,x 2=7,故答案为:x 1=5,x 2=7.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.15.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____【分析】把代入已知方程求得然后将其整体代入所求的代数式求值【详解】由题意得:则所以故答案为:【点睛】本题考查了一元二次方程的解的定义解题时注意整体代入数学思想的应用解析:5【分析】把x a =代入已知方程,求得21a a =-,然后将其整体代入所求的代数式求值.【详解】由题意,得:210a a -+=,则21a a =-,所以,()2233231323335a a a a a a -+=--+=-++=. 故答案为:5.【点睛】本题考查了一元二次方程的解的定义.解题时,注意“整体代入”数学思想的应用. 16.如图,将一张矩形纸片ABCD 折叠,使两个顶点A C 、重合,折痕为FG ,若4,8AB BC ==,则线段BF 的长为_________.3【分析】根据折叠性质可得AF=FC 设AF=x则BF=8-x 则根据勾股定理可以得到关于x 的方程解方程得到x 的值后即可得到8-x 即BF 的值【详解】∵将一矩形纸片折叠使两个顶点重合折痕为∴是的垂直平分线解析:3【分析】根据折叠性质可得AF=FC ,设AF=x ,则BF=8-x ,则根据勾股定理可以得到关于x 的方程,解方程得到x 的值后即可得到8-x 即BF 的值 .【详解】∵将一矩形纸片ABCD 折叠,使两个顶点,A C 重合,折痕为FG ,∴FG 是AC 的垂直平分线,∴AF CF =,设AF FC x ==,在Rt ABF ∆中,由勾股定理得:222AB BF AF +=,即()22248x x +-=解得:5x =,即5,853CF BF ==-=,故答案为:3.【点睛】本题考查矩形与折叠的综合运用,综合运用折叠性质、方程思想和勾股定理求解是解题关键.17.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.18.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键19.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场)一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜__场11【分析】设中国队在本届世界杯比赛中连胜x 场则共有(x+1)支队伍参加比赛根据一共比赛66场即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】设中国队在本届世界杯比赛中连胜x 场则共有(x解析:11【分析】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,根据一共比赛66场,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,依题意,得:12x(x+1)=66, 整理,得:x 2+x-132=0,解得:x 1=11,x 2=-12(不合题意,舍去).所以,中国队在本届世界杯比赛中连胜11场.故答案为11.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 20.已知a 、b 是方程2320190x x +-=的两根,则24a a b ++的值为________.2016【分析】将x=a 代入可得然后由根与系数之间的关系得到整理即可得到答案【详解】解:由题意可知【点睛】本题考查了一元二次方程的解以及根与系数之间的关系熟练掌握基础知识是解题的关键解析:2016【分析】将x=a 代入2320190x x +-=,可得2320190a a +-=,然后由根与系数之间的关系得到3a b +=-,整理即可得到答案.【详解】解:由题意可知,2320190a a +-=,3a b +=-,232019a a ∴+=,24a a b ∴++23()a a a b =+++20193=-2016=.【点睛】本题考查了一元二次方程的解以及根与系数之间的关系,熟练掌握基础知识是解题的关键.三、解答题21.若a 为方程2(16x =的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.解析:a+b= 5【分析】先求出2(16x =的根4x ,由a 为方程2(16x =的一个正根,得4a =+,再求22113y y -+=的根=1y ±b 为方程22113y y -+=的一个负根,得1b =+a b 即可.【详解】2(16x -=,4x -=±,4x ,a 为方程2(16x =的一个正根,4a =+,22113y y -+=,()2113y -=,1y -==1y ±b 为方程22113y y -+=的一个负根,1b =415a b +=+=.【点睛】本题考查一元二次方程的解法,会比较方程根的正负与大小,掌握一元二次方程的解法是解题关键.22.5月10日,重庆正式启动“加快发展直播带货行动计划”,以推动直播带货和“网红经济”发展,已知云阳桃片糕每盒12元,仙女山红茶每盒50元,第一次直播期间,共卖出云阳桃片糕和仙女山红茶共计2000盒.(1)若卖出桃片糕和红茶的总销售额不低于54400元,则至少卖出仙女山红茶多少盒? (2)第一次直播结束,为了回馈顾客,在第二次直播期向,桃片糕每盒降价10%3a ,红茶每盒降价4a %,桃片糕数量在(1)问最多的数量下增加6a %,红茶数量在(1)问最少的数量下增加4a %,最终第二次直播总销售额比第一次直播的最低销售额54400元少80a元,求a 的值.解析:(1)至少卖出仙女山红茶800盒;(2)a 的值为5.【分析】(1)设卖出仙女山红茶x 盒,则卖出桃片糕(2000-x )盒,由题意得关于x 的不等式,求解即可;(2)根据(1)的结果得出桃片糕最多卖出的盒数,根据题意得出关于x 的方程,解方程即可.【详解】解:(1)设卖出仙女山红茶x 盒,则卖出桃片糕(2000-x )盒,由题意得:50x+12(2000-x )≥54400,解得:x≥800,∴x 的最小值是800,∴至少卖出仙女山红茶800盒;(2)∵(1)中最少卖出仙女山红茶800盒,∴桃片糕最多卖出的盒数为:2000-800=1200(盒).由题意得:12×(110%3a -)×1200×(1+6a%)+50(1-4a%)×800×(1+4a%)=54400-80a , 解得:a 1=0(舍去),a 2=5.∴a 的值为5.【点睛】 本题考查了一元一次不等式和一元二次方程在实际问题中的应用,理清题中的数量关系并正确列式是解题的关键.23.某商场销售一批衬衫,每件进价是120元,当每件衬衫售价为160元时,平均每天可售出20件,为了扩大销售,尽快清库,增加盈利,商场经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)当每件衬衫降价5元时,每天可销售多少件衬衫?商场获得的日盈利是多少? (2)若商场平均每天想盈利1200元,则每件衬衫应降价多少元?解析:(1)当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元;(2)每件衬衫应降价20元【分析】(1)利用日销售量202=+⨯每件衬衫降低的价格,即可求出每天可销售衬衫的数量,利用日盈利额=销售每件衬衫的利润×日销售量,即可求出日盈利额;(2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫,根据日盈利额=销售每件衬衫的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】(1)根据题意得,降价后,可售出:205230+⨯=(件)∴()1605120301050--⨯=(元)∴当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元; (2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫依题意,得:()()1601202021200x x --+=,∴2302000x x -+=解得:110x =,220x =∵要尽快清库∴20x∴每件衬衫应降价20元.【点睛】本题考查了一元二次方程、有理数混合运算的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.24.解方程:22350x x --= (请用两种方法解方程) 解析:152x =,21x =- 【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴x =∴152x =,21x =-; 方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键. 25.解答下列各题.(1)解方程:2(1)90x --=.(2)已知1x =,求225x x -+的值.解析:(1)14x =,22x =-;(2)6.【分析】(1)方程整理后,直接开平方即可求解;(2)代数式225x x -+配方整理成()214x -+后,把x 的值代入计算即可.【详解】(1)由原方程得2(1)9x -=,∴13x -=±,解得:14x =,22x =-;(2)∵2225(1)4x x x -+=-+,将1x =代入得:原式)2114=-+ 24=+6=.【点睛】本题考查了解一元二次方程-直接开平方法以及求代数式的值,熟练掌握完全平方公式是解本题的关键.26.解下列方程:(1)2320x x +-=(2)()220x x x -+-=解析:(1)1x =,2x =2)11x =-,22x =【分析】(1)直接应用公式法即可求解;(2)利用因式分解法即可求解.【详解】解:(1)2320x x +-=1,2x ==∴1x =,2x (2)()220x x x -+-=因式分解可得:()()120x x +-=,即10x +=或20x -=,解得11x =-,22x =.【点睛】本题考查解一元二次方程,根据方程特点选择合适的求解方法是解题的关键.27.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销,销售量持续走高.在售价不变的基础上,三月底的销售量达到400件,设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顺客,经调查发现,销售单价与月平均销售的关系如下表:解析:(1)25%;(2)35元【分析】(1)由题意可得,1月份的销售量为:256件;设2月份到3月份销售额的月平均增长率,则二月份的销售量为:256(1+x );三月份的销售量为:256(1+x )(1+x ),又知三月份的销售量为:400元,由此等量关系列出方程求出x 的值,即求出平均增长率; (2)利用销量×每件商品的利润=4250求出即可.【详解】解:(1)设二、三这两个月的月平均增长率为x ,根据题意可得:256(1+x )2=400,解得:x 1=14=25%,x 2=94(不合题意舍去). 答:二、三这两个月的月平均增长率为25%; (2)由表可知:该商品每降价1元,销售量增加5件,设当商品降价m 元时,商品获利4250元,根据题意可得:(40-25-m )(400+5m )=4250,解得:m 1=5,m 2=-70(不合题意舍去),40-5=35元.答:销售单价应定为35元,商品获利4250元.【点睛】 此题主要考查了一元二次方程的应用,本题的关键在于理解题意,找到等量关系准确的列出方程是解决问题的关键.28.解方程.(1)230x x +-=. (2)4(21)12x x x -=-.解析:(1)12x x ==.(2)1211,24x x ==-. 【分析】(1)用配方法解即可;(2)先移项然后提取公因式,即可求解.【详解】(1)23+=x x ,∴211344x x ++=+,∴211324x ⎛⎫+= ⎪⎝⎭,∴122x +=±.1211,22x x ∴==-. (2)移项,得4(21)(21)0x x x -+-=, 提取公因式,得(21)(41)0x x -+=, 210x ∴-=或410x +=,1211,24x x ∴==-. 【点睛】本题考查了一元二次方程的解法,掌握基本解法并熟练进行解题是关键.。
八年级数学下册第17章 一元二次方程专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、新冠病毒主要是经呼吸道飞沫传播的,在无防护下传播速度很快.已知有1个人患了新冠肺炎,经过两轮传染后共有169个人患了新冠肺炎,每轮传染中平均一个人传染m 人,则m 的值为( )A .11B .12C .13D .142、下列各项中,方程的两个根互为相反数的是( )A .210x +=B .210x -=C .20x x +=D .20x x -=3、个税改革新政出台后,锦江税务迅速组织干部多形式多途径进行个税专项培训,对个税新政进行讲解和辅导.2019年全年某企业员工享受个税红利共计约200万,2021年全年该企业员工享受个税红利共计约450万,且该企业员工享受个税红利总额的年增长率相同.设该企业员工享受个税红利总额的年增长率为x ,根据题意列方程,则下列方程正确的是( )A .2200450x =B .()24501200x -=C .()22001450x +=D .()()220020012001450x x ++++=4、若一元二次方程ax 2+bx +c =0的系数满足ac <0,则方程根的情况是( )A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .无法判断5、2021年5月11日,国新办发布我国第七次人口普查结果,全国总人口约14.11亿,与第五次、第六次人口普查数据相比较,我国人口总量持续增长.据查,2000年第五次人口普查全国总人口约12.95亿.若设从第五次到第七次人口普查总人口的平均增长率为x ,则可列方程为( )A .12.95(1)14.11+=xB .212.95(12)14.11+=xC .12.95(12)14.11+=xD .212.95(1)14.11+=x6、某公司去年的各项经营中,九月份的营业额为200万,十一月的营业额为950万元,如果平均每月营业额的增长率相同,设这个增长率为x ,则可列方程得( )A .200950x =B .200(1)950x +=C .2200(1)950x +=D .2200200(1)950x ++=7、下列关于x 的一元二次方程中,有两个相等的实数根的方程是( )A .240x +=B .2210x x -+=C .230x x --=D .220x x +=8、用配方法解一元二次方程x 2﹣2x ﹣2021=0,则方程可变形为( )A .(x ﹣2)2=2025B .(x +2)2=2025C .(x ﹣1)2=2022D .(x +1)2=20229、下列方程中,是关于x 的一元二次方程的为( )A .2210x x +=B .x 2-x -1=0C .2320x xy -=D .24-0y =10、一元二次方程2240x x --=的一次项系数是( )A .2xB .2x -C .2D .2-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x 的方程ax 2+bx +c =0(a ≠0)满足a ﹣b +c =0,称此方程为“月亮”方程,已知方程a 2x 2﹣1999ax +1=0(a ≠0)是“月亮”方程,求a 2+1999a +219991a a +的值为 _____. 2、已知关于x 的一元二次方程20(a 0)++=≠ax bx c 有一个根为1,一个根为1-,则=abc ++_________,=a b c -+__________.3、已知关于x 的一元二次方程2x 2﹣4x +k ﹣32=0有两个不相等的实数根,则k 的取值范围是 _____.4、若2x =是关于x 的一元二次方程20x mx +=的一个根,则m 的值为__________.5、2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为10万人,5月份的参观人数增加到12.1万人.设参观人数的月平均增长率为x ,则可列方程为________.三、解答题(5小题,每小题10分,共计50分)1、解方程:x 2+1=4﹣2x .2、(1)101522-⎛⎫-+- ⎪⎝⎭. (2)解方程:()211x x x -=-.3、已知x y ,且19x 2+123xy +19y 2=1985,则正整数n 的值为 ___.4、已知函数y 1=x +1和y 2=x 2+3x +c (c 为常数).(1)若两个函数图像只有一个公共点,求c 的值;(2)点A 在函数y 1的图像上,点B 在函数y 2的图像上,A ,B 两点的横坐标都为m .若A ,B 两点的距离为3,直接写出满足条件的m 值的个数及其对应的c 的取值范围.5、某市为鼓励居民节约用水,对居民用水实行阶梯收费,每户居民用水量每月不超过a 吨时,每吨按0.3a 元缴纳水费;每月超过a 吨时,超过部分每吨按0.4a 元缴纳水费.(1)若a =12,某户居民3月份用水量为22吨,则该用户应缴纳水费多少元?(2)若如表是某户居民4月份和5月份的用水量和缴费情况:根据上表数据,求规定用水量a 的值-参考答案-一、单选题1、B【分析】先求出每轮传染的人数,再根据“经过两轮传染后共有169个人患了新冠”建立方程,解方程即可得.【详解】解:由题意,第一轮会有m 人被传染,第二轮会有(1)m m +人被传染,则1(1)169m m m +++=,解得12m =或14m =-(不符题意,舍去),故选:B .【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键.2、B【分析】设方程的两个根分别为12,x x ,根据互为相反数的定义得到120x x +=,即方程中一次项系数为0,分别解方程210x +=,210x -=,即可得到答案.【详解】解:设方程的两个根分别为12,x x ,∵方程的两个根互为相反数,∴120x x +=,即二次项系数为1的方程中一次项系数为0,排除选项C 、D ,∵210x +=,∴21x =-,方程无解;选项A 不符合题意;∵210x -=,∴121,1x x ==-,故选:B .【点睛】此题考查了互为相反数的定义,解一元二次方程,一元二次方程根与系数的关系正确掌握解一元二次方程的方法是解题的关键.3、C【分析】设该企业员工享受个税红利总额的年增长率为x ,然后根据增长率问题列方程即可.【详解】解:设该企业员工享受个税红利总额的年增长率为x ,由题意得:()2+=.x2001450故选C.【点睛】本题主要考查了一元二次方程方程的应用-增长率问题,审清题意、找准等量关系是解答本题的关键.4、B【分析】判别式Δ=b2﹣4ac,由于ac<0,则﹣ac>0,而b2≥0,于是可判断Δ>0,然后根据判别式的意义判断根的情况.【详解】解:∵关于x的一元二次方程为ax2+bx+c=0,∴Δ=b2﹣4ac,∵ac<0,∴﹣ac>0,又∵b2≥0,∴Δ>0,∴方程有两个不相等的实数根.故选B.【点睛】本题主要考查了一元二次方程根的判别式,解题的关键在于能够熟知一元二次方程根的情况与判别式△的关系:(1)Δ>0,方程有两个不相等的实数根;(2)Δ=0,方程有两个相等的实数根;(3)Δ<0,方程没有实数根.5、D【分析】根据等量关系第五次总人口×(1+x )2=第七次总人口列方程即可.【详解】解:根据题意,得:12.95(1+x )2=14.11,故选:D .【点睛】本题考查一元二次方程的应用,理解题意,找准等量关系列出方程是解答的关键.6、C【分析】根据增长率的意义,列式即可.【详解】设这个增长率为x ,根据题意,得2200(1)950x +=,故选C .【点睛】本题考查了一元二次方程的应用,增长率问题,熟练增长率问题计算特点是解题的关键.7、B【分析】利用一元二次方程的根的判别式,即可求解.【详解】解:A 、2044160∆=-⨯=-< ,所以该方程无实数根,故本选项不符合题意;B 、22410∆=-⨯= ,所以该方程有两个相等实数根,故本选项符合题意;C 、()()21413130∆=--⨯⨯-=> ,所以该方程有两个不相等实数根,故本选项不符合题意;D 、2241040∆=-⨯⨯=> ,所以该方程有两个不相等实数根,故本选项不符合题意;故选:B【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握二次函数()20y ax bx c a =++≠ ,当240b ac ∆=-> 时,方程有两个不相等的实数根;当240b ac ∆=-= 时,方程有两个相等的实数根;当240b ac ∆=-< 时,方程没有实数根是解题的关键.8、C【分析】将方程的常数项移到右边,然后两边同时加上一次项系数一半的平方,变形即可得到结果.【详解】解:2220210x x --=,移项,得x 2−2x =2021,配方,得x 2−2x +1=2022,即(x −1)2=2022,故选:C .【点睛】本题主要考查一元二次方程的配方法,熟练掌握一元二次方程的配方法是解题的关键.9、B【详解】解:A 、分母中含有未知数,不是一元二次方程,故本选项不符合题意;B 、是一元二次方程,故本选项符合题意;C 、含有两个未知数,不是一元二次方程,故本选项不符合题意;D 、不含有未知数x ,不是x 的一元二次方程,故本选项不符合题意;故选:B【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有一个未知数,且未知数的次数最高次数为2的整式方程称为一元二次方程是解题的关键.10、D【分析】根据一元二次方程的一般形式20ax bx c ++=中,bx 叫做方程的一次项,其中b 是一次项系数进行解答.【详解】解:一元二次方程2240x x --=的一次项系数是2-,故选:D .【点睛】本题考查了一元二次方程的一般形式及其各项的概念,掌握一元二次方程的一般形式20ax bx c ++=中,2ax 叫做方程的二次项,其中a 是二次项系数,bx 叫做方程的一次项,其中b 是一次项系数,c 叫做方程的常数项是解题关键.二、填空题1、-2【分析】根据“月亮”方程的定义得出2199910a a ++=,变形为221999111999a a a a +=-+=-,代入计算即可.【详解】解:∵方程22199(910)0a x ax a -+=≠是“月亮”方程,∴2199910a a ++=,∴221999111999a a a a +=-+=-,, ∴2219991999199911121199()9a a a a a a++=-+=-+-=-+- 故答案为-2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边都相等的未知数的值是一元二次方程的解.利用整体代入的方法计算是解决本题的关键.2、0 0【分析】一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;分别将1和﹣1代入方程即可得到两个关系式的值.【详解】将1代入方程得:2110a b c ⨯+⨯+=,即0a b c ++=;将﹣1代入方程得:()()2110a b c ⨯-+⨯-+=,即0a b c +=﹣; 故答案为0,0.【点睛】本题考查了一元二次方程的根,即方程的解的定义,深刻理解根的定义是解题关键.3、72k < 【分析】根据方程的系数结合根的判别式Δ>0,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵关于x 的一元二次方程2x 2﹣4x +k ﹣32=0有两个不相等的实数根, ∴Δ=(﹣4)2﹣4×2×(k ﹣32)>0, 解得:72k <. 故答案为:72k <【点睛】本题考查了一元二次方程根的判别式,掌握一元二次方程根的判别式的符号对应的三种根的情况是解题的关键.(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.4、2-【分析】根据题意把x =2代入20x mx +=,得到关于m 的一元一次方程,解方程即可求出m 的值.【详解】解:把x =2代入20x mx +=,可得420m +=,解得:2m =-.故答案为:2-.【点睛】本题考查一元二次方程的解(根)的意义,以及解一元一次方程,注意掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.5、210(1)12.1x +=【分析】根据题意可得4月份的参观人数为10(1)x +人,则5月份的人数为210(1)x +,根据5月份的参观人数增加到12.1万人,列一元二次方程即可.【详解】根据题意设参观人数的月平均增长率为x ,则可列方程为210(1)12.1x +=故答案为:210(1)12.1x +=【点睛】本题考查了一元二次方程的应用,根据增长率问题列一元二次方程是解题的关键.三、解答题1、122,2x x .【分析】移项后配方即可解题.【详解】解:原方程可化x 2+2x -3=0x 2+2x +4-4-3=02(2)7x +=2x ∴+=122,2x x ∴.【点睛】本题考查解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.2、(1)2;(2)11x =,212x =-【分析】(1)分别计算后,再相加减即可;(2)利用因式分解法解一元二次方程即可.【详解】(1)解:原式251=+-2=(2)解:()()2110x x x -+-=()()1210x x -+=∴11x =,212x =-【点睛】本题考查实数的混合运算,因式分解法解一元二次方程.(1)中能正确化简二次根式和绝对值、计算负整数指数幂和零指数幂是解题关键;(2)中掌握因式分解法解一元二次方程是解题关键. 3、2【分析】先将,x y 进行分母有理化,再分别求出,xy x y +的值,然后将已知等式变形为219()851985x y xy =++,最后代入解一元二次方程即可得.【详解】解:n x y n +==+121x n n n ∴==++-=+-121n n n y =+++=++1xy =, 42x y n =∴++,2219123191985x xy y =++,219()851985x y xy ∴++=,219(42)851985n ∴=++,即260n n +-=,解得2n =或3n =-(与n 为正整数不符,舍去),故答案为:2.【点睛】本题考查了解一元二次方程、二次根式的分母有理化等知识点,熟练掌握二次根式的分母有理化是解题关键.4、(1)c =2;(2)当c >5时,m 有0个;当c =5时,m 有1个;当-1<c <5时,m 有2个;当c =-1时,m 有3个;当c <-1时,m 有4个【分析】(1)只需求出y 1=y 2时对应一元二次方程有两个相等的实数根的c 值即可;(2)根据题意,AB =|m 2+2m +c -1|=3,分m 2+2m +c -1>0和m 2+2m +c -1<0两种情况,利用一元二次方程根的判别式与根的关系求解即可.【详解】解:(1)根据题意,若两个函数图像只有一个公共点,则方程x 2+3x +c =x +1有两个相等的实数根,∴△=b 2-4ac =22-4(c -1)=0,∴c =2;(2)由题意,A(m,m+1),B(m,m2+3m+c)∴AB=|m2+3m+c-m-1|=|m2+2m+c-1|=3,①当m2+2m+c-1>0时,m2+2m+c-1=3,即m2+2m+c-4=0,△=22-4(c-4)=20-4c,令△=20-4c=0,解得:c=5,∴当c<5时,△>0,方程有两个不相等的实数根,即m有2个;当c=5时,△=0,方程有两个相等的实数根,即m有1个;当c>5时,△<0,方程无实数根,即m有0个;②当m2+2m+c-1<0时,m2+2m+c-1=-3,即m2+2m+c+2=0,△=22-4(c+2)=-4c-4,令△=-4c-4=0,解得:c=-1,∴当c<-1时,△>0,方程有两个不相等的实数根,即m有2个;当c=-1时,△=0,方程有两个相等的实数根,即m有1个;当c>-1时,△<0,方程无实数根,即m有0个;综上,当c>5时,m有0个;当c=5时,m有1个;当-1<c<5时,m有2个;当c=-1时,m有3个;当c<-1时,m有4个.【点睛】本题考查函数图象上点的坐标特征、一元二次方程根的判别式与根的关系、坐标与图形,解答的关键是熟练掌握一元二次方程根的判别式与根的关系:△>0,方程有两个不相等的实数根,△=0,方程有两个相等的实数根,△<0,方程无实数根.5、(1)91.2;(2)10【分析】(1)根据题意得:该用户3月份用水量超过a 吨,然后根据“用水量每月不超过a 吨时,每吨按0.3a 元缴纳水费;每月超过a 吨时,超过部分每吨按0.4a 元缴纳水费”,即可求解;(2)若18a > ,可得22620183a =< ,从而得到18a < ,再由“用水量每月不超过a 吨时,每吨按0.3a 元缴纳水费;每月超过a 吨时,超过部分每吨按0.4a 元缴纳水费”,列出方程,即可求解.【详解】解:(1)根据题意得:该用户3月份用水量超过a 吨,()20.3120.412221291.2⨯+⨯⨯-= 元;(2)若18a > ,有20.362a = ,解得:22620183a =< ,即18a < ,不合题意,舍去, ∴18a < ,根据题意得:()20.30.41862a a a +-= ,解得:1210,62a a == (舍去),答:规定用水量a 的值为10吨.【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.。
《一元二次方程》知识梳理及经典例题【知识梳理】考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
(2)一般表达式:ax2+bx+c=0(a≠0)⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;考点三、解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型一、直接开方法:x2=m(m≥0),⇒x=±√m对于(x+a)2=m,(ax+m)2=(bx+n)2等形式均适用直接开方法类型二、因式分解法:(x−x1)(x−x2)=0⇒x=x1,或x=x2方程特点:左边可以分解为两个一次因式的积,右边为“0”,方程形式:如(ax+m)2=(bx+n)2,(x+a)(x+b)=(x+a)(x+c),x2+2ax+a2=0类型三、配方法ax2+bx+c=0(a≠0)⇒(x+b2a )2=b2−4ac4a2在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
类型四、公式法⑴条件:(a≠0,且b2−4ac≥0)⑵公式:x=−b±√b2−4ac2a,(a≠0,且b2−4ac≥0)类型五、“降次思想”的应用⑴求代数式的值;⑵解二元二次方程组。
.考点四、根的判别式b2−4ac根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。
考点五、应用解答题⑴“握手”问题;⑵“利率”问题;⑶“几何”问题;⑷“最值”型问题;⑸“图表”类问题考点六、根与系数的关系⑴前提:对于ax2+bx+c=0而言,当满足①a≠0、②Δ≥0时,才能用韦达定理。
⑵主要内容:x1+x2=−ba ,x1x2=ca⑶应用:整体代入求值。
考点07.一元二次方程(精练)限时检测1:最新各地模拟试题(40分钟)1.(2023·辽宁抚顺·统考一模)若1x =是关于x 的一元二次方程220x ax b ++=的解,则24a b +的值等于()A .-2B .-3C .-1D .-6【答案】A【分析】将x =1代入原方程即可求出答案.【详解】解:将x =1代入原方程可得:1+a +2b =0,∴a +2b =-1,∴24a b +=2(a +2b )=2×(-1)=-2,故选:A .【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程的解的概念,本题属基础题型.2.(2023·湖北鄂州市·校考模拟预测)关于x 的一元二次方程240x x m -+=的两实数根分别为1x 、2x ,且1235x x +=,则m 的值为()A .74B .75C .76D .04.(2023·湖北·校联考一模)如果方程()2(1)2+=0x x x m --的三根可作为一个三角形的三边之长,则实数m的取值范围是()A .01m B .34m C .314m D .3<14m4.(2023·安徽·校考模拟预测)若方程20(a 0)++=≠ax bx c 中,,,a b c 满足0a b c ++=和420a b c -+=,则方程的根是()A .1,2-B .1,0-C .1,0D .无法确定【答案】A【分析】根据一元二次方程的根的定义,将未知数的值代入方程,计算后即可得出结论.【详解】解:∵20(a 0)++=≠ax bx c ,把1x =代入得:0a b c ++=,即方程的一个解是1x =,把2x =-代入得:420a b c -+=,即方程的一个解是2x =-;故选:A .【点睛】本题考查了方程的解的定义,掌握方程的解的定义并能准确利用定义进行判断是解题的关键.5.(2023·浙江杭州·校联考一模)若关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“2倍根方程”,以下说法不正确的是()A .方程x 2-3x +2=0是2倍根方程B .若关于x 的方程(x -2)(mx +n )=0是2倍根方程,则m +n =0C .若m +n =0且m ≠0,则关于x 的方程(x -2)(mx +n )=0是2倍根方程D .若2m +n =0且m ≠0,则关于x 的方程x 2+(m -n )x -mn =0是2倍根方程6.(2023春·江苏南京·九年级专题练习)设1x ,2x 是关于x 的一元二次方程2x x n mx ++=的两个实数根.若120x x <<,则()A .1,0m n >⎧⎨>⎩B .1,0m n >⎧⎨<⎩C .1,0m n <⎧⎨>⎩D .1,0m n <⎧⎨<⎩【详解】解:依题意得:()23201405x +=,故选:B .【点睛】此题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题关键.8.(2023·山东·统考三模)新定义:关于x 的一元二次方程a 1(x ﹣m )2+k =0与a 2(x ﹣m )2+k =0称为“同族二次方程”.如2(x ﹣3)2+4=0与3(x ﹣3)2+4=0是“同族二次方程”.现有关于x 的一元二次方程2(x ﹣1)2+1=0与(a +2)x 2+(b ﹣4)x +8=0是“同族二次方程”,那么代数式ax 2+bx +2026能取的最小值是()A .2020B .2021C .2023D .201810.(2023·广东·校考模拟预测)关于x 的方程263x x k x -++=-有两个解,则k 的取值范围是()A .k >﹣9B .k ≤3C .﹣9<k <6D .k 384->∵原方程有两个解,∴方程290t t k +--=有一正根和负根,∴1290,t t k =--< 解得k >﹣9,∴k 的取值范围是k >﹣9.故选:A .【点睛】本题考查的是一元二次方程的根的判别式,根与系数的关系,由原方程有两个解得到方程290t t k +--=有一个正根与一个负根是解本题的关键.11.(2023·四川绵阳·二模)已知实数,m n 满足22220,220m am n an -+=-+=.若m n ≠,且4m n +≥,则()()2211m n -+-的最小值是()A .6B .3-C .3D .0【答案】A 【分析】根据一元二次方程根与系数的关系得出2,2m n a mn +==,将代数式化简,然后整体代入求解即可【详解】解:∵实数,m n 满足22220,220m am n an -+=-+=,∴m 、n 是方程2220x ax -+=的两个根,∴2,2m n a mn +==,∴()()2211m n -+-222121m m n n =-++-+()()2222m n mn m n =+--++24442a a =--+()2213a =--∵m n ≠,且4m n +≥,∴()()2211m n -+-的最小值是()2413936--=-=,故选:A .【点睛】题目主要考查一元二次方程根与系数的关系,完全平方公式及求代数式的值,熟练掌握根与系数的关系是解题关键.12.(2023·浙江台州·统考二模)已知关于x 的一元二次方程20ax bx c ++=(a ,b ,c 为常数,且0a ≠),此方程的解为12x =,23x =.则关于x 的一元二次方程2930ax bx c -+=的解为______.【答案】23-或1-##1-或23-13.(2023·浙江·校考模拟预测)已知实数m ,n 满足21m n -=,则代数式22242m n m ++-的最小值等于_____.【答案】13-【分析】由21m n -=可得21,n m =-再代入22242m n m ++-,再利用配方法配方,从而可得答案.【详解】解: 21m n -=,21,n m \=-()222242=2142m n m m m m ∴++-+-+-264m m =+-()231313,m =+-³-所以22242m n m ++-的最小值是13,-故答案为:13-【点睛】本题考查的是代数式的最值,配方法的应用,熟练的运用配方法求解代数式的最值是解本题关键.14.(2023·广东九年级课时练习)将关于x 的一元二次方程20x px q -+=变形为2x px q =-,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如()32x x x x px q =⋅=-= ,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:210x x --=,且x >0,则4323x x x -+的值为______.15.(2023·浙江·校考模拟预测)小丽在解一个三次方程x 3-2x +1=0时,发现有如下提示:观察方程可以发现有一个根为1,所以原方程可以转化为(x -1)(x 2+bx +c )=0.根据这个提示,请你写出这个方程的所有的解______.1【分析】由(x -1)(x 2+bx +c )=0变形为()()321=0x b x c b x c +-+--,根据一一对应的原则求得b 、c 的值,然后运用因式分解和公式法求解即可.【详解】解:∵(x -1)(x 2+bx +c )=0,∴()()321=0x b x c b x c +-+--,又由题意得:()()33221=1x x x b x c b x c -++-+--,∴1021b c b c -=⎧⎪-=-⎨⎪-=⎩解得:11b c =⎧⎨=-⎩∴()()2110x x x -+-=,∴1=0x -,210x x +-=,∴由求根公式得:11=22x --=,则原方程所有的解为:12-或1,故答案为:12-或1.【点睛】本题主要考查了方程的解的定义和公式法求解一元二次方程,解题关键是根据一一对应的关系求出b 、c 的值.16.(2023·四川泸州·校考一模)喜迎2022年10月16日“二十大”的召开,某公司为了贯彻“发展低碳经济,建设美丽中国”的理念,对其生产设备进行了升级改造,不仅提高了产能,而且大幅降低了碳排放量.已知该公司七月份的产值为200万元,第三季度的产值为720万元,设公司每月产值的平均增长率相同且为x ,则根据题意列出的方程是______.【答案】()()220020012001720x x ++++=【分析】可先表示出八月份的营业额,那么八月份的营业额×(1+增长率)=九月份的营业额,等量关系为:七月份的营业额+八月份的营业额+九月份的营业额=900,把相应数值代入即可求解.【详解】解:∵七月份的营业额为200万元,平均每月的增长率为x ,∴八月份的营业额为()2001x +万元,∴九月份营业额为()22001x +万元,∴可列方程为()()220020012001720x x ++++=,故答案为:()()220020012001720x x ++++=.【点睛】此题考查由实际问题抽象出一元二次方程,掌握求平均变化率的方法是解决问题的关键.注意本题的等量关系为3个月的营业额之和.17.(2023·四川成都·二模)已知m 、n 是方程x 2+2019x ﹣2=0的两个根,则(m 2+2018m ﹣3)(n 2+2020n ﹣1)=__.【答案】2020【分析】由于m 、n 是方程x 2+2019x ﹣2=0的两个实数根,根据根与系数的关系可以得到m +n =﹣2019,mn =﹣2,并且m 2+2019m ﹣2=0,n 2+2019n ﹣2=0,将所求的代数式变形后代入即可求出结果.【详解】解:∵m 、n 是方程x 2+2019x ﹣2=0的两个实数根,【点睛】本题考查了一元二次方程根的判别式,二次函数的性质,熟练掌握二次函数的性质是解题的关键.19.(2023·福建·校考一模)已知关于x 的一元二次方程22(21)0x m x m m -+++=.(1)判断这个一元二次方程的根的情况.(2)若等腰三角形的一边长为3,另两边的长恰好是这个方程的两个根,求这个等腰三角形的周长.【答案】(1)一元二次方程有两个不相等的实数根(2)8或10【分析】(1)求出判别式的符号,进行判断即可;(2)根据方程有两个不相等的实数根,得到3是等腰三角形的腰长,是方程的一个根,进行求解即可.【详解】(1)解:()()2224214b ac m m m ∆=-=-+-+⎡⎤⎣⎦2244144m m m m =++--10=>;∴一元二次方程有两个不相等的实数根.(2)解:∵一元二次方程有两个不相等的实数根,∴3是腰长,3x =是方程22(21)0x m x m m -+++=的一个根,∴2233(21)0m m m -+++=,整理,得:2560m m -+=,解得:2m =或3m =,当2m =时,2560x x -+=,解得122,3x x ==,此时等腰三角形的三边长:3,3,2,周长3328=++=;当3m =时,27120x x -+=,解得124,3x x ==,此时等腰三角形的三边长:3,3,4,周长33410=++=.【点睛】本题考查一元二次方程的判别式与根的个数的关系,以及一元二次方程与几何的综合应用.熟练掌握一元二次方程的判别式与根的个数的关系,一元二次方程的解的定义,是解题的关键.20.(2023.广西九年级期中)某超市经营款新电动玩具进货单价是15元.在1个月的试销阶段,售价是20元,销售量是200件.根据市场调查,销售单价若每再涨1元,1个月就会少售出5件.(1)若商店在1个月获得了2250元销售利润,求这款玩具销售单价定为多少元时,顾客更容易接受?(2)若玩具生产厂家规定销售单价不低于22元,且超市每月要完成不少于180件的销售任务,设销售单价为y (y 为正整数)元,求该超市销售这款玩具有哪几种方案?哪一种方案利润最高?【答案】(1)30元;(2)有三种销售方案:方案一:销售价为22元;方案二:销售价为23元;方案三,销售价为24元,第三种方案利润最大.【分析】(1)根据题意,可以列出相应的一元二次方程,再根据考虑顾客更容易接受的价格,即可得到这款玩具的销售单价;(2)根据题意可以得到利润与销售单价的函数关系,再根据玩具生产厂家规定销售单价不低于22元,且超市每月要完成不少于180件的销售任务,可以得到单价的取值范围,再根据销售单价为整数,计算每种方案的实际利润,选取其中利润最大的方案即可.【详解】解:(1)设销售单价为x 元(20x >),(15)[2005(20)]2250x x ---=,解得,130x =,245x =,3045<,∴销售单价定为30元时,顾客更容易接受;(2)由题意得,222005(20)180y y ≥⎧⎨--≥⎩解得:2224y ≤≤,因为y 取正整数,所以y 取22或23或24,所以有三种销售方案:方案一:销售价为22元,销售利润为(2215)(300522)1330--=⨯⨯(元),方案二:销售价为23元,销售利润为()23153005231480()-⨯-⨯=(元),方案三,销售价为24元,销售利润为()24153005241620()-⨯-⨯=(元),162014801330>>,第三种方案利润最大.【点睛】本题主要考查二次函数的应用、一元一次不等式组的应用,解答本题的关键是明确题意,利用二次函数的性质解答可以是解答变得简捷.【答案】(1)1米;(2)①21251682a a -++;②14a =.【分析】(1)设小道进出口的宽度为x 米,然后利用其种植花草的面积为(2)①先用a 表示出四个直角三角形的面积,从而表示出剩余花草区域的面积;22.(2023·湖南长沙·校考三模)已知关于x 的一元二次方程20ax bx c ++=(a 、b 、c 为常数,且0a ≠),我们规定:若该方程的两根满足122x x =-,则称该方程为“灵粹二次方程”,其中,1x 、2x 称为该“灵粹二次方程”的一对“奋勇向前根”.(1)判断:下列方程中,为“灵粹二次方程”的是________(仅填序号)①23530x x -+=②2280x x +-=③12x x+=-(2)已知关于x 的一元二次方程()22210x t x t t -+++=为“灵粹二次方程”,求:当12x -≤≤时,函数22391y x tx t =+++的最大值.(3)直线3y x =+与直线1y x =-+相交于点A ,并分别与x 轴相交于B 、C 两点,若m 、n 是某“灵粹二次方程”的一对“奋勇向前根”,设D 点坐标为(m ,n ),当点D 位于以A 、B 、C 三点所构成的三角形内部时.①试求出m 的取值范围.②若m 为整数,且“灵粹二次方程”的二次项系数为1,是否存在满足此情况的“灵粹二次方程”?若存在,请直接写出该“灵粹二次方程”;若不存在,请说明理由.限时检测2:最新各地中考真题(40分钟)1.(2022·湖南怀化·中考真题)下列一元二次方程有实数解的是()A.2x2﹣x+1=0B.x2﹣2x+2=0C.x2+3x﹣2=0D.x2+2=0【分析】患流感的人把病毒传染给别人,自己仍然患病,包括在总数中.设每一轮传染中平均每人传染了x 人,则第一轮传染了x 个人,第二轮作为传染源的是(1)x +人,则传染(1)x x +人,依题意列方程:1(1)36x x x +++=.【详解】由题意得:1(1)36x x x +++=,故选:C .【点睛】本题考查的是根据实际问题列一元二次方程.找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.4.(2023年浙江省湖州市中考数学真题)某品牌新能源汽车2020年的销售量为20万辆,随着消费人群的不断增多,该品牌新能源汽车的销售量逐年递增,2022年的销售量比2020年增加了31.2万辆.如果设从2020年到2022年该品牌新能源汽车销售量的平均年增长率为x ,那么可列出方程是()A .()201231.2x +=B .()20122031.2x +-=C .()220131.2x +=D .()22012031.2x +-=【答案】D【分析】设年平均增长率为x ,根据2020年销量为20万辆,到2022年销量增加了31.2万辆列方程即可.【详解】解:设年平均增长率为x ,由题意得()22012031.2x +-=,故选:D .【点睛】本题考查一元二次方程的应用—增长率问题,准确理解题意,熟练掌握知识点是解题的关键.5.(2022·山东临沂·中考真题)方程22240x x --=的根是()A .16x =,24x =B .16x =,24x =-C .16x =-,24x =D .16x =-,24x =-【答案】B【分析】先把方程的左边分解因式化为()()460,x x +-=从而可得答案.【详解】解:22240x x --=,()()460,x x \+-=40x ∴+=或60,x -=解得:126, 4.x x ==-故选B【点睛】本题考查利用因式分解的方法解一元二次方程,掌握“十字乘法分解因式”是解本题的关键.7.(2022·宜宾·中考真题)已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为()A .0B .-10C .3D .10【答案】A【分析】根据一元二次方程根与系数关系得出mn =-5,把x =m 代入方程得m 2+2m -5=0,即m 2+2m =5,代入即可求解.【详解】解:∵m 、n 是一元二次方程2250x x +-=的两个根,∴mn =-5,m 2+2m -5=0,∴m2+2m =5,∴22m mn m ++=5-5=10,故选:A .【点睛】本题考查代数式求值,一元二次方程根与系数关系,方程解的意义,根据一元二次方程根与系数关系和方程解的意义得出mn =-5,m 2+2m =5是解题的关键.8.(2022·甘肃武威·中考真题)用配方法解方程x 2-2x =2时,配方后正确的是()A .()213x +=B .()216x +=C .()213x -=D .()216x -=10.(2022·广西贵港·中考真题)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是()A .0,2-B .0,0C .2-,2-D .2-,0【答案】B【分析】直接把2x =-代入方程,可求出m 的值,再解方程,即可求出另一个根.【详解】解:根据题意,∵2x =-是一元二次方程220x x m ++=的一个根,把2x =-代入220x x m ++=,则2(2)2(2)0m -+⨯-+=,解得:0m =;∴220x x +=,∴(2)0x x +=,∴12x =-,0x =,∴方程的另一个根是0x =;故选:B【点睛】本题考查了解一元二次方程,方程的解,解题的关键是掌握解一元二次方程的步骤进行计算.11.(2020·上海中考真题)用换元法解方程21x x ++21x x +=2时,若设21x x +=y ,则原方程可化为关于y 的方程是()A .y 2﹣2y +1=0B .y 2+2y +1=0C .y 2+y +2=0D .y 2+y ﹣2=0【答案】A【分析】方程的两个分式具备倒数关系,设21x x+=y ,则原方程化为y+1y =2,再转化为整式方程y2-2y+1=0即可求解.【详解】把21x x+=y 代入原方程得:y +1y =2,转化为整式方程为y 2﹣2y +1=0.故选:A .【点睛】考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.【分析】利用一元二次方程的解的定义和根与系数的关系,可得23,340a b a a +=-+-=,从而得到234+=a a ,然后代入,即可求解.【详解】解:∵a ,b 是方程2340x x +-=的两根,∴23,340a b a a +=-+-=,∴234+=a a ,∴243a a b ++-233a a a b =+++-()433=+--2=-.故答案为:2-.【点睛】本题主要考查了一元二次方程的解的定义和根与系数的关系,熟练掌握一元二次方程的解的定义和根与系数的关系是解题的关键.13.(2022·湖北荆州·中考真题)一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______.【答案】1【分析】将原方程2430x x -+=变形成与()22x k -=相同的形式,即可求解.【详解】解:2430x x -+=;243101x x -++=+;2441x x -+=;()221x -=∴1k =故答案为:1.【点睛】本题主要考查解一元二次方程中的配方法,掌握配方法的解题步骤是解本题的关键.14.(2022·云南·中考真题)方程2x 2+1=3x 的解为________.【答案】1211,2x x ==【分析】先移项,再利用因式分解法解答,即可求解.【详解】解:移项得:22310x x -+=,∴()()2110x x --=,∴210x -=或10x -=,解得:1211,2x x ==,故答案为:1211,2x x ==.【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.(1)当羊圈的长和宽分别为多少米时,能围成一个面积为(2)羊圈的面积能达到6502m【详解】(1)解:设矩形ABCD 的边m AB x =,则边()7022722BC x x =-+=-m .根据题意,得()722640x x -=.化简,得2363200x x -+=.解得116x =,220x =.当16x =时,722723240x -=-=;当20x =时,722724032x -=-=.答:当羊圈的长为40m ,宽为16m 或长为32m ,宽为20m 时,能围成一个面积为6402m 的羊圈.(2)解:不能,理由如下:由题意,得()722650x x -=.化简,得2363250x x -+=.∵()236432540⨯=--=-<∆,∴一元二次方程没有实数根.∴羊圈的面积不能达到6502m .【点睛】本题考查一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键.19.(2022·湖北宜昌·中考真题)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m ,则5月份再生纸项目月利润达到66万元.求m 的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?【答案】(1)4月份再生纸的产量为500吨(2)m 的值20(3)6月份每吨再生纸的利润是1500元【分析】(1)设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨,然后根据该厂3,4月份共生产再生纸800吨,列出方程求解即可;(2)根据总利润=每一吨再生纸的利润×数量列出方程求解即可;(3)设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,根据总利润=每一吨再生纸的利润×数量列出方程求解即可;【解析】(1)解:设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨,由题意得:()2100800x x +-=,解得:300x =,∴2100500x -=,答:4月份再生纸的产量为500吨;(2)解:由题意得:500(1%)10001%6600002m m ⎛⎫+⋅+= ⎪⎝⎭,解得:%20%m =或% 3.2m =-(不合题意,舍去)∴20m =,∴m 的值20;(3)解:设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,21200(1)(1)(125%)1200(1)y a y y a +⋅+=+⨯+⋅∴()2120011500y +=答:6月份每吨再生纸的利润是1500元.【点睛】本题主要考查了一元一次方程的应用,一元二次方程的应用,正确理解题意,列出方程求解是解题的关键.20.(2022·湖北黄石·统考中考真题)阅读材料,解答问题:材料1:为了解方程()22213360x x -+=,如果我们把2x 看作一个整体,然后设2y x =,则原方程可化为213360y y -+=,经过运算,原方程的解为1,22x =±,3,43x =±.我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数m ,n 满足210m m --=,210n n --=,且m n ≠,显然m ,n 是方程210x x --=的两个不相等的实数根,由韦达定理可知1m n +=,1mn =-.根据上述材料,解决以下问题:(1)直接应用:方程42560x x -+=的解为_______________________;(2)间接应用:已知实数a ,b 满足:422710a a -+=,422710b b -+=且a b ¹,求44a b +的值;(3)拓展应用:已知实数x ,y 满足:42117m m +=,27n n -=且0n >,求241n m+的值.。
专题21.2 一元二次方程(基础篇)(专项练习)一、单选题知识点一、一元二次方程的定义1.下列是关于x 的一元二次方程的是( ) A .212021x x-= B .()60x x += C .250a x -= D .342x x -=2.下列方程,是一元二次方程的是( )A 0B .213x x-=1 C .x 2+y 2=1 D .x 2=13.关于x 的方程22(1)20m x x -+-=是一元二次方程,则m 满足( ) A .1m ≠B .1m ≠-C .1m ≠±D .m 为任意实数4.若方程(m ﹣2)x |m |+3mx +1=0是关于x 的一元二次方程,则m 的值为( ) A .±2B .+2C .﹣2D .以上都不对知识点二、一元二次方程的一般形式5.一元二次方程2250x x +-=的二次项系数、一次项系数、常数项分别是( ) A .2,1,5B .2,1,-5C .2,0,-5D .2,0,56.关于x 的方程2324x x -=中,二次项系数和一次项系数分别是( ) A .3,-2B .3,4C .3,-4D .-4,-27.把一元二次方程(x 1)3x 2x +=+化为一般形式,其中正确的是( ) A .2420x x ++= B .2220x x +=-C .2220x x --=D .222x x -=8.把一元二次方程(()2210x x x +-=化成一般形式,正确的是( ) A .25440x x +=- B .25440x x --= C .25210x x -+=D .25460x x -+=知识点三、一元二次方程的解9.若关于x 的一元二次方程260x ax -+=的一个根是2,则a 的值为( ) A .2B .3C .12D .510.已知a 是方程22350x x --=的一个解,则246a a -+的值为( ) A .10B .-10C .2D .-4011.若0x =是关于x 的一元二次方程22(1)210m x x m -++-=的解,则m 的值为( ) A .1m =±B .0m =C .1m =D .1m =-12.a 是方程x 2+x ﹣1=0的一个根,则代数式﹣3a 2﹣3a +2021的值是( ) A .2018 B .2019C .2021D .2022二、填空题知识点一、一元二次方程的定义13.只含有__________个未知数,并且未知数的__________次数是2的方程,叫做一元二次方程,它的一般形式为____________________.14.下面三个方程:x ²+2x -4=0,x ²-75x +350=0,x ²-x =56,它们有什么共同点? 特点:(1)都是_________方程; (2)只含有______个未知数; (3)未知数的最高次数是______.15.若关于x 的一元二次方程(a - 1)x 2 - ax + a 2 = 1的一个根为0.则a = ________. 16.若关于x 的方程()2230mm x x ---=是一元二次方程,则m =______.知识点二、一元二次方程的一般形式17.一元二次方程(2)(34)5x x +-=化为一般形式为___________________________,它的二次项系数是_______,一次项系数是_______,常数项是_______.18.方程23810x x -+=的一次项系数是______.19.一元二次方程5x 2– 3x = 4+2x 化为一般形式是_______. 20.把一元二次方程()212x +=化为一般形式为______.知识点三、一元二次方程的解21.已知关于x 的方程20x bx a ++=有一个根是1,则代数式a b +的值是___. 22.若x =-1是方程20ax bx c -+=的根,则a +b +c +2022的值为______. 23.若m 是方程22310x x --=的一个根,则2462021m m -+的值为_____.24 x =1的根是_________. 三、解答题25.已知关于x 的方程(2k +1)x 2+4kx +k -1=0,问: (1)k 为何值时,此方程是一元一次方程?(2)k 为何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数及常数项.26.把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项:27.已知m 是方程x 2﹣x ﹣1=0的一个根,代数式5m 2﹣5m +2016的值.28.(1)关于x 的一元二次方程22(1)10a x x a -++-=的一个根为0,则求a 的值; (2)如果关于x 的一元二次方程20(a 0)++=≠ax bx c 中的二次项系数与常数项之和等于一次项系数,求证:1-必是该方程的一个根.29.阅读理解:定义:如果关于x 的方程21110a x b x c ++=(a 1≠0,a 1、b 1、c 1是常数)与22220a xb xc ++=(a2≠0,a2、b2、c2是常数),其中方程中的二次项系数、一次项系数、常数项分别满足a1+a2=0,b1=b2,c1+c2=0,则这两个方程互为“对称方程”.比如:求方程2x2﹣3x+1=0的“对称方程”,这样思考:由方程2x2﹣3x+1=0可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个方程的“对称方程”.请用以上方法解决下面问题:(1)填空:写出方程x2﹣4x+3=0的“对称方程”是.(2)关于x方程5x2+(m﹣1)x﹣n=0与﹣5x2﹣x=1互为“对称方程”,求(m+n)2的值.参考答案1.B【分析】根据一元二次方程的概念判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.解:A .是分式方程,不是一元二次方程,不符合题意;B .是一元二次方程,符合题意;C .当a =0时,不是一元二次方程,不符合题意;D .是一元三次方程,不符合题意; 故选:B .【点拨】本题考查的是一元二次方程的概念,掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解题的关键.2.D 【分析】根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可.解:A .不是一元二次方程,故此选项不符合题意;B .是分式方程,故此选项不符合题意;C .是二元二次方程,故此选项不符合题意;D .20x =是一元二次方程,故此选项符合题意. 故选:D .【点拨】本题考查了一元二次方程的定义,解题的关键是掌握一元二次方程包括三点:①是整式方程,①只含有一个未知数,①所含未知数的项的最高次数是2;一元二次方程的一般形式是20(a 0)++=≠ax bx c .3.C 【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程可得m 2-1≠0,再解即可.解:由题意得:m 2-1≠0, 解得:m ≠±1, 故选:C .【点拨】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式,方程中如果没有分母,那么分母中无未知数;①只含有一个未知数;①未知数的最高次数是2(二次项系数不为0).4.C【分析】根据一元二次方程的定义,一元二次方程必须满足三个条件:未知数的最高次数是2;二次项系数不为0;是整式方程.由这两个条件得到相应的关系式,再求解即可.解:由题意,得|m|=2,且m﹣2≠0,解得m=﹣2,故选:C.【点拨】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解题的关键.5.B【分析】根据一元二次方程的基本概念,找出一元二次方程的二次项系数,一次项系数,以及常数项即可.解:①一元二次方程2x2+x-5=0,①二次项系数、一次项系数、常数项分别是2、1、-5,故选:B.【点拨】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a≠0).6.C【分析】根据一元二次方程的概念,方程的解的概念即可求求解.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.解:2x x--=3420-=,化为一般式为2324x x则二次项系数和一次项系数分别是3,4-故选C【点拨】本题考查了一元二次方程的一般形式,掌握一元二次方程的定义是解题的关键. 7.C 【分析】方程移项变形即可得到结果. 解:①(x 1)3x 2x +=+,①232x xx,①2220x x --=, 故选:C .【点拨】此题主要考查了一元二次方程的一般形式,正确变形是解题关键. 8.B 【分析】直接利用完全平方公式以及平方差公式去括号,进而得出答案.解:(()2210x x x +-=, 去括号得:x 2-5+4x 2-4x +1=0, 整理得:5x 2-4x -4=0. 故选:B .【点拨】此题主要考查了一元二次方程的一般形式,正确应用乘法公式是解题关键. 9.D 【分析】由题意将2x =代入原方程求解即可.解:关于x 的一元二次方程260x ax -+=的一个根是222260a ∴-+=解得5a = 故选:D .【点拨】本题考查了一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,熟练掌握知识点是解题的关键.10.B 【分析】将a 代入方程得到2235a a -=,再将其整体代入所求代数式即可得解.解:①a是方程的一个解,①有2a a235-=,--=,即,22350a a①22-+=--=-⨯=-,462(23)2510a a a a故选:B.【点拨】本题考查了一元二次方程的解的定义,此类题的特点是利用方程的解的定义找到相等关系,再将其整体代入所求代数式,即可快速作答,盲目解一元二次方程求a值再代入计算,此方法耗时费力不可取.11.D【分析】根据一元二次方程的解的定义、一元二次方程的定义求解,把x=0代入一元二次方程即可得出m的值.解:把x=0代入方程(m﹣1)x2+2x+m2﹣1=0,得m2﹣1=0,解得:m=±1,①m﹣1≠0,①m≠1,m=﹣1,故选:D.【点拨】本题考查了一元二次方程的解的定义、一元二次方程的定义,解题的关键是运用一元二次方程解的定义易得出m的值,但不能忽视一元二次方程成立的条件m﹣1≠0.12.A【分析】利用一元二次方程根的定义得到a2+a=1,再把﹣3a2﹣3a+2021变形为﹣3(a2+a)+2021,然后利用整体代入的方法计算.解:①a是方程x2+x-1=0的根,①a2+a-1=0,①a2+a=1;①223320213()20213120212018--+=-++=-⨯+=;a a a a故选:A.【点拨】本题考查了一元二次方程的解的问题,解题的关键是利用整体代换的思想求解.13. 一 最高 20(a 0)++=≠ax bx c 【分析】根据一元二次方程的定义和标准形式进行填空即可.解:根据一元二次方程的定义可知只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元一次方程.,它的一般形式是ax 2+bx +c =0(a ≠0).故答案为:一;最高;ax 2+bx +c =0(a ≠0).【点拨】本题考查了一元二次方程的定义和它的标准形式,熟练一元一次方程的定义是解题的关键.14. 整式 一 2 略 15.-1 【分析】根据一元二次方程的定义及根的意义,得到21,10a a =-≠,求解即可. 解:关于x 的一元二次方程(a - 1)x 2 - ax + a 2 = 1的一个根为021,10a a ∴=-≠1a ∴=-故答案为:-1.【点拨】本题考查了一元二次方程的定义及一元二次方程的解,熟练掌握知识点是解题的关键.16.﹣2 【分析】本题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:未知数的最高次数是2;二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.解:由题意,得2m =且20m -≠,解得2m =-, 故答案是:2-.【点拨】本题主要考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是()200.ax bx c a ++=≠特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.17. 232130x x +-= 3 2 13- 【分析】首先利用完全平方公式进行计算,然后再把5移到等号左边,合并同类项即可得到232130x x +-=,然后再确定二次项、一次项系数和常数项.解:方程()()2345x x +-=整理为一般形式为232130x x +-=,①二次项系数是3,一次项系数是2,常数项是13-, 故答案为:232130x x +-=,3,2,13-.【点拨】此题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式是:20ax bx c ++=(a ,b ,c 是常数且a ≠0)特别要注意a ≠0的条件.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.18.-8 【分析】根据一元二次方程的一般形式解答.解:方程23810x x -+=的一次项是8x -,其系数是8-. 故答案是:8-.【点拨】本题考查一元二次方程的一般式,解题的关键是掌握一次项系数的定义. 19.5x 2– 5x -4=0 【分析】根据一元二次方程一般式的形式化简即可. 解:5x 2– 3x = 4+2x 化为一般式为5x 2– 5x -4=0, 故答案为:5x 2– 5x -4=0.【点拨】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是20ax bx c ++=.20.2210x x +-= 【分析】先展开完全平方式、再移项,变成一般形式即可. 解:()212x +=,即2212x x ++=即2210x x +-=故答案为:2210x x +-=【点拨】考查了一元二次方程的一般形式.一元二次方程的一般形式为:ax 2+bx +c =0(a ≠0)21.-1【分析】把1x =代入原方程,可得10,b a 从而可得答案. 解: 关于x 的方程20x bx a ++=有一个根是1,10,b a1,a b ∴+=-故答案为:1-【点拨】本题考查的是一元二次方程的根的含义,掌握“一元二次方程的根使方程的左右两边相等”是解本题的关键.22.2022【分析】根据x =-1是方程ax 2-bx +c =0根,得到a +b +c =0,整体代入即可求得答案.解:①x =-1是方程ax 2-bx +c =0根,①a +b +c =0,①原式=0+2022=2022,故答案为:2022.【点拨】此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式的值.`23.2023【分析】由题意知22310m m --=,即2231m m -=,再将2462021m m -+整理并将2231m m -=整体代入计算求解即可.解:22310m m --=,即2231m m -=,①2462021m m -+()22232021m m =-+ 212021=⨯+=2023.故答案为:2023.【点拨】本题考查了一元二次方程的解及代数式的求值的知识,解题的关键在于理解一元二次方程的解的定义.24.2x =【分析】先对已知方程进行变形.然后结合二次方程即可求解.1x =+,两边平方得2721x x x +=++,即260x x +-=,解得3x =-或2x =,根据二次根式的性质可得1x ≥-,所以原方程的根是2x =.故答案为:2x =.【点拨】本题主要考察了二次根式的性质以及含有根式方程的一般解法.二次根式的性0(0)a ≥,含有根式方程的一般解法:先移项,然后两边同时平方,再利用一元二次方程的知识求解即可.25.(1)12k =-;(2)12k ≠-,二次项系数为21k +,一次项系数为4k ,常数项为1k - 【分析】(1)根据一元一次方程的定义,只含有一个未知数,且未知数的最高次为1的整式方程进行求解即可;(2)根据一元二次方程的定义,只含有一个未知数,且未知数的最高次为2的整式方程进行求解即可;解:(1)①()221410k x kx k +++-=是关于x 的一元一次方程,①21040k k +=⎧⎨≠⎩,解得12k =- (2)①()221410k x kx k +++-=是关于x 的一元二次方程,①210k +≠即12k ≠-, ①这个一元二次方程的二次项系数为21k +,一次项系数为4k ,常数项为1k -.【点拨】本题主要考查了一元一次方程和一元二次方程的定义,一元二次方程的一般形式,解题的关键在于能够熟练掌握一元一次方程和一元二次方程的定义.26.见分析【分析】根据一元二次方程的一般形式:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0),ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.解:把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.【点拨】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.27.2021【分析】根据一元二次方程解的定义,将m 代入210x x --=中,可得21m m -=,将2552016m m -+变形求解即可.解:①m 是方程x 2﹣x ﹣1=0的一个根①210m m --=①21m m -=①2552016m m -+=()252016m m -+ =52016+2021=【点拨】本题考查一元二次方程解的定义,以及代数式化简求值.根据定义解题关键.28.(1)1a =-;(2)证明见分析.【分析】(1)把x =0代入方程得到a 2-1=0,解得a =±1,然后利用一元二次方程的定义确定满足条件的a 的值.(2)由题意得到a +c =b ,变形后得到a -b +c =0,可得出x =-1是方程的根.解:(1)①一元二次方程22(1)10a x x a -++-=的一个根为0,①a -1≠0且a 2-1=0,①a=-1.(2)证明:根据题意,得:a +c =b ,即a -b +c =0;当x =-1时,ax2+bx +c =a (-1)2+b (-1)+c =a -b +c =0,①-1必是关于x 的一元二次方程ax 2+bx +c =0的一个根.【点拨】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.29.(1)﹣x 2﹣4x ﹣3=0;(2)1【分析】(1)根据对称方程的定义可得答案;(2)由题意得m ﹣1=﹣1,﹣n +(﹣1)=0,再解即可.解:(1)由题意得:方程x 2﹣4x +3=0的“对称方程”是﹣x 2﹣4x ﹣3=0,故答案为:﹣x 2﹣4x ﹣3=0;(2)由﹣5x 2﹣x =1,移项可得:﹣5x 2﹣x ﹣1=0,①方程5x 2+(m ﹣1)x ﹣n =0与﹣5x 2﹣x ﹣1=0为对称方程,①m ﹣1=﹣1,﹣n +(﹣1)=0,解得:m =0,n =﹣1,①(m+n)2=(0﹣1)2=1,答:(m+n)2的值是1.【点拨】此题主要考查了一元二次方程的一般形式,关键是正确理解题意,理解对称方程的定义.。
人教版九年级数学上册《21.1 一元二次方程与公共根、整数根、整体代入》专项练习题-附带答案【例题精讲】【例1】已知关于x 的方程2(1)10x k x k -++-=. (1)试判断该方程根的情况 说明理由;(2)若该方程与方程22(3)60x k x k --+-=有且只有一个公共根 求k 的值. 【解答】解:(1)方程有两个不相等的实数根 理由如下: △222[(1)]41(1)25(1)4k k k k k =-+-⨯⨯-=-+=-+.2(1)0k -2(1)40k ∴-+>即△0>∴无论k 取何值 方程总有两个不相等的实数根.(2)设两个方程的一个公共根为m则()()221102360m k m k m k m k ⎧-++-=⎪⎨--+-=⎪⎩①②②-① 得:2450m m +-= 解得:15m =- 21m =.当5m =-时 有255(1)10k k +++-= 解得:296k =-2929225(3)(5)6066⨯---⨯---=296k ∴=-符合题意;当1m =时 2(1)110m k m k -++-=-≠1m ∴=不符合题意 舍去. k ∴的值为296-. 【例2】关于x 的一元二次方程2(3)30x k x k +++=. (1)求证:方程总有两个实数根;(2)选取一个合适的k 值 使得方程有两个整数根 并求出这两个整数根.【解答】(1)证明:△22(3)12(3)k k k =+-=-2(3)0k -∴方程有两个实数根;(3)解:取2k =时 则35k += 36k = 故方程为2560x x ++= (3)(2)0x x ++=解得2x =-或3x =-.【例3】已知a 是方程2202010x x -+=的一个根.求:(1)2240403a a --的值; (2)代数式22202020191a a a -++的值. 【解答】解:(1)a是方程2202010x x -+=的一个根220201a a ∴=- 220201a a ∴=- 2240403a a ∴-- 2(20201)40403a a =---4040240403a a =--- 5=-;(2)原式2020202012019202011a a a =--+-+11a a =+- 211a a+=-2020111a a -+=-20201=- 2019=.【题组训练】一.公共根(共15小题)1.方程210x ax ++=和20x x a --=有一个公共根 则a 的值是 2 .【解答】解:方程210x ax ++=和20x x a --=有一个公共根 (1)10a x a ∴+++= (1)(1)0a x ∴++=解得 1x =- 当1x =-时 2112a x x =-=+=.故答案是:2.2.若方程20x ax b ++=和20x bx a ++=只有一个公共根 则200()a b +的值是多少?【解答】解:设公共根为0x 则20020000x ax b x bx a ⎧++=⎪⎨++=⎪⎩①②.①-② 得0()(1)0a b x --=当a b =时 两方程完全一样 不合题意; 当01x =时 1a b +=- 则200()1a b +=. 答:200()a b +的值是1.3.若两个方程20x ax b ++=和20x bx a ++=只有一个公共根 则( ) A .a b =B .0a b +=C .1a b +=D .1a b +=-【解答】解:设公共根为0x 则20020000x ax b x bx a ⎧++=⎪⎨++=⎪⎩①②.①-② 得0()(1)0a b x --=当a b =时 方程可能有两个公共根 不合题意; 当01x =时 1a b +=-. 故选:D .4.若关于x 的方程:2230x x --=和210x mx ++=有且只有一个公共根 则m = 2或103- . 【解答】解:解方程2230x x --=得11x =- 23x = 把1x =-代入210x mx ++=得110m -+= 解得2m =;把3x =代入210x mx ++=得9310m ++= 解得103m =- 综上所述 m 的值为2或103-. 故答案为:2或103-. 5.已知三个关于x 的一元二次方程20ax bx c ++= 20bx cx a ++= 20cx ax b ++=恰有一个公共实数根 则222a b c bc ca ab++的值为 3 .【解答】解:设公共实数根为t则20at bt c ++= 20bt ct a ++= 20ct at b ++= 三式相加得2()()0a b c t a b c t a b c ++++++++= 即2()(1)0a b c t t ++++= 因为22131()024t t t ++=++>所以0a b c ++=所以原式333a b c abc++=223()()a b a ab b c abc+-++=23()[()3]a b a b ab c abc++-+=23(3)c c ab c abc --+=3abcabc= 3=.故答案为3.6.已知关于x 的一元二次方程220x mx ++=与220x x m ++=有一个公共实数根 则m = 3- .【解答】解:220x mx ++=与220x x m ++=有一个公共实数根2222x mx x x m ∴++=++有一个实数根 1x ∴=把1x =代入220x mx ++=得: 3m =-.故答案为:3-.7.有三个方程:①2650x x -+=;②2250x -=;③550(0)ax a b bx a b --+=+≠ 它们的公共根是( ) A .5B .5-C .1D .以上都不是【解答】解:2650x x -+= (5)(1)0x x --= 50x -=或10x -= 15x ∴= 21x =把15x = 21x =代入②③ 5x =能使方程左右相等∴它们的公共根是5故选:A .8.已知关于x 的方程2(1)10x k x k -++-=. (1)试判断该方程根的情况 说明理由;(2)若该方程与方程22(3)60x k x k --+-=有且只有一个公共根 求k 的值. 【解答】解:(1)方程有两个不相等的实数根 理由如下: △222[(1)]41(1)25(1)4k k k k k =-+-⨯⨯-=-+=-+.2(1)0k -2(1)40k ∴-+> 即△0>∴无论k 取何值 方程总有两个不相等的实数根.(2)设两个方程的一个公共根为m则()()221102360m k m k m k m k ⎧-++-=⎪⎨--+-=⎪⎩①②②-① 得:2450m m +-= 解得:15m =- 21m =.当5m =-时 有255(1)10k k +++-= 解得:296k =- 2929225(3)(5)6066⨯---⨯---=296k ∴=-符合题意; 当1m =时 2(1)110m k m k -++-=-≠ 1m ∴=不符合题意 舍去. k ∴的值为296-. 9.已知关于x 的两个一元二次方程:方程①:2(1)(2)102kx k x +++-=;方程②:2(21)230x k x k ++--=.(1)若方程①有两个相等的实数根 求解方程②;(2)若方程①和②中只有一个方程有实数根 请说明此时哪个方程没有实数根; (3)若方程①和②有一个公共根a .求代数式22(42)35a a k a a +-++的值. 【解答】解:(1)方程①有两个相等实数根 102k ∴+≠且△10= 即2(2)4(1)(1)02kk +-+⨯-= 则(2)(4)0k k ++= 解此方程得12k =- 24k =-而20k +≠ 4k ∴=-当4k =-时 方程②变形为:2750x x -+= 解得1x 2x =; (2)△2222(21)4(23)41213(23)40k k k k k =+++=++=++>∴无论k 为何值时 方程②总有实数根方程①、②只有一个方程有实数根∴此时方程①没有实数根(3)设a 是方程①和②的公共根 2(1)(2)102ka k a ∴+++-=③2(21)230a k a k ++--=④由(③-④)2⨯得22(1)44ka k a k =---⑤ 由④得:2(21)23a k a k =-+++⑥ 将⑤、⑥代入 原式2242352(1)44423(21)6955ka ak k a a k a k ak k k a k a =+-++=---+--++++=. 10.已知关于x 的两个一元二次方程: 方程①:2(1)(2)102kx k x +++-=;方程②:2(21)230x k x k ++--=.(1)若方程①有两个相等的实数根 求:k 的值(2)若方程①和②只有一个方程有实数根 请说明此时哪个方程没有实数根. (3)若方程①和②有一个公共根a 求代数式22(42)35a a k a a +-++的值. 【解答】解:(1)方程①有两个相等的实数根 ∴11020k ⎧+≠⎪⎨⎪=⎩ 则2k ≠- △222214(2)4(1)(1)4442682kb ac k k k k k k =-=+-+⨯-=++++=++则(2)(4)0k k ++= 2k ∴=- 4k =- 2k ≠-4k ∴=-;(2)△22222(21)41(23)44181241213(23)40k k k k k k k k =+-⨯⨯--=++++=++=++>∴无论k 为何值时 方程②总有实数根方程①、②只有一个方程有实数根∴此时方程①没有实数根.(3)根据a 是方程①和②的公共根∴2(1)(2)102k a k a +++-=③ 2(21)230a k a k ++--=④∴③2⨯得:2(2)(24)20k a k a +++-=⑤⑤+④得:2(3)(45)25k a k a k +++-=代数式222(42)35(3)(45)25a a k a a k a k a k =+-++=+++-=.故代数式的值为5.11.已知三个关于x 的一元二次方程20ax bx c ++= 20bx cx a ++= 20cx ax b ++=恰有一个公共实数根 则222a b c bc ca ab++的值为( )A .0B .1C .2D .3【解答】解:设0x 是它们的一个公共实数根则2000ax bx c ++= 2000bx cx a ++= 2000cx ax b ++=. 把上面三个式子相加 并整理得200()(1)0a b c x x ++++=.因为22000131()024x x x ++=++>所以0a b c ++=.于是222333333()3()3a b c a b c a b a b ab a b bc ca ab abc abc abc+++-+-+++====故选:D .12.是否存在某个实数m 使得方程220x mx ++=和220x x m ++=有且只有一个公共的实根?如果存在 求出这个实数m 及两方程的公共实根;如果不存在 请说明理由. 【解答】解:假设存在符合条件的实数m 且设这两个方程的公共实数根为a 则 222020a ma a a m ⎧++=⎨++=⎩①②①-② 得(2)(2)0a m m -+-= (2)(1)0m a --= 2m ∴= 或1a =.当2m =时 已知两个方程是同一个方程 且没有实数根 故2m =舍去; 当1a =时 代入②得3m =-把3m =-代入已知方程 求出公共根为1x =. 故实数3m =- 两方程的公共根为1x =.13.关于x 的方程2230x x +-=和22240x x m m +++=有公共根 则m 的值为 1-或3- .【解答】解:设公共解为t根据题意得222230240t t t t m m ⎧+-=⎨+++=⎩①②②-①得2430m m ++= 解得11m =- 23m =-. 故答案为1-或3-.14.若方程210x mx ++=和20x x m ++=有公共根 则常数m 的值是 2- . 【解答】解:设方程210x mx ++=和20x x m ++=的公共根为t 则210t mt ++=① 20t t m ++=②①-②得(1)1m t m -=-如果1m = 那么两个方程均为210x x ++= △2141130=-⨯⨯=-< 不符合题意; 如果1m ≠ 那么1t =把1t =代入① 得110m ++= 解得2m =-. 故常数m 的值为2-. 故答案为:2-.15.方程270x ax ++=和270x x a --=有一个公共根 则a 的值是( ) A .9B .8C .7D .6【解答】解:设该公共根为x b = 由题意可知:270b ab ++= 270b b a --= (7)70a b a ∴+++= 70a +≠ 1b ∴=-1x ∴=-代入270x x a --= 178a =+=故选:B .二.整数根(共15小题)16.关于x 的一元二次方程20x px q ++=有两个同号非零整数根 关于y 的一元二次方程20y qy p ++=也有两个同号非零整数根 则下列说法正确的是( )A .p 是正数 q 是负数B .22(2)(2)8p q -+-<C .q 是正数 p 是负数D .22(2)(2)8p q -+->【解答】解:设方程20x px q ++=的两根为1x 、2x 方程20y qy p ++=的两根为1y 、2y . 关于x 的一元二次方程20x px q ++=有两个同号非零整数根 关于y 的一元二次方程20y qy p ++=也有两个同号非零整数根 120x x q ∴⋅=> 120y y p ⋅=>故选项A 与C 说法均错误 不符合题意;关于x 的一元二次方程20x px q ++=有两个同号非零整数根 关于y 的一元二次方程20y qy p ++=也有两个同号非零整数根 240p q ∴- 240q p -2222(2)(2)44448(p q p q q p p ∴-+-=-++-+>、q 不能同时为2 否则两个方程均无实数根)故选项B 说法错误 不符合题意;选项D 说法正确 符合题意; 故选:D .17.关于x 的方程2(3)30(0)mx m x m +--=≠有两个不相等的正整数根 则整数m 的值为1- .【解答】解:由题意可知:△2(3)4(3)m m =--⨯-2269(3)0m m m =++=+x ∴=1x ∴=或3x m=-由题可知:1m =- 故答案为:1-18.已知:关于x 的一元二次方程2(2)20mx m x -++=. (1)求方程有实数根的实数m 的取值范围;(2)若方程有两个不相等的正整数根 求出此时m 的整数值. 【解答】 解:(1)由题意可知:0m ≠ △2(2)?8m m =+ 244?8m m m =++ 2?44m m =+2(?2)m =∴△0故0m ≠ 方程总有实数根; (2)2(2)20mx m x -++= (1)(2)0x mx ∴--= 1x ∴=或2x m=方程有两个不相等的正整数根 1m ∴=.19.关于x 的一元二次方程2(3)30x k x k +++=. (1)求证:方程总有两个实数根;(2)选取一个合适的k 值 使得方程有两个整数根 并求出这两个整数根. 【解答】(1)证明:△22(3)12(3)k k k =+-=-2(3)0k -∴方程有两个实数根;(3)解:取2k =时 则35k += 36k = 故方程为2560x x ++= (3)(2)0x x ++=解得2x =-或3x =-.20.已知关于x 的一元二次方程220x mx n -+=.(1)若此方程总有两个相等的实数根 求n 的值.(用含m 的代数式表示);(2)当2m =时 此方程有两个不相等的整数根 写出一个满足条件的n 的值 并求此时方程的根.【解答】解:(1)根据题意得△2440m n =-= 所以2n m =;(2)当2m =时 原方程变形为240x x n -+= 方程有两个不相等的根∴△2440n =->即4n <当0n =时 方程变形为240x x -= 方程有两个整数根 即10x = 24x =.21.已知关于x 的一元二次方程2(2)20(0)mx m x m ---=≠. (1)求证:方程一定有实数根;(2)若此方程有两个不相等的整数根 求整数m 的值. 【解答】(1)证明:0m ≠ △2(2)4(2)m m =--⨯- 2448m m m =-++ 244m m =++2(2)0m =+∴方程一定有实数根;(2)2(2)2m m x m-±+=11x ∴= 22x m=-当整数m 取1± 2±时 2x 为整数 方程有两个不相等的整数根∴整数m 为1- 1 2.22.已知关于x 的方程2220x x m ++-=有两个整数根 且m 为正整数 则符合条件的所有正整数的和是( ) A .6B .5C .4D .3【解答】解:根据题意得△224(2)1240m m =--=-解得3mm 为正整数m ∴为1、2、3当1m =时 △8= 所以方程的根为无理数 不合题意舍去; 当2m =时 方程化为220x x += 方程有两个整数解; 当3m =时 方程化为2210x x ++= 方程有两个相等整数解; 所以符合条件的所有正整数m 的和为235+=. 故选:B .23.已知关于x 的方程2(2)20mx m x -++=有两个不相等的正整数根 则m 的值为( )A .2B .1C D .2或1【解答】解:方程2(2)20mx m x -++=是一元二次方程 0m ∴≠2(2)20mx m x -++= (2)(1)0mx x ∴--= 1x ∴=或2x m=方程有两个不相等的正整数根∴21m ≠ 2m是正整数 1m ∴=.故选:B .24.已知二次多项式25x ax a -+-. (1)当1x =时 该多项式的值为 4- ;(2)若关于x 的方程250x ax a -+-= 有两个不相等的整数根 则正数a 的值为 . 【解答】解(1)当1x =时 25154x ax a a a -+-=-+-=- 故答案为4-;(2)设1x 2x 是方程两个不相等的整数根 则12x x a += 125x x a =-. a ∴ 5a -均为整数∴△222()4(5)420(2)16a a a a a =---=-+=-+为完全平方数设22(2)16(a t t -+=为整数 且0)t则22(2)16a t --=-.于是 (2)(2)16a t a t ---+=- 由于2a t -- 2a t -+奇偶性相同 且22a t a t ---+ ∴2424a t a t --=-⎧⎨-+=⎩或2822a t a t --=-⎧⎨-+=⎩或2228a t a t --=-⎧⎨-+=⎩解得24a t =⎧⎨=⎩或15a t =-⎧⎨=⎩(舍去)或55a t =⎧⎨=⎩经检验2a = 5a =符合要求 2a ∴=或5a =故答案为2或5.25.已知关于x 的方程2(1)(31)220k x k x k ++-+-= (1)求证:无论k 取何值 此方程总有实数根; (2)若此方程有两个整数根 求正整数k 的值;(3)若一元二次方程2(1)(31)220k x k x k ++-+-=满足12||3x x -= 求k 的值. 【解答】解:(1)证明:当10k += 即1k =-时 原方程为440x --= 解得:1x =-;当10k +≠ 即1k ≠-时 △222(31)4(1)(22)69(3)0k k k k k k =--+-=-+=-∴方程有实数根.综上可知:无论k 取何值 此方程总有实数根. (2)方程有两个整数根 113(3)12(1)k k x k -+-∴==-+ 213(3)2(1)422(1)11k k k x k k k ----===-++++ 且1k ≠-2x 为整数 k 为正整数1k ∴=或3k =.(3)由(2)得11x =- 2421x k =-++ 且1k ≠- 1244|||1(2)||1|311x x k k ∴-=---+=-=++解得:3k =-或0k =经检验3k =-或0k =是原方程的解. 故k 的值为3-或0.26.求正整数k 使得关于x 的方程2343410x x k -+-=至少有一个正整数根. 【解答】解:方程2343410x x k -+-=至少有1个正整数根∴△2344(341)11601360k k =--=-正整数k 可能取值为1 2 3 4 5 6 7 8 只有当1k =时 11x = 233x =∴正整数k 的值是1.27.已知关于x 的一元二次方程23610x x k -+-=有实数根 k 为负整数. (1)求k 的值;(2)如果这个方程有两个整数根 求出它的根.【解答】解:(1)根据题意 得△2(6)43(1)0k =--⨯- 解得2k -. k 为负整数 1k ∴=- 2-.(2)当1k =-时 不符合题意 舍去;当2k =-时 符合题意 此时方程的根为121x x ==. 28.已知关于x 的方程2(3)30(0)ax a x a +--=≠. (1)求证:方程总有两个实数根;(2)若方程有两个不相等的负整数根 求整数a 的值. 【解答】解:(1)0a ≠∴原方程为一元二次方程.∴△22(3)4(3)(3)a a a =--⨯⨯-=+.2(3)0a +.∴此方程总有两个实数根.(2)解原方程 得11x =- 23x a=.此方程有两个负整数根 且a 为整数 1a ∴=-或3-. 11x =- 23x a=. 3a ∴≠-. 1a ∴=-.29.已知关于x 的方程2(1)210m x mx m --++=. (1)试说明方程根的情况;(2)求证:当1m ≠时 原方程总有一个不变的整数根为1.【解答】(1)解:当1m =时 原方程化为220x -+= 此时方程的根为1x =. 当1m ≠时△22244(1)(1)44440m m m m m =--+=-+=>∴当1m ≠时 此方程有两个不相等的实数根综上所述 当1m =时 关于x 的方程2(1)210m x mx m --++=的根为1x =;当1m ≠时 关于x 的方程2(1)210m x mx m --++=有两个不相等的实数根; (2)证明:由求根公式 得222(1)m x m ±=-11x ∴= 212111m x m m +==+-- ∴无论m 取何值 方程总有一个不变的整数根为1.30.已知:关于x 的方程:2(2)2(1)10m x m x m ---++=. (1)m 取何值时 方程有两个实数根?(2)是否存在正整数m 使方程的根均为整数?若存在 请求出它的整数根;若不存在 请说明理由.【解答】解:(1)根据题意得20m -≠且△2[2(1)]4(2)(1)0m m m =----⨯+ 解得3m 且2m ≠;故当3m 且2m ≠时 方程有两个实数根; (2)存在由(1)知3m 且2m ≠m 为正整数 1m =或3当1m =时 方程为220x -+= 无整数解 故1m =舍去; 当3m =时 方程为2440x x -+= 解得122x x ==; 综上 当3m =时 使方程的根122x x ==均为整数. 三.整体思想(共12小题)31.若a 是一元二次方程2230x x +-=的一个根 则224a a +的值是 6 . 【解答】解:a 是一元二次方程2230x x +-=的一个根 2230a a ∴+-= 223a a ∴+=22242(2)236a a a a ∴+=+=⨯= 故答案为:6.32.若a 为方程2240x x +-=的解 则2368a a +-的值为( ) A .4B .2C .4-D .12-【解答】解:a 为方程2240x x +-=的解 2240a a ∴+-= 224a a ∴+=223683(2)83484a a a a ∴+-=+-=⨯-= 故选:A .33.m 是方程210x x +-=的根 则式子2222020m m ++的值为( ) A .2018B .2019C .2021D .2022【解答】解:m 是方程210x x +-=的根 210m m ∴+-=即21m m +=222220202()2020220202022m m m m ∴++=++=+=. 故选:D .34.若a 是方程210x x --=的一个根 则322020a a -++的值为( ) A .2020B .2020-C .2019D .2019-【解答】解:a 是方程210x x --=的一个根21a a ∴-= 21a a -+=-32222020(1)202020202019a a a a a a a ∴-++=--++=-++=. 故选:C .35.若a 是2270x x --=的一个根 则221a a -+的值是( ) A .5B .6C .7D .8【解答】解:a 是2270x x --=的一个根 2270a a ∴--= 227a a ∴-= 221718a a ∴-+=+=.故选:D .36.若关于x 的一元二次方程220(0)ax bx a ++=≠有一根为2019x = 则一元二次方程2(1)(1)2a x b x -+-=-必有一根为( ) A .2017B .2020C .2019D .2018【解答】解:对于一元二次方程2(1)(1)20a x b x -+-+= 设1t x =- 所以220at bt ++=而关于x 的一元二次方程220(0)ax bx a ++=≠有一根为2019x = 所以220at bt ++=有一个根为2019t = 则12019x -= 解得2020x =所以一元二次方程2(1)(1)2a x b x -+-=-必有一根为2020x =. 故选:B .37.已知a 是方程220150x x +-=的一个根 则22211a a a---的值为( ) A .2014B .2015C .12014D .12015【解答】解:a 是方程220150x x +-=的一个根 220150a a ∴+-=∴22211a a a--- 21(1)(1)(1)(1)a a a a a a a a +=-+-+- 21(1)(1)a a a a a --=+-21a a =+ 12015=. 故选:D .38.已知a 是方程210x -+=的一个根.则221a a +的值为( )A .4B .6C .D .【解答】解:把x a =代入方程210x -+= 得210a -+=所以21a +=则222211()22826a a a a +=+-=-=-=. 故选:B .39.若x 是方程2310x x ++=的解 则11x x -=+ 2- . 【解答】解:21(1)11111x x x x x x x x +-+--==+++ x 是方程2310x x ++=的解231x x ∴=--∴原式3111x x x --+-=+2(1)1x x +=-+ 2=-.故答案为:2-.40.已知实数a 是元二次方程2202110x x -+=的根 求代数式22120202021a a a +--的值为1- .【解答】解:a 是方程2202110x x -+=根 2202110a a ∴-+= 220211a a ∴=-∴原式2021112021120202021a a a -+=---1a a =--1=-.故答案是:1-.41.若m 是方程210x x +-=的一个根 则代数式3222022m m ++的值为 2023 . 【解答】解:m 是方程210x x +-=的一个根 210m m ∴+-= 21m m ∴=-+32(1)(1)21m m m m m m m m ∴=-+=-+=--++=-3222022212(1)2022212220222023m m m m m m ∴++=-+-++=--++=. 故答案为:2023.42.已知a 是方程2202010x x -+=的一个根.求: (1)2240403a a --的值; (2)代数式22202020191a a a -++的值. 【解答】解:(1)a 是方程2202010x x -+=的一个根 220201a a ∴=- 220201a a ∴=- 2240403a a ∴-- 2(20201)40403a a =--- 4040240403a a =---5=-;(2)原式2020202012019202011a a a =--+-+11a a=+- 211a a+=-第 21 页 共 22 页2020111a a -+=- 20201=- 2019=.第22页共22页。
21.1:一元二次方程(简答题专练)-2021-2022学年九年级数学把关题分题型专练(人教版)一、解答题1.已知x =1是一元二次方程(a ﹣2)x 2+(a 2﹣3)x ﹣a+1=0的一个根,求a 的值.【答案】a =﹣2【分析】根据一元二次方程的解的定义将x =1代入方程即可求出答案.【详解】解:将x =1代入(a ﹣2)x 2+(a 2﹣3)x ﹣a+1=0,得(a ﹣2)+(a 2﹣3)﹣a+1=0, ∴a 2﹣4=0,∴a =±2, 由于a ﹣2≠0,故a =﹣2.【点评】本题考查一元二次方程的解,解题的关键是熟练运用一元二次方程的解的定义,本题属于基础题型.2.把关于x 的方程2(1)2x -+3x =52(x +1)化为一元二次方程的一般式,并指出二次项,一次项的系数和常数项.【答案】二次项为x 2,一次项系数为﹣1,常数项为﹣4.【分析】解法一:先把分母去掉,即方程两边都乘2,再合并得方程的一般式,再根据一元二次方程的定义指出. 解法二:可以直接去括号,化成一般式.(一般一元二次方程都要化成整数系数,可以降低计算量).【详解】解:解法一:整理得,x 2﹣2x +1+6x =5x +5,所以x 2﹣x ﹣4=0.二次项为x 2,一次项系数为﹣1,常数项为﹣4. 解法二:整理得:2212x x -++3x =52x +52, 22x ﹣2x ﹣2=0, 二次项22x ,一次项系数为﹣12,常数项为﹣2. 【点评】本题考查了一元二次方程的概念,解答时要先观察方程特点,进行整理合并.3.将方程y 2﹣y (﹣4y +1)=1化为一般形式(要求二次项系数为正数),写出二次项的系数,一次项和常数项.【答案】二次项的系数为5,一次项和常数项分别是﹣y 、﹣1.【分析】先把方程整理,根据整理的方程写出二次项系数、一次项和常数项.【详解】解:去括号,得y 2+4y 2﹣y =1,整理,得5y 2﹣y ﹣1=0.所以二次项的系数为5,一次项和常数项分别是﹣y 、﹣1.【点评】本题考查了一元二次方程的一般形式和二次项系数、一次项及常数项的定义.解决本题的关键是根据要求把方程化为一元二次方程的一般形式.4.当m 取何值时,方程1(1)320m m x x +-+-=是一元二次方程.【答案】m=-1【分析】根据一元二次方程的定义:只含有一个未知数,且未知数的最高次数是2的整式方程,列出方程求解即可. 【详解】解:由题意可得:12m +=且m-1≠0,解得:m=-1,∴当m=-1时,方程||1(1)320m m x x +-+-=是一元二次方程.【点评】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.5.方程(2a —4)x 2—2bx+a=0, 在什么条件下此方程为关于x 的一元二次方程?在什么条件下此方程为关于x 的一元一次方程?【答案】当a≠2时,此方程为关于x 的一元二次方程;当a=2,b≠0时,此方程为关于x 的一元一次方程.【分析】原方程是关于x 的一元二次方程则二次项系数不为零,是关于x 的一元一次方程则二次项系数为零,一次项系数不为零.【详解】解:当(2a-4)x 2-2bx+a=0是关于x 的一元二次方程时,则2a-4≠0,解得:a≠2;当(2a-4)x 2-2bx+a=0是关于x 的一元一次方程时,则2a-4=0且-2b≠0,解得:a=2,b≠0.综上所述,当a≠2时,此方程为关于x 的一元二次方程;当a=2,b≠0时,此方程为关于x 的一元一次方程.【点评】本题考查了一元二次方程和一元一次方程的定义,属于基础题,比较简单.6.已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?【答案】(1)-2或±1或0 (2)2【分析】(1)根据一元一次方程的定义,可得答案.(2)根据一元二次方程的定义求解,未知数的最高次数是2;二次项系数不为0,由这两个条件得到相应的关系式,再求解即可.【详解】解:(1)由题意,得当20m +=时,2m =-,当||1m =且20m +≠时,1m =±;当||0m =时,0m =.∴当2m =-或1m =±或0m =时,||(2)210m m x x ++-=是一元一次方程.(2)由题意,得||2m =,且20m +≠,解得2m =,∴当2m =时,||(2)210m m x x ++-=是一元二次方程.【点评】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.7.已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.【答案】-1【解析】【分析】设相同的根为a ,将a 代入,即可得22a pa q a qa p ++=++,进一步求解p q +即可.【详解】解:设相同的根为a ,由题意,得20a pa q ++=,20a qa p ++=,∴22a pa q a qa p ++=++.∴()(1)0p q a --=.∴p q =或1a =.若p q =,则方程有两个相同的根,不符合题意.∴1a =.把1a =代入20x px q ++=,得1p q +=-.【点评】本题主要考查对一元二次方程的解的定义的理解和掌握,能根据方程的特点进行代入计算是解此题的关键.8.若0和3-均是关于x 的方程20x bx c -+=的根,求b 与c 的值.【答案】b=-3,c=0.【分析】根据一元二次方程的解的定义,分别把x=0和x=-3,代入20x bx c -+=,得到关于b 和c 的方程,然后解方程即可得到b 与c 的值.【详解】解:将0x =和3x =-代入方程,得0,930,c b c =⎧⎨++=⎩解得3,0.b c =-⎧⎨=⎩【点评】本题考查了一元二次方程的解的概念:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9x 的方程20x x a -+=的一个根,求222a a a --+的值.【答案】-【分析】把x a 的方程,从而求得a 的值.然后将所求代数式化简,再代入求值即可.【详解】解:将x 20x x a -+=中,得20a =,解得a 2,当a 2时,2222222244a a a a a a a a ---=-=-==-++++ 【点评】本题主要考查了方程的解的定义.此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.10.已知43155m m m -=-.(1)试问:2m 的值能否等于2?请说明理由;(2)求221m m +的值. 【答案】(1)不能;(2)2或23.【分析】(1)把m =代入原式,左右两边不等,即可得到结论;(2)原式变形后分①210m -=,②210m -≠两种情况讨论即可.【详解】(1)原等式变形得:2221151m m m m +-=-()()()若22m =,即m =时,等式左边=(2+1)(2-1)=3,等式右边=5 m ×(2-1)=±∵左边≠右边,∴m 2 的值不等于2.(2)由2221151m m m m +-=-()()()知: ①当m 2-1=0,即m 2=1时,221112m m +=+=; ②当m 2-1≠0时,215m m +=.当m =0时,左边=1,右边=0,∴m ≠0,∴15m m +=,∴22221125223m m m m ⎛⎫+=+-=-= ⎪⎝⎭.综上所述:221m m +的值为2或23. 【点评】本题考查了分式的混合运算及代数式求值.解题的关键是分类讨论.11.把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.(1)2(5)36x -=;(2)3(1)2(1)y y y +=+.【答案】(1)210110x x --=,1,10-,11- (2)2320y y +-=,3,1,2-【分析】(1)利用完全平方公式首先去括号移项进而整理为一元二次方程的一般形式得出各项系数; (2)去括号移项进而整理为一元二次方程的一般形式得出各项系数.【详解】解:(1)去括号,得2102536x x -+=.移项、合并同类项,得210110x x --=.∴它的二次项系数为1,一次项系数为10-,常数项为11-.(2)去括号,得23322y y y +=+.移项、合并同类项,得2320y y +-=.∴它的二次项系数为3,一次项系数为1,常数项为2-.【点评】此题主要考查了一元二次方程的一般形式,正确化简得出一般形式是解题关键.12.已知关于x 的两个一元二次方程:方程①:2(1)(2)102k x k x +++-= ; 方程②:x 2+(2k+1)x ﹣2k ﹣3=0.(1)若方程①有两个相等的实数根,求:k 的值(2)若方程①和②只有一个方程有实数根,请说明此时哪个方程没有实数根.(3)若方程①和②有一个公共根a ,求代数式(a 2+4a ﹣2)k+3a 2+5a 的值.【答案】(1)k=﹣4;(2)证明见解析;(3)5;【解析】【分析】(1)根据一元二次方程的定义和判别式的意义得到1+2k ≠0且△1=0,即(k+2)2-4(1+2k )×(-1)=0,求出k 的值即可.(2)计算第2个方程的判别式得△2=(2k+3)2+4>0,利用判别式的意义可判断方程②总有实数根,于是可判断此时方程①没有实数根,(3)设a 是方程①和②的公共根,利用方程解的定义得到(1+2k )a 2+(k+2)a-1=0 ③,a 2+(2k+1)a-2k-3=0④,利用③×2(2+k )a 2+(2k+4)a ﹣2=0⑤,由⑤+④得(3+k )a 2+(4k+5)a ﹣2k=5,然后利用整体代入的方法计算代数式的值.【详解】(1)∵方程①有两个相等的实数根, ∴102k +≠ ,Δ1=0, 则k≠﹣2,△1=b 2﹣4ac=(k+2)2﹣4(1+2k )×(﹣1)=k 2+4k+4+4+2k=k 2+6k+8, 则(k+2)(k+4)=0,∴k=﹣2,k=﹣4,∵k≠﹣2,∴k=﹣4;(2)∵△2=(2k+1)2﹣4×1×(﹣2k ﹣3)=4k 2+4k+1+8k+12=4k 2+12k+13=(2k+3)2+4>0,∴无论k 为何值时,方程②总有实数根,∵方程①、②只有一个方程有实数根,∴此时方程①没有实数根.(3)根据a 是方程①和②的公共根, ∴2(1)(2)102k a k a +++-=③, a 2+(2k+1)a ﹣2k ﹣3=0④, ∴③×2得:(2+k )a 2+(2k+4)a ﹣2=0⑤,⑤+④得:(3+k )a 2+(4k+5)a ﹣2k=5,代数式=(a 2+4a ﹣2)k+3a 2+5a=(3+k )a 2+(4k+5)a ﹣2k=5.故代数式的值为5.【点评】本题考查了根的判别式:利用一元二次方程根的判别式(△=b 2-4ac )判断方程的根的情况.一元二次方程ax 2+bx+c=0(a≠0)的根与△=b2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.13.一元二次方程()2(1)10a x b x c -+-+=化为一般形式后为22310x x --=,试求a b c+的值. 【答案】32- 【分析】把原方程展开,化为一般形式,与已知方程系数对应相等,求出a 、b 、c 的值,计算得到答案.【详解】解:原方程可化为: ax 2−(2a −b )x +a −b +c =0,由题意得,a =2,2a −b =3,a −b +c =−1,解得:a =2,b =1,c =−2, ∴21322a b c ++==--.【点评】本题考查的是一元二次方程的一般形式,运用完全平方公式和合并同类项的方法正确变形是解题的关键,注意系数对应相等的运用.14.若m 是方程x 2+x -1=0的一个根,求代数式m 3+2m 2+2019的值.【答案】2020.【分析】根据一元二次方程的解的定义,将x=m 代入已知方程求得m (m+1)=1;然后将所求的代数式转化为含有m (m+1)的代数式,并代入求值即可.【详解】解:根据题意,得210m m +-=∴21m m +=,或m (m+1)=1,∴m 3+2m 2+2019()()2m 201912019120192020m m m m m =+++=++=+=.【点评】本题主要考查了方程的解的定义.方程的根即方程的解,就是能使方程左右两边相等的未知数的值.15.解题时,最容易想到的方法未必是最简单的,你可以再想一想,尽量优化解法.例题呈现关于x 的方程a(x +m)2+b =0的解是x 1=1,x 2=-2(a 、m 、b 均为常数,a≠0),则方程a(x +m +2)2+b =0的解是 .解法探讨(1)小明的思路如图所示,请你按照他的思路解决这个问题;小明的思路第1步 把1、-2代入到第1个方程中求出m 的值;第2步 把m 的值代入到第1个方程中求出b a-的值; 第3步 解第2个方程.(2)小红仔细观察两个方程,她把第2个方程a(x +m +2)2+b =0中的“x +2”看作第1个方程中的“x”,则“x +2”的值为 ,从而更简单地解决了问题.策略运用(3)小明和小红认真思考后发现,利用方程结构的特点,无需计算“根的判别式”就能轻松解决以下问题,请用他们说的方法完成解答.已知方程 (a 2-2b 2)x 2+(2b 2-2c 2)x +2c 2-a 2=0有两个相等的实数根,其中a 、b 、c 是△ABC 三边的长,判断△ABC 的形状.【答案】(1)x 1=-1,x 2=-4 (2)1或-2 (3)直角三角形【分析】(1)根据题意利用待定系数法求解即可.(2)把后面一个方程中的x+2看作整体,相当于前面一个方程中的x 求解.(3)先根据有两个相等的实数根,再根据根于系数的关系列出方程,找到a 、b 、c 的关系,从而判断三角形的形状.【详解】(1)解:将x 1=1,x 2=-2代入到方程a(x +m)2+b =0中,得()()221020a mb a m b ⎧++=⎪⎨-+=⎪⎩ , ∴ m +1=±(m -2), 解得 m =12∴ a(12+1)2+b =0.∴ -b a =94第2个方程可变形为(x +12+2)2=-b a, 即(x +52)2=94, 解得:x 1=-1,x 2=-4(2)关于x 的方程a (x+m )2+b=0的解是x 1=-2,x 2=1,(a ,m ,b 均为常数,a≠0);(3)解:∵ (a 2-2b 2)+(2b 2-2c 2)+(2c 2-a 2)=0,∴ 方程必有一根是x =1∴ 方程的两根为x 1=x 2=1.∴ x 1·x 2=1=222222c a a b -- . ∴ a 2=b 2+c 2.∴ △ABC 是一个直角三角形【点评】此题考查根的判别式,勾股定理逆定理,一元二次方程的解,解题关键在于掌握运算法则. 16.某中学数学兴趣小组对关于x 的方程21(1)(2)10m m x m x +++--=提出了下列问题: (1)是否存在m 的值,使方程为一元二次方程?若存在,求出m 的值;(2)是否存在m 的值,使方程为一元一次方程?若存在,求出m 的值,并解此方程.【答案】(1)1 (2)0m =,1x =-;1m =-,13x =- 【分析】(1)根据一元二次方程的定义可得21210m m ⎧+⎨+≠⎩=可求得m 的值; (2)当m 2+1=1或m+1=0时方程为一元一次方程,求出m 的值,进一步解方程即可.【详解】解:(1)根据一元二次方程的定义,得212,10,m m ⎧+=⎨+≠⎩解得1m =.(2)由题可知,当211,120,m m m ⎧+=⎨++-≠⎩即0m =时,方程为一元一次方程. 此时方程为10x --=,解得1x =-;当10,20,m m +=⎧⎨-≠⎩即1m =-时,方程为一元一次方程, 此时方程为310x --=,解得13x =-. 【点评】本题主要考查一元二次方程和一元一次方程的定义,(2)中容易漏掉m 2+1=1的情况,应考虑全面.17.若m 是一元二次方程||120a x x ---=的一个实数根.(1)求a 的值;(2)不解方程,求代数式()221m m m m ⎛⎫-⋅-+ ⎪⎝⎭的值. 【答案】(1)3a =±;(2)4【分析】(1)根据一元二次方程的定义得到||12a -=,即可求解;(2)利用方程的解得到220m m --=,推出22m m -=和21m m-=,再整体代入原式即可求解. 【详解】(1)由于||120a x x ---=是关于x 的一元二次方程,所以||12a -=,解得3a =±;(2)由(1)知,该方程为220x x --=,把x m =代入,得220m m --=,所以22m m -=,①由220m m --=,得210m m --=, 所以21m m -=,②把①和②代入()221m m m m ⎛⎫-⋅-+ ⎪⎝⎭, 得()2212(11)4m m m m ⎛⎫-⋅-+=⨯+= ⎪⎝⎭, 即()2214m m m m ⎛⎫-⋅-+= ⎪⎝⎭. 【点评】本题考查了一元二方程的定义,一元二方程的解以及求代数式的值,利用一元二方程的解求得22m m -=和21m m-=是解题的关键. 18.已知m 是方程2201610x x -+=的一个根,试求22201620151m m m -++的值. 【答案】2015【分析】先根据一元二次方程的解的定义得到2201610m m -+=,变形有220161m m -=-或212016m m +=,再利用整体思想进行计算.【详解】解:∵m 是方程2201610x x -+=的一个根,代入即得2201610m m -+=.∴220161m m -=-或212016m m +=. ∴22222201620162016112015201611112016m m m m m m m m m m m m m m-+-+=-++=-++=-++==++ 20162015m m m -=. 【点评】本题考查了一元二次方程的解的定义,解题的关键是适当选择整体代入法,使得解答变得简单. 19.在一元二次方程x 2-2ax+b=0中,若a 2-b>0,则称a 是该方程的中点值.(1)方程x 2-8x+3=0的中点值是________;(2)已知x 2-mx+n=0的中点值是3,其中一个根是2,求mn 的值.【答案】(1)4;(2)48.【分析】(1)根据中点值的定义进行求解即可;(2)根据中点值的定义可求得m 的值,再将方程的根代入方程可求得n 的值,由此即可求得答案.【详解】(1)2 x 8x 30-+=,x 2-2×4x+3=0,42-3=13>0,所以中点值为4,故答案为4;(2)由中点值的定义得:m 32=,m 6∴=,2x 6x n 0∴-+=,将x 2=代入方程,得:412n 0-+=,n 8∴=,mn 48∴=.【点评】本题考查了一元二次方程的根,新定义,弄懂新定义是解题的关键. 20.探索一元二次方程212150(0)x x x +-=>的近似解. (1)所以_______________x << (2)所以_______________x <<通过以上探索,估计方程解的整数部分为_______,十分位为_______. 【答案】(1)见解析;(2)见解析.【分析】(1)将表中x 的值代入x 2+12x-15进行计算,即可补全表格;根据表格中的数据不难确定方程的解的整数部分;(2)与(1)同理可补全(2)中的表格,从而确定方程的解的小数部分的十分位,问题即可解答. 【详解】(1)将表中x=1, x=1.5,x=2的值代入x 2+12x-15,分别进行计算,补全表格如下:所以:1 1.5x <<;(2)将x=1.1, x=1.2,x=1.3,x=1.4代入x 2+12x-15,分别进行计算,补全表格如下:所以1.1<x <1.2.通过以上探索,估计方程的近似解的整数部分为1,十分位为1.【点评】本题考查的是估算一元二次方程的近似解的知识,旨在考查学生的估算能力.通过解答本题复习巩固了求一元二次方程的近似解的步骤.21.若α是方程2510x x -+=的一个根,求221αα+的值.【答案】22123αα+=.【分析】把α代入原方程,得到关于α的一元二次方程,α2-5α+1=0,化简得到α+1=5,代入直接求值即可.【详解】由题意得,2510αα-+=,则0α≠.2510αα-+=两边同除以α,得150αα-+=, 所以15αα+=,两边同时平方,得21()25αα+=,所以221225αα++=,所以22123αα+=.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式221αα+的值,然后利用“整体代入法”求代数式的值. 22.方程11(2)(4)60m m x m x +--+++=.(1)m 取何值时,方程是一元二次方程,并求此方程的解; (2)m 取何值时,方程是一元一次方程.【答案】(1)m =-4,x =±1;(2)m =2或m =0或m =-2或m =1或m =-3【分析】(1)根据一元二次方程的定义得到:m ﹣2≠0且112m +-=,解答即可; (2)根据一元一次方程的定义得到:m -2=0或110m +-=或111m +-=且2m +2≠0.【详解】(1)依题意得:m ﹣2≠0且112m +-=,解得:m =-4,此时方程为:2660x -+=,解得:x =±1.即当m =-4时,它是一元二次方程,方程的解为x =±1. (2)依题意得:m -2=0,或110m +-=或111m +-=且2m +2≠0,解得:m =2或m =0或m =-2或m =1或m =-3.即当m =2或m =0或m =-2或m =1或m =-3时,它是一元一次方程.【点评】本题考查了一元一次方程和一元二次方程的定义,属于基础题,掌握定义即可正确解答该题.23.已知方程2(2)(3)10m m x m x -+-+=. (1)当m 为何值时,它是一元二次方程? (2)当m 为何值时,它是一元一次方程?【答案】(1)m = (2)2m =或1m =± 【分析】(1)根据一元二次方程的定义解答本题; (2)根据一次方程的定义可解答本题.【详解】解:(1)方程()()22310m m x m x -+-+=为一元二次方程,∴ 2220m m ⎧=⎨-≠⎩,解得:m =,所以当m ()()22310m m x m x -+-+=为一元二次方程; (2)方程()()22310m m x m x -+-+=为一元一次方程,∴ 2030m m -=⎧⎨-≠⎩或21m =解得,2m =或1m =±,故当m 为2或1±时,方程方程()()22310m m x m x -+-+=为一元一次方程.【点评】本题考查一元一次方程的定义、一元二次方程的定义,解题关键是理解一元一次方程的定义和一元二次方程的定义,尤其是要注意一元一次方程的各种情况要考虑全面.24.已知关于x 的一元二次方程2a x -3b x -5=0,试写出满足要求的所有a ,b 的值. 【答案】a =2,b =2或a =2,b =1或a =2,b =0,或a =1,b =2或a =0,b =2 【解析】 【试题分析】根据一元二次方程的定义,要求未知数的最高次数为2次,分类讨论: 若a=2,b=2,则方程化简为2-350x -= ; 若a=2,b=0,则方程化简为2280x -= ; 若a=2,b=1,则方程化简为22350x x --= ; 若a=0,b=2,则方程化简为2-33=0x -; 若a=1,b=2,则方程化简为2-325=0x x +-;【试题解析】根据题意,若a=2,b=2,则方程化简为2280x-=;若a=2,b=1,则方x-=;若a=2,b=0,则方程化简为2-350程化简为2--=;若a=0,b=2,则方程化简为2x x2350x x+-;-325=0x-;若a=1,b=2,则方程化简为2-33=0故答案为a=2,b=2或a=2,b=1或a=2,b=0,或a=1,b=2或a=0,b=2.25.设p,q是整数,方程20x px q-+=2,求p﹣q的值.【答案】-3【分析】先把代入方程,得到关于p,q0,就可求出方程p、q的值.代入方程,,∴(4+p)+(2p+q+9)=0,∵p、q是整数,∴p=-4,q=-1,∴p-q=-4+1=-3.【点评】本题考查的是一元二次方程的根即方程的解的定义.当方程中有一根是无理数,字母系数为整数时,把有关无理数的项合并一起后,令它的系数部分为0,就可求出方程中字母系数的值.。
一元二次方程与化简求值一、课堂目标能解决一元二次方程化简求值问题.二、知识讲解()直接代入:直接将已知条件代入所求代数式即可.()变形代入:将条件或结论进行适当的变形,再代入求值.1. 整体代入法化简求值1.如果已知是方程的解,那么就可以把代入原方程.2.整体代入思想是初中数学中解决整式求值问题的最有效方法,即求未知代数式的值时要比较已知值的代数式和未知代数式的区别:是不是整式、有没有同类项、项的系数是否成倍数关系.例题1.是方程的一个根,则代数式( ).A.B.C.D.2.已知、是一元二次方程的两个根,则代数式的值等于 .练习3.已知,求代数式的值.4.已知:,请你求出代数式的值.2. 降次法化简求值降次代换思想:1、不解方程常见的变形:(1);(2).2、对于高于2次的式子,还可以通过提取公因式达到降次的目的.例题5.已知是方程的根,求的值.A.B.C.D.6.设是方程的一个实数根,则.7.已知是一元二次方程的解,则.练习8.已知是方程的某个根,则.(1)(2)9.计算:已知是方程的根,则的值为 .已知是方程的根,则的值为 .3. 换元法化简求值在解答数式、方程等问题时,常面临涉及的数式结构过于复杂、字母个数较多或次数较高等情况,若把一部分看成一个整体或用一个新的字母代替,则能达到化繁为简的目的,这种办法叫换元法.例题10.若,则的值为 .练习11.已知,则代数式的值是( )A.B.C.或D.或12.若,则 .三、出门测13.若关于的一元二次方程为的解是,则的值是( ).A.B.C.D.14.已知是的一个根,则的值是 .一元二次方程与化简求值 题集【A】 I卷1. 整体代入法化简求值15.已知,求代数式的值.16.如果,那么代数式的值是( ).A.B.C.D.17.已知,代数式的值为( ).A.B.C.D.18.已知是方程的一个实数根,求代数式的值.19.已知,求代数式的值.2. 降次法化简求值20.如果是的解,那么代数式的值为 .21.已知是一元二次方程的根,求的值.22.已知是方程的根,则 .23.已知,则分式的值为( ).A.B.C.D.24.解答题.(1)(2)已知是方程的根,求的值.已知是一元二次方程的根,求代数式的值.3. 换元法化简求值25.解方程:,则的值为 或 .(从小到大填写)26.已知为实数,且,则的值为 .一元二次方程与化简求值 题集【B】4. 整体代入法化简求值27.已知,求代数式的值.28.已知,求代数式.29.已知,求代数式的值.30.已知,求代数式的值.5. 降次法化简求值31.已知是方程的一个根,则.(1)(2)(3)32.已知是一元二次方程的根,求下列各式的值:...(4).123(1)(2)33.解答:已知是一元二次方程的根,求下列各式的值:...已知是方程的根,求的值. 6. 换元法化简求值34.若实数满足,则的值是( ).A.B.C.或D.或或。
章节测试题1.【答题】若m是一元二次方程x2+x-1=0的一个根,则2m2+2m+2019的值是()A. 2018B. 2019C. 2020D. 2021【答案】D【分析】利用一元二次方程的解的定义得到m2+m=2,再把2m2+2m+2019变形为2(m2+m)+2019,然后利用整体代入的方法计算.【解答】解:∵m为一元二次方程x2+x-1=0的一个根.∴m2+m-1=0,即m2+m=1,∴2m2+2m+2019=2(m2+m)+2019=2×1+2019=2021.选D.2.【答题】已知关于x的方程(x-1)(x-2)=m2,则该方程的解的情况是()A. 方程有两个相等的实数根B. 方程有两个不相等的实数根C. 方程没有实数根D. 无法判断【答案】B【分析】方程整理后,表示出根的判别式,判断即可.【解答】解:方程整理得:x2-3x+2-m2=0,∵△=9-4(2-m2)=4m2+1>0,∴方程有两个不相等的实数根,选B.3.【答题】已知关于x的一元二次方程(k-1)x2-2x+2=0有两个不相等的实数根,则k的取值范围值是()A. B. C. 且k≠1 D. 且k≠1【答案】C【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k 的不等式,求出不等式的解集即可得到k的范围.【解答】解:根据题意得:△=b2-4ac=4-8(k-1)=12-8k>0,且k-1≠0,解得:且k≠1.选C.4.【答题】用配方法解下列方程时,配方错误的是()A. x2-2x-99=0化为(x-1)2=100B. x2+8x+9=0化为(x+4)2=25C. 2x2-7x-4=0化为D. 3x2-4x-2=0化为【答案】B【分析】将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.【解答】解:A、x2-2x-99=0化为(x-1)2=100,故本选项正确;B、x2+8x+9=0化为(x+4)2=7,故本选项错误;C、2x2-7x-4=0化为,故本选项正确;D、3x2-4x-2=0化为,故本选项正确;选B.5.【答题】关于x的一元二次方程x2+2x+k=0有实数根,则k的取值范围在数轴上表示正确的是()A. B.C. D.【答案】D【分析】利用判别式的意义得到22-4k≥0,解不等式得到k的范围,然后利用数轴表示不等式解集的方法可对各选项进行判断.【解答】解:根据题意得△=22-4k≥0,解得k≤1.选D.6.【答题】新型冠状病毒肺炎疫情防控期间,某小区在某商场对“84”消毒液进行抢购.第一天销售量达到100瓶,第二天、第三天销售量连续增长,第三天销售量达到500瓶,且第二天与第三天的增长率相同,设增长率为x,根据题意列方程为()A. 100(1+x)2=500B. 100(1+x2)=500C. 500(1-x)2=100D. 100(1+2x)=500【答案】A【分析】设增长率为x,根据第一天及第三天的销售量,即可得出关于x的一元二次方程,此题得解.【解答】解:设月平均增长率为x,根据题意得:100(1+x)2=500.选A.7.【答题】已知三角形的两边长为4和5,第三边的长是方程x2-5x+6=0的一个根,则这个三角形的周长是()A. 11B. 12C. 11或12D. 15【答案】C【分析】求出方程的解,根据三角形的三边关系定理看看是否符合,再求出三角形的周长即可.【解答】解:x2-5x+6=0,(x-2)(x-3)=0,x-2=0,x-3=0,x1=2,x2=3,根据三角形的三边关系定理,第三边是2或3都行,①当第三边是2时,三角形的周长为2+4+5=11;②当第三边是3时,三角形的周长为3+4+5=12;选C.8.【答题】某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x元,则可列方程为()A. (40+x)(600-10x)=10000B. (40+x)(600+10x)=10000C. x[600-10(x-40)]=10000D. x[600+10(x-40)]=10000【答案】A【分析】根据总利润=单台利润×月销售量,即可得出关于x的一元二次方程.【解答】解:售价上涨x元后,该商场平均每月可售出(600-10x)个台灯,依题意,得:(40+x)(600-10x)=10000,选A.9.【答题】对于任意的实数x,代数式x2-5x+10的值是一个()A. 正数B. 负数C. 非负数D. 不能确定【答案】A【分析】原式配方后,利用非负数的性质判断即可.【解答】解:原式,则代数式的值是一个正数,选A.10.【答题】若代数式x2+6x+8可化为(x+h)2+k的形式,则h=______,k=______.【答案】3 -1【分析】二次项系数为1,则常数项是一次项系数的一半的平方即可求解.【解答】解:x2+6x+8=x2+6x+9-1=(x+3)2-1,则h=3,k=-1.故答案为:3,-1.11.【答题】如果关于x的一元二次方程3x2-5x+m=0的两实数根互为倒数,则m 的值为______.【答案】3【分析】根据根与系数的关系,由两根的积为1可以求出m的值.【解答】解:设方程的两根分别是x1和x2,则:∵关于x的一元二次方程3x2-5x+m=0的两实数根互为倒数,∴x1•x2==1,∴m=3.故答案为:3.12.【答题】五个完全相同的小长方形拼成如图所示的大长方形,大长方形的面积是135cm2,则以小长方形的宽为边长的正方形面积是______cm2.【答案】9【分析】设小长方形的长为xcm,宽为ycm,根据大长方形的周长结合图形可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再根据正方形的面积公式即可得出结论.【解答】解:设小长方形的长为xcm,宽为xcm,根据题意得:(x+2×x)•x=135,解得:x=9或x=-9(舍去),则x=3.∴3×3=9(cm2).故答案为:9.13.【答题】代数式2x2-4x+1的最小值为______.【答案】-1【分析】先利用配方法将代数式2x2-4x+1转化为完全平方与常数的和的形式,然后根据非负数的性质进行解答.【解答】解:2x2-4x+1=2(x2-2x+1)-2+1=2(x-1)2-1,∵2(x-1)2≥0,∴2x2-4x+1的最小值是-1,故答案为:-1.14.【题文】用适当的方法解下列方程:(1)2(x-1)2=18;(2)x2-2x=2x+1;(3)(3y-1)(y+1)=4;(4)x(2x+3)=2x+3.【答案】见解答.【分析】(1)根据直接开方法即可求出答案;(2)根据配方法即可求出答案;(3)根据因式分解法即可求出答案;(4)根据因式分解法即可求出答案.【解答】解:(1)方程两边除以2,得:(x-1)2=9,则x-1=3或-3,则x1=4,x2=-2;(2)原方程可整理为:x2-4x+4=5,则(x-2)2=5,则x-2=或-,解得:x1=2+,x2=2-;(3)整理,得:3y2+2y-5=0,分解因式得:(y-1)(3y+5)=0,则y-1=0或3y+5=0,解得:y1=1,y2=-;(4)移项,得:x(2x+3)-(2x+3)=0,分解因式得:(2x+3)(x-1)=0,则2x+3=0或x-1=0,解得:x1=-,x2=1.15.【题文】已知正数x是一元二次方程x2+2x-3=0的解,先化简再求值:(x-2)2+(x+3)(x-3).【答案】-7【分析】用因式分解法求出方程的正数解,再化简求值即可得出答案.【解答】解:x2+2x-3=0,分解因式得:(x-1)(x+3)=0,则x-1=0或x+3=0,解得:x1=1,x2=-3,∵x是正数,∴x=1,∴(x-2)2+(x+3)(x-3)=x2-4x+4+x2-9,=2x2-4x-5,当x=1时,原式=2×1-4-5=-7.16.【题文】已知关于x的方程:(1-m)x2-2x+1=0.(1)当m为何值时,方程有实数根.(2)若方程有两实数根x1、x2,且x12+x22+3x1x2=0,求m的值.【答案】(1)m≥0时,方程有实数根,(2)5【分析】(1)分两种情况:当1-m=0;1-m≠0,根据判别式即可求出答案;(2)根据根与系数的关系即可求出答案.【解答】解:(1)当1-m=0,即m=1时,-2x+1=0,解得;1-m≠0,△=(-2)2-4(1-m)≥0,即m≥0,且m≠1时,方程有实数根.综上所述,当m≥0时,方程有实数根.(2)由根与系数的关系得:,.又∵,∴,即,化简得:4=1-m,解得:m=5,经检验,m是方程的解,故m=5.17.【题文】已知关于x的一元二次方程x2-(2a+2)x+2a+1=0.(1)求证:不论a取何实数,该方程都有两个实数根:(2)若该方程两个根x1,x2满足x12-x22=0,求a的值【答案】见解答.【分析】(1)表示出根的判别式,配方后得到根的判别式大于等于0,进而确定出方程总有两个实数根;(2)先求出方程的两根为x1=2a+1,x2=1,再代入x12-x22=0,得到关于a的方程,解方程即可求解.【解答】解:(1)证明:(1)△=(2a+2)2-4×(2a+1)=4a2,∵a2≥0,∴4a2≥0,∴不论a取任何实数,该方程都有两个实数根;(2)x2-(2a+2)x+2a+1=0,(x-2a-1)(x-1)=0,x1=2a+1,x2=1,∵x12-x22=0,∴(2a+1)2-12=0,解得:a=0或a=-1.18.【题文】某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?请完成下列问题:(1)未降价之前,某商场衬衫的总盈利为______元.(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利______元,平均每天可售出______件(用含x的代数式进行表示)(3)请列出方程,求出x的值.【答案】见解答.【分析】(1)利用销量20×每件的利润即可;(2)每件的盈利=原利润-降价;销量=原销量+多售的数量;(3)商场平均每天盈利数=每件的盈利×售出件数;每件的盈利=原来每件的盈利-降价数.设每件衬衫应降价x元,然后根据前面的关系式即可列出方程,解方程即可求出结果.【解答】解:(1)20×45=900,故答案为:900;(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利(45-x)元,平均每天可售出(20+4x)件,故答案为:(45-x);(20+4x);(3)由题意得:(45-x)(20+4x)=2100,解得:x1=10,x2=30.因尽快减少库存,故x=30.答:每件衬衫应降价30元.19.【题文】某学校为美化校园,准备在长35米,宽20米的长方形场地上,修建若干条宽度相同的道路,余下部分作草坪,并请全校学生参与方案设计,现有3位同学各设计了一种方案,图纸分别如图1、图2和图3所示(阴影部分为草坪).请你根据这一问题,在每种方案中都只列出方程不解.①甲方案设计图纸为图1,设计草坪的总面积为600平方米.②乙方案设计图纸为图2,设计草坪的总面积为600平方米.③丙方案设计图纸为图3,设计草坪的总面积为540平方米.【答案】见解答.【分析】①设道路的宽为x米.长应该为35-2x,宽应该为20-2x;那么根据草坪的面积为600m2,即可得出方程.②如果设路宽为xm,草坪的长应该为35-x,宽应该为20-x;那么根据草坪的面积为600m2,即可得出方程.③如果设路宽为xm,草坪的长应该为35-2x,宽应该为20-x;那么根据草坪的面积为540m2,即可得出方程.【解答】解:①设道路的宽为x米.依题意得:(35-2x)(20-2x)=600;②设道路的宽为x米.依题意得:(35-x)(20-x)=600;③设道路的宽为x米.依题意得:(35-2x)(20-x)=540.20.【题文】列方程解应用题:北京大兴国际机场,是建设在北京市大兴区与河北省廊坊市广阳区之间的超大型国际航空综合交通枢纽.机场主体工程占地多在北京境内,70万平米航站楼,客机近机位92个.2019年9月25日,北京大兴国际机场正式投入运营.据调查,10月大兴机场载客量约为112万人,12月载客量约为175万人,若10月到12月载客量的月增长率相同,求每月载客量的平均月增长率?【答案】25%【分析】设每月载客量的平均月增长率为x,由题意即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设每月载客量的平均月增长率为x,依题意,得:112(1+x)2=175,解得:x1=0.25=25%,x2=-2.25(不合题意,舍去).答:每月载客量的平均月增长率为25%.。
2022-2023学年九年级数学上学期复习备考高分秘籍专题1.1一元二次方程九大考点精讲精练(知识梳理+典例剖析+变式训练)【知识梳理】1.一元二次方程的有关概念:(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.(2)一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax²叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(3)一元二次方程的根:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.2.一元二次方程的解法:(1)直接开平方法:形如x2=p或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.(2)配方法解一元二次方程的步骤:①把原方程化为20++=(a≠0)的形式;ax bx c②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.(3)公式法:把x b2-4ac≥0)叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值(注意符号);②求出b2-4ac的值(若b2-4ac<0,方程无实数根);③在b2-4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2-4ac≥0.(4)因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.3.一元二次方程根的判别式:利用一元二次方程根的判别式(△=b2-4ac)判断方程的根的情况.一元二次方程a x2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4.一元二次方程根与系数的关系:(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+ x2=-p,x1x2=q反过来可得p=-(x1+ x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程a x2+bx+c=0(a≠0)的两根时,,反过来也成立,x1+ x2=—ba ,x1x2=ca(3)常用根与系数的关系解决以下问题:①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.【典例剖析】【考点1】一元二次方程的定义【例1】(2022·安徽·滁州市第六中学八年级阶段练习)若(m+3)x|m|−1−(m−3)x−5=0是关于x的一元二次方程,则m的值为( )A.3B.﹣3C.±3D.±2【答案】A【分析】根据一元二次方程的定义得出方程即可求出答案.【详解】解:由题意可知:|m|−1=2m+3≠0,解得:m=3,故选:A.【点睛】本题考查一元二次方程的定义,解题的关键是正确理解一元二次方程的定义,本题属于基础题型.【变式1.1】(2021·天津市晟楷中学九年级阶段练习)下列关于x的方程中,一定是一元二次方程的为()A.a x2+bx+c=0B.x2−4=(x+3)2C.x2+3x−5=0D.3x(x−4)=0【变式1.2】(2022·新疆·和硕县第二中学九年级期末)关于x的方程(a+2)x a2−2−3x−1=0是一元二次方程,则a的值是( )A.a=±2B.a=−2C.a=2D.a为任意实数【答案】C【分析】根据一元二次方程的定义得a2−2=2且a+2≠0,求解即可.【详解】解:由题意,得a2−2=2且a+2≠0,解得:a=2,故选:C.【点睛】本题考查一元二次方程的定义,只含有一个未知数,并且未知数的最高次数是2次的方程叫做一元二次方程.【变式1.3】(2022·江苏南通·八年级期末)若关于x的方程(a−1)x2+x=0是一元二次方程,则a的范围是()A.a=1B.a>1C.a≠1D.a<1【答案】C【分析】根据一元二次方程的定义,结合“关于x的方程(a-1)x2+2x-1=0是一元二次方程”,得到关于a的不等式,解之即可.【详解】解:∵关于x的方程(a-1)x2+x=0是一元二次方程,∴a-1≠0,解得:a≠1.故选:C.【点睛】本题考查了一元二次方程的定义,正确掌握一元二次方程的定义是解题的关键.【考点2】一元二次方程的一般形式【例2】(2022·浙江温州·八年级期末)把一元二次方程x(2x−1)=x−3化为一般形式,正确的是()A.2x2+3=0B.2x2−2x−3=0C.2x2−x+2=0D.2x2−2x+3=0【答案】D【分析】将方程整理为一般式即可.【详解】解:x(2x−1)=x−3,2x2−x=x−3,即2x2−2x+3=0.故选:D.【点睛】本题考查一元二次方程的一般式,掌握一元二次方程的一般式的形式为a x2+bx+c=0(a≠0)是解题的关键.【变式2.1】(2022·全国·九年级单元测试)将一元二次方程(x+1)(x+2)=0化成一般形式后的常数项是___.【答案】2【分析】首先利用多项式乘法计算方程的左边,可化为x2+3x+2=0,进而可得到常数项.【详解】解:(x+1)(x+2)=0,x2+3x+2=0,常数项为2,故答案为:2.【点睛】此题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式.【变式2.2】(2022·全国·九年级单元测试)一元二次方程(2+x)(3x−4)=5化为一般形式为______,它的二次项是_______,一次项是_______,常数项是_______.【答案】3x2+2x−13=03x22x−13【分析】先利用多项式乘以多项式法则计算方程等号的左边,再移项、合并同类项即可化为一般形式,由此即可得出答案.【详解】解:(2+x)(3x−4)=5,去括号,得6x−8+3x2−4x=5,移项、合并同类项,得3x2+2x−13=0,则一元二次方程(2+x)(3x−4)=5化为一般形式为3x2+2x−13=0,它的二次项是3x2,一次项是2x,常数项是−13,故答案为:3x2+2x−13=0,3x2,2x,−13.【点睛】本题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式是a x2+bx+c=0(a,b,c都是常数且a≠0).在一般形式中a x2是二次项,bx是一次项,c是常数项.【变式2.3】(2022·山东淄博·八年级期末)关于x的一元二次方程(m−3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为__.【答案】-3【分析】先将一元二次方程化为一般式,再根据一元二次方程的定义和不含一次项得出m−3≠0且m2−9=0,继而求解即可.【详解】解:(m−3)x2+m2x=9x+5,(m−3)x2+m2x−9x−5=0,(m−3)x2+(m2−9)x−5=0,∵一元二次方程(m−3)x2+m2x=9x+5化为一般形式后不含一次项,∴m−3≠0且m2−9=0,解得:m=−3,故答案为:−3.【点睛】本题考查了一元二次方程化为一般式和一元二次方程的定义,熟练掌握知识点是解题的关键.【考点3】一元二次方程的根【例3】(2022·河北保定师范附属学校九年级期末)若x=﹣1是关于x的一元二次方程ax2+bx﹣1=0的一个根,则2022﹣2a+2b的值为_____.【答案】2020【分析】把x=−1代入方程a x2+bx−1=0(a≠0)得a−b=1,再把2022−2a+2b变形为2022−2(a−b),然后利用整体代入的方法计算.【详解】解:把x=−1代入方程a x2+bx−1=0(a≠0)得a−b−1=0,∴a−b=1,∴2022−2a+2b=2022−2(a−b)=2022−2×1=2022−2=2020.故答案为:2020.【点睛】本题考查了一元二次方程的解,解题的关键是理解能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.【变式3.1】(2022·广西崇左·八年级期末)已知x=1是一元二次方程x2+ax−2=0的一个根,则a的值为_________.【答案】1【分析】根据一元二次方程根的定义,将x=1代入x2+ax−2=0,得到关于a的一元一次方程,解方程即可求解.【详解】将x=1代入该方程,得:1+a−2=0,解得:a=1.故答案为:1.【点睛】本题考查一元二次方程的解的定义.掌握方程的解就是使等式成立的未知数的值是解题关键.【变式3.2】(2022·浙江绍兴·八年级期末)若a是方程2x2−x−5=0的一个根,则代数式2a−4a2+1的值是_________.【答案】-9【分析】由题意可得2a2-a=5,再由2a-4a2+1=-2(2a2-a)+1,即可求解.【详解】解:∵a是方程2x2-x-5=0的一个根,∴2a2-a-5=0,∴2a2-a=5,∴4a2-2a=10,∴2a-4a2+1=-10+1=-9,故答案为:-9.【点睛】本题考查一元二次方程的解,代数式求值,恰当的变形是解题的关键.【变式3.3】(2022·福建·莆田哲理中学九年级期末)关于x的方程x2+bx+2a=0(a、b为实数且a≠0),a恰好是该方程的根,则a+b的值为_____.【答案】-2【分析】将x=a代入原方程,再整理,即可求出a+b的值.【详解】∵a是该方程的根,∴a2+ab+2a=0.∵a≠0,∴a+b+2=0,即a+b=−2.故答案为:-2.【点睛】本题考查一元二次方程的解.掌握方程的解就是使等式成立的未知数的值是解题关键.【考点4】一元二次方程的解法—配方法选填题【例4】(2022·西藏·江达县第二初级中学校九年级期末)将一元二次方程x2−6x−6=0配方后可写为________.【答案】(x−3)2=15【分析】根据配方法要求即可变形.【详解】解:x2−6x−6=0,x2−6x+9=15,(x−3)2=15.故答案为:(x−3)2=15.【点睛】本题考查了一元二次方程的变形,属于简单题,熟悉完全平方公式是解题关键.【变式4.1】(2022·山东烟台·八年级期末)把一元二次方程x2−4x−8=0化成(x−m)2=n的形式,则m+n的值为________.【答案】14【分析】将一元二次方程进行配方,即可对应得到m和n的值.【详解】解:x2−4x−8=0,即x2−4x=8,∴x2−4x+4=12,即(x−2)2=12,∴m=2,n=12,∴m+n=14,故答案为:14.【点睛】本题考查配方法,利用完全平方公式对方程进行配方时,注意运算准确.【变式4.2】(2022·四川宜宾·九年级期末)将方程x2−mx+8=0用配方法化为(x−3)2=n,则m+n的值是_______.【答案】7【分析】将方程(x−3)2=n化成一般式得x2-6x+9-n=0,根据两方程对应项系数相等求出m、n的值,即可求解.【详解】解:∵(x−3)2=n,∴x2-6x+9-n=0,∵x2−mx+8=0,∴-m=-6,9-n=8,则m=6,n=1.∴m+n=6+1=7故答案为:7.【点睛】本题考查了用配方法解一元二次方程和求代数式的值,能够把完全平方式化成一般式是解此题的关键.【变式4.3】(2022·山东威海·八年级期中)对于二次三项式x2+6x+3,若x取值为m,则二次三项式的最小值为n,那么m+n的值为_________.【答案】-9【分析】先将原式进行配方后即可得出m,n的值,再代入计算即可.【详解】解:x2+6x+3=x2+6x+9−6=(x+3)2−6,∵(x+3)2≥0,∴x2+6x+3≥−6,即当x=−3时,二次三项式x2+6x+3的最小值为-6,∴m=−3,n=−6,∴m+n=−3−6=−9,故答案为:-9.【点睛】本题主要考查了完全平方公式的应用,正确进行配方是解答本题的关键.【考点5】一元二次方程的解法—因式分解法选填题【例5】(2022·甘肃·张掖育才中学九年级期末)一元二次方程(2x−3)2=9(x+1)2的根为x1=_____,x2=_____.【答案】 0 ﹣6【分析】先移项,再用因式分解法求解即可.【详解】解:(2x−3)2=9(x+1)2,(2x−3)2﹣[3(x+1)]2=0,[(2x﹣3)+3(x+1)][(2x﹣3)﹣3(x+1)]=0,﹣5x(x+6)=0,﹣5x=0或x+6=0,解得x1=0,x2=﹣6.故答案为:0;﹣6.【点睛】本题考查解一元二次方程,熟练掌握用因式分解法解一元二次方程是解题的关键.【变式5.1】(2021·四川·荣县一中九年级阶段练习)x2=2x的根为_____.【答案】x1=0,x2=2【分析】移项后利用因式分解法求解可得.【详解】解:∵x2=2x∴x2−2x=0,∴x(x−2)=0,∴x=0或x−2=0,解得x1=0,x2=2,故答案为:x1=0,x2=2【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.【变式5.2】(2021·黑龙江哈尔滨·八年级期末)若一个一元二次方程x2−5x+6=0的两个根分别是Rt△ABC的两条直角边长,则Rt△ABC斜边长为___.公式是解题的关键.【变式5.3】(2021·河南·邓州市城区第五初级中学校.九年级阶段练习)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2−(a−b)2.若(m+2)◎(m﹣3)=24,则m=_____.【答案】﹣3或4【分析】利用新定义得到[(m+2)+(m−3)]2−[(m+2)−(m−3)]2=24,整理得到(2m−1)2−49=0,然后利用因式分解法解方程.【详解】解:根据题意得[(m+2)+(m−3)]2−[(m+2)−(m−3)]2=24,∴(2m−1)2−52−24=0,∴(2m−1)2−49=0,∴(2m﹣1+7)(2m﹣1﹣7)=0,∴2m﹣1+7=0或2m﹣1﹣7=0,解得m1=﹣3,m2=4.故答案为:﹣3或4.【点睛】本题主要考查了新定义下的实数运算,解一元二次方程,正确理解题意是解题的关键.【考点6】一元二次方程的解法—解答题【例6】(2022·山东省泰安南关中学八年级期中)解下列方程(1)2x2−4x+1=0(用配方法);(2)3x2−4x−1=0(公式法);程:(1)x2+4x+1=13(配方法);(2)3x2﹣4x﹣1=0(公式法);(3)(x+1)2=3(x+1)(4)(x﹣3)(x+2)=6(1)2x2+2x=1(2)2x2−3x−5=0材料:解含绝对值的方程:x2−3|x|−10=0.解:分两种情况:(1)当x≥0时,原方程化为x2−3x−10=0,解得x1=5,x2=﹣2(舍去);(2)当x<0时,原方程化为x2+3x−10=0,解得x1=﹣5,x2=2(舍去);综上所述,原方程的解是x1=5,x2=﹣5.问题:仿照上面的方法,解方程:x2−2|2x+3|+9=0.【例7】(2022·江苏扬州·八年级期末)已知关于x的一元二次方程x(x−2)=k.(1)若k=3,求此方程的解;(2)当k≥−1时,试判断方程的根的情况.【答案】(1)x1=3,x2=−1(2)此时该方程总有两个实数根【分析】(1)将k=3代入,然后利用直接开方法求解即可;(2)将方程化简为一般式,然后利用根的判别式求解即可.(1)解:当k=3时,方程为x(x−2)=3∴x2−2x=3∴x2−2x+1=3+1∴(x−1)2=4∴x−1=±2∴x1=3,x2=−1;(2)由一元二次方程x(x−2)=k得x2−2x−k=0,∴Δ=(−2)2−4×1×(−k)=4+4k∵k≥−1∴4+4k≥0,∴此时该方程总有两个实数根.【点睛】题目主要考查利用直接开方法求解一元二次方程及其根的判别式,熟练掌握运用一元二次方程的相关知识点是解题关键.【变式7.1】(2022·江苏南通·八年级期末)已知关于x的一元二次方程(a−1)x2+(2a+1) x+2=0.(1)求证:此方程一定有两个不相等的实数根;(2)如果这个方程根的判别式的值等于9,求a的值.【答案】(1)见解析(2)a=0【分析】(1)表示出根的判别式,判断其值大于0即可得证;(2)表示出根的判别式,让其值为9求出a的值即可.(1)∵Δ=(2a+1)2−4×(a−1)×2=(2a−1)2+8,∵(2a−1)2≥0,∴Δ=(2a−1)2+8>0,∴此方程一定有两个不相等的实数根;(2)Δ=(2a−1)2+8=9,∴(2a−1)2=1,∴a1=0,a2=1,∵a≠1,∴a=0,【点睛】此题考查了根的判别式,以及一元二次方程的定义,熟练掌握根的判别式与根的情况之间的关系是解本题的关键.【变式7.2】(2022·全国·九年级单元测试)已知关于x的方程p x2+(2p+1)x+(p−1)=0有两个不相等的实根,判断关于x的方程x2−3x−2p=0的根的情况.x+2k+2=0(k≠0).(1)求证:无论x取何值,此方程总有两个实数根;(2)若该方程的两根都是整数,求整数k的值.【例8】(2022·广西玉林·二模)关于x的一元二次方程x2−(k−3)x−2k+2=0.(1)求证:方程总有两个实数根;(2)若方程的两根分为x1、x2,且x2+x22+x1x2=19,求k的值.1【答案】(1)见解析;(2)k=6或k=-2.【分析】(1)根据方程的系数结合根的判别式可得出Δ=(k+1)2≥0,由此可证出方程总有两个实数根;(2)根据一元二次方程的根与系数的关系可以得到x1+x2=k-3,x1x2=-2k+2,再将它们代入x21+x22+x1x2=19,即可求出k的值.(1)∵b2-4ac=[-(k-3)]2-4×1×(-2k+2)=k2+2k+1=(k+1)2≥0,∴方程总有两个实数根;(2)由根与系数关系得x1+x2=k-3,x1x2=-2k+2,∵x21+x22+x1x2=19,∴(x1+x2)2−x1x2=19,∴(k−3)2−(−2k+2)=19,即k2−4k−12=0,解得:k=6或k=-2.9=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两根x1,x2满足x1+x2=12,请求出方程的两根.=0.【变式8.2】(2022·山东淄博·八年级期末)已知关于x的一元二次方程x2−2kx+k−2(1)判断该方程根的情况,并说明理由;(2)若方程的两个实数根之和等于两根之积,求k的值.【答案】(1)方程有两个不相等的实数根,理由见解析x+m=0,(1)求证:无论m取何值,原方程总有两个不相等的实数根.(2)若x1,x2是原方程的两根,且1x1+1x2=−2,求m的值.【点睛】此题考查了一元二次方程中根的判别式,根与系数的关系,熟练掌握一元二次方程中根的判别式,根与系数的关系是本题的关键.【考点9】配方法的综合应用【例9】(2022·福建·福州十八中八年级期末)请阅读下列材料:我们可以通过以下方法求代数式x2+6x+5的最小值.x2+6x+5=x2+2•x•3+32﹣32+5=(x+3)2﹣4∵(x+3)2≥0∴当x=﹣3时,x2+6x+5有最小值﹣4.请根据上述方法,解答下列问题:(1)x2+5x﹣1=(x+a)2+b,则ab的值是_______.(2)求证:无论x取何值,代数式x2+7的值都是正数;(3)若代数式2x2+kx+7的最小值为2,求k的值.解如下:x2−6x−7=x2−6x+9−9−7=(x−3)2−16=(x−3+4)(x−3−4)=(x+1)(x−7)(1)探究:请你仿照上面的方法,把代数式x2−8x+7因式分解.(2)拓展:当代数式x2+2xy−3y2=0时,求x的值.y【答案】(1)(x−1)(x−7)(2)1或-3【分析】(1)仿照例题的计算方法先配方,再利用平方差公式进行分解;(2)将方程左边因式分式后求出x与y的关系,求出结果即可.(1)解:x2−8x+7=x2−8x+16−16+7=(x−4)2−9=(x−4+3)(x−4−3)=(x−1)(x−7);(2)我们可以通过以下方法求代数式的x2+2x−3最小值.x2+2x−3=x2+2x⋅1+12−12−3=(x+1)2−4∵(x+1)2≥0∴当x=-1时,x2+2x−3有最小值-4请根据上述方法,解答下列问题:(1)x2+5=x2+2+2+2=(x+a)2+b,则a=__________,b=__________;(2)若代数式x2−2kx+7的最小值为3,求k的值.=(x−k)2−k2+7,∵(x−k)2≥0,∴(x−k)2−k2+7的最小值是−k2+7,∵代数式x2−2kx+7有最小值3,∴−k2+7=3,即k2=4,∴k=±2.【点睛】此题考查了配方法的应用,以及平方的非负性,熟练掌握完全平方公式是解本题的关键..【变式9.3】(2022·全国·九年级课时练习)先阅读,后解题.已知m2+2m+n2−6n+10=0,求m和n的值.解:将左边分组配方:(m2+2m+1)+(n2−6n+9)=0.即(m+1)2+(n−3)2=0.∵(m+1)2≥0,(n−3)2≥0,且和为0,∴(m+1)2=0且(n−3)2=0,∴m=-1,n=-3.利用以上解法,解下列问题:(1)已知:x2+4x+y2−2y+5=0,求x和y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=8a+6b−25且△ABC为直角三角形,求c.。