用最速下降法求目标函数程序
- 格式:docx
- 大小:19.65 KB
- 文档页数:2
matlab最速下降法求解二次凸函数的最小值1.引言1.1 概述概述:在数学和优化领域中,最速下降法是一种常用的优化算法,用于求解二次凸函数的最小值。
该算法通过迭代更新变量的值,以逐步靠近函数的最小值。
在本文中,我们将介绍最速下降法的原理和步骤,并探讨它在求解二次凸函数最小值中的应用。
最速下降法的核心思想是沿着目标函数梯度的反方向移动,以找到函数的最小值。
具体而言,算法从一个初始点开始,计算该点的梯度,并将其与一个步长因子相乘,得到一个移动的方向。
然后,根据这个方向更新变量的值,并重复此过程直到满足停止准则。
对于二次凸函数的最小值求解,最速下降法是一种有效且收敛性良好的方法。
二次凸函数是一种具有凸性和二次项的函数,它在数学和工程问题的建模中经常出现。
通过最速下降法,我们可以通过迭代计算逐步逼近二次凸函数的最小值。
本文主要目的是介绍最速下降法在求解二次凸函数最小值中的应用。
我们将详细讨论最速下降法的原理和步骤,并通过数学推导和示例说明其有效性和收敛性。
我们还将比较最速下降法与其他优化算法的优缺点,并总结结论。
通过本文的阅读,读者将能够了解最速下降法在求解二次凸函数最小值中的原理和应用。
这将有助于读者更好地理解最速下降法的优势和局限性,并为进一步研究和应用提供基础。
1.2文章结构2. 正文2.1 最速下降法的原理和步骤最速下降法是一种常用的优化算法,用于求解函数的最小值。
它基于函数的负梯度方向进行迭代,通过迭代更新自变量的值来逐步逼近最优解。
最速下降法的步骤如下:步骤1:选择初始点。
从问题的可行域内选择一个初始点作为最速下降法的起点。
步骤2:计算负梯度。
在当前点处,计算目标函数的负梯度,即函数在该点处的梯度乘以-1。
步骤3:确定步长。
寻找沿着负梯度方向移动的合适步长,使得目标函数的值能够得到较大的下降。
步骤4:更新自变量。
根据确定的步长,更新自变量的值。
步骤5:重复步骤2-步骤4。
不断迭代执行步骤2到步骤4,直到满足停止准则。
matlab编程实现二分法牛顿法黄金分割法最速下降matlab程序代码二分法(Bisection Method)是一种寻找函数零点的数值计算方法。
该方法的基本思想是:首先确定一个区间[a, b],使得函数在这个区间的两个端点处的函数值异号,然后将区间逐步缩小,直到找到一个区间[a', b'],使得函数在这个区间的中点处的函数值接近于零。
以下是使用MATLAB实现二分法的示例代码:```matlabfunction [x, iter] = bisection(f, a, b, tol)fa = f(a);fb = f(b);if sign(fa) == sign(fb)error('The function has the same sign at the endpoints of the interval');enditer = 0;while (b - a) / 2 > tolc=(a+b)/2;fc = f(c);if fc == 0break;endif sign(fc) == sign(fa)a=c;fa = fc;elseb=c;fb = fc;enditer = iter + 1;endx=(a+b)/2;end```牛顿法(Newton's Method)是一种用于寻找函数零点的数值计算方法。
该方法的基本思想是:通过迭代来逼近函数的零点,每次迭代通过函数的切线来确定下一个近似值,直到满足收敛条件。
以下是使用MATLAB实现牛顿法的示例代码:```matlabfunction [x, iter] = newton(f, df, x0, tol)iter = 0;while abs(f(x0)) > tolx0 = x0 - f(x0) / df(x0);iter = iter + 1;endx=x0;end```黄金分割法(Golden Section Method)是一种用于寻找函数极值点的数值计算方法。
最速下降法matlabmatlab步0:选取初始点x0,容许误差是e=[0~1],令k=1步1:计算目标函数的梯度若||gk||<=e,即达到误差要求,立即停止计算,并输出xk作为近似最优解。
步2:取搜索方向为dk=-gk(即负梯度方向)。
步3:利用线搜索技术确定步长k(这里采用Armijo准则来求步长)步长为k=^mk是给定的,所以要求出mkAmrijo准则就是(1)给定(0~1),(0,0.5),令m=0(2)若不等式f(xk+^m*dk)<=f(xk)+*^m*gk'*dk成立,则令mk=m,Xk+1=xk+m*dk.停止运算,输出mk得到步长(3)若不满足上述不等式,则令m=m+1,然后回到第二步。
步4:确定步长后,令Xk+1=Xk+k*dk,k=k+1,转步骤1.matlab具体代码如下:1.主函数1clear all2clc%利用grad函数求解minif(x)=100*(x1^2-x2)^2+(x1-1)^2 4%此时还要建立两个函数,一个目标函数fun,一个梯度gfun 5x0=[-1.2 1]';6[x,val,k]=grad('fun','gfun',x0);7disp(['最优解:x='])8disp(x)9disp(['此时:f(x)=',num2str(val)])102.最速下降法1function[x,val,k]=grad(fun,gfun,x0)2%功能:用最速下降法求解无约束问题minif(x)3%输入:fun,gfun分别是目标函数和梯度,x0是初始点%输出:x,val分别是近似最优值和最优值,k是迭代次数5maxk=5000;%最大迭代次数6rho=0.5;7sigma=0.4;8k=0;9e=1e-5;%精度10while(k<maxk)11g=feval(gfun,x0);%计算梯度15m=0;mk=0;3.目标函数3f=100*(x(1)^2-x(2))^2+(x(1)-1)^2;44.目标函数的梯度1function g=gfun(x)2%目标函数的梯度3g=[400*x(1)*(x(1)^2-x(2))+2*(x(1)-1),-200*(x(1)^2-x(2))]';4end5.运行结果。
一、Matlab最速下降迭代路径介绍Matlab是一款强大的数学软件工具,其中包含了各种数学工具箱,用于解决不同领域的数学问题。
最速下降迭代路径是其中的一个重要工具,用于求解非线性方程组或最优化问题。
二、最速下降迭代路径原理1.首先介绍最速下降法的思想:即在迭代过程中,每次选取下降方向时选择负梯度方向,使得目标函数值下降最快。
2.最速下降法的迭代公式:x^(k+1) = x^k - α * ∇f(x^k),其中x^k 为迭代的当前点,α为步长,∇f(x^k)为目标函数在x^k点的梯度。
三、Matlab中最速下降迭代路径的函数及使用方法1.在Matlab中,可以使用fminunc函数来实现最速下降迭代路径。
其用法为[fval, x] = fminunc(fun, x0, options),其中fun为目标函数的句柄,x0为迭代的初始点,options为优化选项。
2.在使用fminunc函数时,需注意定义目标函数的句柄,并设定合适的初始点和优化选项,以确保得到准确的最速下降迭代路径。
四、最速下降迭代路径的应用实例以一个简单的非线性方程组为例:f(x) = x^2 + 2y^2,其中目标是求解该方程组的最小值。
通过Matlab最速下降迭代路径,可以求解该方程组的最小值点。
五、总结与展望最速下降迭代路径是一种常用的非线性方程组求解方法,Matlab中的fminunc函数提供了便捷的实现途径。
今后,我们可以进一步深入研究不同类型问题下的最速下降迭代路径,并探索更多有效的数值计算方法。
以上是关于Matlab最速下降迭代路径的简要介绍,希望能为您提供一些帮助。
感谢阅读!最速下降迭代路径是一种常用的优化方法,广泛应用于解决非线性方程组和优化问题。
在Matlab中,最速下降迭代路径的实现通过fminunc函数来完成。
在本文中,我们将进一步探讨最速下降迭代路径的原理、Matlab中的具体使用方法以及其应用实例。
让我们更深入地了解最速下降迭代路径的原理。
机器学习算法系列最速下降法牛顿法拟牛顿法最速下降法(Gradient Descent)最速下降法是一种常用的优化算法,用于求解无约束的最小化问题。
其原理是通过不断迭代更新参数的方式来逼近最优解。
在最速下降法中,每次迭代的方向是当前位置的负梯度方向,即沿着目标函数下降最快的方向前进。
具体地,对于目标函数f(x),在当前位置x_k处的梯度为g_k=▽f(x_k),则下一次迭代的位置x_{k+1}可以通过以下公式计算:x_{k+1}=x_k-α*g_k其中,α 是一个称为学习率(learning rate)的参数,用于控制每次迭代的步长。
最速下降法的优点是简单易实现,收敛速度较快。
然而,它也有一些缺点。
首先,最速下降法的收敛速度依赖于学习率的选择,过小的学习率会导致收敛速度过慢,而过大的学习率可能会导致跳过最优解。
其次,最速下降法通常会在目标函数呈现弯曲或者高度相关的情况下表现不佳,很难快速收敛到最优解。
牛顿法(Newton's Method)牛顿法是一种通过二阶导数信息来优化的算法,可以更快地收敛到目标函数的最优解。
在牛顿法中,每次迭代的位置x_{k+1}可以通过以下公式计算:x_{k+1}=x_k-(H_k)^{-1}*▽f(x_k)其中,H_k是目标函数f(x)在当前位置x_k处的黑塞矩阵。
黑塞矩阵描述了目标函数的二阶导数信息,可以帮助更准确地估计参数的更新方向。
牛顿法的优点是收敛速度较快,特别是对于目标函数呈现弯曲或者高度相关的情况下,相较于最速下降法可以更快地达到最优解。
然而,牛顿法也有一些缺点。
首先,计算黑塞矩阵的代价较高,尤其是当参数较多时。
其次,黑塞矩阵可能不可逆或者计算代价较大,这时可以通过使用拟牛顿法来避免。
拟牛顿法(Quasi-Newton Method)拟牛顿法是一类基于牛顿法的优化算法,通过估计黑塞矩阵的逆来逼近最优解,从而避免了计算黑塞矩阵的代价较高的问题。
在拟牛顿法中,每次迭代的位置x_{k+1}可以通过以下公式计算:x_{k+1}=x_k-B_k*▽f(x_k)其中,B_k是一个对黑塞矩阵逆的估计。
最速下降法matlab代码最速下降法(Steepest Descent Method)是一种用于数值优化问题的迭代算法。
下面是一个简单的最速下降法的MATLAB 代码示例:1.定义目标函数function f = objective(x)f = x(1)^2 + 4*x(2)^2 - 4*x(1) - 8*x(2); % 示例目标函数,可根据实际问题进行修改end2.定义目标函数的梯度function g = gradient(x)g = [2*x(1) - 4; 8*x(2) - 8]; % 示例目标函数的梯度,可根据实际问题进行修改end3.最速下降法function steepestDescent()x = [0; 0]; % 初始点epsilon = 1e-6; % 收敛准则,可根据实际问题调整maxIterations = 1000; % 最大迭代次数,可根据实际问题调整for k = 1:maxIterationsg = gradient(x); % 计算梯度if norm(g) < epsilon % 判断梯度范数是否小于收敛准则break;endalpha = 0.01; % 步长,可根据实际问题调整x = x - alpha * g; % 更新参数enddisp('Optimization Results:');disp('---------------------');disp(['Iterations: ', num2str(k)]);disp(['Minimum point: (', num2str(x(1)), ', ', num2str(x(2)), ')']);disp(['Objective function value: ', num2str(objective(x))]);end4.调用最速下降法函数steepestDescent();上述代码包含了以下几个关键部分:objective 函数:定义了目标函数,根据实际问题进行修改。
1. 算法原理最速下降法的搜索法向是目标函数的负梯度方向,最速下降法从目标函数的负梯度方向一直前进,直到到达目标函数的最低点。
已知目标函数在()k X 点的梯度为:()()()()()()()()12...Tk k k k nf X f X f X f X x x x ⎡⎤∂∂∂⎢⎥∇=∂∂∂⎢⎥⎣⎦当求目标函数的最小点时,由于函数沿负梯度方向下降最快,故在()k X 点的探索方向应取该点的负梯度方向,即()()()()()k k k f X S f X∇=-∇显然,()k S 为单位向量。
这样第1k +次迭代计算所得的新点为()()()()(1)()()()()()k k k k k k k k f X X X S X f Xαα+∇=+=-∇负梯度仅给出了最优化方向,而没有给出步长的大小,所以可能有各种各样的最速下降的过程,它们依赖于()()()k k f Xα∇的大小。
步长()k α有两种取法:一种方法是任意给定一个初始步长,使满足条件:()()()()()()k k k k f X S f X α+<另外一种方法是沿负梯度方向做一维探索,以求解一维最优化问题的最优步长α,即对目标函数极小,以得到最优步长:()()()()()0min ()()k k k k k f X S f X S ααα>+=+以此最优步长作为由()k X点出发沿该点的负梯度方向探索的步长()k α。
这种方法的迭代计算的收敛性,可用以下三式中的任一式或二式作为准则来进行判断:()()()()()1()(1)2()()(1)3k k k k k k f X f X f X f X X Xεεε--⎧∇≤⎪⎪-⎪≤⎨⎪⎪-≤⎪⎩2. 算法步骤用最速下降法求无约束多维极值问题min (),nf x x R ∈的算法步骤如下:(1) 取初始点(0)x ,精度0ε>,令0k = (2) 计算搜索方向()()()k k vf x =-∇,其中()()k f x ∇表示函数()f x 在点()k x 处的梯度;(3) 若()k v ε≤,则停止计算;否则,从()k x 出发,沿()k v 进行一维搜索,即求k λ,使得()()()()0()min ()k k k k k f xv f x v λλλ≥+=+。
用最速下降法求目标函数程序
用最速下降法求目标函数222141)1()(+++=x x x x X f 的极小点,设X (0
)=[0.75, —1.25]T , 终止条件为3)(10)(-≤∇k x f 。
解:
首先求出在初始点X (0)=[0.75, —1.25]T 处的梯度,梯度的模和单位负梯度方向
∇f x 0 = ðf (x (0))
ðx 1
ðf (x (0))
2 = 4∗0.753−1.250.75+2∗(1−1.25) = 0.43750.25
(1) ||∇f(x (0))||= ðf x 0
ðx 1 2+(ðf (x (0))ðx 2)2= 2+0.252=0.5039
(2)
d (0)=−∇f x 0
||∇f(x )||= 0.43750.25 0.5039
= 0.8680.496 (3) 沿着单位负梯度方向进行一维搜索。
由于 x 1 =x 0 +a 0 d 0 (4)
将上式带入f(x)方程中,令df (x 1 )
da =0,得出最优步长a 0 。
再将a 0 带入(4)式中求出x 1 以及新点的函数值f x 1 。
如此往复迭代,直到3)(10)(-≤∇k x f 得到最优解。
最速下降法的M 文件如下:
syms x1 x2 a r z
f=x1^4+x1*x2+(x2+1)^2;
x01=0.75;
x02=-1.25;
v=[x1,x2];
gf=jacobian(f,v);
gf0=subs(subs(gf,x01),x02);
gm=sqrt((gf0(1))^2+(gf0(2))^2);
dd=vpa(gm,5); %dd 为梯度的模
disp(dd);
x1=x01;x2=x02;
n=0;
while (dd>0.0001)
d=-gf0/dd; %d 为单位负梯度方向
b=4*d(1)^4;
c=12*x1*d(1)^3;
e=12*x1^2*d(1)^2+2*d(1)*d(2)+2*d(2)^2;
h=4*x1^3*d(1)+x2*d(1)+x1*d(2)+2*d(2)*x2+2*d(2); p=[b,c,e,h];
ans=roots(p);
a=min(ans);
a=vpa(a,5);
t=sqrt(r^2+z^2);
gf=jacobian(f,v);
x1=x1+a*d(1);
x2=x2+a*d(2);
gf0=subs(subs(gf,x1),x2);
r=gf0(1);z=gf0(2);
gm=subs(subs(t,r),z);
dd=vpa(gm,5);
n=n+1;
end
x1=vpa(x1,4);
x2=vpa(x2,4);
a=vpa(a,5);
f=x1^4+x1*x2+(x2+1)^2;
disp('x1=');
disp(x1);
disp('x2=');
disp(x2);
disp('f=');
disp(f);
disp('a=');
disp(a);
disp('n=');
disp(n);
运行结果如下:
x1=0.6959
x2=-1.348
f=-0.58244517438901951924335436198645
a=0.00002297
n= 9
dd=0.00007193。