密码学与信息安全 第3章 分组密码和数据加密标准
- 格式:ppt
- 大小:1.26 MB
- 文档页数:23
密码学之分组密码算法密码学之分组密码算法简介分组密码算法(Block Cipher Algorithm)是将输⼊数据划分成固定长度的组进⾏加密和解密的⼀类对称密码算法。
其安全性主要以来于密钥,通信双⽅使⽤相同的密钥加密和解密。
其优势有速度快,易于标准化和便于软硬件实现等特点。
下标集:₀₁₂₃₄₅₆₇₈₉⁻ ¹ ₋DES加密算法DES简介于1977年公布的第⼀个被⼴泛应⽤的商⽤数据加密算法,在抵抗了⼆⼗余年的密码分析后,其安全性已⽆法得到保障。
所以在1998年12⽉以后就不再使⽤DES加密算法。
但是其衍⽣的三重DES加密算法⽬前还有其应⽤场景。
加密过程算法总览DES加密算法就如下图所⽰。
其输⼊为64位(bit)的明⽂,使⽤56位(bit)的密钥,但是附加了8位奇偶校验位(位于8,16,...,64位)组合成64位密钥。
在64位密钥的控制下,最终产⽣了64(bit)的密⽂。
在下图中X=X₁X₂X₃...X₆₄即为输⼊明⽂,在经过初始转换IP的换位处理后,得到⼀个乱序的明⽂组,并将其分为L₀和R₀两部分,每部分各32位。
⽽K₁K₂...K₁₆则是⽣成由初始密钥⽣成的轮密钥,长度有48位。
其次进⾏如下图所⽰与密钥有关的16轮迭代变换。
对R₀在进⾏⼦密钥K₁控制下的f变换,其得到的结果与L₀作逐位异或后,作为下⼀轮的R₁,⽽R₀则作为下⼀轮的L₁。
在经过16轮如上步骤,最后经过逆初始置换P⁻¹处理后得到密⽂Y=Y₁Y₂Y₃...Y₆₄初始置换IP与逆初始置换IP⁻¹IP操作是对原明⽂的位次顺序进⾏打乱,⽽逆初始置换IP⁻¹是IP操作的⼀个逆操作,其⽬的是为了撤销之前的初始置换操作。
其实这两种操作对密码⽅⾯的作⽤并不⼤。
其具体操作正如表格中所⽰,在如下表格中依次填⼊该顺序位次下的bit位,最终组成新的位次顺序。
如第⼀位的的内容即为原明⽂中第58位处的内容。
轮密钥的产⽣初始密钥K在经过选择置换PC_1后同样分为两个部分C₀和D₀,每部分各28位(bit),该选择置换实际是在除去了奇偶校验位的置换。
第三章习题1简述分组密码算法的基本工作原理。
答分组密码在加密过程中不是将明文按字符逐位加密而是首先要将待加密的明文进行分组每组的长度相同然后对每组明文分别加密得到密文。
分组密码系统采用相同的加密密钥和解密密钥这是对称密码系统的显著特点。
例如将明文分为m块0121mPPPP每个块在密钥作用下执行相同的变换生成m个密文块0121mCCCC每块的大小可以任意长度但通常是每块的大小大于等于64位块大小为1比特位时分组密码就变为序列密码如图是通信双方最常用的分组密码基本通信模型。
加密算法解码算法明文x密文y明文x密钥k密钥kkExykDyxAliceBob不安全信道安全信道密钥k攻击者图分组密码基本通信模型图在图中参与通信的实体有发送方Alice、接收方Bob。
而攻击者是在双方通信中试图攻击发方或者收方信息服务的实体攻击者经常也称为敌人、对手、搭线者、窃听者、入侵者等并且攻击者通常企图扮演合法的发送方或者接收方。
2为了保证分组密码算法的安全对分组密码算法的要求有哪些答为了保证分组密码的安全强度设计分组密码时应遵循如下的基本原则1分组长度足够长防止明文穷举攻击例如DESData Encryption Standard、IDEAInternational Data Encryption Algorithm等分组密码算法分组块大小为64比特在生日攻击下用322组密文破解成功概率为0.5同时要求32152642bitsMB大小的存储空间故在目前环境下采用穷举攻击DES、IDEA等密码算法是不可能而AES明文分组为128比特同样在生日攻击下用642组密文破解成功概率为0.5同时要求存储空间大小为644821282bitsMB采用穷举攻击AES算法在计算上就更不可行。
2 密钥量足够大同时需要尽可能消除弱密钥的使用防止密钥穷举攻击但是由于对称密码体制存在密钥管理问题密钥也不能过大。
3密钥变换足够复杂能抵抗各种已知攻击如差分攻击、线性攻击、边信道攻击等即使得攻击者除了穷举攻击外找不到其它有效攻击方法。