2019-2020年高考数学二轮专题突破 专题三 数列与不等式 第1讲 等差数列与等比数列 理
- 格式:doc
- 大小:204.60 KB
- 文档页数:18
⾼考数学专题03数列求和问题(第⼆篇)(解析版)备战2020年⾼考数学⼤题精做之解答题题型全覆盖⾼端精品第⼆篇数列与不等式【解析版】专题03 数列求和问题【典例1】【福建省福州市2019-2020学年⾼三上学期期末质量检测】等差数列{}n a 的公差为2, 248,,a a a 分别等于等⽐数列{}n b 的第2项,第3项,第4项. (1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满⾜12112n n nc c c b a a a ++++=L ,求数列{}n c 的前2020项的和.【思路引导】(1)根据题意同时利⽤等差、等⽐数列的通项公式即可求得数列{}n a 和{}n b 的通项公式; (2)求出数列{}n c 的通项公式,再利⽤错位相减法即可求得数列{}n c 的前2020项的和.解:(1)依题意得: 2324b b b =,所以2111(6)(2)(14)a a a +=++ ,所以22111112361628,a a a a ++=++解得1 2.a = 2.n a n ∴= 设等⽐数列{}n b 的公⽐为q ,所以342282,4b a q b a ==== ⼜2224,422.n n n b a b -==∴=?= (2)由(1)知,2,2.n n n a n b ==因为11121212n n n n nc c c c a a a a +--++++= ①当2n ≥时,1121212n n n c c c a a a --+++= ②由①-②得,2n n nc a =,即12n n c n +=?,⼜当1n =时,31122c a b ==不满⾜上式,18,12,2n n n c n n +=?∴=?≥ .数列{}n c 的前2020项的和34202120208223220202S =+?+?++?2342021412223220202=+?+?+?++?设2342020202120201222322019220202T =?+?+?++?+? ③,则34520212022202021222322019220202T =?+?+?++?+? ④,由③-④得:234202120222020222220202T -=++++-?2202020222(12)2020212-=-?-2022420192=--? ,所以20222020201924T =?+,所以2020S =202220204201928T +=?+.【典例2】【河南省三门峡市2019-2020学年⾼三上学期期末】已知数列{}n a 的前n 项和为n S ,且满⾜221n S n n =-+,数列{}n b 中,2+,对任意正整数2n ≥,113nn n b b -??+=.(1)求数列{}n a 的通项公式;(2)是否存在实数µ,使得数列{}3nn b µ+是等⽐数列?若存在,请求出实数µ及公⽐q 的值,若不存在,请说明理由;(3)求数列{}n b 前n 项和n T . 【思路引导】(1)根据n S 与n a 的关系1112n nn S n a S S n -=?=?-≥?即可求出;(2)假设存在实数µ,利⽤等⽐数列的定义列式,与题⽬条件1331n n n n b b -?+?=,⽐较对应项系数即可求出µ,即说明存在这样的实数;(3)由(2)可以求出1111(1)4312nn n b -??=?+?- ,所以根据分组求和法和分类讨论法即可求出.解:(1)因为221n S n n =-+,当1n =时,110a S ==;当2n ≥时,22121(1)2(1)123n n n a S S n n n n n -=-=-+-----=-.故*0,1 23,2,n n a n n n N =?=?-∈?…;(2)假设存在实数µ,使得数列{}3xn b µ?+是等⽐数列,数列{}n b 中,2133a b a =+,对任意正整数2n (113)n n b b -??+=.可得116b =,且1331n nn n b b -?+?=,由假设可得(n n n b b µµ--?+=-?+,即1334n n n n b b µ-?+?=-,则41µ-=,可得14µ=-,可得存在实数14µ=-,使得数列{}3nn b µ?+是公⽐3q =-的等⽐数列;(3)由(2)可得11111133(3)(3)444nn n n b b ---=-?-=?- ,则1111(1)4312nn n b -??=?+?- ,则前n 项和11111111(1)123643121212nn n T -=++?+?+-+?+?-?? ? ????????? 当n 为偶数时,111111*********n n n T ??- =+=- ???- 当n 为奇数时,11111115112311128312248313n n n nT ??- =+=-+=- ????- 则51,21248311,2883nn n n k T n k ?-=-=??-=(*k N ∈).【典例3】【福建省南平市2019-2020学年⾼三上学期第⼀次综合质量检查】已知等⽐数列{}n a 的前n 项和为n S ,且( )*21,nn S a a n =?-∈∈R N.(1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .【思路引导】(1)利⽤临差法得到12n n a a -=?,再根据11a S =求得1a =,从⽽求得数列通项公式;(2)由题意得1112121n n n b +=---,再利⽤裂项相消法求和. 解:(1)当1n =时,1121a S a ==-.当2n ≥时,112n n n n a S S a --=-=?()*,因为{}n a 是等⽐数列,所以121a a =-满⾜()*式,所以21a a -=,即1a =,因此等⽐数列{}n a 的⾸项为1,公⽐为2,所以等⽐数列{}n a 的通项公式12n n a -=.(2)由(1)知21nn S =-,则11n n n n a b S S ++=,即()()1121121212121n n n n n n b ++==-----,所以121111111113377152121n n n n T b b b +?=++???+=-+-+-+???+- ? ? ? ?--?,所以11121n n T +=--.【典例4】【⼭东省⽇照市2019-2020学年上学期期末】已知数列{}n a 的⾸项为2,n S 为其前n 项和,且()120,*n n S qS q n +=+>∈N (1)若4a ,5a ,45a a +成等差数列,求数列{}n a 的通项公式;(2)设双曲线2221ny x a -=的离⼼率为n e ,且23e =,求222212323n e e e ne ++++L .【思路引导】(1)先由递推式()120,*n n S qS q n +=+>∈N 求得数列{}n a 是⾸项为2,公⽐为q 的等⽐数列,然后结合已知条件求数列通项即可;(2)由双曲线的离⼼率为求出公⽐q ,再结合分组求和及错位相减法求和即可得解. 解:解:(1)由已知,12n n S qS +=+,则212n n S qS ++=+,两式相减得到21n n a qa ++=,1n ≥.⼜由212S qS =+得到21a qa =,故1n n a qa +=对所有1n ≥都成⽴.所以,数列{}n a 是⾸项为2,公⽐为q 的等⽐数列. 由4a ,5a ,45+a a 成等差数列,可得54452=a a a a ++,所以54=2,a a 故=2q .所以*2()n n a n N =∈.(2)由(1)可知,12n n a q-=,所以双曲线2的离⼼率n e ==由23e ==,得q =.所以()()()()2122222123231421414n n e e e n e q n q -++++?=++++++ ()()()21214122n n n q nq -+=++++,记()212123n n T q q nq -=++++①()()2122221n n n q T q q n qnq -=+++-+②①-②得()()221222221111n n nnq q ---=++++-=-- 所以()()()()222222222211122121(1)111nn n n n n n n q nq q nq T n n q q q q --=-=-=-+?=-+----. 所以()()222212121242n n n n e e n e n +++++?=-++. 【典例5】已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满⾜()()1126n n n S a a =++,并且2a ,4a ,9a 成等⽐数列. (1)求数列{}n a 的通项公式;(2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .【思路引导】(1)根据n a 与n S 的关系,利⽤临差法得到13n n a a --=,知公差为3;再由1n =代⼊递推关系求1a ;(2)观察数列{}n b 的通项公式,相邻两项的和有规律,故采⽤并项求和法,求其前2n 项和. 解:(1)Q 对任意*n ∈N ,有() ()1126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.②①-②并整理得()()1130n n n n a a a a --+--=. ⽽数列{}n a 的各项均为正数,13n n a a -∴-=.当11a =时,()13132n a n n =+-=-,此时2429a a a =成⽴;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成⽴,舍去.32n a n ∴=-,*n ∈N .(2)2122n n T b b b =+++=L 12233445221n n a a a a a a a a a a +-+-+-L()()()21343522121n n n a a a a a a a a a -+=-+-++-L242666n a a a =----L ()2426n a a a =-+++L246261862n n n n +-=-?=--.【典例6】【2020届湖南省益阳市⾼三上学期期末】已知数列{}n a 的前n 项和为112a =,()1122n n n S a ++=-. (1)求2a 及数列{}n a 的通项公式;(2)若()1122log n n b a a a =L ,11n n nc a b =+,求数列{}n c 的前n 项和n T . 【思路引导】(1)利⽤临差法将递推关系转化成2112n n a a ++=,同时验证2112a a =,从⽽证明数列{}n a 为等⽐数列,再利⽤通项公式求得n a ;(2)利⽤对数运算法则得11221nn c n n ??=+- ?+??,再⽤等⽐数列求和及裂项相消法求和,可求得n T 。
专题检测(三) 数列、推理与证明(本卷满分150分,考试用时120分钟)一、选择题(本大题共12小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是A .15B .30C .31D .64解析 由等差数列的性质得a 7+a 9=a 4+a 12, 因为a 7+a 9=16,a 4=1, 所以a 12=15.故选A. 答案 A2.在数列{a n }中,a 1=-2,a n +1=1+a n1-a n,则a 2 010等于A .-2B .-13C .-12D .3解析 由条件可得:a 1=-2,a 2=-13,a 3=-12,a 4=3,a 5=-2,a 6=-13,…,所以数列{a n }是以4为周期的周期数列,所以a 2 010=a 2=-13.故选B.答案 B3.等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是A .5B .6C .7D .8解析 由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质 ,可得a 7+a 8=0,根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时S n 最大.故选C.答案 C4.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于A.310 B.13 C.18D.19解析 由等差数列的求和公式,可得S 3S 6=3a 1+3d 6a 1+15d =13,可得a 1=2d 且d ≠0,所以S 6S 12=6a 1+15d 12a 1+66d =27d 90d =310,故选A.答案 A5.已知等比数列{a n }的前n 项和S n =t ·5n -2-15,则实数t 的值为A .4B .5 C. 45D. 15解析 ∵a 1=S 1=15t -15,a 2=S 2-S 1=45t ,a 3=S 3-S 2=4t ,由{a n }是等比数列,知⎝⎛⎭⎫45t 2=⎝⎛⎭⎫15t -15×4t , 显然t ≠0,解得t =5. 答案 B 6.观察下图:1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 …………则第( )行的各数之和等于2 0092. A. 2 010B .2 009C .1 006D .1 005解析 由题设图知,第一行各数和为1; 第二行各数和为9=32; 第三行各数和为25=52; 第四行各数和为49=72;…, ∴第n 行各数和为(2n -1)2, 令2n -1=2 009,解得n =1 005. 答案 D7.已知正项等比数列{a n },a 1=2,又b n =log 2a n ,且数列{b n }的前7项和T 7最大,T 7≠T 6,且T 7≠T 8,则数列{a n }的公比q 的取值范围是A .172<q <162B .162-<q <172-C .q <162-或q >172-D .q >162或q <172解析 ∵b n =log 2a n ,而{a n }是以a 1=2为首项,q 为公比的等比数列, ∴b n =log 2a n =log 2a 1q n -1=1+(n -1)log 2q .∴b n +1-b n =log 2q .∴{b n }是等差数列, 由于前7项之和T 7最大,且T 7≠T 6,所以有⎩⎪⎨⎪⎧1+6log 2q >0,1+7log 2q <0,解得-16<log 2q <-17,即162-<q <172-.故选B.答案 B8.已知数列A :a 1,a 2,…,a n (0≤a 1<a 2<…<a n ,n ≥3)具有性质P :对任意i ,j (1≤i ≤j ≤n ),a j +a i 与a j -a i 两数中至少有一个是该数列中的一项.现给出以下四个命题:①数列0,1,3具有性质P ; ②数列0,2,4,6具有性质P ; ③若数列A 具有性质P ,则a 1=0;④若数列a 1,a 2,a 3(0≤a 1<a 2<a 3)具有性质P ,则a 1+a 3=2a 2. 其中真命题有 A .4个 B .3个 C .2个D .1个解析 3-1,3+1都不在数列0,1,3中,所以①错; 因为数列1,4,5具有性质P , 但1+5≠2×4,即a 1+a 3≠2a 2, 且a 1=1≠0,所以③④错;数列0,2,4,6中a j -a i (1≤i ≤j ≤4)在此数列, 所以②正确,所以选D. 答案 D9.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +2.则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N +)的前n 项和是A.n +12(n +2)B.n +1n +2C.n (3n +5)4(n +1)(n +2)D.3n +44(n +1)解析 依题意得f ′(x )=mx m -1+a =2x +2, 则m =a =2,f (x )=x 2+2x , 1f (n )=1n 2+2n =12⎝⎛⎭⎫1n -1n +2,数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和等于12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1n +2 =12⎣⎡⎦⎤⎝⎛⎭⎫1+12+…+1n -⎝⎛⎭⎫13+14+…+1n +2 =12⎝⎛⎭⎫1+12-1n +1-1n +2=n (3n +5)4(n +1)(n +2),选C. 答案 C10.等差数列{a n }的前16项和为640,前16项中偶数项和与奇数项和之比为22∶18,则公差d ,a 9a 8的值分别是A .8,109B .9,109C .9,119D .8,119解析 设S 奇=a 1+a 3+…+a 15, S 偶=a 2+a 4+…+a 16,则有S 偶-S 奇=(a 2-a 1)+(a 4-a 3)+…+(a 16-a 15)=8d , S 偶S 奇=8(a 2+a 16)28(a 1+a 15)2=a 9a 8. 由⎩⎪⎨⎪⎧S 奇+S 偶=640,S 奇∶S 偶=18∶22,解得S 奇=288,S 偶=352. 因此d =S 偶-S 奇8=648=8,a 9a 8=S 偶S 奇=119.故选D. 答案 D11.数列{a n }满足a 1=32,a n +1=a 2n -a n +1(n ∈N +),则m =1a 1+1a 2+1a 3+…+1a 2 009的整数部分是A .3B .2C .1D .0解析 依题意,得a 1=32,a 2=74,a 3=3716>2,a n +1-a n =(a n -1)2>0,数列{a n }是递增数列,∴a 2 010>a 3>2,∴a 2 010-1>1,∴1<2-1a 2 010-1<2.由a n +1=a 2n -a n +1得1a n =1a n -1-1a n +1-1, 故1a 1+1a 2+…+1a 2 009=⎝⎛⎭⎫1a 1-1-1a 2-1+⎝⎛⎭⎫1a 2-1-1a 3-1+…+⎝⎛⎭⎫1a 2 009-1-1a 2 010-1 =1a 1-1-1a 2 010-1=2-1a 2 010-1∈(1,2),因此选C. 答案 C12.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是A .(-∞,-1]B .(-∞,-1)∪(1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析 ∵等比数列{a n }中,a 2=1, ∴S 3=a 1+a 2+a 3=a 2⎝⎛⎭⎫1q +1+q =1+q +1q . 当公比q >0时,S 3=1+q +1q ≥1+2q ·1q=3, 当公比q <0时,S 3=1-⎝⎛⎭⎫-q -1q ≤1-2(-q )·⎝⎛⎭⎫-1q =-1, ∴S 3∈(-∞,-1]∪[3,+∞). 答案 D二、填空题(本大题共4小题,每小题4分,共计16分.把答案填在题中的横线上) 13.观察下列等式:可以推测:13+23+33+…+n 3=________(n ∈N +,用含有n 的代数式表示). 解析 第二列等式右端分别是1×1,3×3,6×6,10×10,15×15,与第一列等式右端比较即可得,13+23+33+…+n 3=(1+2+3+…+n )2=14n 2(n +1)2.故填14n 2(n +1)2.答案 14n 2(n +1)214.已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q =________.解析 由a 2=2,a 4-a 3=4得方程组⎩⎪⎨⎪⎧a 2=2,a 2q 2-a 2q =4⇒q 2-q -2=0,解得q =2或q =-1.又{a n }是递增等比数列,故q =2. 答案 215.在公差为d (d ≠0)的等差数列{a n }中,若S n 是数列{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也成等差数列,且公差为100d .类比上述结论,相应地在公比为q (q ≠1)的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有________.答案T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为q 100 16.经计算发现下列正确不等式:2+18<210,4.5+15.5<210,3+2+17-2<210,…,根据以上不等式的规律,试写出一个对正实数a ,b 成立的条件不等式:________.解析 当a +b =20时,有a +b ≤210,a ,b ∈(0,+∞). 给出的三个式子的右边都是210,左边都是两个根式相加,两个被开方数都是正数且和为20, 又10+10=210,所以根据上述规律可以写出一个对正实数a ,b 成立的条件不等式: 当a +b =20时,有a +b ≤210,a ,b ∈(0,+∞). 答案 当a +b =20时,有a +b ≤210,a ,b ∈(0,+∞)三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)设等差数列{a n }的前n 项和为S n ,公比是正数的等比数列{b n }的前n 项和为T n .已知a 1=1,b 1=3,a 3+b 3=17,T 3-S 3=12,求{a n },{b n }的通项公式.解析 设{a n }的公差为d ,{b n }的公比为q . 由a 3+b 3=17得1+2d +3q 2=17,① 由T 3-S 3=12得q 2+q -d =4.②由①、②及q >0解得q =2,d =2.故所求的通项公式为a n =2n -1,b n =3×2n -1.18.(12分)已知等比数列{a n }的公比q >1,42是a 1和a 4的等比中项,a 2和a 3的等差中项为6,若数列{b n }满足b n =log 2a n (n ∈N +).(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和S n .解析 (1)因为42是a 1和a 4的等比中项, 所以a 1·a 4=(42)2=32. 从而可知a 2·a 3=32.①因为6是a 2和a 3的等差中项,所以a 2+a 3=12.② 因为q >1,所以a 3>a 2.联立①②,解得⎩⎪⎨⎪⎧a 2=4,a 3=8.所以q =a 3a 2=2,a 1=2.故数列{a n }的通项公式为a n =2n .(2)因为b n =log 2a n (n ∈N +),所以a n b n =n ·2n . 所以S n =1·2+2·22+3·23+…+(n -1)·2n -1+n ·2n .③2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1.④③-④得,-S n =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1.所以S n =2-2n +1+n ·2n +1.19.(12分)已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n .(1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N +),求数列{b n }的前n 项和T n .解析 (1)设等差数列{a n }的公差为d , 由于a 3=7,a 5+a 7=26, 所以a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2.由于a n =a 1+(n -1)d ,S n =n (a 1+a n )2,所以a n =2n +1,S n =n (n +2). (2)因为a n =2n +1,所以a 2n -1=4n (n +1), 因此b n =14n (n +1)=14⎝⎛⎭⎫1n -1n +1.故T n =b 1+b 2+…+b n=14⎝⎛⎭⎫1-12+12-13+…+1n -1n +1 =14⎝⎛⎭⎫1-1n +1=n 4(n +1), 所以数列{b n }的前n 项和T n =n4(n +1).20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)具有性质:若M ,N 是椭圆上关于原点O 对称的两点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值,试写出双曲线x 2a 2-y 2b 2=1(a >0,b >0)具有类似特性的性质并加以证明.解析 可以通过类比得:若M ,N 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上关于原点O 对称的两点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明 设点M (m ,n ),则N (-m ,-n ), 又设点P 的坐标为P (x ,y ), 则k PM =y -n x -m ,k PN =y +nx +m, 注意到m 2a 2-n 2b2=1,点P (x ,y )在双曲线x 2a 2-y 2b 2=1上,故y 2=b 2⎝⎛⎭⎫x 2a 2-1,n 2=b 2⎝⎛⎭⎫m 2a 2-1, 代入k PM ·k PN =y 2-n 2x 2-m 2可得:k PM ·k PN =b 2a 2(x 2-m 2)x 2-m 2=b 2a 2(常数),即k PM ·k PN 是与点P 的位置无关的定值.21.(12分)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a nn ,若A n 大于80万元,则M 继续使用,否则须在第n 年初对M更新.证明:须在第9年初对M 更新.解析 (1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,a n =120-10(n -1)=130-10n ;当n ≥6时,数列{a n }是以a 6为首项,34为公比的等比数列,又a 6=70,所以a n =70×⎝⎛⎭⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为 a n =⎩⎪⎨⎪⎧130-10n , n ≤6,70×⎝⎛⎭⎫34n -6, n ≥7. (2)证明 设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得 当1≤n ≤6时,S n =120n -5n (n -1),A n =120-5(n -1)=125-5n ; 当n ≥7时,由于S 6=570,故S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6=780-210×⎝⎛⎭⎫34n -6, A n =780-210×⎝⎛⎭⎫34n -6n .易知{A n }是递减数列,又A 8=780-210×⎝⎛⎭⎫3428=824764>80,A 9=780-210×⎝⎛⎭⎫3439=767996<80,所以须在第9年初对M 更新.22.(14分)已知数列{a n }中,a 1=1,a n +1=c -1a n.(1)设c =52,b n =1a n -2,求数列{b n }的通项公式;(2)求使不等式a n <a n +1<3成立的c 的取值范围. 解析 (1)a n +1-2=52-1a n -2=a n -22a n ,1a n +1-2=2a n a n -2=4a n -2+2,即b n +1=4b n +2.b n +1+23=4⎝⎛⎭⎫b n +23, 又a 1=1,故b 1=1a 1-2=-1,所以⎩⎨⎧⎭⎬⎫b n +23是首项为-13,公比为4的等比数列,b n +23=-13×4n -1,b n =-4n -13-23.(2)a 1=1,a 2=c -1,由a 2>a 1得c >2. 用数学归纳法证明:当c >2时,a n <a n +1. (i)当n =1时,a 2=c -1a 1>a 1,命题成立;(ii)假设当n =k (k ≥1,k ∈N +)时,a k <a k +1, 则当n =k +1时,a k +2=c -1a k +1>c -1a k =a k +1.故由(i)(ii)知当c >2时,a n <a n +1. 当c >2时,令α=c +c 2-42,由a n +1a n <a n +1+1a n =c 得a n <α.当2<c ≤103时,a n <α≤3.当c >103时,α>3,且1≤a n <α,于是α-a n +1=1a n α(α-a n )≤13(α-a n ), α-a n +1≤13n (α-1).当n >log 3α-1α-3时,α-a n +1<α-3,a n +1>3.因此c >103不符合要求.所以c 的取值范围是⎝⎛⎦⎤2,103.。
2020版新高考数学大二轮复习:等差数列与等比数列(真题及考点精讲)[做真题]题型一 等差数列1.(2019·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8nD .S n =12n 2-2n解析:选A.法一:设等差数列{a n }的公差为d ,因为⎩⎪⎨⎪⎧S 4=0,a 5=5,所以⎩⎪⎨⎪⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2,所以a n =a 1+(n -1)d =-3+2(n -1)=2n -5,S n =na 1+n (n -1)2d =n 2-4n .故选A. 法二:设等差数列{a n }的公差为d ,因为⎩⎪⎨⎪⎧S 4=0,a 5=5,所以⎩⎪⎨⎪⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2.选项A ,a 1=2×1-5=-3;选项B ,a 1=3×1-10=-7,排除B ; 选项C ,S 1=2-8=-6,排除C ; 选项D ,S 1=12-2=-32,排除D.故选A.2.(2018·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12解析:选B.设等差数列{a n }的公差为d ,因为3S 3=S 2+S 4,所以3(3a 1+3×22d )=2a 1+d+4a 1+4×32d ,解得d =-32a 1,因为a 1=2,所以d =-3,所以a 5=a 1+4d =2+4×(-3)=-10.故选B.3.(2017·高考全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A.设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23,即(a 1+d )(a 1+5d )=(a 1+2d )2,又a 1=1,所以d 2+2d =0,又d ≠0,则d =-2,所以a 6=a 1+5d =-9,所以{a n }前6项的和S 6=1-92×6=-24,故选A.4.(2019·高考全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S 10S 5=________.解析:设等差数列{a n }的公差为d ,由a 2=3a 1,即a 1+d =3a 1,得d =2a 1, 所以S 10S 5=10a 1+10×92d 5a 1+5×42d =10a 1+10×92×2a 15a 1+5×42×2a 1=10025=4.答案:4题型二 等比数列1.(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2解析:选C.设等比数列{a n }的公比为q ,由a 5=3a 3+4a 1得q 4=3q 2+4,得q 2=4,因为数列{a n }的各项均为正数,所以q =2,又a 1+a 2+a 3+a 4=a 1(1+q +q 2+q 3)=a 1(1+2+4+8)=15,所以a 1=1,所以a 3=a 1q 2=4.2.(2017·高考全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B.每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1(1-27)1-2=381,解得a 1=3,故选B.3.(2019·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.解析:通解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.优解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以a 2a 6=a 6,所以a 2=1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.答案:12134.(2018·高考全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解:(1)设{a n }的公比为q ,由题设得a n =q n -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n-1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1.由S m =63得2m =64,解得m =6. 综上,m =6.题型三 等差、等比数列的判定与证明(2019·高考全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列.(2)由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.[学习指导意见]1.数列的概念和简单表示法了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)掌握等差数列、等比数列的通项公式与前n 项和的公式.考点1:等差、等比数列的基本运算[典型例题](1)已知等比数列{a n }的前n 项和为S n ,若a 1=1,S 10S 5=3332,则数列{a n }的公比q 为( )A .4B .2C .12D .34(2)(2019·开封模拟)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=3.①若a 3+b 3=7,求{b n }的通项公式; ②若T 3=13,求S n .【解】 (1)选C.因为S 10S 5=3332≠2,所以q ≠1.所以S 10S 5=a 1(1-q 10)1-q a 1(1-q 5)1-q =1+q 5,所以1+q 5=3332,所以q =12. (2)①设数列{a n }的公差为d ,数列{b n }的公比为q , 则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=3,得d +q =4,(*) 由a 3+b 3=7,得2d +q 2=8,(**)联立(*)(**),解得q =2或q =0(舍去), 因此数列{b n }的通项公式为b n =2n -1.②因为T 3=1+q +q 2,所以1+q +q 2=13, 解得q =3或q =-4,由a 2+b 2=3,得d =4-q ,所以d =1或d =8. 由S n =na 1+12n (n -1)d ,得S n =12n 2-32n 或S n =4n 2-5n .等差、等比数列问题的求解策略(1)抓住基本量,首项a 1、公差d 或公比q ;(2)熟悉一些结构特征,如前n 项和为S n =an 2+bn(a ,b 是常数)的形式的数列为等差数列,通项公式为a n =p·q n -1(p ,q ≠0)的形式的数列为等比数列;(3)由于等比数列的通项公式、前n 项和公式中变量n 在指数位置,所以常采用两式相除(即比值的方式)进行相关计算.[对点训练]1.(多选)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对于任意n>1,n ∈N *,满足S n +1+S n -1=2(S n +1),则( )A .a 9=17B .a 10=18C .S 9=81D .S 10=91解析:选BD.因为对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),所以S n -1-S n =S n-S n -1+2,所以a n +1-a n =2.所以数列{a n }在n ≥2时是等差数列,公差为2,又a 1=1,a 2=2,则a 9=2+7×2=16,a 10=2+8×2=18,S 9=1+8×2+8×72×2=73,S 10=1+9×2+9×82×2=91.故选BD.2.(一题多题)(2019·福州市质量检测)等比数列{a n }的各项均为正实数,其前n 项和为S n .若a 3=4,a 2a 6=64,则S 5=( )A .32B .31C .64D .63解析:选B.通解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由条件得⎩⎪⎨⎪⎧a 1·q 2=4a 1q ·a 1q 5=64,解得⎩⎪⎨⎪⎧a 1=1q =2,所以S 5=31,故选B.优解:设首项为a 1,公比为q ,因为a n >0,所以q >0,由a 2a 6=a 24=64,a 3=4,得q =2,a 1=1,所以S 5=31,故选B.3.(2019·武昌区调研考试)设{a n }是公差不为零的等差数列,S n 为其前n 项和,已知S 1,S 2,S 4成等比数列,且a 3=5,则数列{a n }的通项公式为________.解析:设数列{a n }的公差为d (d ≠0),因为{a n }是等差数列,S 1,S 2,S 4成等比数列,所以(a 1+a 2)2=a 1(a 1+a 2+a 3+a 4),因为a 3=5,所以(5-2d +5-d )2=(5-2d )(5-2d +15),解得d =2或d =0(舍去),所以5=a 1+(3-1)×2,即a 1=1,所以a n =2n -1.答案:a n =2n -1考点2:等差(比)数列的性质[典型例题](1)在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为( )A .-2+22B .- 2C . 2D .-2或 2(2)(2019·长春质量检测)设S n 是等差数列{a n }的前n 项和,若S 4≠0,且S 8=3S 4,S 12=λS 8,则λ=( )A .13B .12C .2D .3(3)(2019·福建漳州质检改编)若S n 是等差数列{a n }的前n 项和,且a 2+a 9+a 19=6,则a 10=________,S 19=________.【解析】 (1)设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=-2,故选B.(2)因为S n 是等差数列{a n }的前n 项和, 若S 4≠0,且S 8=3S 4,S 12=λS 8,所以由等差数列的性质得:S 4,S 8-S 4,S 12-S 8成等差数列, 所以2(S 8-S 4)=S 4+(S 12-S 8), 所以2(3S 4-S 4)=S 4+(λ·3S 4-3S 4), 解得λ=2.(3)设等差数列{a n }的首项为a 1,公差为d .由等差数列的通项公式可得a 2+a 9+a 19=3(a 1+9d )=3a 10=6,所以a 10=2,由等差数列前n 项和公式可得S 19=19(a 1+a 19)2=19a 10=38.【答案】 (1)B (2)C (3)2 38等差、等比数列性质问题的求解策略[对点训练]1.(一题多解)(2019·福建省质量检查)等差数列{a n }的前n 项和为S n ,且a 8-a 5=9,S 8-S 5=66,则a 33=( )A .82B .97C .100D .115解析:选 C.通解:设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 8-a 5=9,S 8-S 5=66,得⎩⎪⎨⎪⎧(a 1+7d )-(a 1+4d )=9,(8a 1+28d )-(5a 1+10d )=66,解得⎩⎪⎨⎪⎧d =3,a 1=4,所以a 33=a 1+32d =4+32×3=100,故选C.优解:设等差数列{a n }的公差为d ,由a 8-a 5=9,得3d =9,即d =3.由S 8-S 5=66,得a 6+a 7+a 8=66,结合等差数列的性质知3a 7=66,即a 7=22,所以a 33=a 7+(33-7)×d =22+26×3=100,故选C.2.(一题多解)(2019·广东省七校联考)已知等差数列{a n }的前n 项和为S n ,a 6+a 8=6,S 9-S 6=3,则S n 取得最大值时n 的值为( )A .5B .6C .7D .8解析:选D.法一:设{a n }的公差为d ,则由题意得,⎩⎪⎨⎪⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎪⎨⎪⎧a 1=15,d =-2.所以a n =-2n +17,由于a 8>0,a 9<0,所以S n 取得最大值时n 的值是8,故选D. 法二:设{a n }的公差为d ,则由题意得,⎩⎪⎨⎪⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎪⎨⎪⎧a 1=15,d =-2.则S n =15n +n (n -1)2×(-2)=-(n -8)2+64,所以当n =8时,S n 取得最大值,故选D.3.(一题多解)已知数列{a n }满足a n =⎩⎪⎨⎪⎧⎝⎛⎭⎫12-λn +1(n <6),λn -5(n ≥6),若对于任意的n ∈N *都有a n >a n +1,则实数λ的取值范围是________.解析:法一:因为a n >a n +1,所以数列{a n}是递减数列,所以⎩⎪⎨⎪⎧12-λ<0,0<λ<1,λ<⎝⎛⎭⎫12-λ×5+1,解得12<λ<712.所以实数λ的取值范围是⎝⎛⎭⎫12,712. 法二:因为a n >a n +1恒成立,所以0<λ<1.若0<λ≤12,则当n <6时,数列{a n }为递增数列或常数列,不满足对任意的n ∈N *都有a n >a n+1;若12<λ<1,则当n <6时,数列{a n }为递减数列,当n ≥6时,数列{a n }为递减数列,又对任意的n ∈N *都有a n >a n +1,所以a 6<a 5,即λ<⎝⎛⎭⎫12-λ×5+1,解得λ<712, 所以12<λ<712.综上,实数λ的取值范围为⎝⎛⎭⎫12,712. 答案:⎝⎛⎭⎫12,712考点3:等差(比)数列的判定与证明[典型例题](2019·广州市调研测试)设S n 为数列{a n }的前n 项和,已知a 3=7,a n =2a n -1+a 2-2(n ≥2).(1)证明:数列{a n +1}为等比数列;(2)求数列{a n }的通项公式,并判断n ,a n ,S n 是否成等差数列? 【解】 (1)证明:因为a 3=7,a 3=3a 2-2,所以a 2=3, 所以a n =2a n -1+1, 所以a 1=1,a n +1a n -1+1=2a n -1+2a n -1+1=2(n ≥2),所以数列{a n +1}是首项为a 1+1=2,公比为2的等比数列. (2)由(1)知,a n +1=2n , 所以a n =2n -1,所以S n =2(1-2n )1-2-n =2n +1-n -2,所以n +S n -2a n =n +(2n +1-n -2)-2(2n -1)=0,所以n +S n =2a n , 即n ,a n ,S n 成等差数列.判断(证明)等差(比)数列应注意的问题(1)判断或者证明数列为等差数列、等比数列最基本的方法是用定义判断或证明,其他方法最后都会回到定义,如证明等差数列可以证明通项公式是n 的一次函数,但最后还得使用定义才能说明其为等差数列.(2)证明数列{a n }为等比数列时,不能仅仅证明a n +1=qa n ,还要说明a 1≠0,才能递推得出数列中的各项均不为零,最后判定数列{a n }为等比数列.[对点训练]1.(2019·湖南省湘东六校联考)已知数列{a n }满足a n +1-3a n =3n (n ∈N *)且a 1=1. (1)设b n =a n3n -1,证明数列{b n }为等差数列;(2)设c n =na n,求数列{c n }的前n 项和S n .解:(1)证明:由已知得a n +1=3a n +3n,得b n +1=a n +13n =3a n +3n 3n =a n3n -1+1=b n +1,所以b n +1-b n =1,又a 1=1,所以b 1=1, 所以数列{b n }是首项为1,公差为1的等差数列. (2)由(1)知,b n =a n 3n -1=n ,所以a n =n ·3n -1,c n =13n -1,所以S n =1×⎝⎛⎭⎫1-13n 1-13=32⎝⎛⎭⎫1-13n =32-12·3n -1.2.设S n 为数列{a n }的前n 项和,对任意的n ∈N *,都有S n =2-a n ,数列{b n }满足b 1=2a 1,b n =b n -11+b n -1(n ≥2,n ∈N *).(1)求证:数列{a n }是等比数列,并求{a n }的通项公式;(2)判断数列{1b n }是等差数列还是等比数列,并求数列{b n }的通项公式.解:(1)当n =1时,a 1=S 1=2-a 1,解得a 1=1;当n ≥2时,a n =S n -S n -1=a n -1-a n ,即a n a n -1=12(n ≥2,n ∈N *).所以数列{a n }是首项为1,公比为12的等比数列,故数列{a n }的通项公式为a n =⎝⎛⎭⎫12n -1.(2)因为a 1=1,所以b 1=2a 1=2.因为b n =b n -11+b n -1,所以1b n =1b n -1+1,即1b n -1b n -1=1(n ≥2). 所以数列{1b n }是首项为12,公差为1的等差数列. 所以1b n =12+(n -1)·1=2n -12,故数列{b n }的通项公式为b n =22n -1. 考点4:数列与新定义相交汇问题[典型例题]对任一实数序列A =(a 1,a 2,a 3,…),定义新序列ΔA =(a 2-a 1,a 3-a 2,a 4-a 3,…),它的第n 项为a n +1-a n .假定序列Δ(ΔA )的所有项都是1,且a 12=a 22=0,则a 2=________.【解析】 令b n =a n +1-a n ,依题意知数列{b n }为等差数列,且公差为1,所以b n =b 1+(n -1)×1,a 1=a 1, a 2-a 1=b 1, a 3-a 2=b 2, …a n -a n -1=b n -1,累加得a n =a 1+b 1+…+b n -1=a 1+(n -1)b 1+(n -1)(n -2)2=(n -1)a 2-(n -2)a 1+(n -1)(n -2)2,分别令n =12,n =22,得⎩⎪⎨⎪⎧11a 2-10a 1+55=0,21a 2-20a 1+210=0, 解得a 1=2312,a 2=100.【答案】 100数列新定义型创新题的一般解题思路(1)阅读审清“新定义”.(2)结合常规的等差数列、等比数列的相关知识,化归、转化到“新定义”的相关知识.(3)利用“新定义”及常规的数列知识,求解证明相关结论.[对点训练]1.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n ,则数列{a n }的前n 项和S n =( )A .2B .2nC .2n +1-2D .2n -1-2解析:选C.因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n-1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n,所以S n =2-2n +11-2=2n +1-2.2.(2019·福建五校第二次联考)在数列{a n }中,a 1=13,1a n +1=3a n (a n +3),n ∈N +,且b n=13+a n.记P n =b 1×b 2×…×b n ,S n =b 1+b 2+…+b n ,则3n +1P n +S n =________. 解析:因为1a n +1=3a n (a n +3)=1a n -1a n +3,所以b n =13+a n =1a n -1a n +1,所以S n =b 1+b 2+…+b n =⎝⎛⎭⎫1a 1-1a 2+⎝⎛⎭⎫1a 2-1a 3+…+⎝⎛⎭⎫1a n -1a n +1=1a 1-1a n +1.因为1a n +1=3a n (a n +3),所以b n =13+a n =a n 3a n +1,所以P n =b 1×b 2×…×b n =a 13a 2×a 23a 3×…×a n 3a n +1=a 13n a n +1.又a 1=13,故3n +1P n +S n =3a 1a n +1+1a 1-1a n +1=1a 1=3.答案:3一、选择题1.(2019·福州市质量检测)已知数列{a n }中,a 3=2,a 7=1.若数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,则a 9=( )A .12B .54C .45D .-45解析:选C.因为数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,a 3=2,a 7=1,所以数列⎩⎨⎧⎭⎬⎫1a n 的公差d =1a 7-1a 37-3=1-127-3=18,所以1a 9=1a 7+(9-7)×18=54,所以a 9=45,故选C.2.(一题多解)已知等比数列{a n }的前n 项和为S n ,若S 2=2,S 3=-6,则S 5=( ) A .18B .10C .-14D .-22解析:选 D.法一:设等比数列{a n }的公比为q ,由题意,得⎩⎪⎨⎪⎧a 1+a 1q =2a 1+a 1q +a 1q 2=-6,解得⎩⎪⎨⎪⎧a 1=-2q =-2,所以S 5=-2×[1-(-2)5]1-(-2)=-22,故选D.法二:设等比数列{a n }的公比为q ,易知q ≠1,令A =a 1q -1,则S n =Aq n -A ,⎩⎪⎨⎪⎧S 2=Aq 2-A =2S 3=Aq 3-A =-6,解得⎩⎪⎨⎪⎧A =23q =-2,所以S n =23[(-2)n -1],所以S 5=23×[(-2)5-1]=-22,故选D.3.已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tanb 3+b 91-a 4·a 8的值是 ( )A .- 3B .-1C .-33D . 3解析:选A.依题意得,a 36=(-3)3,3b 6=7π,所以a 6=-3,b 6=7π3,所以b 3+b 91-a 4·a 8=2b 61-a 26=-7π3,故tan b 3+b 91-a 4·a 8=tan ⎝⎛⎭⎫-7π3=tan ⎝⎛⎭⎫-2π-π3=-tan π3=-3,故选A. 4.(一题多解)(2019·合肥市第一次质量检测)已知正项等差数列{a n }的前n 项和为S n (n ∈N *),a 5+a 7-a 26=0,则S 11的值为( )A .11B .12C .20D .22解析:选 D.通解:设等差数列{a n }的公差为d (d >0),则由(a 1+4d )+(a 1+6d )-(a 1+5d )2=0,得(a 1+5d )(a 1+5d -2)=0,所以a 1+5d =0或a 1+5d =2,又a 1>0,所以a 1+5d >0,则a 1+5d =2,则S 11=11a 1+11×102d =11(a 1+5d )=11×2=22,故选D.优解:因为{a n }为正项等差数列,所以由等差数列的性质,并结合a 5+a 7-a 26=0,得2a 6-a 26=0,a 6=2,则S 11=11(a 1+a 11)2=11×2a 62=11a 6=22,故选D. 5.等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( ) A .6 B .7 C .8D .9解析:选C.由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d2>0,所以前8项和为前n 项和的最小值,故选C.6.(多选)已知数列{a n }是等比数列,则下列命题正确的是( ) A .数列{|a n |}是等比数列 B .数列{a n a n +1}是等比数列C .数列⎩⎨⎧⎭⎬⎫1a n 是等比数列D .数列{lg a 2n }是等比数列解析:选ABC.因为数列{a n }是等比数列,所以a n +1a n =q .对于A ,|a n +1||a n |=⎪⎪⎪⎪a n +1a n =|q |,所以数列{|a n |}是等比数列,A 正确;对于B ,a n +1a n +2a n a n +1=q 2,所以数列{a n a n +1}是等比数列,B 正确;对于C ,1a n +11a n =a n a n +1=1q,所以数列⎩⎨⎧⎭⎬⎫1a n 是等比数列,C 正确;对于D ,lg a 2n +1lg a 2n =2lg a n +12lg a n =lg a n +1lg a n ,不一定是常数,所以D 错误.二、填空题7.(2019·贵阳市第一学期监测)已知数列{a n }中,a 1=3,a 2=7.当n ∈N *时,a n +2是乘积a n ·a n +1的个位数,则a 2 019=________.解析:a 1=3,a 2=7,a 1a 2=21,a 3=1,a 2a 3=7,a 4=7,a 3a 4=7,a 5=7,a 4a 5=49,a 6=9,a 5a 6=63,a 7=3,a 6a 7=27,a 8=7,a 7a 8=21,a 9=1,a 8a 9=7,所以数列{a n }是周期为6的数列,又2 019=6×336+3,所以a 2 019=a 3=1.答案:18.在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”,下列是对“等差比数列”的判断:①k 不可能为0;②等差数列一定是“等差比数列”; ③等比数列一定是“等差比数列”; ④“等差比数列”中可以有无数项为0. 其中所有正确判断的序号是________.解析:由等差比数列的定义可知,k 不为0,所以①正确,当等差数列的公差为0,即等差数列为常数列时,等差数列不是等差比数列,所以②错误;当{a n }是等比数列,且公比q =1时,{a n }不是等差比数列,所以③错误;数列0,1,0,1,…是等差比数列,该数列中有无数多个0,所以④正确.答案:①④9.(2019·洛阳尖子生第二次联考)已知函数f (x )=e x -1e x +1,g (x )=f (x -1)+1,则g (x )的图象关于________对称,若a n =g ⎝⎛⎭⎫1n +g ⎝⎛⎭⎫2n +g ⎝⎛⎭⎫3n +…+g ⎝⎛⎭⎫2n -1n (n ∈N *),则数列{a n }的通项公式为________.解析:因为f (x )=e x -1e x +1,所以f (-x )=e -x -1e -x +1=1-e xe x +1=-f (x ),所以函数f (x )为奇函数.因为g (x )=f (x -1)+1,所以g (x )的图象关于点(1,1)对称,若x 1+x 2=2,则有g (x 1)+g (x 2)=2,所以a n =g ⎝⎛⎭⎫1n +g ⎝⎛⎭⎫2n +g ⎝⎛⎭⎫3n +…+g ⎝⎛⎭⎫2n -1n =2(n -1)+g (1)=2n -2+f (0)+1=2n -1,即a n =2n -1,故数列{a n }的通项公式为a n =2n -1.答案:(1,1) a n =2n -1 三、解答题10.(2019·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,若a 2=2,a 1+a 2+a 3=7.(1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.解:(1)由已知得⎩⎪⎨⎪⎧a 1q =2a 1+a 1q +a 1q 2=7, 则⎩⎪⎨⎪⎧a 1=4q =12或⎩⎪⎨⎪⎧a 1=1q =2(舍去).所以a n =4×⎝⎛⎭⎫12n -1=23-n .(2)因为b n =log 2a n =log 223-n =3-n ,所以数列{b n }是首项为2,公差为-1的等差数列. 设数列{b n }的前n 项和为T n , 则T n =n (2+3-n )2=n (5-n )2.11.(2019·武汉调研)已知等差数列{a n }前三项的和为-9,前三项的积为-15. (1)求等差数列{a n }的通项公式;(2)若{a n }为递增数列,求数列{|a n |}的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,则依题意得a 2=-3,则a 1=-3-d ,a 3=-3+d , 所以(-3-d )(-3)(-3+d )=-15,得d 2=4,d =±2, 所以a n =-2n +1或a n =2n -7.(2)由题意得a n =2n -7,所以|a n |=⎩⎪⎨⎪⎧7-2n ,n ≤32n -7,n ≥4,①n ≤3时,S n =-(a 1+a 2+…+a n )=5+(7-2n )2n =6n -n 2;②n ≥4时,S n =-a 1-a 2-a 3+a 4+…+a n =-2(a 1+a 2+a 3)+(a 1+a 2+…+a n )=18-6n +n 2.综上,数列{|a n |}的前n 项和S n =⎩⎪⎨⎪⎧-n 2+6n ,n ≤3n 2-6n +18,n ≥4.12.(2019·长沙市统一模拟考试)已知数列{a n }的首项a 1=3,a 3=7,且对任意的n ∈N *,都有a n -2a n +1+a n +2=0,数列{b n }满足b n =a 2n -1,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)求使b 1+b 2+…+b n >2 018成立的最小正整数n 的值. 解:(1)令n =1得,a 1-2a 2+a 3=0,解得a 2=5.又由a n -2a n +1+a n +2=0知,a n +2-a n +1=a n +1-a n =…=a 2-a 1=2, 故数列{a n }是首项a 1=3,公差d =2的等差数列, 于是a n =2n +1,b n =a 2n -1=2n +1. (2)由(1)知,b n =2n +1.于是b 1+b 2+…+b n =(21+22+ (2))+n =2(1-2n )1-2+n =2n +1+n -2.令f (n )=2n +1+n -2,易知f (n )是关于n 的单调递增函数,又f (9)=210+9-2=1 031,f (10)=211+10-2=2 056, 故使b 1+b 2+…+b n >2 018成立的最小正整数n 的值是10.。
专题四 数列第一讲 等差数列、等比数列考点一 等差、等比数列的基本运算1.等差数列的通项公式及前n 项和公式a n =a 1+(n -1)d ; S n =n (a 1+a n )2=na 1+n (n -1)2d .2.等比数列的通项公式及前n 项和公式a n =a 1q n -1(q ≠0);S n =⎩⎪⎨⎪⎧na 1(q =1),a 1(1-q n )1-q=a 1-a n q1-q (q ≠1).[对点训练]1.在等差数列{a n }中,已知a 5+a 10=12,则3a 7+a 9=( ) A .12 B .18 C .24 D .30[解析] 设等差数列{a n }的首项为a 1,公差为d , 因为a 5+a 10=12, 所以2a 1+13d =12,所以3a 7+a 9=3(a 1+6d )+a 1+8d =4a 1+26d =2(2a 1+13d )=2×12=24.[答案] C2.(2018·山东青岛模拟)公差不为0的等差数列{a n }的前n 项和为S n ,若a 6=3a 4,且S 9=λa 4,则λ的值为( )A .18B .20C .21D .25[解析] 设公差为d ,由a 6=3a 4,且S 9=λa 4,得⎩⎪⎨⎪⎧a 1+5d =3a 1+9d ,9a 1+9×8d 2=λa 1+3λd ,解得λ=18,故选A.[答案] A3.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12 D.18[解析] 设等比数列{a n }的公比为q ,由a 1=14,a 3a 5=4(a 4-1),可知q ≠1,则a 1q 2×a 1q 4=4(a 1q 3-1),∴116×q 6=4⎝ ⎛⎭⎪⎫14×q 3-1,∴q 6-16q 3+64=0,∴(q 3-8)2=0,即q 3=8,∴q =2,∴a 2=12,故选C.[答案] C4.在等比数列{a n }中,若a 4-a 2=6,a 5-a 1=15,则a 3=________.[解析] 设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 1q 3-a 1q =6,a 1q 4-a 1=15,两式相除,得q1+q 2=25,即2q 2-5q +2=0,解得q =2或q =12.所以⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=-16,q =12.故a 3=4或a 3=-4.[答案] 4或-4[快速审题] 看到求项、求和,想到求a 1,d ,q 及通项公式、前n 项和公式.等差(比)数列的运算注意两点(1)在等差(比)数列中,首项a 1和公差d (公比q )是两个最基本的元素.(2)在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a 1和d (q )的方程组求解,但要注意消元法及整体计算,以减少计算量.考点二 等差、等比数列的性质[对点训练]1.(2018·山西太原一模)已知等差数列{a n }的前n 项和为S n ,若a 2+a 3+a 10=9,则S 9=( )A .3B .9C .18D .27[解析] 设等差数列{a n }的公差为d ,∵a 2+a 3+a 10=9,∴3a 1+12d =9,即a 1+4d =3,∴a 5=3,∴S 9=9(a 1+a 9)2=9a 5=27,故选D.[答案] D2.(2018·山东菏泽一模)在等比数列{a n }中,a 2,a 16是方程x 2+6x +2=0的根,则a 2a 16a 9的值为( )A .2B .- 2 C. 2 D .-2或 2[解析] 设等比数列{a n }的公比为q ,由a 2,a 16是方程x 2+6x +2=0的根,可得a 2a 16=2,所以a 29=2,则a 2a 16a 9=a 9=±2,故选D.[答案] D3.(2018·合肥模拟)设等比数列{a n }的前n 项和为S n ,若S 5=1,S 10=3,则S 15的值是________.[解析] ∵数列{a n }是等比数列,∴S 5,S 10-S 5,S 15-S 10成等比数列,∴(S 10-S 5)2=S 5·(S 15-S 10),4=1×(S 15-3),得S 15=7.[答案] 7[探究追问] 3题中条件不变,如何求S 100的值?[解析] 在等比数列{a n }中,S 5,S 10-S 5,S 15-S 10,…成等比数列,因为S 5=1,S 10=3,所以S 100可表示为等比数列1,2,4,…的前20项和,故S 100=1×(1-220)1-2=220-1.[答案] 220-1[快速审题] 看到等差、等比数列,想到等差、等比数列项的性质、和的性质.等差(比)数列性质应用策略解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.考点三等差、等比数列的判定与证明1.证明数列{a n}是等差数列的两种基本方法(1)利用定义,证明a n+1-a n(n∈N*)为一常数;(2)利用等差中项,即证明2a n=a n-1+a n+1(n≥2).2.证明数列{a n}是等比数列的两种基本方法[解](1)证明:由a1=1,及S n+1=4a n+2,有a1+a2=4a1+2,a2=3a1+2=5,∴b1=a2-2a1=3.由S n+1=4a n+2①知当n ≥2时,有S n =4a n -1+2② ①-②得a n +1=4a n -4a n -1, ∴a n +1-2a n =2(a n -2a n -1) 又∵b n =a n +1-2a n ,∴b n =2b n -1,∴{b n }是首项b 1=3,公比为2的等比数列. (2)由(1)可得b n =a n +1-2a n =3·2n -1, ∴a n +12n +1-a n 2n =34, ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.∴a n 2n =12+(n -1)×34=34n -14,a n =(3n -1)·2n -2.等差、等比数列的判定与证明应注意的两点(1)判断一个数列是等差(比)数列,也可以利用通项公式及前n 项和公式的特征,但不能作为证明方法.(2)a n +1a n=q 和a 2n =a n -1a n +1(n ≥2)都是数列{a n }为等比数列的必要不充分条件,判断时还要看各项是否为零.[对点训练]若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12. (1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.[解] (1)证明:当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)由(1)可得1S n =2n ,∴S n =12n ,当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.1.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12[解析] 解法一:设等差数列{a n }的公差为d ,∵3S 3=S 2+S 4,∴3⎝ ⎛⎭⎪⎫3a 1+3×22d =2a 1+d +4a 1+4×32d ,解得d =-32a 1,∵a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10,故选B.解法二:设等差数列{a n }的公差为d ,∵3S 3=S 2+S 4,∴3S 3=S 3-a 3+S 3+a 4,∴S 3=a 4-a 3,∴3a 1+3×22d =d ,∵a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10,故选B.[答案] B2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8[解析] 解法一:等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,得d =4,故选C.解法二:由已知条件和等差数列的通项公式与前n 项和公式可列方程组,得⎩⎪⎨⎪⎧2a 1+7d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得⎩⎪⎨⎪⎧a 1=-2,d =4,故选C.[答案] C3.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8[解析] 设等差数列{a n }的公差为d ,依题意得a 23=a 2·a 6,即(1+2d )2=(1+d )(1+5d ),解得d =-2或d =0(舍去),又a 1=1,∴S 6=6×1+6×52×(-2)=-24,故选A.[答案] A4.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A.32fB.322fC.1225fD.1227f[解析] 由题意知,十三个单音的频率构成首项为f ,公比为122的等比数列,设该等比数列为{a n },则a 8=a 1q 7,即a 8=1227f ,故选D.[答案] D5.(2017·江苏卷)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.[解析] 设等比数列{a n }的公比为q .当q =1时,S 3=3a 1,S 6=6a 1=2S 3,不符合题意,∴q ≠1,由题设可得⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74,a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧a 1=14,q =2,∴a 8=a 1q 7=14×27=32.[答案] 32高考主要考查两种基本数列(等差数列、等比数列),该部分以选择题、填空题为主,在4~7题的位置或13~14题的位置,难度不大,以两类数列的基本运算和基本性质为主.热点课题10 数列中的最值问题[感悟体验]1.(2018·江西五校联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1、S 2、…、S 9中最小的是( )A .S 5B .S 6C .S 7D .S 8 [解析] 在等差数列{a n }中, ∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0,∴a 5<0,a 6>0,∴S 1、S 2、…、S 9中最小的是S 5,故选A. [答案] A2.(2018·山东青岛模拟)已知a n =n -2017n -2018(n ∈N *),则在数列{a n }的前50项中,最小项和最大项分别是( )A .a 1,a 50B .a 1,a 44C .a 45,a 50D .a 44,a 45[解析] a n =n -2017n -2018=n -2018+2018-2017n -2018=1+2018-2017n -2018.结合函数y =a +cx -b(c >0)的图象,要使a n 最大,则需n -2018最小且n -2018>0,∴当n =45时,a n 最大,当n =44时,a n 最小,故选D. [答案] D专题跟踪训练(十八)一、选择题1.(2018·长郡中学摸底)已知等差数列{a n }的前n 项和为S n ,若a 4+a 12-a 8=8,a 10-a 6=4,则S 23=( )A .23B .96C .224D .276[解析] 设等差数列{a n }的公差为d ,依题意得a 4+a 12-a 8=2a 8-a 8=a 8=8,a 10-a 6=4d =4,解得d =1,所以a 8=a 1+7d =a 1+7=8,解得a 1=1,所以S 23=23×1+23×222×1=276,故选D.[答案] D2.已知数列{a n }为等比数列,且a 1+1,a 3+4,a 5+7成等差数列,则公差d 为( )A .2B .3C .4D .5[解析] 设{a n }的公比为q ,由题意得2(a 3+4)=a 1+1+a 5+7⇒2a 3=a 1+a 5⇒2q 2=1+q 4⇒q 2=1,即a 1=a 3,d =a 3+4-(a 1+1)=4-1=3,故选B.[答案] B3.等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15的值为( )A .1B .2C .3D .5[解析] 因为{a n }为等比数列,所以a 5+a 7是a 1+a 3与a 9+a 11的等比中项,所以(a 5+a 7)2=(a 1+a 3)(a 9+a 11), 故a 9+a 11=(a 5+a 7)2a 1+a 3=428=2;同理,a 9+a 11是a 5+a 7与a 13+a 15的等比中项,所以(a 9+a 11)2=(a 5+a 7)(a 13+a 15),故a 13+a 15=(a 9+a 11)2a 5+a 7=224=1.所以a 9+a 11+a 13+a 15=2+1=3,故选C.[答案] C4.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A .(-∞,-1]B .(-∞,0)∪[1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)[解析] 因为等比数列{a n }中a 2=1,所以S 3=a 1+a 2+a 3=a 2⎝⎛⎭⎪⎫1+q +1q =1+q +1q .当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3;当公比q <0时,S 3=1-⎝ ⎛⎭⎪⎫-q -1q ≤1-2(-q )·⎝ ⎛⎭⎪⎫-1q =-1,所以S 3∈(-∞,-1]∪[3,+∞),故选D. [答案] D5.(2018·江西七校联考)等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =38n +142n +1(n ∈N *),则a 6b 7=( )A .16 B.24215 C.43223 D.49427[解析] 令S n =38n 2+14n ,T n =2n 2+n ,∴a 6=S 6-S 5=38×62+14×6-(38×52+14×5)=38×11+14;b 7=T 7-T 6=2×72+7-(2×62+6)=2×13+1,∴a 6b 7=38×11+142×13+1=43227=16,故选A.[答案] A6.(2018·河南郑州二中期末)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }的前n 项的和,则2S n +16a n +3(n ∈N *)的最小值为( ) A .4 B .3 C .23-2 D.92[解析] ∵a 1=1,a 1、a 3、a 13成等比数列,∴(1+2d )2=1+12d .得d =2或d =0(舍去) ∴a n =2n -1, ∴S n =n (1+2n -1)2=n 2,∴2S n +16a n +3=2n 2+162n +2.令t =n +1, 则2S n +16a n +3=t +9t -2≥6-2=4当且仅当t =3, 即n =2时,∴2S n +16a n +3的最小值为4,故选A.[答案] A 二、填空题7.(2018·福建四地六校联考)已知等差数列{a n }中,a 3=π4,则cos(a 1+a 2+a 6)=________.[解析] ∵在等差数列{a n }中,a 1+a 2+a 6=a 2+a 3+a 4=3a 3=34π,∴cos(a 1+a 2+a 6)=cos 34π=-22.[答案] -228.(2018·山西四校联考)若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.[解析] 解法一:设数列{a n }的公比为q ,由已知得S 4S 2=1+a 3+a 4a 1+a 2=5,即1+q 2=5,所以q 2=4,S 8S 4=1+a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4=1+q 4=1+16=17.解法二:由等比数列的性质可知,S 2,S 4-S 2,S 6-S 4,S 8-S 6成等比数列,若设S 2=a ,则S 4=5a ,由(S 4-S 2)2=S 2·(S 6-S 4)得S 6=21a ,同理得S 8=85a ,所以S 8S 4=85a5a=17.[答案] 179.已知数列{x n }各项均为正整数,且满足x n +1=⎩⎪⎨⎪⎧x n 2,x n 为偶数,x n +1,x n 为奇数,n ∈N *.若x 3+x 4=3,则x 1所有可能取值的集合为________.[解析] 由题意得x 3=1,x 4=2或x 3=2,x 4=1. 当x 3=1时,x 2=2,从而x 1=1或4; 当x 3=2时,x 2=1或4,因此当x 2=1时,x 1=2,当x 2=4时,x 1=8或3. 综上,x 1所有可能取值的集合为{1,2,3,4,8}. [答案] {1,2,3,4,8} 三、解答题10.(2018·沈阳市高三第一次质量监测)已知数列{a n }是等差数列,满足a 1=2,a 4=8,数列{b n }是等比数列,满足b 2=4,b 5=32.(1)求数列{a n }和{b n }的通项公式; (2)求数列{a n +b n }的前n 项和S n .[解] (1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=2,所以a n =a 1+(n -1)·d =2+(n -1)×2=2n .设等比数列{b n }的公比为q ,由题意得q 3=b 5b 2=8,解得q =2.因为b 1=b 2q=2,所以b n =b 1·q n -1=2×2n -1=2n .(2)由(1)可得,S n =n (2+2n )2+2(1-2n )1-2=n 2+n +2n +1-2.11.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.(1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.[解] (1)设{a n }的公差为d ,由题意得 3a 1+3d =-15. 由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.12.已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数.(1)对任意实数λ,证明数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列,并证明你的结论. [解] (1)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即⎝ ⎛⎭⎪⎫23λ-32=λ⎝ ⎛⎭⎪⎫49λ-4,故49λ2-4λ+9=49λ2-4λ,即9=0,这与事实相矛盾.所以对任意实数λ,数列{a n }都不是等比数列.(2)因为b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1·⎝ ⎛⎭⎪⎫23a n -2n +14=-23(-1)n (a n -3n +21)=-23b n ,b 1=-(λ+18),所以当λ=-18时,b 1=0(n ∈N *),此时{b n }不是等比数列;当λ≠-18时,b 1=-(λ+18)≠0,则b n ≠0,所以b n +1b n =-23(n ∈N *).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列.。
(4) n = n +⎝a 1-2⎭是关于 n 的一次函数或常数函数,数列⎨ n n ⎬也是等差数列.(5)S n = n (a 1+a n ) n (a 2+a n -1) n (a 3+a n -2) = = =….S 偶 a m +1S 奇 a m=a m , 奇=.(6){a n },{b n }成等比数列,则{λa n },{ },{a n b n },{ n }成等比数列(λ≠0,n ∈N *). (9)三个数成等比数列,通常设这三个数分别为 ,x ,xq ;四个数成等比数列,通常设1回顾 4 数列与不等式[必记知识]等差数列设 S n 为等差数列{a n }的前 n 项和,则(1)a n =a 1+(n -1)d =a m +(n -m )d ,若 p +q =m +n ,则 a p +a q =a m +a n . (2)a p =q ,a q =p (p ≠q ) a p +q =0;S m +n =S m +S n +mnd . (3)S k ,S 2k -S k ,S 3k -S 2k ,…构成的数列是等差数列.S d ⎛ d ⎫ ⎧S ⎫ n 2 ⎩ ⎭22 2(6)若等差数列{a n }的项数为偶数 2m (m ∈N *),公差为 d ,所有奇数项之和为 S 奇,所有 偶数项之和为 S 偶,则所有项之和 S 2m =m (a m +a m +1)(a m ,a m +1 为中间两项),S 偶-S 奇=md ,= .(7)若等差数列{a n }的项数为奇数 2m -1(m ∈N *),所有奇数项之和为 S 奇,所有偶数项之和为 S 偶,则所有项之和 S 2m -1=(2m -1)a m (a m 为中间项),S 奇=ma m ,S 偶=(m -1)a m ,S 奇-S偶 S m S 偶 m -1(8)若 S m =n ,S n =m (m ≠n ),则 S m +n =-(m +n ).等比数列(1)a n =a m ·q n -m ,a n +m =a n q m =a m q n (m ,n ∈N *).(2)若 m +n =p +q ,则 a m ·a n =a p ·a q ;反之,不一定成立(m ,n ,p ,q ∈N *). (3)a 1a 2a 3…a m ,a m +1a m +2…a 2m ,a 2m +1a 2m +2…a 3m ,…成等比数列(m ∈N *). (4)S n ,S 2n -S n ,S 3n -S 2n ,…,S kn -S (k -1)n ,…成等比数列(n ≥2,且 n ∈N *).(5)若等比数列的项数为 2n (n ∈N *),公比为 q ,奇数项之和为 S 奇,偶数项之和为 S 偶,S则 偶=q .S 奇1 a a n b n a(7)通项公式 a n =a 1q n -1= q ·q n ,从函数的角度来看,它可以看作是一个常数与一个关于 n 的指数函数的积,其图象是指数型函数图象上一系列孤立的点.(8)与等差中项不同,只有同号的两个数才能有等比中项;两个同号的数的等比中项有两个,它们互为相反数.xq1>0(<0)⇔f(x)g (x)>0(<0);g (x )g (x )⎪g (x )≠0.⎩ .⎩ ⎩ f ·x x这四个数分别为q 3,q ,xq ,xq 3.[提醒]) (1)如果数列{a n }成等差数列,那么数列{Aa n }(Aa n 总有意义)必成等比数 列.(2)如果数列{a n }成等比数列,且 a n >0,那么数列{log a a n }(a >0 且 a ≠1)必成等差 数列.(3)如果数列{a n }既成等差数列又成等比数列,那么数列{a n }是非零常数列;数列{a n } 是常数列仅是数列{a n }既成等差数列又成等比数列的必要不充分条件. (4)如果两个等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原来两个等差数列的公差的最小公倍数(5)如果由一个等差数列与一个等比数列的公共项顺次组成一个新数列,那么常选用“由特殊到一般”的方法进行讨论,且以等比数列的项为主,探求等比数列中哪些项是它们的公共项,从而分析构成什么样的新数列.一元二次不等式的解法解一元二次不等式的步骤:一化(将二次项系数化为正数);二判(判断 Δ 的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑:①二次项系数,它决定二次函数的开口方向;②判别式 Δ,它决定根的情形,一般分 Δ>0,Δ =0,Δ <0 三种情况;③在有根的条件下,要比较两根的大小.一元二次不等式的恒成立问题⎧⎪a >0,(1)ax 2+b x +c >0(a ≠0)恒成立的条件是⎨⎪Δ <0.⎧⎪a <0,(2)ax 2+b x +c <0(a ≠0)恒成立的条件是⎨⎪Δ <0.分式不等式f (x )g (x )f (x ) ⎧⎪f (x )g (x )≥0(≤0), ≥0(≤0)⇔⎨[提醒]) (1)不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错.(2)解形如一元二次不等式 ax 2+b x +c >0 时,易忽视系数 a 的讨论导致漏解或错解,要注意分 a >0,a <0 进行讨论.f (x )(3)应注意求解分式不等式时正确进行同解变形,不能把≤0 直接转化为(x )g2(2)对于正数 x ,y ,若和 x +y 是定值 s ,则当 x =y 时,积 xy 有最大值 s 2.+ =a +b + + ≥a(3)已知 a ,b ,x ,y ∈R +,若 ax +b y =1,则有 + =(ax +by)⎝x y ⎭+ =a +b + + ≥a +b (4)已知 a ,b ,x ,y ∈R +,若 + =1,则有 x +y =(x +y )· ⎝x y ⎭n +1 n +1(2)作商比较法:①当 a n >0 时,则 >1⇔数列{a n }是递增数列;0<<1⇔数列{a n }n +1 n +1是递减数列;=1⇔数列{a n }是常数列.②当 a n <0 时,则>1⇔数列{a n }是递减数列; . a a(x )≤0,而忽视 g (x )≠0.图解法求解线性规划问题的基本要点(1)定域:画出不等式(组)所表示的平面区域,注意平面区域的边界与不等式中的不等号的对应.(2)平移:画出目标函数等于 0 时所表示的直线 l ,平行移动直线,让其与可行域有公共点,根据目标函数的几何意义确定最优解;注意熟练掌握常见的几类目标函数的几何意义.(3)求值:利用直线方程构成的方程组求出最优解的坐标,代入目标函数,求出最值.[提醒]) (1)直线定界,特殊点定域:注意不等式中的不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线 若直线不过原点,特殊点常选取原点;若直线过原点,则特殊点常选取(1,0),(0,1).(2)线性约束条件下的线性目标函数的最优解一般在平面区域的顶点或边界处取得,最优解不一定唯一,有时可能有多个;非线性目标函数或非线性可行域的最值问题,最优解不一定在顶点或边界处取得.利用基本不等式求最值(1)对于正数 x ,y ,若积 xy 是定值 p ,则当 x =y 时,和 x +y 有最小值 2 p .1 41 1 ⎛1 1⎫ b y ax x y x y+b +2 ab =( a + b )2.a b ⎛a b ⎫ ay b x x y x y+2 ab =( a + b )2.[提醒]) 利用基本不等式求最大值、最小值时应注意“一正、二定、三相等”,即:①所求式中的相关项必须是正数;②求积 xy 的最大值时,要看和 x +y 是否为定值,求和 x +y的最小值时,要看积 xy 是否为定值,求解时,常用到“拆项”“凑项”等解题技巧;③当且仅当对应项相等时,才能取等号.以上三点应特别注意,缺一不可.[必会结论]判断数列单调性的方法(1)作差比较法: n +1-a n >0⇔数列{a n }是递增数列;n +1-a n <0⇔数列{a n }是递减数列; a n +1-a n =0⇔数列{a n }是常数列.a a a na na a a n a n30< n +1<1⇔数列{a n }是递增数列; n +1=1⇔数列{a n }是常数列.(3)转化为关于 n的不等式组求解:若求数列{a n }的最大项,则可转化为求解⎨ n若求数列{a n }的最小项,则可转化为求解⎨ n ⎧⎪a ≤a n -1,⎪⎩S n -S n -1(n ≥2). ⎪⎩f (n -1)(n ≥2).⎩ a n a = f(n ) ,求 a n ,用累乘法: a n = · n -1 ·…· 2 · a 1 = f(n - 1)· f(n -(6)构造等比数列法:若已知数列{a n }中,a n +1=p a n +q (p ≠0,p ≠1,q ≠0),a 1≠ 1-p (7)倒数法:若 a n = (mkb ≠0,n ≥2),对 a n = 取倒数,得到 = ⎛1+ b⎫ ·⎝ a n -1⎭,即 = · + .令 b n = ,则{b n }可归纳为 b n +1=pb n +q (p ≠0,q ≠0)型.a a a n a n(3)结合相应函数的图象直观判断.数列中项的最值的求法(1)借用构造法求解:根据数列与函数之间的对应关系,构造函数 f(n )=a n (n ∈N *),利用 求解函数最值的方法进行求解即可,但要注意自变量的取值必须是正整数.(2)利用数列的单调性求解:利用不等式 a n +1≥a n (或 a n +1≤a n )求出 n 的取值范围,从而确定数列单调性的变化,进而求出数列中项的最值.⎧⎪a ≥a n -1, ⎪⎩a n ≥a n +1,求出 n 的取值范围之后再确定取得最值⎪a n ≤a n +1,的项.求数列通项公式的常用方法(1)公式法:①等差数列的通项公式;②等比数列的通项公式.⎧⎪S 1(n =1), (2)已知 S n (a 1+a 2+…+a n =S n ),求 a n ,用作差法:a n =⎨⎧⎪f (1)(n =1), (3)已知 a 1·a 2·…·a n =f(n ),a n ≠0,求 a n ,用作商法:a n =⎨ f (n )(4)已知 a n +1-a n =f(n ),求 a n ,用累加法:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1) +a 1=f(n -1)+f(n -2)+…+f(1)+a 1(n ≥2).(5) 已知 a n +1 a n2)· …· f (1)· a 1(n ≥2).q ,设存在非零常数 λ,使得 a n +1+λ=p (a n +λ),其中 λ= q q qp -1,则数列{a n +p -1}就是以 a 1+p -1q为首项,p 为公比的等比数列,先求出数列{a n +p -1}的通项公式,再求出数列{a n }的通项公式即可.ma n -1 ma n -1 1 k (a n -1+b )k (a n -1+b )a nk m 1 kb 1 k 1 a nm a n -1 m a n数列求和的常用方法4+…+n = n (n +1),12+22+32+…+n 2= n (n +1)(2n +1),1+3+5+…+(2n -1)=n 2,n1 n (n +1) n n +1 = ⎝n -n +k ⎭; ③ 2<2 = ⎝k -1-k +1⎭,k k -1 2- = < 2< = - ; 1 1⎡ ⎤= ⎣n (n +1) (n +1)(n +2)⎦.f( f((1)公式法:①等差数列的求和公式;②等比数列的求和公式;③常用公式,即 +2+31 12 6∈N *.(2)分组求和法:当直接运用公式法求和有困难时,常将“和式”中的“同类项”先合并在一起,再运用公式法求和.(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项的和有共性,则常考虑选用倒序相加法进行求和.(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成的,那么常选用错位相减法将其和转化为“一个新的等比数列的和”,从而进行求解.(5)裂项相消法:如果数列的通项可分裂成“两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用的裂项形式有①②1 1 1= - ;1 1⎛1 1 ⎫ n (n +k ) k1 1 1⎛ 1 1 ⎫1 1 1 1 1 1 1 k k +1 (k +1)k k (k -1)k k -1 k④ n (n +1)(n +2) 21 1 -解不等式恒成立问题的常用方法(1)若所求问题可以化为一元二次不等式,可以考虑使用判别式法求解,利用二次项系数的正负和判别式进行求解,若二次项系数含参数时,应对参数进行分类讨论.(2)对于含参数的函数在闭区间上的函数值恒大于等于或小于等于零的问题,一般的转化原理是:在闭区间 D 上,f(x)≥0 恒成立⇔f(x)在区间 D 上的图象在 x 轴上方或 x 轴上;f(x)≤0⇔f(x)在区间 D 上的图象在 x 轴下方或 x 轴上.(3)对于含参数的函数在闭区间上的函数值恒大于等于或小于等于常数的问题,即“f(x)≥a ”或“f(x)≤a ”型不等式恒成立问题,通常利用函数最值进行转化,其一般的转化原理是: x)≥a 在闭区间 D 上恒成立⇔f(x)min ≥a(x ∈D); x)≤a 在闭区间 D 上恒成立⇔f(x)max ≤a(x ∈D).(4)分离参数法:将恒成立的不等式 F(x ,m )≥0(或≤0)(m 为参数)中的参数 m 单独分离出来,不等号一侧是不含参数的函数,将问题转化为求函数最值的问题,该方法主要适用于参数与变量能分离和函数的最值易于求出的题目,其一般转化原理是:当 m 为参数时,g (m )>f(x)⇔g (m )>f(x)max ;g (m )<f(x)⇔g (m )<f(x)min .53解析:选 B.在等差数列{a n }中,S 3= 3(a 1+a 3) 3(a 1+6)解析:选 C.由等差数列的性质可得 a 2+a 4=a 1+a 5,所以 S 5= 5(a 1+a 5)C .- 3q =3 或 q =-3(舍),所以 a 1= 2= .故选 D.q⎪ ⎩ ⎪ ⎩ ⎩ ⎪ ⎩ 1 当⎨ ⎪⎩q ⎪⎩q 时,a +a =a (1+q 9)=1+(-2)3=-7;当⎨ 1 时,a +a 3=- ⎪⎩q ⎪ ⎪ ⎪ =a (1+q 9)=(-8)×⎡1+⎛- ⎫ ⎤=-7.综上,a +a =-7.故选 D.[必练习题]1.已知数列{a n }为等差数列,其前 n 项和为 S n ,若 a 3=6,S 3=12,则公差 d =()A .1C .3B .25 D.= =12,解得 a =2,又 a2 21=a +2d =2+2d =6,解得 d =2,选 B.12.设等差数列{a n }的前 n 项和为 S n ,a 2+a 4=6,则 S 5 等于( )3A .10C .15B .12D .30=15,故选2C.3.已知等比数列{a n }的公比为正数,且 a 2· a 6=9a 4,a 2=1,则 a 1 的值为( )A .313B .-31 D.解析:选 D.设数列{a n }的公比为 q ,由 a 2 a 6=9a 4,得 a 2 a 2q 4=9a 2q 2,解得 q 2=9,所以a 1 34.已知数列{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则 a 1+a 10=()A .7 C .-5解析:选 D.设数列{a n }的公比为 q .由题意,得B .5D .-7⎧a 1q 3+a 1q 6=2,⎨⎪a 1q 4×a 1q 5=a 1q 3×a 1q 6=-8, ⎧a 1q 3=-2, ⎧⎪a 1q 3=4, 所以 ⎨ 或 ⎨ ⎪a 1q 6=4 ⎪a 1q 6=-2, ⎧a =1, 解得 ⎨ 1⎪q 3=-2或⎧a 1=-8, ⎧a 1=1, ⎨ 3=- . 3=-2 21 10 1 1 ⎧a 1=-8, 2101 3 1 ⎣ ⎝ 2⎭ ⎦1 10⎧⎪2x +y -6≥0,5.设 x ,y 满足约束条件⎨x +2y -6≤0,则目标函数 z =x +y 的最大值是()⎪⎩y ≥0,6=a -a ,采用累加法可得,b +b +…+b =(a -a )+(a -a )+…+(a -a )=a -a ,又4 033 4 0344 035a n +1 a n a n +22= 1 + 1,所以⎧1⎫是⎩a n ⎭ a 2 a 1 a n 2n -1 4 035A .3C .6B .4D .8解析:选 C.法一:作出不等式组表示的平面区域如图中阴影部分所示,作直线 x +y =0,平移该直线,当直线经过点 A(6,0)时,z 取得最大值,即 z max =6,故选 C.法二:目标函数 z =x +y 的最值在可行域的三个顶点处取得,易知三条直线的交点分别为(3,0),(6,0),(2,2).当 x =3,y =0 时,z =3;当 x =6,y =0 时,z =6;当 x =2,y=2 时,z =4.所以 z max =6,故选 C.6.若数列{a n }的首项为 3,{b n }为等差数列,且 b n =a n +1-a n (n ∈N *),若 b 3=-2,b 10 =12,则 a 8=()A .0C .8B .3D .11解析:选 B.依题意可设等差数列{b n }的公差为 d ,则 b 10=b 3+7d =-2+7d =12,解得d =2,所以 b n =b 3+(n -3)d =2n -8,又 b n =a n +1-a n ,则 b 7=a 8-a 7,b 6=a 7-a 6,…,b 12 1 7 6 1 8 7 7 6 2 1 8 1易知 b +b +…+b =0,则 a =a =3,故选 B.1 278117.在各项均不为零的数列{a n }中,若 a 1=1,a 2=3,2a n a n +2=a n +1a n +2+a n a n +1(n ∈N *),则 a 2 018=()A.1B.1C.1D. 14 037解析:选 C.因为 2a n a n +2=a n +1a n +2+a n an +1(n ∈N *),所以⎨ ⎬等差数列,其公差 d = 1 - 1 =2,所以 1 =1+(n -1)×2=2n -1,a = 1 ,所以 an 2 018 =1.7⎩ 3na n -1n 1+n -1 a n 1 n -1+2,令 n =b ,则 b =1 b 解析:由 a n = 3na n -1 n 2a n -1+n -1 a n 3 a n -1 3 a n 3 n -1 +2⇒b -1=1 (b n 2 3 3 31 ⎛1⎫n -1,得 a = n= n 3n b n -1=-⎝3⎭ 3 b n 3 n -1. 解析:由 a n a n +1=3n ,得 a n -1a n =3n -1(n ≥2),所以 n 1=3(n ≥2),则数列{a n }的所有奇 数项和偶数项均构成以 3 为公比的等比数列,又 a =1,a a =3,所以 a =3,所以 S⎧⎪2x -1-2,x ≥1,8.已知函数 f(x)=⎨ 则不等式 f(x -1)≤0 的解集为________. ⎪21-x-2,x <1,⎧⎪2x -2-2,x ≥2,解析:由题意,得 f(x -1)=⎨ 当 x ≥2 时,由 2x -2-2≤0,解得 2≤x ≤3;⎪⎩22-x -2,x <2,当 x <2 时,由 22-x -2≤0,解得 1≤x <2.综上所述,不等式 f(x -1)≤0 的解集为{x|1≤x ≤3}.答案:[1,3]3 9.已知数列{a n }满足 a 1=2, n=2a (n ≥2, ∈N *),则通项公式 a n =________.⇒ =n n 3 3 n-1),由 a =3,得 b -1=-1,所以{b -1}是以-1为首项,1为公比的等比数列,所以 -1 1 1 nnn ·3n答案:3n-110.已知 S n 为数列{a n }的前 n 项和,且 a 1=1,a n a n +1=3n ,则 S 2 017=________.a + a n -11×(1-31 009) 3×(1-31 008)+ =31 009-2.1-3 1-3答案:31 009-21 12 22 017 =8。
2019-2020年高考数学二轮专题突破 专题三 数列与不等式 第1讲等差数列与等比数列 理1.(xx·课标全国Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10等于( )A.172B.192C .10D .12 2.(xx·浙江)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=________,d =________.3.(xx·广东)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=______.4.(xx·江西)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.热点一 等差数列、等比数列的运算 (1)通项公式等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1.(2)求和公式 等差数列:S n =n a 1+a n2=na 1+n n -12d ;等比数列:S n =a 11-q n 1-q =a 1-a n q 1-q(q ≠1).(3)性质 若m +n =p +q ,在等差数列中a m +a n =a p +a q ;在等比数列中a m ·a n =a p ·a q .例1 (1)设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n =________.(2)已知等比数列{a n }公比为q ,其前n 项和为S n ,若S 3,S 9,S 6成等差数列,则q 3等于( ) A .-12B .1C .-12或1D .-1或12思维升华 在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a 1和d (q )的方程组求解,但要注意消元法及整体计算,以减少计算量.跟踪演练1 (1)(xx·安徽)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.(2)已知数列{a n }是各项均为正数的等比数列,a 1+a 2=1,a 3+a 4=2,则log 2a 2 011+a 2 012+a 2 013+a 2 0143=________.热点二 等差数列、等比数列的判定与证明 数列{a n }是等差数列或等比数列的证明方法 (1)证明数列{a n }是等差数列的两种基本方法: ①利用定义,证明a n +1-a n (n ∈N *)为一常数; ②利用中项性质,即证明2a n =a n -1+a n +1(n ≥2). (2)证明{a n }是等比数列的两种基本方法: ①利用定义,证明a n +1a n(n ∈N *)为一常数; ②利用等比中项,即证明a 2n =a n -1a n +1(n ≥2).例2 (xx·大纲全国)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明:{b n }是等差数列; (2)求{a n }的通项公式.思维升华 (1)判断一个数列是等差(比)数列,也可以利用通项公式及前n 项和公式,但不能作为证明方法. (2)a n +1a n=q 和a 2n =a n -1a n +1(n ≥2)都是数列{a n }为等比数列的必要不充分条件,判断时还要看各项是否为零.跟踪演练2 (1)已知数列{a n }的首项a 1=1,且满足a n +1=a n4a n +1,则a n =________.(2)已知数列{a n }中,a 1=1,a n +1=2a n +3,则a n =________. 热点三 等差数列、等比数列的综合问题解决等差数列、等比数列的综合问题,要从两个数列的特征入手,理清它们的关系;数列与不等式、函数、方程的交汇问题,可以结合数列的单调性、最值求解. 例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.思维升华 (1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.(2)数列的项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题. (3)数列中的恒成立问题可以通过分离参数,通过求数列的值域求解.跟踪演练3 已知首项为32的等比数列{a n }不是..递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.1.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .132.已知各项不为0的等差数列{a n }满足a 4-2a 27+3a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 12等于( ) A .1 B .2 C .4D .83.已知各项都为正数的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得a m ·a n =4a 1,则1m +4m的最小值为( )A.32B.53C.256D.434.已知等比数列{a n }中,a 4+a 6=10,则a 1a 7+2a 3a 7+a 3a 9=________.提醒:完成作业 专题三 第1讲二轮专题强化练专题三第1讲 等差数列与等比数列A 组 专题通关1.已知等差数列{a n }中,a 5=10,则a 2+a 4+a 5+a 9的值等于( ) A .52 B .40 C .26D .202.已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .643.(xx·浙江)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( ) A .a 1d >0,dS 4>0 B .a 1d <0,dS 4<0 C .a 1d >0,dS 4<0D .a 1d <0,dS 4>04.设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( ) A .S n 的最大值是S 8 B .S n 的最小值是S 8 C .S n 的最大值是S 7D .S n 的最小值是S 75.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( )A .0B .3C .8D .116.若数列{n (n +4)(23)n}中的最大项是第k 项,则k =________.7.(xx·课标全国Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =____________.8.已知数列{a n }的首项为a 1=2,且a n +1=12(a 1+a 2+…+a n ) (n ∈N *),记S n 为数列{a n }的前n 项和,则S n =________,a n =________.9.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5. (1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列.10.(xx·广东)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1. (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列;(3)求数列{a n }的通项公式.B 组 能力提高11.已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ),Q (2 011,a 2 011),则OP →·OQ →等于( ) A .2 011 B .-2 011 C .0 D .112.(xx·福建)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( )A .6B .7C .8D .913.数列{a n }的前n 项和为S n ,已知a 1=15,且对任意正整数m ,n ,都有a m +n =a m ·a n ,若S n <t 恒成立,则实数t 的最小值为________.14.已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18. (1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.学生用书答案精析专题三 数列与不等式 第1讲 等差数列与等比数列 高考真题体验 1.B [∵公差为1,∴S 8=8a 1+8×8-12×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.故选B.]2.23-1 解析 ∵a 2,a 3,a 7成等比数列, ∴a 23=a 2a 7,即(a 1+2d )2=(a 1+d )(a 1+6d ), ∴a 1=-23d ,∵2a 1+a 2=1,∴2a 1+a 1+d =1, 即3a 1+d =1, ∴a 1=23,d =-1.3.50解析 因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50. 4.6解析 每天植树棵数构成等比数列{a n },其中a 1=2,q =2.则S n =a 11-q n 1-q=2(2n -1)≥100,即2n +1≥102.∴n ≥6,∴最少天数n =6.热点分类突破 例1 (1)6 (2)A解析 (1)设该数列的公差为d , 则a 4+a 6=2a 1+8d =2×(-11)+8d =-6,解得d =2, 所以S n =-11n +n n -12×2=n 2-12n =(n -6)2-36,所以当S n 取最小值时,n =6. (2)若q =1,则3a 1+6a 1=2×9a 1, 得a 1=0,矛盾,故q ≠1.所以a 11-q 31-q +a 11-q 61-q =2a 11-q 91-q,解得q 3=-12或1(舍),故选A.跟踪演练1 (1)2n-1 (2)1 005解析 (1)由等比数列性质知a 2a 3=a 1a 4,又a 2a 3=8,a 1+a 4=9,所以联立方程⎩⎪⎨⎪⎧a 1a 4=8,a 1+a 4=9,解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1,又数列{a n }为递增数列,所以a 1=1,a 4=8,从而a 1q 3=8,所以q =2.所以数列{a n }的前n 项和为S n =1-2n1-2=2n-1.(2)在等比数列中,(a 1+a 2)q 2=a 3+a 4,即q 2=2,所以a 2 011+a 2 012+a 2 013+a 2 014=(a 1+a 2+a 3+a 4)q 2 010=3×21 005,所以log 2a 2 011+a 2 012+a 2 013+a 2 0143=1 005.例2 (1)证明 由a n +2=2a n +1-a n +2得a n +2-a n +1=a n +1-a n +2,即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. (2)解 由(1)得b n =1+2(n -1)=2n -1,即a n +1-a n =2n -1. ∴a n -a n -1=2n -3,a n -1-a n -2=2n -5,……a 2-a 1=1,累加得a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2. 跟踪演练2 (1)14n -3 (2)2n +1-3解析 (1)由已知得1a n +1=1a n+4,∴1a n +1-1a n =4,又1a 1=1,故{1a n}是以1为首项,4为公差的等差数列,∴1a n=1+4(n -1)=4n -3,故a n =14n -3.(2)由已知可得a n +1+3=2(a n +3), 又a 1+3=4,故{a n +3}是以4为首项,2为公比的等比数列. ∴a n +3=4×2n -1,∴a n =2n +1-3.例3 解 (1)由a 2+a 7+a 12=-6 得a 7=-2,∴a 1=4, ∴a n =5-n ,从而S n =n 9-n2.(2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列{b n }的公比为q ,则q =b 2b 1=12,∴T m =4[1-12m]1-12=8[1-(12)m],∵(12)m随m 增加而递减, ∴{T m }为递增数列,得4≤T m <8. 又S n =n 9-n2=-12(n 2-9n )=-12[(n -92)2-814],故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *总有S n <T m +λ,则10<4+λ,得λ>6.即实数λ的取值范围为(6,+∞). 跟踪演练3 解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n=⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大, 所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712. 综上,对于n ∈N *, 总有-712≤S n -1S n ≤56.所以数列{T n }最大项的值为56,最小项的值为-712.高考押题精练1.C [∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0, ∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.]2.C [设等差数列{a n }的公差为d ,因为a 4-2a 27+3a 8=0,所以a 7-3d -2a 27+3(a 7+d )=0,即a 27=2a 7,解得a 7=0(舍去)或a 7=2,所以b 7=a 7=2.因为数列{b n }是等比数列,所以b 2b 12=b 27=4.]3.A [由a 7=a 6+2a 5,得a 1q 6=a 1q 5+2a 1q 4,整理有q 2-q -2=0,解得q =2或q =-1(与条件中等比数列的各项都为正数矛盾,舍去),又由a m ·a n =4a 1,得a m a n =16a 21,即a 212m +n -2=16a 21,即有m +n -2=4,亦即m +n =6,那么1m +4n =16(m +n )(1m +4n)=16(4m n +n m +5)≥16(24m n ·n m +5)=32, 当且仅当4m n =nm,m +n =6,即n =2m =4时取得最小值32.]4.100解析 因为a 1a 7=a 24,a 3a 9=a 26,a 3a 7=a 4a 6, 所以a 1a 7+2a 3a 7+a 3a 9=(a 4+a 6)2=102=100.二轮专题强化练答案精析专题三 数列与不等式 第1讲 等差数列与等比数列1.B [因为a 2+a 4=2a 3,a 5+a 9=2a 7,所以a 2+a 4+a 5+a 9=2(a 3+a 7)=4a 5,而a 5=10, 所以a 2+a 4+a 5+a 9=4×10=40.故选B.]2.A [因为a 8是a 7,a 9的等差中项,所以2a 8=a 7+a 9=16⇒a 8=8,再由等差数列前n 项和的计算公式可得S 11=11a 1+a 112=11·2a 62=11a 6,又因为S 11=992,所以a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A.] 3.B [∵a 3,a 4,a 8成等比数列,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),整理得a 1=-53d ,∴a 1d =-53d 2<0,又S 4=4a 1+4×32d =-2d3,∴dS 4=-2d23<0,故选B.]4.D [由(n +1)S n <nS n +1得(n +1)·n a 1+a n2<n ·n +1a 1+a n +12,整理得a n <a n +1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7.]5.B [∵{b n }为等差数列,设其公差为d , 由b 3=-2,b 10=12,∴7d =b 10-b 3=12-(-2)=14,∴d =2, ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6, ∴b 1+b 2+…+b 7=7b 1+7×62·d=7×(-6)+21×2=0,又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3, ∵a 8-3=0,∴a 8=3.故选B.]6.4解析 由题意得⎩⎪⎨⎪⎧k k +423k≥k +1k +523k +1,kk +423k≥k -1k +323k -1,所以⎩⎪⎨⎪⎧k 2≥10,k 2-2k -9≤0,由k ∈N *可得k =4.7.-1n解析 由题意,得S 1=a 1=-1,又由a n +1=S n S n +1,得S n +1-S n =S n S n +1,所以S n ≠0,所以S n +1-S nS n S n +1=1,即1S n +1-1S n =-1,故数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=-1为首项,-1为公差的等差数列,得1S n =-1-(n -1)=-n ,所以S n =-1n.8.2×⎝ ⎛⎭⎪⎫32n -1⎩⎪⎨⎪⎧2 n =1,⎝ ⎛⎭⎪⎫32n -2n ≥2解析 由a n +1=12(a 1+a 2+…+a n ) (n ∈N *),可得a n +1=12S n ,所以S n +1-S n =12S n ,即S n +1=32S n ,由此可知数列{S n }是一个等比数列,其中首项S 1=a 1=2,公比为32,所以S n =2×⎝ ⎛⎭⎪⎫32n -1,由此得a n =⎩⎪⎨⎪⎧2 n =1,⎝ ⎛⎭⎪⎫32n -2n ≥2.9.(1)解 设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15. 解得a =5.所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100, 解得d =2或d =-13(舍去). 故{b n }的第3项为5,公比为2. 由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以b n =b 1·qn -1=54·2n -1=5·2n -3, 即数列{b n }的通项公式为b n =5·2n -3.(2)证明 由(1)得数列{b n }的前n 项和 S n =541-2n1-2=5·2n -2-54, 即S n +54=5·2n -2.所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2.因此{S n +54}是以52为首项,2为公比的等比数列.10.(1)解 当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32 =8⎝ ⎛⎭⎪⎫1+32+54+1,解得:a 4=78.(2)证明 因为4S n +2+5S n =8S n +1+S n -1(n ≥2),所以4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2),即4a n +2+a n =4a n +1(n ≥2),因为4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n+1,因为a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n= 4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 22a n +1-a n =12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,公比为12的等比数列.(3)解 由(2)知,数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,公比为12的等比数列,所以a n +1-12a n =⎝ ⎛⎭⎪⎫12n -1,即a n +1⎝ ⎛⎭⎪⎫12n +1-a n ⎝ ⎛⎭⎪⎫12n=4,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n⎝ ⎛⎭⎪⎫12n 是以a 112=2为首项,公差为4的等差数列,所以a n⎝ ⎛⎭⎪⎫12n =2+(n -1)×4=4n -2,即a n =(4n -2)×⎝ ⎛⎭⎪⎫12n =(2n -1)×⎝ ⎛⎭⎪⎫12n -1,所以数列{a n }的通项公式是a n =(2n -1)×⎝ ⎛⎭⎪⎫12n -1.11.A [由S 21=S 4 000得a 22+a 23+…+a 4 000=0, 由于a 22+a 4 000=a 23+a 3 999=…=2a 2 011, 所以a 22+a 23+…+a 4 000=3 979a 2 011=0,从而a 2 011=0,而OP →·OQ →=2 011+a 2 011a n =2 011.]12.D [由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的情况有a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的情况有:a ,-2,b ;b ,-2,a .∴⎩⎪⎨⎪⎧ab =4,2b =a -2或⎩⎪⎨⎪⎧ab =4,2a =b -2解之得:⎩⎪⎨⎪⎧a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4.∴p =5,q =4,∴p +q =9,故选D.] 13.14解析 令m =1,可得a n +1=15a n ,所以{a n }是首项为15,公比为15的等比数列,所以S n =15[1-15n]1-15=14[1-(15)n ]<14,故实数t 的最小值为14. 14.解 (1)设等比数列{a n }的公比为q , 则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18.即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q 1+q +q 2=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3×(-2)n -1.(2)由(1)有S n =3[1--2n]1--2=1-(-2)n.假设存在n ,使得S n ≥2 013, 则1-(-2)n ≥2 013, 即(-2)n≤-2 012.当n 为偶数时,(-2)n>0,上式不成立; 当n 为奇数时,(-2)n=-2n≤-2 012, 即2n≥2 012,得n ≥11. 综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.。