平面直角坐标系与函数-中考数学真题知识分类练习试题
- 格式:doc
- 大小:298.51 KB
- 文档页数:6
课时训练(九)平面直角坐标系及函数|夯实基础|1.[2019·常德]点(-1,2)关于原点的对称点坐标是()A.(-1,-2)B.(1,-2)C.(1,2)D.(2,-1)2.[2019·无锡]函数y=√2x-1中的自变量x的取值范围是 ()A.x≠12B.x≥1C.x>12D.x≥123.[2018·海南]如图K9-1,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(-2,3)B.(3,-1)C.(-3,1)D.(-5,2)图K9-1图K9-24.[2019·黄冈]已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5 kmB.体育场离文具店1 kmC.林茂从体育场出发到文具店的平均速度是50 m/minD.林茂从文具店回家的平均速度是60 m/min5.[2018·广东]如图K9-3,点P是菱形ABCD边上的一动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()图K9-3图K9-46.点A(2,m),B(2,m-5)在平面直角坐标系中,点O为坐标原点.若△ABO是直角三角形,则m的值不可能是A.4B.2C.1D.07.在平面直角坐标系中,点A的坐标为(-1,3),线段AB∥x轴,且AB=4,则点B的坐标为.8.如图K9-5,这是某学校平面示意图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示200米.甲、乙两人对着示意图描述教学楼A的位置.图K9-5甲:教学楼A的坐标是(2,0).乙:教学楼A在图书馆B的南偏西30°方向,相距800米处.则图书馆B的坐标是.中的自变量x的取值范围是.9.[2018·恩施州]函数y=√2x+1x-3x+1,3x-8的横、纵坐标恰好为某个正数的两个平方根.10.如图K9-6,已知点P12(1)求点P的坐标;(2)在图中建立平面直角坐标系,并分别写出点A,B,C,D的坐标.图K9-611.[2018·舟山]小红帮弟弟荡秋千(如图K9-7①),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图②所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?图K9-712.[2017·咸宁]如图K9-8,边长为4的正六边形ABCDEF的中心与原点O重合,AF∥x轴,将正六边形ABCDEF 绕原点O顺时针旋转n次,每次旋转60°,当n=2017时,顶点A的坐标为.图K9-813.我们把正六边形的顶点及其对称中心称作如图K9-9①所示基本图的特征点,显然这样的基本图共有7个特征点.将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图②,图③,…图K9-9(1)观察图K9-9的图形并完成下表:图形的名称基本图的个数特征点的个数图① 1 7图② 2 12图③ 3 17图④ 4………猜想:在图○n中,特征点的个数为(用含n的代数式表示);(2)如图K9-10,将图○n放在平面直角坐标系中,设第一个基本图的对称中心O1的坐标为(x1,2),则x1= ;图的对称中心的横坐标为.图K9-1014.如图K9-11,在平面直角坐标系中,已知点A(2,3),B(6,3),连结AB.如果线段AB上有一个点与点P的距离不大于1,那么称点P是线段AB的“环绕点”.试判断点C(3,1.5),D(3.8,3.6)是否是线段AB的“环绕点”,并说明理由.图K9-11【参考答案】1.B2.D3.C [解析]由图可知点B 的坐标为(3,1),∴把点B 向左平移6个单位长度后得到的点B 1的坐标为(3-6,1),即(-3,1),故选C . 4.C [解析]选项A,体育场离林茂家2.5 km,正确;选项B,林茂从体育场到文具店的距离是2.5-1.5=1(km),正确; 选项C,林茂从体育场出发到文具店的平均速度是2500-150045-30=2003(m/min),错误;选项D,林茂从文具店回家的平均速度是150090-65=60 (m/min),正确.5.B [解析]P 点在线段AB 上,高均匀变大,底不变,故面积也均匀变大;P 在线段BC 上,底不变,由于BC ∥AD ,故高不变,面积不变;P 在线段CD 上,底不变,高均匀变小,面积也均匀变小,故选B .6.B [解析]分∠OAB=90°,∠OBA=90°,∠AOB=90°三种情况考虑:当∠OAB=90°时,点A 在x 轴上,可得m=0;当∠OBA=90°时,点B 在x 轴上,可得m-5=0,即m=5;当∠AOB=90°时,AB 2=OA 2+OB 2,即25=4+m 2+4+m 2-10m+25,解得m 1=1,m 2=4.综上所述:m 的值可以为0,5,1,4.故选B .7.(-5,3)或(3,3) 8.(4,2√3) 9.x ≥-12且x ≠310.解:(1)依题意得,12x+1+3x-8=0, 解得x=2,故P (2,-2). (2)建立坐标系如图所示,由图可知A (-3,1),B (-1,-3),C (3,0),D (1,2).11.解:(1)∵对于每一个摆动时间t ,都有一个唯一的h 的值与其对应,∴变量h 是关于t 的函数.(2)①h=0.5 m,它的实际意义是秋千摆动0.7 s时,离地面的高度为0.5 m.②2.8 s.12.(2,2√3)[解析]如图所示,连结OA,设AF与y轴交于点M,则△AOB为等边三角形.∵正六边形ABCDEF的边长为4,∴OA=AB=OB=4,∠AOM=30°.∴点B的坐标为(-4,0).∵AF∥x轴,∴∠AMO=90°,=2,∴AM=OA·sin∠AOM=OA·sin30°=4×12=2√3,OM=OA·cos∠AOM=OA·cos30°=4×√32∴点A的坐标为(-2,2√3).∵正六边形是轴对称图形,∴点C的坐标为(-2,-2√3),点D的坐标为(2,-2√3),点F的坐标为(2,2√3),点E的坐标为(4,0).∵将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°,∴每旋转6次,点A都回到初始位置.当n=2017时,∵2017÷6=336……1,∴顶点A旋转到点F的位置,∴当n=2017时,顶点A的坐标为(2,2√3).13.(1)225n+2(2)√32020√314.解:由“环绕点”的定义可知点P到线段AB的距离d应满足d≤1.∵A,B两点的纵坐标都是3,∴AB∥x轴,∴点C到线段AB的距离为|1.5-3|=1.5>1,点D到线段AB的距离为|3.6-3|=0.6<1,∴点C不是线段AB的环绕点,点D是线段AB的环绕点.。
专题04 平面直角坐标系与函数1.(2019•株洲)在平面直角坐标系中,点A(2,–3)位于哪个象限?A.第一象限B.第二象限C.第三象限D.第四象限2.(2019•甘肃)已知点P(m+2,2m–4)在x轴上,则点P的坐标是A.(4,0)B.(0,4)C.(–4,0)D.(0,–4)3.(2019•台湾)如图的坐标平面上有原点O与A、B、C、D四点.若有一直线l通过点(–3,4)且与y 轴垂直,则l也会通过下列哪一点?A.A B.BC.C D.D4.(2009•安顺)函数y的自变量x的取值范围是A.x<2 B.x≤2C.x>2 D.x≥25.(2019•河池)如图,△ABC为等边三角形,点P从A出发,沿A→B→C→A作匀速运动,则线段AP 的长度y与运动时间x之间的函数关系大致是A.B.C.D.6.(2019•孝感)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是A.B.C.D.7.(2019•随州)第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是A.B.C.D.8.(2019•武汉)“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是A.B.C.D.9.(2019•黄冈)已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是A.体育场离林茂家2.5kmB.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是50m/minD.林茂从文具店回家的平均速度是60m/min10.(2019•眉山)函数y=中自变量x的取值范围是1x-A.x≥–2且x≠1B.x≥–2C.x≠1D.–2≤x<111.(2019•岳阳)函数y中,自变量x的取值范围是A.x≠0B.x>–2C.x>0 D.x≥–2且x≠012.(2019•天水)已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是A.B.C.D.13.(2019•衡阳)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为A.B.C.D.14.(2019•菏泽)如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为x s,△APQ的面积为y cm2,则下列图象中能大致表示y与x的函数关系的是A.B.C.D.15.(2019•潍坊)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是A.B.C.D.16.(2019•武威)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为A.3 B.4 C.5 D.617.(2019•济宁)已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标__________.18.(2019•武威)中国象棋是中华名族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,–2),“马”位于点(4,–2),则“兵”位于点__________.祝你考试成功!祝你考试成功!。
专题08 平面直角坐标系与一次函数一.选择题1.(2022·浙江台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -2.(2022·湖北宜昌)如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为()1,3.若小丽的座位为()3,2,以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是( )A .()1,3B .()3,4C .()4,2D .()2,43.(2022·四川眉山)一次函数(21)2y m x =-+的值随x 的增大而增大,则点(,)P m m -所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.(2022·浙江金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超市B .医院C .体育场D .学校5.(2022·江苏扬州)在平面直角坐标系中,点P(﹣3,a 2+1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限6.(2022·湖南株洲)在平面直角坐标系中,一次函数51y x =+的图象与y 轴的交点的坐标为( ) A .()0,1- B .1,05⎛⎫- ⎪⎝⎭ C .1,05⎛⎫ ⎪⎝⎭ D .()0,17.(2022·陕西)在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( ) A .15x y =-⎧⎨=⎩ B .13x y =⎧⎨=⎩ C .31x y =⎧⎨=⎩ D .95x y =⎧⎨=-⎩8.(2022·湖南娄底)将直线21y x =+向上平移2个单位,相当于( )A .向左平移2个单位B .向左平移1个单位C .向右平移2个单位D .向右平移1个单位 9.(2022·浙江台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x 之间函数关系的图象中,正确的是( )A.B.C.D.10.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)11.(2022·四川乐山)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少12.(2022·安徽)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是()A .甲B .乙C .丙D .丁13.(2022·江西)甲、乙两种物质的溶解度(g)y 与温度()t ℃之间的对应关系如图所示,则下列说法中,错误的是( )A .甲、乙两种物质的溶解度均随着温度的升高而增大B .B .当温度升高至2t ℃时,甲的溶解度比乙的溶解度大C .当温度为0℃时,甲、乙的溶解度都小于20gD .当温度为30℃时,甲、乙的溶解度相等14.(2022·重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度()m h 随飞行时间()s t 的变化情况,则这只蝴蝶飞行的最高高度约为( )A .5mB .7mC .10mD .13m15.(2022·浙江杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫ ⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( )16.(2022·湖南邵阳)在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是( )A .m n <B .m n >C .m n ≥D .m n ≤17.(2022·浙江绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >18.(2022·浙江嘉兴)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( )A .52B .2C .32D .119.(2022·安徽)在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图像可能是( ) A . B .C . D . 20.(2022·四川凉山)一次函数y =3x +b (b ≥0)的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限21.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )AB .C .D .二、填空题 22.(2022·湖南湘潭)请写出一个y 随x 增大而增大的一次函数表达式_________.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______. 24.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.25.(2022·浙江丽水)三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是___________.26.(2022·江苏宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y 随自变量x 增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是____.27.(2022·天津)若一次函数y x b =+(b 是常数)的图象经过第一、二、三象限,则b 的值可以是___________(写出一个..即可). 28.(2022·江苏扬州)如图,函数()0y kx b k =+<的图像经过点P ,则关于x 的不等式3kx b +>的解集为________.29.(2022·浙江杭州)已知一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),则方程组310x y kx y -=⎧⎨-=⎩的解是_________. 30.(2022·甘肃武威)若一次函数y =kx −2的函数值y 随着自变量x 值的增大而增大,则k =_________(写出一个满足条件的值).31.(2022·四川德阳)如图,已知点()2,3A -,()2,1B ,直线y kx k =+经过点()1,0P -.试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是______.32.(2022·湖北黄冈)如图1,在△ABC 中,∠B =36°,动点P 从点A 出发,沿折线A →B →C 匀速运动至点C 停止.若点P 的运动速度为1cm/s ,设点P 的运动时间为t (s ),AP 的长度为y (cm ),y 与t 的函数图象如图2所示.当AP 恰好平分∠BAC 时,t 的值为________.三、解答题33.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C ''',且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''.34.(2022·浙江湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.35.(2022·新疆)A ,B 两地相距300km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h ,如图是甲,乙行驶路程(km),(km)y y 甲乙随行驶时间(h)x 变化的图象,请结合图象信息.解答下列问题:(1)填空:甲的速度为___________km /h ;(2)分别求出,y y 甲乙与x 之间的函数解析式;(3)求出点C 的坐标,并写点C 的实际意义.36.(2022·浙江丽水)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?37.(2022·浙江嘉兴)6月13日,某港口的潮水高度y (cm )和时间x (h )的部分数据及函数图象如下:(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x 时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?38.(2022·天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km,小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市y与停留20min后,匀速骑行了8min返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离km x之间的对应关系.离开学生公寓的时间min请根据相关信息,解答下列问题:(1)填表:(2)填空:①阅览室到超市的距离为________km ;②小琪从超市返回学生公寓的速度为________km /min ; ③当小琪离学生公寓的距离为1km 时,他离开学生公寓的时间为___________min .(3)当092x ≤≤时,请直接写出y 关于x 的函数解析式.39.(2022·浙江绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米).为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),k y x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x .40.(2022·陕西)如图,是一个“函数求值机”的示意图,其中y是x的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为__________;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.。
备考2023年中考数学一轮复习-函数_平面直角坐标系_坐标与图形性质-单选题专训及答案坐标与图形性质单选题专训1、(2016南通.中考真卷) 平面直角坐标系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三点,D(1,m)是一个动点,当△ACD的周长最小时,△ABD的面积为()A .B .C .D .2、(2016苏州.中考真卷) 矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E 的坐标为()A . (3,1)B . (3,)C . (3,)D . (3,2)3、(2017福州.中考模拟) 如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a 与b的数量关系为()A . a=bB . 2a﹣b=1C . 2a+b=﹣1D . 2a+b=14、(2017玉田.中考模拟) 如图,在平面直角坐标系中,直线l平行于y轴,点A在直线l上,若点P是直线l上的一个动点,且使△PAO是以OA为腰的等腰三角形,则符合条件的点P有()A . 1个B . 2个C . 3个D . 4个5、(2017保定.中考模拟) 如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A . (2,1)B . (2,0)C . (3,3)D . (3,1)6、(2016石家庄.中考模拟) 如图所示,等腰直角三角形ABC与等腰直角三角形A′B′C′是位似图形,位似中心为点O,位似比1:2,点A的坐标为(1,0),点C的坐标为(0,1),则点B′的坐标为()A . (2,2)B . (﹣2,2)C . (﹣2,﹣2)D . (2,2)或(﹣2,﹣2)7、(2019通州.中考模拟) 已知直线y=﹣x+2与直线y=2x+6相交于点A,与x轴分别交于B,C两点,若点D(a,a+1)落在△ABC内部(不含边界),则a 的取值范围是()A . ﹣3<a<2B .C .D . ﹣2<a<28、(2019.中考模拟) 抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是()A . ≤a≤1B . ≤a≤2C . ≤a≤1D . ≤a≤29、(2019温州.中考模拟) 如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=﹣和y=的图象交于A,B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为()A . 3B . 4C . 5D . 1010、(2018湖州.中考模拟) 将△ABC的各点的横坐标都加上3,纵坐标不变,所得图形与原图形相比()A . 向右平移了3个单位B . 向左平移了3个单位C . 向上平移了3个单位D . 向下平移了3个单位11、(2019山东.中考模拟) 直线y=- x+ 与x轴,y轴交于A、B两点,若把△AB0沿直线AB翻折,点O落在第一象限的C处,则C点的坐标为()A .B .C .D .12、(2017新泰.中考模拟) 已知:如图,四边形AOBC是矩形,以O为坐标原点,OB、OA分别在x轴、y轴上,点A的坐标为(0,3),∠OAB=60°,以AB为轴对折后,C点落在D点处,则D点的坐标为()A .B .C .D .13、(2017历下.中考模拟) 一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是()A . ()2016B . ()2017C . ()2016D . ()201714、(2017曹.中考模拟) 如图,将正方形OABC放在平面直角坐标系中,O是原点,A 的坐标为(1,),则点C的坐标为()A . (﹣,1)B . (﹣1,)C . (,1)D . (﹣,﹣1)15、(2017三门峡.中考模拟) 如图所示,⊙O是以坐标原点O为圆心,4为半径的圆,点P的坐标为(,),弦AB经过点P,则图中阴影部分面积的最小值等于()A . 2π﹣4B . 4π﹣8C .D .16、(2019黄石.中考真卷) 如图,矩形中,与相交于点,,将沿折叠,点的对应点为,连接交于点,且,在边上有一点,使得的值最小,此时()A .B .C .D .17、(2017福田.中考模拟) 如图,已知E′(2,﹣1),F′(,),以原点O 为位似中心,按比例尺1:2把△EFO扩大,则E′点对应点E的坐标为()A . (﹣4,2)B . (4,﹣2)C . (﹣1,﹣1)D . (﹣1,4)18、(2011河池.中考真卷) 如图,A(1,0)、B(7,0),⊙A、⊙B的半径分别为1和2,将⊙A沿x轴向右平移3个单位,则此时该圆与⊙B的位置关系是()A . 外切B . 相交C . 内含D . 外离19、(2019重庆.中考真卷) 如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A . 16B . 20C . 32D . 4020、(2016平武.中考模拟) 如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点A′的对应点A的纵坐标是1.5,则点A'的纵坐标是()A . 3B . ﹣3C . ﹣4D . 421、(2017南充.中考真卷) 如图,等边△OAB的边长为2,则点B的坐标为()A . (1,1)B . (,1)C . (,)D . (1,)22、(2017五华.中考模拟) 阅读理解:如图①所示,在平面内选一定点O,引一条有方向的射线ON,再选定一个单位长度,那么平面上任一点M的位置可由OM的长度m与∠MON的度数θ确定,有序数对(m,θ)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图②的极坐标系下,如果正六边形的边长为2,有一边OA在射线ON上,则正六边形的顶点C的极坐标应记为()A . (4,60°)B . (4,45°)C . (2 ,60°)D . (2 ,50°)23、(2019西藏自治区.中考真卷) 已知点是直线与双曲线(为常数)一支的交点,过点作轴的垂线,垂足为,且,则的值为()A .B .C .D .24、(2020丰南.中考模拟) 如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C 的个数是()A . 2B . 3C . 4D . 525、(2020宜昌.中考模拟) 将矩形OABC如图放置,O为原点,若点A的坐标是(﹣1,2),点B的坐标是(2,),则点C的坐标是()A . (4,2)B . (2,4)C . (,3)D . (3,)26、(2020琼海.中考模拟) 如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为()A . (,2)B . (,1)C . (,2)D . (,1)27、(2020河南.中考真卷) 如图,在中,.边在x轴上,顶点的坐标分别为和.将正方形沿x轴向右平移当点E落在边上时,点D的坐标为()A .B .C .D .28、(2020荆州.中考真卷) 如图,在平面直角坐标系中,的斜边OA在第一象限,并与x轴的正半轴夹角为30度,C为OA的中点,BC=1,则A点的坐标为()A .B .C .D .29、(2021荆州.中考模拟) 如图,直径为10的⊙A经过点和点,点是轴右侧⊙A优弧上一点,,则点的坐标为()A .B .C .D .30、如图,矩形的边,分别在x轴、y轴的正半轴上,点D在的延长线上.若,,以O为圆心、长为半径的弧经过点B,交y轴正半轴于点E,连接,。
2021中考数学平面直角坐标系与函数专题练习〔含答案〕、选择题1•点A〔-3,2〕关于y轴的对称点的坐标为〔〕A. 〔3,-2〕B.〔3,2〕C.〔-3,-2〕D.〔2,-3〕2. 在函数y=一中,自变量x的取值范围是〔〕A. x 工-2B.x>2C.x<2D.x 工23.小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.以下图反映了这个过程中,小明离家的距离y〔km〕与时间x〔min〕之间的对应关系.根据图象以下说法正确的选项是〔A. 小明吃早餐用了25 minB. 小明读报用了30 minC. 食堂到图书馆的距离为0.8 kmD. 小明从图书馆回家的平均速度为0.8 km/min、填空题4. 函数y=-中,自变量x的取值范围是____________ .5. 飞机着陆后滑行的距离y〔单位:m〕关于滑行时间t〔单位:s〕的函数解析式是y=60t- -t:在飞机着陆滑行中,最后4 s滑行的距离是__________ m.6. 在平面直角坐标系中,点A的坐标是〔-1,2〕.作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位长度,得到点A ,那么点A〃的坐标是〔_, _〕.7. 小明从家跑步到学校,接着马上原路步行回家.如下图的是小明离家的路程y〔米〕与时间t〔分〕的函数图象,那么小明回家的速度是每分钟步行___ 米.三、解答题8. 甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早出发2 h,并且甲车途中休息了0.5 h,以下图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m a的值;⑵求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;⑶当乙车行驶多长时间时,两车恰好相距50 km?9. 在平面直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图中画一个AP 1AB,使点P1的横、纵坐标之和等于点A的横坐标;⑵在图中画一个AP 2AB,使点P2,B的横坐标的平方和等于它们纵坐标和的4倍.B组提升题组一、选择题1. 定义:点A〔x,y〕为平面直角坐标系内的点,假设满足x=y,那么把点A叫做“平衡点〞.例如:M〔1,1〕,N〔-2,-2〕. 当-K x W3时,直线y=2x+m上有“平衡点〞,那么m的取值范围是〔〕A.0 < mc iB.- 3< mdC.- 3< m<3D.- K m<02. 一台自动测温仪记录的图象如下图,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到以下信息,其中错误的选项是〔〕A.凌晨4时气温最低,为-3 °CB. 14时气温最高,为8 CC. 从0时至14时,气温随时间增长而上升D. 从14时至24时,气温随时间增长而下降3. 如图,一只蚂蚁从0点出发,沿着扇形OAB勺边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,那么s关于t的函数图象大致是〔〕4. 小苏和小林在如图1所示的跑道上进行4X 50米折返跑.在整个过程中,跑步者距起跑线的距离y〔单位:m〕与跑步时间t〔单位:s〕对应的关系如图2 所示.以下表达正确的选项是〔〕起折小林* 50 m ■图1A. 两人从起跑线同时出发,同时到达终点B. 小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15 s跑过的路程大于小林前15 s跑过的路程D. 小林在跑最后100 m的过程中,与小苏相遇2次5. 如图1,点F从菱形ABCD的顶点A出发,沿A T D^B以1 cm/s的速度匀速运动到点B.图22是点F运动时,△ FBC的面积y(cm )随时间x(s)变化的关系图象,那么a的值为()A. 一B.2C. -D.2 —二、填空题6. 如图,在平面直角坐标系中,将点P(-4,2)绕原点顺时针旋转90° ,那么其对应点Q的坐标为________ .参考答案A组根底题组一、选择题1. B2.D3.B二、填空题4. 答案x>2解析依题意得x-2>0,解得x>2.5. 答案24解析y=60t- ・t2=-・(t-20) 2+600,即t=20时,y取得最大值,即滑行距离到达最大,此时滑行距离是600 m.当t=16时,y=60 X 16--X 16=576,所以最后4 s滑行的距离为600-576=24 m.6. 答案1;-2解析点A(-1,2)关于y轴的对称点A的坐标是(1,2),A'向下平移4个单位长度,得到点A" (1,2 -4),即A" (1, -2).7. 答案80解析由题图可知,小明家距离学校800米,小明从学校步行回家所用时间是15-5=10分钟,所以小明回家的速度是每分钟步行800+ 10=80米.三、解答题8. 解析(1)由题意得1.5-m=0.5,解得m=1,因为甲车匀速行驶,所以一=—,解得a=40.⑵休息前,所求函数解析式为y=40x(0 < x w 1);休息时,所求函数解析式为y=40(1<x w 1.5);休息后,设函数解析式为y=kx+b(k丰0,x > 1.5),因为函数图象过(1.5,40),(3.5,120) 两点,所以将两点坐标代入y=kx+b得. ,解得,. , -,所以休息后,函数解析式为y=40x-20(x > 1.5).又由题图知两车行驶至260 km时停止,即A、B两地相距260 km,那么260=40x-20,解得x=7.( ),综上,y=(.),).⑶设乙车行驶n h 时,两车恰好相距50 km,由题图可知:甲车速度为40 km/h,乙车速度为80 km/h.① 当相遇前,两车恰好相距 50 km 时,有40(n+2-0.5)-80n=50, 解得 n=0.25;② 当相遇后,两车恰好相距 50 km 时,有80n-40(n+2-0.5)=50, 解得n=2.75. 所以乙车行驶0.25 h 或2.75 h 时,两车恰好相距50 km. 9.解析⑴如图1或图2.⑵如图3或图4.图30 1 1 3 4 3 r图4 B 组提升题组、选择题 1. B2. C 根据题图可知,从0时至4时,气温随时间增长而下降;从4时至14时,气温随时间增长 而上升;凌晨4时气温最低,为-3 °C ,14时气温最高,为8 °C .应选C.3. B 一只蚂蚁从0点出发,沿着扇形OAB 的边缘匀速爬行,在开始时经过半径 0A 这一段,蚂 蚁到0点的距离s 随运动时间t 的增大而增大;到弧AB 这一段时,蚂蚁到0点的距离s 不变, 图象是与x 轴平行的线段;到另一条半径 0B 时,s 随t 的增大而减小,应选B.4. D 由题图2可知,小林和小苏同时出发,小林先到达终点,因此小林跑全程的平均速度大 于小苏跑全程的平均速度,选项A 、B 错误;当t=15时,两人在往回跑,所以函数值越小表示此 人跑的路程越多,选项C错误;由题图2可知,小林在跑最后100米的过程中,与小苏相遇2 次,选项D正确.应选D.5. C 女口图,作DEL BC 于点E,在菱形ABCD中,当F 在AD 上时,y=—BC・ DE,即卩a= • a • DE,「.DE=2.由题意知DB= 一,在Rt△ DEB中,BE= - =1, • • EC=a-1.在Rt△ DEC中,DE2+EC=DC,2 2 2--2 +(a-1) =a .解得a=-.应选C.二、填空题6. 答案(2,4)解析如图,分别由点P,Q向x轴引垂线,交x轴于点M,N.•••/ MPO£ POM=9° ,/ NOQ:+ POM=9° ,• / MPO W NOQ,在厶PMOm ONQ中,•••△ PM QA ONQ(AAS),••• PM=ON,OM=QN,••• P点的坐标为(-4,2),•ON=PM=2,QN=OM=4,•Q点的坐标为(2,4).。
专题09平面直角坐标系和函数基础(7大考点)(原卷版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01点的坐标 (1)二、考点02点所在的象限 (4)三、考点03坐标与图形 (6)四、考点04点坐标的规律探索 (13)五、考点05函数解析式 (18)六、考点06自变量和函数值 (20)七、考点07函数图像 (26)考点01点的坐标一、考点01点的坐标1.(2024·湖南·中考真题)在平面直角坐标系xOy中,对于点P x,y,若x,y均为整数,则称点P为“整点”.特别地,当y x(其中)的值为整数时,称“整点”P为“超整点”,已知点P2a−4,a+3在第二象限,下列说法正确的是()A.a<−3B.若点P为“整点”,则点P的个数为3个C.若点P为“超整点”,则点P的个数为1个D.若点P为“超整点”,则点P到两坐标轴的距离之和大于102.(2023·山东聊城·中考真题)如图,在直角坐标系中,各点坐标分别为A−2,1,B−1,3,C−4,4.先作关于x轴成轴对称的,再把平移后得到.若B22,1,则点2A坐标为()A.1,5B.1,3C.5,3D.()5,53.(2023·浙江台州·中考真题)如图是中国象棋棋盘的一部分,建立如图所示的平面直角坐标系,已知“车”所在位置的坐标为−2,2,则“炮”所在位置的坐标为().A.3,1B.1,3C.4,1D.3,24.(2022·黑龙江大庆·中考真题)平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足OM+ON=8.点Q为线段MN的中点,则点Q运动路径的长为()A.4πB.82C.8蟺D.1625.(2023·浙江衢州·中考真题)在如图所示的方格纸上建立适当的平面直角坐标系,若点A的坐标为()0,1,点B的坐标为2,2,则点C的坐标为.6.(2023·贵州·中考真题)如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,若贵阳北站的坐标是−2,7,则龙洞堡机场的坐标是.7.(2023·山东东营·中考真题)如图,一束光线从点A−2,5出发,经过y轴上的点B0,1反射后经过点C m,n,则2m−n的值是.8.(2023·山东枣庄·中考真题)银杏是著名的活化石植物,其叶有细长的叶柄,呈扇形.如图是一片银杏叶标本,叶片上两点B,C的坐标分别为(−3,2),(4,3),将银杏叶绕原点顺时针旋转90?后,叶柄上点A对应点的坐标为.9.(2022·山东德州·中考真题)如图,线段AB,CD端点的坐标分别为A−1,2,B3,−1,C3,2,D−1,5,且,将CD平移至第一象限内,得到C'D'(C',D'均在格点上).若四边形ABC'D'是菱形,则所有满足条件的点D'的坐标为.10.(2022·山东烟台·中考真题)观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为.考点02点所在的象限二、考点02点所在的象限11.(2024·内蒙古呼伦贝尔·中考真题)点P x,y在直线y=−34x+4上,坐标x,y是二元一次方程5x−6y= 33的解,则点P的位置在()A.第一象限B.第二象限C.第三象限D.第四象限12.(2024·四川广元·中考真题)如果单项式−x2m y3与单项式2x4y2−n的和仍是一个单项式,则在平面直角坐标系中点m,n在()A.第一象限B.第二象限C.第三象限D.第四象限13.(2024·贵州·中考真题)为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为−2,0,0,0,则“技”所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限14.(2023·内蒙古·中考真题)若实数m,n是一元二次方程x2−2x−3=0的两个根,且m<n,则点m,n 所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限15.(2023·辽宁沈阳·中考真题)二次函数y=−(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限16.(2023·贵州·中考真题)已知,二次数y=ax2+bx+c的图象如图所示,则点(),P a b所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限17.(2023·湖南永州·中考真题)已知点M2,a在反比例函数y=k x的图象上,其中a,k为常数,且k>0﹐则点M一定在()A.第一象限B.第二象限C.第三象限D.第四象限18.(2023·浙江·中考真题)在平面直角坐标系中,点P−1,m2+1位于()A.第一象限B.第二象限C.第三象限D.第四象限19.(2023·江苏盐城·中考真题)在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限20.(2020·湖南邵阳·中考真题)已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.a,b B.−a,b C.−a,−b D.a,−b21.(2022·内蒙古包头·中考真题)在一次函数中,y的值随x值的增大而增大,且ab>0,则点A(a,b)在()A.第四象限B.第三象限C.第二象限D.第一象限22.(2024·四川遂宁·中考真题)反比例函数y=k−1x的图象在第一、三象限,则点k,−3在第象限.23.(2023·湖南·中考真题)在平面直角坐标系中,点P−3,−2所在象限是第象限.24.(2023·新疆·中考真题)在平面直角坐标系中有五个点,分别是A1,2,B−3,4,C−2,−3,D4,3,E2,−3,从中任选一个点恰好在第一象限的概率是.25.(2023·山东日照·中考真题)若点M m+3,m−1在第四象限,则m的取值范围是.26.(2022·四川广安·中考真题)若点P(m+1,m)在第四象限,则点Q(﹣3,m+2)在第象限.27.(2023·山东淄博·中考真题)若实数m,n分别满足下列条件:(1)2m−12−7=−5;(2)n−3>0.试判断点P2m−考点03坐标与图形三、考点03坐标与图形28.(2024·内蒙古包头·中考真题)如图,在平面直角坐标系中,四边形OABC各顶点的坐标分别是O0,0,A1,2,B3,3,C5,0,则四边形OABC的面积为()A.14B.11C.10D.929.(2024·山东威海·中考真题)定义新运算:①在平面直角坐标系中,a,b表示动点从原点出发,沿着x轴正方向()或负方向(a<0).平移a 个单位长度,再沿着y轴正方向()或负方向(b<0)平移b个单位长度.例如,动点从原点出发,沿着x轴负方向平移2个单位长度,再沿着y轴正方向平移1个单位长度,记作−2,1.②加法运算法则:a,b+c,d=a+c,b+d,其中a,b,c,d为实数.若3,5+m,n=−1,2,则下列结论正确的是()A.m=2,n=7B.m=−4,n=−3C.m=4,n=3D.m=−4,n=330.(2024·广西·中考真题)如图,在平面直角坐标系中,点O为坐标原点,点P的坐标为2,1,则点Q 的坐标为()A.3,0B.0,2C.3,2D.1,231.(2024·河北·中考真题)在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点A B.点B C.点C D.点D32.(2024·甘肃临夏·中考真题)如图,O是坐标原点,菱形ABOC的顶点B在x轴的负半轴上,顶点C的坐标为3,4,则顶点A的坐标为()A.−4,2B.−3,4C.−2,4D.−4,333.(2023·海南·中考真题)如图,在平面直角坐标系中,点A在y轴上,点B的坐标为6,0,将绕着点B顺时针旋转60掳,得到,则点C的坐标是()A.33,3B.3,33C.6,3D.3,634.(2023·湖南益阳·中考真题)如图,在平面直角坐标系xOy 中,有三点A 0,1,B 4,1,C 5,6,则()A .12BCD 35.(2023·山东泰安·中考真题)如图,在平面直角坐标系中,的一条直角边OB 在x 轴上,点A 的坐标为;中,,连接BC ,点M 是BC 中点,连接AM .将以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A .3B .62−4C .213−2D .236.(2023·湖北武汉·中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积112=+-S N L ,其中N,L 分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A 0,30,()()20,10,0,0B O ,则内部的格点个数是()A .266B .270C .271D .28537.(2023·山西·中考真题)蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P,Q,M 均为正六边形的顶点.若点P,Q 的坐标分别为()(),0,3--,则点M 的坐标为()A .33,−2B .33,2C .(2,33-D .(2,33--38.(2023·江苏苏州·中考真题)如图,在平面直角坐标系中,点A 的坐标为9,0,点C 的坐标为0,3,以,OA OC 为边作矩形OABC .动点E,F 分别从点,O B 同时出发,以每秒1个单位长度的速度沿,OA BC 向终点A,C 移动.当移动时间为4秒时,的值为()A .10B .910C .15D .3039.(2022·青海·中考真题)如图所示,A 22,0,AB =32,以点A 为圆心,AB 长为半径画弧交x 轴负半轴于点C ,则点C 的坐标为()A .()32,0B .2,0C .−2,0D .−32,040.(2022·江苏苏州·中考真题)如图,点A 的坐标为0,2,点B 是x 轴正半轴上的一点,将线段AB 绕点A 按逆时针方向旋转60°得到线段AC .若点C 的坐标为m,3,则m 的值为()A43B.221C.53D.421341.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形ABCD的边AB在x轴上,点A的坐标为,点E在边CD上.将沿BE折叠,点C落在点F处.若点F的坐标为,则点E的坐标为.42.(2024·黑龙江齐齐哈尔·中考真题)如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴正半轴于点M,交y轴正半轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第一象限交于点H,画射线OH,若H2a−1,a+1,则a=.43.(2024·四川广元·中考真题)若点Q x,y满足1x+1y=1xy,则称点Q为“美好点”,写出一个“美好点”的坐标.44.(2023·内蒙古·中考真题)如图,在平面直角坐标系中,点B坐标8,4,连接OB,将OB绕点O逆时针旋转90掳,得到OB ',则点B '的坐标为.45.(2023·四川甘孜·中考真题)如图,在平面直角坐标系xOy 中,菱形AOBC 的顶点B 在x 轴的正半轴上,点A 的坐标为(1,,则点C 的坐标为.46.(2023·辽宁鞍山·中考真题)如图,在平面直角坐标系中,矩形AOBC 的边OB ,OA 分别在x 轴、y 轴正半轴上,点D 在BC 边上,将矩形AOBC 沿AD 折叠,点C 恰好落在边OB 上的点E 处.若OA =8,OB =10,则点D 的坐标是.47.(2023·山东·中考真题)如图,在平面直角坐标系中,点A,B 在反比例函数(0)k y x x=>的图象上.点A 的坐标为m,2.连接OA,OB,AB .若OA =AB,鈭燨AB =90掳,则k 的值为.48.(2023·四川·中考真题)如图,在平面直角坐标系中,已知点A 1,0,点B 0,−3,点C 在x 轴上,且点C在点A右方,连接AB,BC,若,则点C的坐标为.49.(2024·安徽·中考真题)如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy,格点(网格线的交点)A、B,C、D的坐标分别为7,8,2,8,10,4,5,4.(1)以点D为旋转中心,将旋转得到,画出;(2)直接写出以B,C1,B1,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E,使得射线AE平分,写出点E的坐标.50.(2024·江西·中考真题)如图,是等腰直角三角形,,双曲线y=>0,x>0经过点B,过点A4,0作x轴的垂线交双曲线于点C,连接BC.(1)点B的坐标为______;(2)求BC所在直线的解析式.51.(2023·江苏镇江·中考真题)已知,在平面直角坐标系xOy中,点A的坐标为3,0,点B的坐标为m,n,点C与点B关于原点对称,直线分别与y轴交于点E,F,点F在点E的上方,EF=2.(1)分别求点E,F的纵坐标(用含m,n的代数式表示),并写出m的取值范围.(2)求点B的横坐标m,纵坐标n之间的数量关系.(用含m的代数式表示n)(3)将线段EF绕点()0,1顺时针旋转90掳,E,F的对应点分别是E',F'.当线段E'F'与点B所在的某个函数图象有公共点时,求m的取值范围.52.(2023·江苏镇江·中考真题)如图,正比例函数y=−3x与反比例函数的图象交于A,B1,m两点,点C在x轴负半轴上,.(1)m=______,k=______,点C的坐标为______.(2)点P在x轴上,若以B,O,P为顶点的三角形与相似,求点P的坐标.考点04点坐标的规律探索四、考点04点坐标的规律探索53.(2024·湖北武汉·中考真题)如图,小好同学用计算机软件绘制函数y=x3−3x2+3x−1的图象,发现它关于点1,0中心对称.若点A10.1,y1,A20.2,y2,A30.3,y3,……,A191.9,y19,A202,y20都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则的值是()A .1-B .−0.729C .0D .154.(2024·河北·中考真题)平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”P 2,1按上述规则连续平移3次后,到达点P 32,2,其平移过程如下:若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为()A .6,1或7,1B .()15,7-或8,0C .6,0或8,0D .5,1或7,155.(2023·山东烟台·中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,A 3−2,−1,则顶点A 100的坐标为()A .()31.34B .()31,34-C .32,35D .32,056.(2023·山东日照·中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算时,用到了一种方法,将首尾两个数相加,进而得到.人们借助于这样的方法,得到(n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点Ai x i ,y i ,其中,且x i ,y i是整数.记n n n a x y =+,如1(0,0)A ,即a 1=0,A 2(1,0),即a 2=1,A 3(1,−1),即,以此类推.则下列结论正确的是()A .a 2023=40B .a 2024=43C .a (2n−1)2=2n −6D .a (2n−1)2=2n −457.(2023·辽宁阜新·中考真题)如图,四边形OABC 1是正方形,曲线叫作“正方形的渐开线”,其中,,,,…的圆心依次按O ,A ,B ,C 1循环.当OA =1时,点C 2023的坐标是()A.B.C.D.58.(2024·山东·中考真题)任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy中,将点x,y中的x,y分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x,y均为正整数.例如,点6,3经过第1次运算得到点3,10,经过第2次运算得到点10,5,以此类推.则点1,4经过2024次运算后得到点.59.(2023·湖南怀化·中考真题)在平面直角坐标系中,为等边三角形,点A的坐标为1,0.把按如图所示的方式放置,并将进行变换:第一次变换将绕着原点O顺时针旋转60掳,同时边长扩大为边长的2倍,得到;第二次旋转将绕着原点O顺时针旋转60掳,同时边长扩大为,边长的2倍,得到,….依次类推,得到,则的边长为,点A2023的坐标为.60.(2024·黑龙江绥化·中考真题)如图,已知A11,−3,A23,−3,A34,0,A46,0,A57,3,A69,3,A710,0,A811,−3…,依此规律,则点A2024的坐标为.61.(2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,正方形OMNP顶点M的坐标为3,0,是等边三角形,点B坐标是1,0,在正方形OMNP内部紧靠正方形OMNP的边(方向为)做无滑动滚动,第一次滚动后,点A的对应点记为A1,A1的坐标是2,0;第二次滚动后,A 1的对应点记为2A ,2A 的坐标是2,0;第三次滚动后,2A 的对应点记为A 3,A 3的坐标是3−……,则A 2024的坐标是.62.(2023·山东东营·中考真题)如图,在平面直角坐标系中,直线l :y =3x −3与x 轴交于点A 1,以OA 1为边作正方形A 1B 1C 1O 点C 1在y 轴上,延长C 1B 1交直线l 于点2A ,以C 1A 2为边作正方形A 2B 2C 2C 1,点C 2在y轴上,以同样的方式依次作正方形A 3B 3C 3C 2,…,正方形A 2023B 2023C 2023C 2022,则点2023B 的横坐标是.63.(2023·四川广安·中考真题)在平面直角坐标系中,点在x 轴的正半轴上,点在直线y =x??上,若点A 1的坐标为2,0,且112223334A B A A B A A B A △、△、△均为等边三角形.则点2023B 的纵坐标为.64.(2022·江苏南京·中考真题)如图,在平面直角坐标系,横、纵坐标均为整数的点按如下规律依序排列:(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(3,0),(2,1),(1,2),(0,3),(4,0),(3,1),(2,2),(1,3),…按这个规律,则(6,7)是第个点.考点05函数解析式五、考点05函数解析式65.(2024·甘肃·中考真题)如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x尺,长桌的长为y尺,则y与x的关系可以表示为()A.y=3x B.y=4x C.y=3x+1D.y=4x+166.(2024·广西·中考真题)激光测距仪L发出的激光束以的速度射向目标M,ts后测距仪L收到M反射回的激光束.则L到M的距离dkm与时间ts的关系式为()A.B.d=3脳105t C.D.67.(2022·辽宁大连·中考真题)汽车油箱中有汽油30L,如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.当时,y与x的函数解析式是()A.y=0.1x B.y=−0.1x+30C.y=300x D.y=−0.1x2+30x68.(2022·内蒙古呼和浩特·中考真题)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了千克糯米;设某人的付款金额为x 元,购买量为y 千克,则购买量y 关于付款金额x(x >10)的函数解析式为.69.(2024·广东深圳·中考真题)背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?70.(2023·吉林·中考真题)如图,在正方形ABCD中,AB=4cm,点O是对角线AC的中点,动点P,Q 分别从点A,B同时出发,点P以1cm/s的速度沿边AB向终点B匀速运动,点Q以2cm/s的速度沿折线BC−CD向终点D匀速运动.连接PO并延长交边CD于点M,连接QO并延长交折线DA−AB于点N,连接PQ,QM,MN,NP,得到四边形PQMN.设点P的运动时间为x(s)(04x<<),四边形PQMN的面积为y cm)(2(1)BP的长为__________cm,CM的长为_________cm.(用含x的代数式表示)(2)求y关于x的函数解析式,并写出自变量x的取值范围.(3)当四边形PQMN是轴对称图形时,直接写出x的值.考点06自变量和函数值六、考点06自变量和函数值71.(2024·上海·中考真题)函数f(x)=2−x x−3的定义域是()A.2x=B.C.x=3D.72.(2024·四川巴中·中考真题)函数y=x+2自变量的取值范围是()A.x>0B.2x>-C.D.73.(2023·浙江·中考真题)一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t−5t2,那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.274.(2023·湖北黄石·中考真题)函数y=x的取值范围是()A.B.C.且D.75.(2023·江苏无锡·中考真题)函数y=1x−2中自变量x的取值范围是()A.x>2B.x≥2C.x≠2D.x<276.(2012·浙江衢州·中考真题)函数y=x−1的自变量x的取值范围在数轴上可表示为()A .B .C .D .77.(2024·湖北·中考真题)铁的密度约为7.9kg/cm 3,铁的质量m kg 与体积V cm 3成正比例.一个体积为10cm 3的铁块,它的质量为kg .78.(2024·四川内江·中考真题)在函数y =1x 中,自变量x 的取值范围是;79.(2024·黑龙江大兴安岭地·中考真题)在函数y =x 的取值范围是.80.(2023·黑龙江哈尔滨·中考真题)在函数y =2x−8中,自变量x 的取值范围是.81.(2023·宁夏·中考真题)如图是某种杆秤.在秤杆的点A 处固定提纽,点B 处挂秤盘,点C 为0刻度点.当秤盘不放物品时,提起提纽,秤砣所挂位置移动到点C ,秤杆处于平衡.秤盘放入x 克物品后移动秤砣,当秤砣所挂位置与提扭的距离为y 毫米时秤杆处于平衡.测得x 与y 的几组对应数据如下表:x /克024610y /毫米1014182230由表中数据的规律可知,当x =20克时,y =毫米.82.(2023·上海·中考真题)函数f x =1x−23的定义域为.83.(2023·云南·中考真题)函数110y x =-的自变量x 的取值范围是.84.(2022·上海·中考真题)已知f (x )=3x ,则f (1)=.85.(2024·北京·中考真题)小云有一个圆柱形水杯(记为1号杯),在科技活动中,小云用所学数学知识和人工智能软件设计了一个新水杯,并将其制作出来,新水杯(记为2号杯)示意图如下,当1号杯和2号杯中都有V mL水时,小云分别记录了1号杯的水面高度h1(单位:cm)和2号杯的水面高度h2(单位:cm),部分数据如下:V/mL040100200300400500h1/cm0 2.5 5.07.510.012.5h2/cm0 2.8 4.87.28.910.511.8(1)补全表格(结果保留小数点后一位);(2)通过分析数据,发现可以用函数刻画h1与V,h2与V之间的关系.在给出的平面直角坐标系中,画出这两个函数的图象;(3)根据以上数据与函数图象,解决下列问题:①当1号杯和2号杯中都有320mL水时,2号杯的水面高度与1号杯的水面高度的差约为___________cm (结果保留小数点后一位);②在①的条件下,将2号杯中的一都分水倒入1号杯中,当两个水杯的水面高度相同时,其水面高度约为___________cm(结果保留小数点后一位).86.(2023·辽宁阜新·中考真题)某中学数学兴趣小组的同学们,对函数y=a x−b+c(a,b,c是常数,)的性质进行了初步探究,部分过程如下,请你将其补充完整.(1)当a=1,b=c=0时,即y=x,当时,函数化简为y=x;当x<0时,函数化简为y=______.(2)当a=2,b=1,c=0时,即y=2x−1.①该函数自变量x和函数值y的若干组对应值如下表:…−21 01234……620246…其中m=______.②在图1所示的平面直角坐标系内画出函数y=2x−1的图象.(3)当a=−2,b=1,c=2时,即y=−2x−1+2.①当时,函数化简为y=______.②在图2所示的平面直角坐标系内画出函数y=−2x−1+2的图象.(4)请写出函数y=a x−b+c(a,b,c是常数,)的一条性质:______.(若所列性质多于一条,则仅以第一条为准)87.(2023·湖南郴州·中考真题)在实验课上,小明做了一个试验.如图,在仪器左边托盘A(固定)中放置一个物体,在右边托盘B(可左右移动)中放置一个可以装水的容器,容器的质量为5g.在容器中加入一定质量的水,可以使仪器左右平衡.改变托盘B与点C的距离x(cm)(),记录容器中加入的水的质量,得到下表:托盘B与点C的距离x/cm3025201510容器与水的总质量y1/g1012152030加入的水的质量y2/g5*******把上表中的x与y1各组对应值作为点的坐标,在平面直角坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的y1关于x的函数图象.(1)请在该平面直角坐标系中作出y2关于x的函数图象;(2)观察函数图象,并结合表中的数据:①猜测y1与x之间的函数关系,并求y1关于x的函数表达式;②求y2关于x的函数表达式;③当时,y 1随x的增大而___________(填“增大”或“减小”),y2随x的增大而___________(填“增大”或“减小”),y2的图象可以由y1的图象向___________(以“上”或“下”或“左”或“右”)平移得到.(3)若在容器中加入的水的质量y 2(g)满足,求托盘B与点C的距离x(cm)的取值范围.88.(2022·广东深圳·中考真题)二次函数y=12x2,先向上平移6个单位,再向右平移3个单位,用光滑的曲线画在平面直角坐标系上.=122=12−32+60,03,1,124,1322,25,8−1,122,132−2,21,8(1)m 的值为;(2)在坐标系中画出平移后的图象并求出y =−12x 2+5与y =12x 2的交点坐标;(3)点()()1122,,,P x y Q x y 在新的函数图象上,且P,Q 两点均在对称轴的同一侧,若y1>y 2,则x 1x 2(填“>”或“<”或“=”)考点07函数图象七、考点07函数图象89.(2024·安徽·中考真题)如图,在中,,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为()A.B.C.D.90.(2024·湖北武汉·中考真题)如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h与注水时间t的函数关系的是()A.B.C.D.91.(2024·甘肃·中考真题)如图1,动点P从菱形ABCD的点A出发,沿边匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为()A.2B.3C.5D.2292.(2024·河南·中考真题)把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是()A.当P=440W时,I=2A B.Q随I的增大而增大C.I每增加1A,Q的增加量相同D.P越大,插线板电源线产生的热量Q越多93.(2024·内蒙古呼伦贝尔·中考真题)已知某同学家、体育场、图书馆在同一条直线上.下面的图象反映的过程是:该同学从家跑步去体育场,在那里锻炼了一阵后又步行回家吃早餐,饭后骑自行车到图书馆.图中用x表示时间,y表示该同学离家的距离.结合图象给出下列结论:(1)体育场离该同学家2.5千米;(2)该同学在体育场锻炼了15分钟;(3)该同学跑步的平均速度是步行平均速度的2倍;(4)若该同学骑行的平均速度是跑步平均速度的1.5倍,则a的值是3.75;其中正确结论的个数是()A.1B.2C.3D.494.(2024·青海·中考真题)化学实验小组查阅资料了解到:某种絮凝剂溶于水后能够吸附水中悬浮物并发生沉降,从而达到净水的目的.实验得出加入絮凝剂的体积与净水率之间的关系如图所示,下列说法正确的是()A.加入絮凝剂的体积越大,净水率越高B.未加入絮凝剂时,净水率为0C.絮凝剂的体积每增加0.1mL,净水率的增加量相等D.加入絮凝剂的体积是0.2mL时,净水率达到76.54%95.(2024·江西·中考真题)将常温中的温度计插入一杯的热水(恒温)中,温度计的读数与时间x min的关系用图象可近似表示为()A.B.C.D.96.(2024·四川广元·中考真题)如图①,在中,,点P从点A出发沿A→C→B以1cm/s 的速度匀速运动至点B,图②是点P运动时,的面积y cm2随时间x(s)变化的函数图象,则该三角形的斜边AB的长为()A.5B.7C.32D.2397.(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD中,AB=6cm,BC=8cm,菱形EFGH的顶点E,G在同一水平线上,点G与AB的中点重合,EF=23cm,,现将菱形EFGH以1cm/s 的速度沿BC方向匀速运动,当点E运动到CD上时停止,在这个运动过程中,菱形EFGH与矩形ABCD重叠部分的面积S cm2与运动时间t s之间的函数关系图象大致是()A.B.C.D.98.(2023·四川攀枝花·中考真题)如图,正方形ABCD的边长为4,动点P从点B出发沿折线BCDA做匀速运动,设点P运动的路程为x,的面积为y,下列图象能表示y与x之间函数关系的是()。
中考数学复习考点知识归类讲解与练习专题01 平面直角坐标系与函数基本概念知识对接考点一、平面直角坐标系1.相关概念(1)平面直角坐标系(2)象限(3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标(1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标(3)平行于坐标轴的直线上的点的坐标(4)关于x轴、y轴、原点对称的点的坐标4.距离(1)平面上一点到x轴、y轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移1 / 27要点补充:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于;(2)点P(x,y)到y 轴的距离等于;(3)点P(x,y)到原点的距离等于.考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点补充:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.专项训练一、单选题1.已知点P (a ,a+3)在第二象限,且点P 到x 轴的距离为2,则a 的值为()A .1-B .5-C .2-D .2y x 22y x +【答案】A【分析】先判断a的取值,进而根据点P到x轴的距离为2得到a+3=2,解得即可.【详解】解:∵点P(a,a+3)在第二象限,∴30aa<⎧⎨+>⎩,∴-3<a<0,∵点P到x轴的距离为2,∴|a+3|=2,∴a+3=2,∴a=-1,故选:A.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.在平面直角坐标系中,点P(3,4)关于y轴对称点的坐标为()A.(﹣3,4)B.(3,4)C.(﹣3,﹣4)D.(4,﹣3)【答案】A【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】3 / 27解:点P (3,4)关于y 轴对称点的坐标为(-3,4),故选:A .【点睛】此题主要考查了关于y 轴对称点的坐标,关键是掌握点的坐标的变化规律.3.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正西方向走10m 到达点5A ,…按如此规律走下去,当机器人走到点20A 时,点20A 的坐标为()A .(20,20)-B .(20,20)C .(22,20)--D .(22,22)-【答案】A【分析】 先求出A 1,A 2,A 3,…A 8,发现规律,根据规律求出A 20的坐标即可.【详解】解:∵一个机器人从点O 出发,向正西方向走2m 到达点1A ,点A 1在x 轴的负半轴上,∴A 1(-2,0)从点A 2开始,由点1A 再向正北方向走4m 到达点2A ,A 2(-2,4),由点2A 再向正东方向走6m 到达点3A ,A 3(6-2,4)即(4,4),由点3A 再向正南方向走8m 到达点4A ,A 4(4,4-8)即(4,-4),由点A 4再向正西方向走10m 到达点5A ,A 5(4-10,-4)即(-6,-4),由点A 5再向正北方向走12m 到达点A 6,A 6(-6,12-4)即(-6,8),5 / 27由点A 6再向再向正东方向走14m 到达点A 7,A 7(14-6,8)即(8,8),由点A 7再向正南方向走16m 到达点8A ,A 8(8,8-16)即(8,-8),观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为2054=⨯,所以20A 在第四象限,坐标为(20,20)-.故选择A .【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键.4.小娜驾车从哈尔滨到大庆.设她出发第x min 时的速度为y km/h ,图中的折线表示她在整个驾车过程中y 与x 之间的函数关系式.下列说法:(1)在77≤x ≤88时,小娜在休息;(2)小娜驾车的最高速度是120km/h ;(3)小娜出发第16.5min 时的速度为48km/h ;(4)如果汽车每行驶100km 耗油10升,那么小娜驾车在33≤x ≤66时耗油6.6升. 其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【分析】根据函数图象对每个选项进行分析判断,最后得出结论.①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;②观察图象小娜的最高时速为120千米;③用待定系数法求出11≤x ≤22时的函数关系式,可求小娜出发第16.5min 时的速度;④小娜驾车在33≤x ≤66时时速为120千米/小时,依次求出小娜驾车在33≤x ≤66时行驶的路程,从而耗油量可求.【详解】解:①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;故①错误; ②观察图象小娜的最高时速为120千米,故②正确;③在11≤x ≤22时,设y =kx +b .将(11,24)和(22,72)代入上式:11242272k b k b +=⎧⎨+=⎩, 解得:481124k b ⎧=⎪⎨⎪=-⎩. ∴482411y x =-. 当x =16.5min 时,y =48.∴小娜出发第16.5min 时的速度为48km /h .故③正确;④由图象可知:小娜驾车在33≤x ≤66时时速为120千米/小时,∴车在33≤x ≤66时小娜行驶了66331206660-⨯=(千米). ∴耗油为:66×10100=6.6(升).7 / 27故④正确;综上,正确的有②③④共三个.故选:C .【点睛】本题主要考查了一次函数的应用.理解函数图象上的点的实际意义是解题的关键.另外待定系数法是确定函数解析式的重要方法.5.下列不能表示y 是x 的函数的是()A .B .21y x =+C .D .【答案】C【分析】根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断即可.【详解】解:根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断, A :观察列表数据发现,符合函数的定义,不符合题意;B :观察x 与y 的等式发现,符合函数的定义,不符合题意;C :观察函数图像发现,不符合函数的定义,符合题意;D :观察函数图像发现,符合函数的定义,不符合题意;故选:C .【点睛】此题主要考查了函数的定义,涉及到了函数的表示方法(解析法,图像法和列表法),熟练掌握函数的基础知识是解题的关键.x的函数的是()6.下列各图象中,y不是..A.B.C.D.【答案】B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.9 / 277.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是()A .11.4B .11.6C .12.4D .12.6【答案】A【分析】 由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,根据勾股定理求得DE 的长度,再根据三角形相似求得BF ,矩形的性质得到OF ,即可求解.【详解】解:由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,如下图:∵5CD AD ==,DE AC ⊥ ∴132CE AC ==,90DEC ∠=︒由勾股定理得4DE =∵//AB DC∴DCE BAC ∠=∠,90ODC BOD ∠=∠=︒又∵AC BC⊥∴90 ACB CED∠=∠=︒∴DEC BCA△∽△∴DE CE CDBC AC AB==,即4356BC AB==解得8BC=,10AB=∵CF OB⊥∴90 ACB BFC∠=∠=︒∴BCF BAC∽△△∴BC BFAB BC=,即8108BF=解得 6.4BF=由题意可知四边形OFCD为矩形,∴5OF CD==11.4OB BF OF=+=故选A【点睛】此题考查了相似三角形的判定与性质,图形的平移,矩形的判定与性质,勾股定理等,熟练掌握相关基本性质是解题的关键.8.在平面直角坐标系中,已知点A(0,0)、B(2,2)、C(3,0),若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标不可能为()A.(﹣1,2) B.(5,2) C.(1,﹣2) D.(2,﹣2)【答案】D【分析】分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的11 / 27性质容易得出点D 的坐标. 【详解】解:分三种情况:①BC 为对角线时,点D 的坐标为(5,2) ②AB 为对角线时,点D 的坐标为(﹣1,2), ③AC 为对角线时,点D 的坐标为(1,﹣2),综上所述,点D 的坐标可能是(5,2)或(﹣1,2)或(1,﹣2). 故选:D . 【点睛】本题考查了平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解决问题的关键.9.半径是R 的圆的周长C 2R π=,下列说法正确的是() A .C ,π,R 是变量,2是常量 B .C 是变量,2,π,R 是常量 C .R 是变量,2,π,C 是常量 D .C ,R 是变量,2π是常量【答案】D 【分析】根据变量和常量的概念解答即可. 【详解】解:在半径是R 的圆的周长2C R π=中,C ,R 是变量,2π是常量. 故选D . 【点睛】本题主要考查了变量和常量,在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.10.关于变量x ,y 有如下关系:①6-=x y ;②24y x =;③2y x =;④3y x =.其中y 是x 函数的是() A .①③ B .①②③④ C .①③④ D .①②③【答案】C 【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数. 【详解】解:y 是x 函数的是①x -y =6;③y =2|x |;④3y x =; ∵x =1时,y =±2,∴对于y 2=4x ,y 不是x 的函数; 故选:C . 【点睛】本题考查了函数的定义,函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量. 二、填空题11.若点()25,4P a a --到两坐标轴的距离相等,则点P 的坐标是______. 【答案】()1,1或()3,3-; 【分析】根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案. 【详解】解:∵P (2a -5,4-a )到两坐标轴的距离相等, ∴254a a -=-.13 / 27∴254a a -=-或25(4)a a -=--, 解得3a =或1a =,当3a =时,P 点坐标为(1,1); 当1a =时,P 点坐标为(-3,3). 故答案为:(1,1)或(-3,3). 【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.12.在平行四边形ABCD 中,点A 的坐标是(﹣1,0),点B 的坐标是(2,3),点D 的坐标是(3,1),则点C 的坐标是___. 【答案】(6,4). 【分析】根据四边形ABCD 是平行四边形,可得AB∥DC ,且AB =DC ,根据坐标间关系可得2-(-1)=x C -3,3-0=y C -1,解得x C =6,y C =4即可. 【详解】解:∵四边形ABCD 是平行四边形, ∴AB∥DC ,且AB =DC , ∴2-(-1)=x C -3,3-0=y C -1, ∴x C =6,y C =4, 点C (6,4) 故答案为(6,4).【点睛】本题考查平行四边形的性质,点的坐标关系建构方程,掌握平行四边形的性质,点的坐标关系建构方程.13.函数y=182xx+-的自变量的取值范围是______.【答案】x≠4【分析】当表达式的分母中含有自变量时,自变量取值要使分母不为零,据此可得结论.【详解】解:由题可得,8﹣2x为分母,8﹣2x≠0,解得x≠4,∴函数182xyx+=-的自变量的取值范围是x≠4,故答案为:x≠4.【点睛】本题考查的是自变量的取值范围,由于此题表达式为分式,根据分式有意义的条件,分母不为零,得到自变量的取值范围.14.若一个函数图象经过点A(1,3),B(3,1),则关于此函数的说法:①该函数可能是一次函数;②点P(2,2.5),Q(2,3.5)不可能同时在该函数图象上;15 / 27③函数值y 一定随自变量x 的增大而减小;④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大. 所有正确结论的序号是 ___. 【答案】①②④ 【分析】根据函数的定义,一次函数的图象及函数的性质一一分析即可求解. 【详解】解:①因为一次函数的图象是一条直线,由两点确定一条直线,故该函数可能是一次函数,故正确;②由函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量,所以点P (2,2.5),Q (2,3.5)不可能同时在该函数图象上,故正确;③因为函数关系不确定,所以函数值y 不一定一直随自变量x 的增大而减小,故错误; ④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大,故正确; 故答案为①②④. 【点睛】本题主要考查函数的定义及一次函数的图象与性质,熟练掌握函数的定义及一次函数的图象与性质是解题的关键.15.在圆周长公式2C r π=中,常量是__________. 【答案】2π 【分析】根据常量的定义即可解答. 【详解】解:圆周长公式2C r π=中,常量是2π, 故答案为:2π. 【点睛】本题考查了常量的定义,正确理解定义是关键.16.如图,平面直角坐标系中O 是原点,等边△OAB 的顶点A 的坐标是(2,0),点P 以每秒1个单位长度的速度,沿O →A →B →O →A …的路线作循环运动,点P 的坐标是__________________.【答案】12⎛ ⎝⎭【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可. 【详解】解:由题意得,第1秒结束时P 点运动到了线段OA 的中点C 的位置,所以P 1的坐标为P 1(1,0);第2秒结束时P 点运动到了点A 的位置,所以P 2的坐标为P 2(2,0);第3秒结束时P 点运动到了线段AB 的中点D 的位置,如下图所示,过D点作x轴的垂线交于x2处,∵△OAB是等边三角形,且OA=2,∴在Rt△AD x2中,∠DA x2=60°,AD=1,∴21 2Ax=,2Dx=故D点的坐标为32⎛⎝⎭,即P332⎛⎝⎭;第4秒结束时P点运动到了点B的位置,同理过B点向x轴作垂线恰好交于点C,在Rt△OBC中,∠BOC =60°,2OB=,1OC=,BC故B点的坐标为(1,即P4(1;第5秒结束时P点运动到了线段OB的中点E的位置,根据点D即可得出E点的坐标为12⎛⎝⎭,即 P512⎛⎝⎭;第6秒结束时运动到了点O的位置,所以P6的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……17 / 27由上可知,P 点的坐标按每6秒进行循环, ∵2021÷8=336……5,∴第2021秒结束后,点P 的坐标与P 5相同为12⎛ ⎝⎭,故答案为:12⎛ ⎝⎭.【点睛】本题主要考查了点的坐标特征,等边三角形的性质,数字规律,关键是求出前面几个点坐标,得出规律.17.平面直角坐标系中,点()5,3A -,()0,3B ,()5,0C -,在y 轴左侧一点(),P a b (0b ≠且点P 不在直线AB 上).若40APO ∠=︒,BAP ∠与COP ∠的角平分线所在直线交于D 点.则ADO ∠的度数为______°.【答案】110或70 【分析】分两种情况,①点P 在AO 下方,设AP 与CO 交于点N ,过点N 作//NM AD ,先证明NM 平分PNO ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMO P ∠=+∠,即可求解;②点P 在AO 上方,设PO 与AB 交于点M,过点M 作//NM OD ,先证明NM 平分PNA ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMA P ∠=+∠,即可求解. 【详解】19 / 27解:分两种情况, ①点P 在AO 下方时,设AP 与CO 交于点N ,过点N 作//NM AD ,PAD PNM ∴∠=∠, //AB NO , BAN ONP ∴∠=∠,AD 平分BAN ∠,12PAD BAN ∴∠=∠,12PNM ONP ∴∠=∠,NM∴平分ONP ∠,OM 平分NOP ∠,111(180)70222MNO NOM ONP PON NPO ∴∠+∠=∠+∠=-∠=︒,110NMO ∴∠=︒, //NM AD ,110ADO NMO ∴∠=∠=︒;①点P 在AO 上方时,设AB 与PO 交于点N ,过点N 作//NM OD ,POD PNM ∴∠=∠,//AB CO ,PNA POC ∴∠=∠,DO 平分POC ∠,12POD POC ∴∠=∠,12PNM PNA ∴∠=∠,NM∴平分ANP ∠,直线CD 平分NAP ∠,111(180)70222MNA NAM PNA PAN NPA ∴∠+∠=∠+∠=-∠=︒,110NMA ∴∠=︒, //NM AD ,18070ADO NMO ∴∠=-∠=, 70ADO ∴∠=︒或110︒.故答案为:70或110.【点睛】本题主要考查了三角形双内角平分线模型,平行线的性质,解题的关键是找基本模型. 18.一个三角形的底边长是3,高x 可以任意伸缩,面积为y ,y 随x 的变化变化,则其中的常量为________,y 随x 变化的解析式为______________. 【答案】3 32y x = 【分析】先根据变量与常量的定义,得到3为常量,x 和y 为变量,再根据三角形面积公式得到21 / 27y =12×3×x =32x (x >0), 【详解】解:数值发生变化的量为变量,数值始终不变的量为常量,因此常量为底边长3,由三角形的面积公式得y 随x 变化的解析式为32y x =. 故答案为:3;32y x =. 【点睛】本题考查主要函数关系式中的变量与常量和列函数关系式解决本题的关键是要理解函数关系中常量和变量. 三、解答题19.已知一个圆柱的底面半径是3cm ,当圆柱的高(cm)h 变化时,圆柱的体积()3cm V 也随之变化.(1)在这个变化过程变量h 、V 中,自变量是______,因变量是______; (2)在这个变化过程中,写出圆柱的体积V 与高h 之间的关系式;(3)当圆柱的高h 由3cm 变化到6cm 时,圆柱的体积V 由______变化到______. 【答案】(1)h ,V ;(2)9V h π=;(3)327cm π,354cm π 【分析】(1)利用函数的概念进行回答;(2)利用圆柱的体积公式求解;(3)分别计算出h =3和6对应的函数值可得到V 的变化情况. 【详解】解:(1)在这个变化过程中,自变量是h ,因变量是V ;故答案为h ,V ;(2)V =π•32•h =9πh ;(3)当h =3cm 时,V =27πcm 3;当h =6cm 时,V =54πcm 3;所以当h 由3cm 变化到6cm 时,V 是由27πcm 3变化到54πcm 3.故答案为:27πcm3;54πcm3.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.函数解析式是等式.解决此题的关键是圆柱的体积公式.20.一辆大客车和一辆小轿车同时从甲地出发去乙地,匀速而行,大客车到达乙地后停止,小轿车到达乙地后停留4小时,再按照原速从乙地出发返回甲地,小轿车返回甲地后停止,已知两车距甲地的路程s千米与所用的时间t小时的关系如图所示,请结合图象解答下列问题:(1)在上述变化过程中,自变量是________;因变量是________;(2)小轿车的速度是________km/h,大客车的速度是________ km/h;(3)两车出发多少小时后两车相遇,两车相遇时,距离甲地的路程是多少?【答案】(1)t,s;(2)50,30;(3)15小时,450km【分析】(1)根据函数图像可得;(2)根据函数图象中的数据,可以计算出小轿车和大客车的速度;(3)设两车出发xh时,两车相遇,根据题意列出方程,解之可得x,再乘以大客车的速度可得到甲地的距离.【详解】解:(1)自变量是时间t;因变量是路程s;(2)由图象可得,小轿车的速度为:500÷10=50(km/h),大客车的速度为:500÷503=30(km/h),故答案为:50,30;(3)设两车出发x小时,两车相遇,30x+50(x-14)=500,解得,x=15,30x=30×15=450,即两车出发15h后两车相遇,两车相遇时,距离甲地的路程是450km,故答案为:15,450.【点睛】本题考查了从函数图像获取信息,一元一次方程的应用,解答本题的关键是明确题意,结合函数图像得到必要信息.21.在平面直角坐标系中,O为坐标原点,C(4,0),A(a,3),B(a+4,3)(1)求ΔOAC的面积;(2)若aOABC是菱形.【答案】(1)6;(2)见解析【分析】(1)过点A(a,3)作AE⊥x轴于点E,根据A(a,3),C(4,0)求出AE和OC的长度,23 / 27然后根据三角形面积公式求解即可;(2)首先根据点A 和点B 的纵坐标相同得到//AB OC ,然后结合AB OC =得到四边形OABC 是平行四边形,然后根据勾股定理求出OA 的长度,得到OA =OB ,根据菱形的判定定理即可证明. 【详解】解:(1)如图所示,过点A (a ,3)作AE ⊥x 轴于点E ,则AE =3, 又∵C (4,0), ∴OC =4,∴S △OAC =11=43622OC AE ⨯⨯⨯⨯=.(2)若a =)A ,)43B ,, ∵A B y y =, ∴//AB OC , ∵44AB OC ==,, ∴AB OC =.∴四边形OABC 是平行四边形, 过点A 作AE ⊥x 轴,则90AEO ∠=︒,3AE OE ==,∴4OA =,∴OA AB=,∴四边形OABC是菱形.【点睛】此题考查了三角形面积的求法,菱形的判定,解题的关键是根据题意找到坐标和线段的关系.22.定义:平面直角坐标系中,点M(a,b)和点N(m,n)的距离为MN,例如:点(3,2)和(4,0(1)在平面直角坐标系中,点(2,5-)和点(2,1)的距离是,点(72,3)和点(12,1-)的距离是;(2)在平面直角坐标系中,已知点M(2-,4)和N(6,3-),将线段MN平移到M ′ N′,点M的对应点是M′,点N的对应点是N′,若M′的坐标是(8-,m),且MM′=10,求点N′的坐标;(3)在平面直角坐标系中,已知点A在x轴上,点B在y轴上,点C的坐标是(12,5),若BC=13,且△ABC的面积是20,直接写出点A的坐标.【答案】(1)6,5;(2)当M′(-8,12)时,N′(0,5),当M′(-8,-4)时,N′(0,-11);(3)(8,0)或(-8,0)或(16,0)或(32,0)【分析】(1)分别利用两点间距离公式求解即可.(2)构建方程求出m的值,可得结论.(3)设(0,)B t,构建方程求出t的值,可得结论.【详解】解:(1)点(2,5)-和点(2,1)的距离6,25 / 27点7(2,3)和点1(2,1)-的距离5=, 故答案为:6,5. (2)由题意,10MM '=,∴10=,12m =∴或4-,(8,12)M ∴'-或(8,4)--,当(8,12)M '-时,(0,5)N ', 当(8,4)M '--时,(0,11)N '-. (3)设(0,)B t ,(12,5)C ,13BC =,∴13,解得0t =或10,(0,0)B ∴或(0,10),当(0,0)B 时,20ABC S ∆=,∴15202OA ⨯⨯=, 8OA ∴=,(8,0)A ∴或(8,0)-.当(0,10)B 时,20ABC BOC AOC AOB S S S S ∆∆∆∆=+-=或20ABC AOC AOB BOC S S S S ∆∆∆∆=--=,∴111101*********OA OA ⨯⨯+⨯⨯-⨯⨯=或111101012520222OA OA ⨯⨯-⨯⨯-⨯⨯=,16OA ∴=或32,∴或(32,0),A(16,0)综上所述,满足条件的点A的坐标为(8,0)或(8,0)-或(16,0)或(32,0).【点睛】本题属于三角形综合题,考查了两点间距离公式,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27 / 27。
考点专项复习提升测试卷——平面直角坐标系与一次函数(时间:60分钟分数:100分)姓名:班级:学号:分数:一、选择题(本题共8小题,共40分)1.(2022·内蒙古包头)在一次函数()50y ax b a =-+≠中,y 的值随x 值的增大而增大,且0ab >,则点(,)A a b 在()A.第四象限B.第三象限C.第二象限D.第一象限2.(2022·天津)如图,△OAB 的顶点O (0,0),顶点A ,B 分别在第一、四象限,且AB ⊥x 轴,若AB =6,OA =OB =5,则点A 的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)3.如图,()8,0A ,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为()A.()0,5B.()5,0C.()6,0D.()0,64.(2022·黑龙江大庆)平面直角坐标系中,点M 在y 轴的非负半轴上运动,点N 在x 轴上运动,满足8OM ON +=.点Q 为线段MN 的中点,则点Q 运动路径的长为()A.4πB.C.8πD.5.一次函数y=-2x-1的图象大致是()A.B.C.D.6.如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为()A.12y x =B.y x =C.32y x =D.2y x=7.(2021·广东广州)在平面直角坐标系xOy 中,矩形OABC 的点A 在函数()10y x x =>的图象上,点C 在函数()40y x x=-<的图象上,若点B 的横坐标为72-,则点A 的坐标为()A.1,22⎛⎫ ⎪⎝⎭B.222⎝C.12,2⎛⎫ ⎪⎝⎭D.22,2⎭8.如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为()A.1x ≤B.1≥x C.1x <D.1x >二、填空题(本题共5小题,每空3分,共15分)9.(2021·四川成都)在正比例函数y kx =中,y 的值随着x 值的增大而增大,则点()3,P k 在第______象限.10.(2021·江苏扬州市·中考真题)如图,一次函数2y x =+的图像与x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为.11.(2020•南京)将一次函数y =﹣2x +4的图象绕原点O 逆时针旋转90°,所得到的图象对应的函数表达式是.12.在平面直角坐标系中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:d,则点P (3,-3)到直线2533y x =-+的距离为__________.13.过点(-1,7)的一条直线与x 轴,y 轴分别相交于点A,B,且与直线3y x 12=-+平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是.三、解答题(本题共3小题,共45分)14.(2020•青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m 3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y (m 3)与注水时间t (h )之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y (m 3)与注水时间t (h )之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?15.(2021·湖北宜昌)甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg ,如果一次购买4kg 以上的苹果,超过4kg 的部分按标价6折售卖.x (单位:kg )表示购买苹果的重量,y (单位:元)表示付款金额.(1)文文购买3kg苹果需付款___________元,购买5kg苹果需付款____________元;(2)求付款金额y关于购买苹果的重量x的函数解析式;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg,且全部按标价的8折售卖.文文如果要购买10kg苹果,请问她在哪个超市购买更划算?16.(2021·湖北恩施土家族苗族自治州·中考真题)“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.(1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克.甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?参考答案:1.B2.D3.D4.B5.D6.D7.A8.A9.一+11.y =1x +212.8131313.(1,4),(3,1)14.(1)设y 与t 的函数解析式为y =kt +b ,=1002+=380,解得,=140=100,即y 与t 的函数关系式是y =140t +100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m 3/h );(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.∴甲进水口进水的速度是乙进水口进水速度的34,∵同时打开甲、乙两个进水口的注水速度是140m 3/h ,∴甲进水口的进水速度为:140÷(341)×34=60(m 3/h ),480÷60=8(h ),即单独打开甲进水口注满游泳池需8h .15.(1)由题意:31030⨯=(元);()41054100.646⨯+-⨯⨯=(元);故答案为:30元,46元;(2)当04x ≤≤时,10y x =,当4x ≥时,设y kx b =+,将()4,40,()5,46代入解析式解得6k =,16b =,∴616y x =+,(3)当10x =时,6101676y =⨯+=甲,101080%80y =⨯⨯=乙,∵7680<,∴甲超市比乙超市划算.16.解:(1)设每千克花生的售价为(x -40)元,每千克的茶叶售价为x 元,由题意得:()504010x x -=,解得:50x =,∴花生每千克的售价为50-40=10元;答:每千克花生的售价为10元,每千克的茶叶售价为50元(2)设茶叶销售了m 千克,则花生销售了(60-m )千克,所获得利润为w 元,由题意得:()660361260602m m m m ⎧-+≤⎨-≤⎩,解得:2030m ≤≤,∴()()()10660503610240w m m m =--+-=+,∵10>0,∴w 随m 的增大而增大,∴当m =30时,w 有最大值,最大值为1030240540w =⨯+=;答:当花生销售30千克,茶叶也销售30千克时可获得最大利润,最大利润为540元.。
平面直角坐标系与函数一.选择题(共5小题)1.(•重庆)在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是()2.(•柳州)如图,点A(﹣2,1)到y轴的距离为()3.(•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()4.(•济南)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P的坐标是()=1==335 (5)5.(•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是().景仁宫(4,2)二.填空题(共11小题)6.(•广元)若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是(﹣3,5).7.(•广安)如果点M(3,x)在第一象限,则x的取值范围是x>0.8.(•甘孜州)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为(5,﹣5).=5=59.(•黑龙江)如图,在平面直角坐标系中,点A(0,)、B(﹣1,0),过点A作AB的垂线交x轴于点A1,过点A1作AA1的垂线交y轴于点A2,过点A2作A1A2的垂线交x轴于点A3…按此规律继续作下去,直至得到点A为止,则点A坐标为(﹣31008,0),.))10.(•绵阳)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是(2,﹣1).11.(•六盘水)观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是:(2,7).12.(•台州)如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A 处的位置.则椒江区B处的坐标是(10,8)..13.(•青岛)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是(2,3).,横坐标保持不变,纵坐标分别变为原来的,则点14.(•梅州)函数中,自变量x的取值范围是x≥0.15.(•酒泉)在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.16.(•大庆)函数y=的自变量x的取值范围是x>0.。
备战2023年中考数学必刷真题考点分类专练(全国通用)专题09平面直角坐标系与函数基础知识一.选择题(共11小题)1.(2022•连云港)函数y=中自变量x的取值范围是()A.x≥1B.x≥0C.x≤0D.x≤12.(2022•扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(2022•乐山)点P(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(2022•槐荫区一模)以直角坐标系的原点O为圆心,以1为半径作圆.若点P是该圆上第一象限内的一点,且OP与x轴正方向组成的角为α,则点P的坐标为()A.(cosα,1)B.(1,sinα)C.(sinα,cosα)D.(cosα,sinα)5.(2022•重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m6.(2022•安徽)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是()A.甲B.乙C.丙D.丁7.(2022•台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校.设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是()A.B.C.D.8.(2022•武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是()A.B.C.D.9.(2022•衡阳)如图,在四边形ABCD中,∠B=90°,AC=6,AB∥CD,AC平分∠DAB.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.10.(2022•江西)甲、乙两种物质的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法中,错误的是()A.甲、乙两种物质的溶解度均随着温度的升高而增大B.当温度升高至t2℃时,甲的溶解度比乙的溶解度大C.当温度为0℃时,甲、乙的溶解度都小于20gD.当温度为30℃时,甲、乙的溶解度相等11.(2022•温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t 分钟.下列选项中的图象,能近似刻画s与t之间关系的是()A.B.C.D.二.填空题(共3小题)12.(2022•眉山)将一组数,2,,2,…,4,按下列方式进行排列:,2,,2;,2,,4;…若2的位置记为(1,2),的位置记为(2,3),则2的位置记为.13.(2022•娄底)函数y=的自变量x的取值范围是.14.(2022•孝感)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C 停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时t的值为.三.解答题(共1小题)15.(2022•舟山)6月13日,某港口的湖水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)…1112131415161718…y(cm)…18913710380101133202260…(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?。
中考数学真题练习卷:平面直角坐标系与函数
一、选择题
1.已知函数,则自变量的取值范围是()
A. B. 且 C. D.
【答案】B
2.在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的
坐标是()
A. B. C. D.
【答案】C
3.在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定高度,则下图能反映弹簧秤的读数 (单位)与铁块被提起的高度 (单位)之间的函数关系的
大致图象是()
A. B. C. D.
【答案】C
4.如图,一个函数的图象由射线、线段、射线组成,其中点,,,
,则此函数( )
A. 当时,随的增大而增大
B. 当时,随的增大而减小
C. 当时,随的增大而增大
D. 当时,随的增大而减小
【答案】A
5.如图,一个函数的图像由射线BA,线段BC,射线CD,其中点A(-1,2),B(1,3),C(2,1),D (6,5),则此函数()
A. 当x<1,y随x的增大而增大
B. 当x<1,y随x的增大而减小
C. 当x>1,y随x的增大而增大
D. 当x>1,y随x的增大而减小
【答案】A
6.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为()
A.(4,-3)
B.(-4,3)
C.(-3,4)
D.(-3,-4)
【答案】B
7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()
A. (5,30)
B. (8,10)
C. (9,10)
D. (10,10)
【答案】C
二、填空题
8.两地相距的路程为240千米,甲、乙两车沿同一线路从地出发到地,分别以一定的速度匀速行
驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达地.甲、乙两车相距的路程(千
米)与甲车行驶时间(小时)之间的关系如图所示,求乙车修好时,甲车距地还有________千米.
【答案】90
9.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为________。
【答案】(-2,-2)
10.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0)点D在y轴上,则点C的坐标是________。
【答案】(-5,4)
11.如图,点的坐标为,过点作不轴的垂线交直于点以原点为圆心, 的长
为半径断弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,以
的长为半径画弧交轴正半轴于点;…按此作法进行下去,则的长是________.
【答案】
12.过双曲线上的动点A作AB⊥x轴于点B,P是直线AB上的点,且满足AP=2AB,过点P
作x轴的平行线交此双曲线于点C,如果△APC的面积为8,则k的值是________。
【答案】12或4
三、解答题
13.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4),C(﹣2,6).
①画出△ABC,并将它绕点A顺时针旋转90°后得到的△A1B1C1,并写出点C1的坐标.
②以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2,并计算△A2B2C2的面积.
【答案】解:△ABC,△A1B1C1、△A2B2C2如图所示,
C1(3,3)
=4•S△ABC=4(2×4﹣•1•2﹣•1•4﹣•2•2)=12.
14.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与动时间t(s)之间的关系如图2所示。
(1)根据函数的定义,请判断变量h是否为关于t的函数?
(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义,
②秋千摆动第一个来回需多少时间?
【答案】(1)∵对于每一个摆动时间t,都有一个唯一的h的值与其对应,
∴变量h是关于t的函数。
(2)①h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度为0.5m
②2.8s.
15.小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第回到家中.设小明出发第
时的速度为,离家的距离为. 与之间的函数关系如图所示(图中的空心圈表示不
包含这一点).
(1)小明出发第时离家的距离为________ ;
(2)当时,求与之间的函数表达式;
(3)画出与之间的函数图像.
【答案】(1)200
(2)解:根据题意,当时,
与之间的函数表达式为,即
(3)解:与之间的函数图像如图所示.。