第一章一元二次方程竞赛拔尖题
- 格式:docx
- 大小:69.21 KB
- 文档页数:5
训练专题三——一元二次方程的整数解一、填空题(共5小题,每小题5分,满分25分)1.(5分)若关于x的方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0的解都是整数,则符合条件的整数时k的值有_________个.2.(5分)已知关于x的方程(a﹣1)x2+2x﹣a﹣1=0的根都是一整数,那么符合条件的整数a有_________个.3.(5分)已知方程x2﹣1999x+m=0有两个质数解,则m=_________.4.(5分)给出四个命题:①整系数方程ax2+bx+c=0(a≠0)中,若△为一个完全平方数,则方程必有有理根;②整系数方程ax2+bx+c=0(a≠0)中,若方程有有理数根,则△为完全平方数;③无理数系数方程ax2+bx+c=0(a≠0)的根只能是无理数;④若a、b、c均为奇数,则方程ax2+bx+c=0没有有理数根,其中真命题是_________.5.(5分)已知关于x的一元二次方程x2+(2a﹣1)x+a2=0(a为整数)的两个实数根是x1、x2,则=_________.二、选择题(共1小题,每小题4分,满分4分)6.(4分)已知a,b为质数且是方程x2﹣13x+c=0的根,那么的值是()A.B.C.D.三、解答题(共12小题,满分91分)7.(8分)试确定一切有理数r,使得关于x的方程rx2+(r+2)x+r﹣1=0有根且只有整数根.8.(8分)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0是否有有理根?如果有,求出m的值;如果没有,请说明理由.9.(8分)若关于x的方程ax2﹣2(a﹣3)x+(a﹣13)=0至少有一个整数根,求非负整数a的值.10.(8分)设m为整数,且4<m<40,方程x2﹣2(2m﹣3)x+4m2﹣14m+8=0有两个不相等的整数根,求m的值及方程的根.11.(7分)已知关于x的方程a2x2﹣(3a2﹣8a)x+2a2﹣13a+15=0(其中a是非负整数)至少有一个整数根,求a的值.12.(6分)求使关于x的方程kx2+(k+1)x+(k﹣1)=0的根都是整数的k值.13.(6分)当n为正整数时,关于x的方程2x2﹣8nx+10x﹣n2+35n﹣76=0的两根均为质数,试解此方程.14.(6分)设关于x的二次方程(k2﹣6k+8)x2+(2k2﹣6k﹣4)x+k2=4的两根都是整数.求满足条件的所有实数k的值.15.(6分)已知a是正整数,且使得关于x的一元二次方程ax2+2(2a﹣1)x+4(a﹣3)=0 至少有一个整数根,求a的值.16.(6分)已知p为质数,使二次方程x2﹣2px+p2﹣5p﹣1=0的两根都是整数,求出p的所有可能值.17.(12分)已知方程x2+bx+c=0与x2+cx+b=0各有两个整数根x1,x2,和x1′,x2′,且x1x2>0,x1′x2′>0.(1)求证:x1<0,x2<0,x1′<0,x2′<0;(2)求证:b﹣1≤c≤b+1;(3)求b,c的所有可能的值.18.(10分)如果直角三角形的两条直角边都是整数,且是方程mx2﹣2x﹣m+1=0的根(m为整数),这样的直角三角形是否存在?若存在,求出满足条件的所有三角形的三边长;若不存在,请说明理由.新课标九年级数学竞赛培训第05讲:一元二次方程的整数解参考答案与试题解析一、填空题(共5小题,每小题5分,满分25分)1.(5分)若关于x的方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0的解都是整数,则符合条件的整数时k的值有5个.考点:一元二次方程的整数根与有理根。
第一章《一元二次方程》能力训练题一.选择题1.下列方程中,是一元二次方程的是()A.x2+x=0 B.x+2=0 C.x+y=1 D.=22.一元二次方程x2﹣3x+6=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.已知x=1是一元二次方程2x2﹣cx=0的一个根,则c的值是()A.﹣1 B.2 C.3 D.﹣24.用配方法解一元二次方程x2﹣6x﹣2=0,配方后得到的方程是()A.(x﹣3)2=2 B.(x﹣3)2=8 C.(x﹣3)2=11 D.(x+3)2=9 5.某药品原价为100元,连续两次降价a%后,售价为64元,则a的值为()A.10 B.20 C.23 D.366.设a、b为x2+x﹣2011=0的两个实根,则a3+a2+3a+2014b=()A.2014 B.﹣2014 C.2011 D.﹣20117.若关于x的一元二次方程(a﹣2)x2﹣4x﹣1=0有实数根,则a的取值范围为()A.a≥﹣2 B.a≠2 C.a>﹣2且a≠2 D.a≥﹣2且a≠2 8.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.64万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6(1+x)=8.64B.6(1+2x)=8.64C.6(1+x)2=8.64D.6+6(1+x)+6(1+x)2=8.649.在一幅长60dm宽40dm的庆祝建国70周年宣传海报四周镶上相同宽度的金色纸片制成一幅矩形挂图.要使整个挂图的面积为2800dm2,设纸边的宽为xdm,则可列出方程为()A.x2+100x﹣400=0 B.x2﹣100x﹣400=0C.x2+50x﹣100=0 D.x2﹣50x﹣100=010.已知a、b满足a2﹣6a+2=0,b2﹣6b+2=0,则=()A.﹣6 B.2 C.16 D.16或211.为了宣传垃圾分类,童威写了一篇倡议书,决定用微博转发的方式传播.他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依此类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为()A.9 B.10 C.11 D.1212.如图,在宽为20米,长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()A.1米B.1.5米C.2米D.2.5米二.填空题13.若m是方程x2﹣2x﹣5=0的一个根,则代数式2m﹣m2=.14.在“低碳生活,绿色出行”的倡导下,自行车正逐渐成为人们喜爱的交通工具.某运动商城自2018年起自行车的销售量逐月增加.据统计,该商城一月份销售自行车100辆,三月份销售121辆,该商城的自行车销量的月平均增长率为.15.如表是某同学求代数式x2﹣x的值的情况,根据表格中数据,可知方程x2﹣x=6的根是.x﹣2 ﹣1 0 1 2 3 …x2﹣x 6 2 0 0 2 6 …16.2018﹣2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行现场比赛),比赛总场数为380场,则参赛队伍有支.17.关于x的方程x2﹣6x+3=0的两根分别是x1和x2,且=.18.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.那i+i2+i3+i4+…+i2018+i2019的值为.19.用配方法将方程x2﹣4x+1=0化成(x+m)2=n的形式(m、n为常数),则=.20.某养殖场为落实国家环保政策,建造一个池底为正方形、深度为2m的长方体无盖水池,池壁的造价为每平方米150元,池底的造价为每平方米300元,总造价为9600元,则该水池池底的边长为m.三.解答题21.解下列方程:(1)x2﹣4x﹣1=0;(2)2(x﹣3)2=9﹣x222.若x1,x2是方程x2﹣2x﹣3=0的两个实数根,求(1)+的值.(2)(x1﹣1)(x2﹣1)的值.23.我们知道,各类方程的解法虽然不尽相同,但是它们的基本思想都是“转化”,即把未知转化为已知.用“转化”的数学思想,我们还可以解一些新方程.认识新方程:像=x这样,根号下含有未知数的方程叫做无理方程,可以通过方程两边平方把它转化为2x+3=x2,解得x1=3,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,x2=﹣1是原方程的增根,舍去,所以原方程的解是x=3.运用以上经验,解下列方程:(1)=x;(2)x+2=6.24.阅读理解:材料一:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0(在由原方程得到新方程的过程中,利用换元法达到降次的目的,体现了数学的转化思想).于是可解得y1=1,y2=4.①当y=1时,x2=1,∴x=±1;②当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.材料二:恒等变形是代数式求值的一个重要的方法.利用恒等变形,可以把无理数运算转化问有理数运算,可以把次数较高的代数式转化为次数较低的代数式.例如:当x=+1时,求x3﹣x2﹣x+2的值.为解答这道题,直接代入x的值进行计算,显然比较麻烦,我们可以通过恒等变形,对本题进行解答:先将条件化为整式,再把无理数运算转为有理数运算.由x=+1,得x﹣1=,两边同时平方得x2﹣2x﹣2=0,即x2﹣2x=2,x2=2x+2.原式=x(2x+2)﹣x2﹣x+2=x2+x﹣x2﹣x+2=2请参照以上的解决问题的思路和方法,解决下列问题:(1)解方程:(x2+x)2﹣4(x2+x)﹣12=0(2)若a2﹣3a+1=0,求2a3﹣5a2﹣3+的值.25.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.26.如图,某城建部门计划在新修的城市广场的一块长方形空地上修建一个面积为1200m2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m,宽为40m.(1)求通道的宽度;(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.27.温润有度,为爱加温.近年来设计精巧、物美价廉的暖风机逐渐成为人们冬天必备的“取暖神器”,今年11月下旬某商场计划购进A、B两种型号的暖风机共900台,每台A型号暖风机售价为600元,每台B型号暖风机售价为900元.(1)若要使得A、B两种型号暖风机的销售额不低于69万元,则至多购进多少台A型号暖风机?(2)由于质量超群、品质卓越,11月下旬购进的A、B两种型号的暖风机全部售完.该商场在12上旬又购进了A、B两种型号的暖风机若干台,并且进行“双12”促销活动,每台A型号暖风机的售价比其11月下旬的售价优惠a%,A型号暖风机12月上旬的销售量比其在(1)问条件下的最高购进量增加a%,每台B型号暖风机的售价比其11月下旬的售价优惠a%,B型号暖风机12月上旬的销售量比其在(1)问条件下的最低购进量增加a%,A、B两种型号的暖风机在12月上旬的销售额比(1)问中最低销售额增加了a%,求a的值.参考答案一.选择题1.解:A、该方程符合一元二次方程的定义,故本选项符合题意.B、该方程的未知数的最高次数是1,属于一元一次方程,故本题选项不符合题意.C、该方程中含有两个未知数,属于二元一次方程,故本题选项不符合题意.D、该方程不是整式方程,故本题选项不符合题意.故选:A.2.解:∵x2﹣3x+6=0,△=(﹣3)2﹣4×1×6=﹣6<0,∴方程没有实数根,即一元二次方程x2﹣3x+6=0的根的情况为没有实数根,故选:D.3.解:将x=1代入方程2x2﹣cx=0,得:2﹣c=0,解得c=2,故选:B.4.解:∵x2﹣6x﹣2=0,∴x2﹣6x=2,∴(x﹣3)2=11,故选:C.5.解:当药品第一次降价%时,其售价为100﹣100a%=100(1﹣a%);当药品第二次降价x后,其售价为100(1﹣a%)2.∴100(1﹣a%)2=64.解得:a=20或a=﹣180(舍去),故选:B.6.解:∵a、b为x2+x﹣2011=0的两个实根,∴a2+a=2011,a+b=﹣1,∴a3+a2=a(a2+a)=2011a,∴a3+a2+3a+2014b=2011a+3a+2014a=2014(a+b)=﹣2014.故选:B.7.解:由题意可知:△=16+4(a﹣2)≥0,∴a≥﹣2,∵a﹣2≠0,∴a≠2,∴a≥﹣2且a≠2,故选:D.8.解:设该快递公司这两个月投递总件数的月平均增长率为x,根据题意得:6(1+x)2=8.64.故选:C.9.解:设纸边的宽为xdm,那么挂图的长和宽应该为(60+2x)和(40+2x),根据题意可得出方程为:(60+2x)(40+2x)=2800,整理得:x2+50x﹣100=0,故选:C.10.解:当a=b时,+=1+1=2;当a≠b时,∵a、b满足a2﹣6a+2=0,b2﹣6b+2=0,∴a、b为一元二次方程x2﹣6x+2=0的两根,∴a+b=6,ab=2,∴+====16.故选:D.11.解:依题意,得:1+n+n2=111,解得:n1=10,n2=﹣11.12.解:设修建的路宽应为x米根据等量关系列方程得:20×30﹣(20x+30x﹣x2)=551,解得:x=49或1,49不合题意,舍去,故选:A.二.填空题(共8小题)13.解:∵m是方程x2﹣2x﹣5=0的一个根,∴m2﹣2m﹣5=0,∴m2﹣2m=5,∴2m﹣m2=﹣5.故答案为﹣5.14.解:设运动商城的自行车销量的月平均增长率为x,根据题意得:100(1+x)2=121,解得:x1=0.1=10%,x2=﹣2.1(舍去).故答案为:10%.15.解:由表格知,当x=﹣2或x=3时,x2﹣x=6成立,即该方程x2﹣x=6的根是x=﹣2或x=3.故答案为x1=﹣2,x2=3.16.解:设参赛队伍有x支,则x(x﹣1)=380.解得x=20.故答案是:20.17.解:由题意可知:x1+x2=6,x1x2=3,∴原式==2,18.解:由于i4n+1=i4n•i=i,i4n+2=﹣1,i4n+3=﹣i,i4n=1.∴i4n+i4n+1+i4n+2+i4n+3=0,∴原式=(i+i2+i3+i4)+(i5+i6+i7+i8)+……(i2017+i2018+i2019)=504×0﹣1=﹣1,故答案为:﹣119.解:∵x2﹣4x+1=0,∴x2﹣4x+4=3,∴(x﹣2)2=3,∴m=﹣2,n=3,∴原式=1,故答案为:120.解:设池底的边长为xm.300x2+1200x=9600,解得x1=4,x2=﹣8(舍),答:池底的边长为4m.故答案为:4.三.解答题(共7小题)21.解:(1)x2﹣4x﹣1=0x2﹣4x+4=5(x﹣2)2=5,则x﹣2=±,解得:x1=2+,x2=2﹣;(2)2(x﹣3)2=9﹣x2.2(x﹣3)2﹣(3﹣x)(3+x)=0,(3﹣x)[2(3﹣x)﹣(3+x)]=0,(3﹣x)(3﹣3x)=0,故3﹣x=0或3﹣3x=0,解得:x1=3,x2=1.22.解:由题意可知:x1+x2=2,x1x2=﹣3,(1)原式==.(2)原式=x1x2﹣(x1+x2)+1=﹣3﹣2+1=﹣423.解:(1)两边平方,得16﹣6x=x2,整理得:x2+6x﹣16=0,解得x1=﹣8,x2=2;经检验x=﹣8是增根,所以原方程的根为x=2;(2)移项得:2=6﹣x两边平方,得4x﹣12=x2﹣12x+36,解得x1=4,x2=12(不符合题意,舍).24.解:(1)令t=x2+x,原方程可化为t2﹣4t﹣12=0,∴(t﹣6)(t+2)=0,∴t=6或t=﹣2,当x2+x=6时,(x+3)(x﹣2)=0,∴x=2或x=﹣3,当x2+x=﹣2时,方程无解,∴原方程有两个根,x=2或x=﹣3;(2)∵a2﹣3a+1=0,∴a2=3a﹣1,∴2a3﹣5a2﹣3+=2a(3a﹣1)﹣5(3a﹣1)﹣3+=6a2﹣17a+2+=6(3a﹣1)﹣17a+2+=a﹣4+,∵a2﹣3a+1=0,∴a+=3,∴2a3﹣5a2﹣3+=3﹣4=﹣1.25.(1)设x秒后,PQ=2BP=5﹣x BQ=2x∵BP2+BQ2=PQ2∴(5﹣x)2+(2x)2=(2)2解得:x1=3,x2=﹣1(舍去)∴3秒后,PQ的长度等于2;(2)△PQB的面积不能等于7cm2,原因如下:设t秒后,PB=5﹣t QB=2t又∵S△PQB=×BP×QB=7×(5﹣t)×2t=7∴t2﹣5t+7=0△=52﹣4×1×7=25﹣28=﹣3<0∴方程没有实数根∴△PQB的面积不能等于7cm2.26.解:(1)设通道宽度为xm,依题意得(50﹣2x)(40﹣2x)=1200,即x2﹣45x+200=0解得x1=5,x2=40(舍去)答:通道的宽度为5m.(2)设每次降价的百分率为x,依题意得80(1﹣x)2=51.2解得x1=0.2=20%,x2=1.8(舍去)答:每次降价的百分率为20%.27.解:(1)设购进x台A型号暖风机,则购进(900﹣x)台B型号暖风机,依题意,得:600x+900(900﹣x)≥690000,解得:x≤400.答:至多购进400台A型号暖风机.(2)依题意,得:600(1﹣a%)×400(1+a%)+900(1﹣a%)×(900﹣400)(1+a%)=690000(1+a%),整理,得:150a﹣12a2=0,解得:a1=12.5,a2=0(不合题意,舍去).答:a的值为12.5.。
一元二次方程培优专题复习只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
)0(02≠=++a c bx“未知数的最高次数是2”:①该项系数不为“0”; ②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论例1、下列方程中是关于x 的一元二次方程的是( ) A 、()()12132+=+x x B 、02112=-+x xC 、02=++c bx ax D 、1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx xm m是关于x 的一元二次方程,则m 的值为 。
★1、方程782=x 的一次项系数是 ,常数项是 。
★2、若方程()021=--m xm 是关于x 的一元一次方程,⑴求m 的值: ;⑵写出关于x 的一元一次方程: 。
★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
★★★4、若方程nx m+x n-2x 2=0是一元二次方程,则下列不可能的是( )A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1例1、已知322-+y y 的值为2,则1242++y y 的值为 。
例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。
★2、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。
2019-2020一元二次方程培优专题(中考真题含答案)一、单选题1.(2019·贵州中考真题)一元二次方程x 2﹣3x +1=0的两个根为x 1,x 2,则x 12+3x 2+x 1x 2﹣2的值是( ) A .10B .9C .8D .72.(2019·内蒙古中考真题)若12x x ,是一元二次方程230x x +-=的两个实数根,则3221417-+x x 的值为( )A .﹣2B .6C .﹣4D .43.(2019·湖北中考真题)从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程240ax x c ++=有实数解的概率为( )A .14B .13C .12D .234.(2019·内蒙古中考真题)已知等腰三角形的三边长分别为4a b 、、,且a 、b 是关于x 的一元二次方程21220x x m -++=的两根,则m 的值是( ) A .34B .30C .30或34D .30或365.(2019·湖北中考真题)若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .无法确定6.(2019·黑龙江中考真题)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( ) A .4B .5C .6D .77.(2019·新疆中考真题)若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是() A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且 8.(2019·河南中考真题)一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根9.(2019·广东中考真题)关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .210.(2019·山东中考真题)已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( )A .2023B .2021C .2020D .201911.(2019·山东中考真题)关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为( ) A .2m =-B .3m =C .3m =或2m =-D .3m =-或2m =12.(2019·山东中考真题)若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( ) A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠13.(2018·宁夏中考真题)若是方程x 2-4x+c=0的一个根,则c 的值是( )A .1B .C .D .14.(2018·内蒙古中考真题)已知关于x 的一元二次方程x 2+2x+m ﹣2=0有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为( ) A .6 B .5 C .4 D .3二、填空题15.(2019·四川中考真题)若关于x 的一元二次方程210(0)4ax x a --=≠有两个不相等的实数根,则点(1, 3 )P a a +--在第____象限.16.(2019·宁夏中考真题)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程25140x x +-=即(5)14x x +=为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是2(5)x x ++,其中它又等于四个矩形的面积加上中间小正方形的面积,即24145⨯+,据此易得2x =.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程24120x x --=的正确构图是_____.(只填序号)17.(2019·湖北中考真题)已知是关于的方程的两个不相等实数根,且满足,则的值为__________.18.(2018·四川中考真题)已知x 1,x 2是一元二次方程x 2-2x-1=0的两实数根,则12112121x x +++的值是__.19.(2015·四川中考真题)已知实数m ,n 满足,,且,则= .20.(2018·四川中考真题)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a (x +1)2+b (x +1)+1=0的两根之和为__________.21.(2014·内蒙古中考真题)已知m ,n 是方程x 2+2x ﹣5=0的两个实数根,则m 2﹣mn+3m+n=___________.三、解答题22.(2019·湖南中考真题)关于x 的一元二次方程230x x k -+=有实数根. (1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,求此时m 的值.23.(2019·湖北中考真题)已知关于x 的一元二次方程26(41)0x x m -++=有实数根.(1)求m 的取值范围.(2)若该方程的两个实数根为1x 、2x ,且124x x -=,求m 的值.24.(2019·湖北中考真题)已知于x的元二次方程26250x x a-++=有两个不相等的实数根12,x x.(1)求a的取值范围;(2)若22121230x x x x+-…,且a为整数,求a的值.25.(2018·四川中考真题)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.26.(2019·重庆中考真题)某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,毎个摊位的管理费将会减少3%10a;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少1%4a.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少5%18a,求a的值.参考答案1.D 【解析】 【分析】先利用一元二次方程的解的定义得到x 12=3x 1-1,则x 12+3x 2+x 1x 2-2=3(x 1+x 2)+x 1x 2-3,接着利用根与系数的关系得到x 1+x 2=3,x 1x 2=1,然后利用整体代入的方法计算. 【详解】∵x 1为一元二次方程x 2﹣3x+1=0的根, ∴x 12﹣3x 1+1=0, ∴x 12=3x 1﹣1,∴x 12+3x 2+x 1x 2﹣2=3x 1﹣1+3x 2+x 1x 2﹣2=3(x 1+x 2)+x 1x 2﹣3, 根据题意得x 1+x 2=3,x 1x 2=1, ∴x 12+3x 2+x 1x 2﹣2=3×3+1﹣3=7. 故选:D . 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 2.A【解析】 【分析】利用根与系数的关系可得出x 1+x 2=-1、x 1•x 2=-3,211x x 3+=,将代数式2132x 4x 17+﹣进行转化后,再代入数据即可得出结论. 【详解】 解:12x x ,是一元二次方程2x x 30+﹣=的两个实数根,12x x 1∴+=﹣,12x x 3=﹣,211x x 3+=,3221x 4x 17∴+﹣ 32211418--+=x x()()2222111418=-++-+x x x x()211114418=---⨯-+x x21184418=---+x x()2118418=--++x x 10432=-⨯=-故选:A . 【点睛】本题考查了方程的解、根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则1212,b c x x x x a a+=-=. 3.C 【解析】 【分析】先根据一元二次方程有实数根求出ac≤4,继而画树状图进行求解即可. 【详解】由题意,△=42-4ac≥0,∴ac≤4, 画树状图如下:a 、c 的积共有12种等可能的结果,其中积不大于4的有6种结果数, 所以a 、c 的积不大于4(也就是一元二次方程有实数根)的概率为61=122, 故选C. 【点睛】本题考查了一元二次方程根的判别式,列表法或树状图法求概率,得到ac≤4是解题的关键. 4.A 【解析】【分析】分三种情况讨论,①当a=4时,②当b=4时,③当a=b 时;结合韦达定理即可求解; 【详解】解:当4a =时,8b <,a b 、是关于x 的一元二次方程21220x x m -++=的两根, 412b ∴+=, 8b ∴=不符合;当4b =时,8a <,a b 、是关于x 的一元二次方程21220x x m -++=的两根, 412a ∴+=, 8a ∴=不符合;当a b =时,a b 、是关于x 的一元二次方程21220x x m -++=的两根, 1222a b ∴==, 6a b ∴==, 236m ∴+=, 34m ∴=;故选:A . 【点睛】本题考查一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合韦达定理和三角形三边关系进行解题是关键. 5.A 【解析】 【分析】利用一次函数性质得出k >0,b≤0,再判断出△=k 2-4b >0,即可求解.【详解】 解:一次函数y kx b =+的图象不经过第二象限,0k ∴>,0b ≤,240k b ∴∆=->,∴方程有两个不相等的实数根.故选:A . 【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键. 6.C 【解析】 【分析】设这种植物每个支干长出x 个小分支,根据主干、支干和小分支的总数是43,即可得出关于x 的一元二次方程,解之取其正值即可得出结论 【详解】设这种植物每个支干长出x 个小分支, 依题意,得:2143x x ++=, 解得: 17x =-(舍去),26x =. 故选:C . 【点睛】此题考查一元二次方程的应用,解题关键在于列出方程 7.D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( ,解得:k ≤54且k ≠1. 故选:D .【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键 8.A 【解析】 【分析】先化成一般式后,在求根的判别式,即可确定根的状况. 【详解】解:原方程可化为:2240x x --=,1a \=,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>, ∴方程由两个不相等的实数根.故选:A . 【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键. 9.D 【解析】 【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--,利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意. 【详解】解:由韦达定理,得:12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--, 所以,()2142(2)3k k ----+=-,化简,得:24k =, 解得:k =±2, 因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根, 所以,△=()214(2)k k ---+=227k k +-〉0, k =-2不符合, 所以,k =2 故选:D. 【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键. 10.A 【解析】 【分析】根据题意可知b=3-b 2,a+b=-1,ab=-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A . 【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 11.A 【解析】 【分析】设1x ,2x 是2220x mx m m +++=的两个实数根,由根与系数的关系得122x x m +=-,212x x m m ⋅=+,再由()2221212122x x x x x x +=+-⋅代入即可.设1x ,2x 是2220x mx m m +++=的两个实数根, ∴40m ∆=-≥, ∴0m ≤,∴122x x m +=-,212x x m m ⋅=+,∴()2221212122x x x x x x +=+-⋅2224222212m m m m m =--=-=,∴3m =或2m =-, ∴2m =-, 故选A . 【点睛】本题考查一元二次方程根与系数的关系;牢记韦达定理,灵活运用完全平方公式是解题的关键. 12.D 【解析】 【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围. 【详解】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k -≠⎧⎨=----⎩…, 解得:32k ≥且k≠2. 故选D . 【点睛】本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键. 13.A【分析】把2代入方程x 2﹣4x +c =0就得到关于c 的方程,就可以解得c 的值.【详解】把2代入方程x 2﹣4x +c =0,得(22﹣4(2+c =0,解得:c =1.故选A . 【点睛】本题考查的是一元二次方程的根即方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根. 14.B 【解析】 【分析】根据一元二次方程根的判别式和一元二次方程的解法结合已知条件进行分析解答即可. 【详解】∵关于x 的一元二次方程x 2+2x+m ﹣2=0有两个实数根, ∴△=()224120m =⨯⨯-≥,解得:3m ≤,又∵m 为正整数, ∴m=1或2或3,(1)当m=1时,原方程为x 2+2x-1=0,此时方程的两根均不为整数,故m=1不符合要求; (2)当m=2时,原方程为x 2+2x=0,此时方程的两根分别为0和-2,符合题中要求; (3)当m=3时,原方程为x 2+2x+1=0,此时方程的两根都为1,符合题中要求;∴ m=2或m=3符合题意,∴m 的所有符合题意的正整数取值的和为:2+3=5. 故选B. 【点睛】读懂题意,熟知“在一元二次方程()200ax bx c a ++=≠中,若方程有两个实数根,则△=240b ac -≥”是解答本题的关键.【解析】 【分析】由二次项系数非零及根的判别式△>0,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,由a 的取值范围可得出a+1>0,-a-3<0,进而可得出点P 在第四象限,此题得解. 【详解】∵关于x 的一元二次方程210(0)4ax x a --=≠有两个不相等的实数根, ∴201(1)4-04a a ≠⎧⎪⎨⎛⎫∆=--⨯⨯> ⎪⎪⎝⎭⎩, 解得:1a >-且0a ≠. ∴10a +>,30a --<, ∴点(1,3)P a a +--在第四象限. 故答案为:四. 【点睛】本题考查了根的判别式、一元二次方程的定义以及点的坐标,利用二次项系数非零及根的判别式△>0,找出关于a 的一元一次不等式组是解题的关键. 16.②. 【解析】 【分析】仿造案例,构造面积是2(4)x x +-的大正方形,由它的面积为24124⨯+,可求出6x =,此题得解. 【详解】 解:24120x x --=即()412x x -=,∴构造如图②中大正方形的面积是2(4)x x +-,其中它又等于四个矩形的面积加上中间小正方形的面积,即24124⨯+, 据此易得6x =.故答案为:②.【点睛】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键.17.1 .【解析】【分析】根据根与系数的关系结合,可得出关于的一元二次方程,解之即可得出的值,根据方程的系数结合根的判别式,可得出关于的一元二次不等式,把k的值代入,进而即可确定值,此题得解.【详解】是关于的方程的两个实数根,.,即,整理,得:,解得:.关于的方程的两个不相等实数根,当k=时,△=-<0,故k=不符合题意;当k=1时,△=4>0;.故答案为:1.【点睛】本题考查了根与系数的关系以及根的判别式,利用根与系数的关系结合,求出值是解题的关键. 18.6 【解析】 【分析】已知x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x 12﹣2 x 1﹣1=0, x 22﹣2 x 2﹣1=0,x 1+x 2=2,x 1·x 2=-1,即x 12=2 x 1+1, x 22=2 x 2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可. 【详解】∵x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根, ∴x 12﹣2 x 1﹣1=0, x 22﹣2 x 2﹣1=0,x 1+x 2=2,x 1·x 2=-1,即x 12=2 x 1+1, x 22=2 x 2+1,∴12112121x x +++=()22212121222222212121221142 6.1x x x x x x x x x x x x +-+++==== 故答案为6. 【点睛】本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.19..【解析】 试题分析:由时,得到m ,n 是方程的两个不等的根,根据根与系数的关系进行求解.试题解析:∵时,则m ,n 是方程3x 2﹣6x ﹣5=0的两个不相等的根,∴,.∴原式===,故答案为:.考点:根与系数的关系. 20.1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x 3,x 4,∴at 2+bt+1=0,由题意可知:t 1=1,t 2=2, ∴t 1+t 2=3, ∴x 3+x 4+2=3 故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型. 21.8 【解析】试题分析:根据m+n=﹣=﹣2,m•n=﹣5,直接求出m 、n 即可解题.∵m 、n 是方程x 2+2x ﹣5=0的两个实数根, ∴mn=﹣5,m+n=﹣2, ∵m 2+2m ﹣5=0 ∴m 2=5﹣2mm 2﹣mn+3m+n=(5﹣2m )﹣(﹣5)+3m+n=10+m+n=10﹣2=8 考点:(1)、根与系数的关系;(2)、一元二次方程的解.22.(1)94k ≤;(2)m 的值为32. 【解析】 【分析】(1)利用判别式的意义得到()2340k ∆=--≥,然后解不等式即可;(2)利用(1)中的结论得到k 的最大整数为2,解方程2320x x -+=解得121,2x x ==,把1x =和2x =分别代入一元二次方程()2130m x x m -++-=求出对应的m ,同时满足10m -≠.【详解】解:(1)根据题意得()2340k ∆=--≥,解得94k ≤; (2)k 的最大整数为2,方程230x x k -+=变形为2320x x -+=,解得121,2x x ==,∵一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,∴当1x =时,1130m m -++-=,解得32m =; 当2x =时,()41230m m -++-=,解得1m =, 而10m -≠, ∴m 的值为32. 【点睛】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根. 23.(1)2m ≤.(2)1m =. 【解析】 【分析】(1)根据方程的系数结合根的判别式△≥0,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围;(2)由根与系数的关系可得出x 1+x 2=6,x 1x 2=4m+1,结合|x 1-x 2|=4可得出关于m 的一元一次方程,解之即可得出m 的值. 【详解】(1)∵关于x 的一元二次方程x 2-6x+(4m+1)=0有实数根,∴△=(-6)2-4×1×(4m+1)≥0, 解得:m≤2;(2)∵方程x 2-6x+(4m+1)=0的两个实数根为x 1、x 2,∴x 1+x 2=6,x 1x 2=4m+1,∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=42,即32-16m=16, 解得:m=1.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)利用根与系数的关系结合|x 1-x 2|=4,找出关于m 的一元一次方程. 24.(1)a<2;(2)-1,0,1 【解析】 【分析】(1)根据根的判别式,可得到关于a 的不等式,则可求得a 的取值范围;(2)由根与系数的关系,用a 表示出两根积、两根和,由已知条件可得到关于a 的不等式,则可求得a 的取值范围,再求其值即可. 【详解】 (1)关于x 的一元二次方程26250x x a -++=有两个不相等的实数根12,x x ,0∴∆>,即2(6)4(25)0a --+>,解得2a <;(2)由根与系数的关系知:12126,25x x x x a +==+,12,x x 满足221212x x x x 30+-…,()21212330x x x x ∴+-…, 363(25)30a ∴-+…,3,2a ∴-…a 为整数,a ∴的值为1,0,1-.【点睛】本题主要考查根与系数的关系及根的判别式,利用根的判别式求得k 的取值范围是解题的关键,注意方程根的定义的运用. 25.(1)见解析;(2)m=﹣1或m=3. 【解析】 【分析】(1)求出∆的值,即可判断出方程根的情况;(2)根据根与系数的关系即可求出答案. 【详解】(1)由题意可知:△=(2m ﹣2)2﹣4(m 2﹣2m )=4>0,∴方程有两个不相等的实数根.(2)∵x 1+x 2=2m ﹣2,x 1x 2=m 2﹣2m ,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=10, ∴(2m ﹣2)2﹣2(m 2﹣2m )=10, ∴m 2﹣2m ﹣3=0, ∴m=﹣1或m=3 【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法,本题属于中等题型.26.(1)该菜市场共有25个4平方米的摊位.(2)a 的值为50. 【解析】 【分析】(1)设该菜市场共有x 个4平方米的摊位,则有2x 个2.5平方米的摊位,根据菜市场毎月可收取管理费4500元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)由(1)可得出:5月份参加活动一的2.5平方米摊位及4平方米摊位的个数,再由参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少518%a ,即可得出关于a 的一元二次方程,解之取其正值即可得出结论. 【详解】解:(1)设该菜市场共有x 个4平方米的摊位,则有2x 个2.5平方米的摊位, 依题意,得:20420 2.524500x x ⨯+⨯⨯=, 解得:25x =.答:该菜市场共有25个4平方米的摊位.(2)由(1)可知:5月份参加活动一的2.5平方米摊位的个数为25240%20⨯⨯=(个),5月份参加活动一的4平方米摊位的个数为2520%5⨯=(个). 依题意,得:320(12%)20 2.5%10a a +⨯⨯⨯()1516%204%4a a ++⨯⨯⨯[20(12%)20a =+⨯⨯2.5+5(16%)a +5204]%18a ⨯⨯⨯, 整理,得:2500a a -=,解得:10a =(舍去),250a =. 答:a 的值为50. 【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程.。
O C B A 一元二次方程拔高题1. 已知关于x 的方程(a -1)x 2-(2a -3)x+a=0有实数根.(1)求a 的取值范围;(2)设x 1,x 2是方程(a -1)x 2-(2a -3)x+a=0的两个根,且x 12+x 22=9,求a 的值2.问题:构造ax 2+bx+c=0解题,已知:21a +1a -1=0,b 4+b 2-1=0,且1a ≠b 2,求21ab a 的值.3.(6分)已知关于x 的方程x 2-3x+m=0的一个根是另一个根的2倍,则m 的值为________.4.(12分)已知:关于x 的两个方程①2x 2+(m+4)x+m -4=0与②mx 2+(n -2)x+m -3=0,方程①有两个不相等的负实数根,方程②有两个实数根.(1)求证:方程②两根的符号相同;(2)设方程②的两根分别为α、β,若α:β=1:2,且n 为整数,求m 的最小整数值.5.如图,AO=OB=50cm ,OC 是一条射线,OC ⊥AB ,一只蚂蚁由A 以2cm/s 速度向B 爬行,同时另一只蚂蚁由O 点以3cm/s 的速度沿OC 方向爬行,几秒钟后,•两只蚂蚁与O 点组成的三角形面积为450cm 2?6,某木器厂今年一月份生产课桌500张,因管理不善,2月份的产量减少了10%,从3月份起加强了管理,产量逐月上升,4月份的产量达到了648张,求工厂3月份和4月份的平均增长率。
10..随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1) 若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?(2) 为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.7,每件商品的成本是120元,在试销阶段发现每件售价(元)与产品的日销售量(件)始终存在下表中的数量关系,但每天的盈利(元)却不一样。
一元二次方程和一元二次函数一元二次方程:20(0)ax bx c a ++=≠(1) 若方程没有实根:判别式240b ac ∆=-< (2) 若方程有两个相等实根:判别式240b ac ∆=-=(3) 若方程有两个不等的实根:判别式240b ac ∆=->注:若方程有两个实根:判别式240b ac ∆=-≥ 若方程有两个实根,记为12x x 、则:12b x a -+=、22b x a--=2121222221212122212121240()22()()b ac c x x a b x x a b c x x x x x x a a x x x x x x ⎧∆=-≥⎪⎪=⎪⎪⎪+=-⎨⎪⎪⎛⎫+=+-=-⎪ ⎪⎝⎭⎪⎪-=+-⎩g g g g一元二次函数: 函数)0(2≠++=a c bx ax y 叫做一元二次函数。
配方写成顶点式:a b ac a b x a y 44)2(22-++=(1)图象的顶点坐标为)44,2(2a b ac a b --,对称轴是直线ab x 2-=。
(2)当0>a ,函数图象开口向上,y 有最小值,ab ac y 442min-=,无最大值。
函数在区间)2,(a b --∞上是减函数,在),2(+∞-ab上是增函数。
2ba=-24)4ac b a-(3) 当0a <,函数图象开口向下,y 有最大值,ab ac y 442max-=,无最小值。
当0<a ,函数在区间上),2(+∞-a b 是减函数,在)2,(ab--∞上是增函数。
2ba-244ac b a-两点间距离公式:11(,)A x y 、22(,)B x yd =图像的移动:x 的系数为正先加后减 先左后右 先上后下例1:2(0)y ax a =≠怎么样变为)0(2≠++=a c bx ax y第一步:将被平移的二次函数的x 系数变为正,并化为顶点式。
2(0)0y a x =-+ 移动为: ab ac a b x a y 44)2(22-++=先左移2b a ,变为2()2b y a x a=+ 再上移244ac b a -,变为ab ac a b x a y 44)2(22-++=另:先上移244ac b a -,变为2244ac b y ax a -=+再左移2ba,变为a b ac a b x a y 44)2(22-++=例2:23y x =-+先向右平移3个单位,再向下平移2个单位。
一元二次方程培优训练命题人:周金林 9.18一:选择题(25分)1.方程k k k x k x (02)13(722=--++-是实数)有两个实根α、β,且0<α<1,1<β<2,那么k 的取值范围是( C )(A )3<k <4;(B )-2<k <-1;(C )3<k <4或-2<k <-1 (D )无解。
2.方程012=--x x 的解是( D )(A )251±; (B )251±- (C )251±或251±-; (D )3.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是( B )(A)∆>M (B)∆=M (C)∆<M ; (D)不确定. 4.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( C )(A )10≤≤m ; (B )43≥m ; (C )143≤<m ; (D )143≤≤m5.已知b 2-4ac 是一元二次方程ax 2+bx+c=0(a ≠0)的一个实数根,则ab 的取值范围为( B )(A) 18ab ≥ (B) 18ab ≤ (C) 14ab ≥ (D) 14ab ≤二;填空题(25分)1.在Rt ABC 中,斜边AB=5,而直角边BC ,AC 之长是一元二次方程2(21)4(1)0x m x m --+-=的两根,则m 的值是 42.方程01)8)((=---x a x ,有两个整数根,则=a 8 3.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+a cb 32 6 . 4.设21,x x 是二次方程032=-+x x 的两个根,求1942231+-x x 的值 0 5.已知m ,n 是有理数,并且方程02=++n mx x 有一个根是25-,那么m+n 的值是___3___。
专题1.13 解一元二次方程(精选100题)(全章专项练习)1.用适当的方法解下列方程.(1)()2224x x +=+(2)2314x x-=2.解下列方程:(1)267x x -=;(2)23520x x -+=.3.解方程:(1)2430x x ++=;(2)()()()21332x x x --+=.4.解方程:(1)()()628x x x -=-(2)()()221230x x +--=5.解方程:(1)()22250x +-=(2)2420x x --=6.解方程:(1)2340x x -=;(2)2313162x x -=--.7.解下列方程:(1)231x x =-;(2)2430x x -+=.8.解方程:(1)2680x x ++=;(2)3(1)22x x x -=-.9.解方程:(1)2412x x =(2)22430x x +-=10.解方程:(1)2360x x -=(2)2420y y ++=11.(1)解方程:()()439239x x x +=+.(2)解分式方程:26124x x x -=--;12.(1)解方程:()230x x -=;(2)用配方法解方程:2240x x --=.13.解方程:(1)2410x x -=+(2)()()221230x x +--=14.解方程:(1)()294x x x -+=;(2)226x x +=.15.解方程:(1)22410x x -+=;(2)()()3424x x x +=+.16.选择合适的方法解方程.(1)2572x x=-(2)()()3121x x x -=-17.解方程:(1)2210x x --=;(2)()()()23213x x x -+=-.18.解方程(1)()220x x x -+-=(2)2213x x +=19.解方程:(1)2410x x -+=(2)2(3)2(3)0x x x -+-=20.解方程:(1)20x x -=.(2)22350x x --=.21.用配方法解下列方程:(1)2440x x ++=;(2)22320x x -+=.22.解方程(1)2240x x --=(2)()()2232x x -=-.23.解方程(1)()428x x x-=-(2)23210x x --=24.解方程:(1)22530x x +-=(用配方法)(2)22390x x --=25.解方程:(1)2220x x +-=;(配方法)(2)()236x x x -=-.26.解下列方程:(1)280x x +=;(2)22460x x --=.27.解方程:(1)(41)3(41)x x x -=-;(2)24120x x --=.28.解方程:(1)()()2233x x x +=+;(2)2521x x +=29.解方程:(1)22350x x --=;(2)()2326x x +=+.30.解方程:(1)2430x x -+=;(2)()()()3111x x x +=-+.31.解下列方程:(1)20x -=(2)257311x x x ++=+32.解方程:(1)2280x -=;(2)24320x x --=.33.解下列方程:(1)()220x x x -+-=(2)2430x x -+=34.解下列方程:(1)250x x +=(2)2240x x --=35.解下列方程.(1)()()3121x x x -=-(2)22610x x -+=36.解一元二次方程:(1)()2214x -=;(2)2410x x --=.37.用适当的方法解方程:(1)2250x x --=(2)()()23492230x x ---=38.解下列方程(1)22125x x -+=;(2)2100x ++=39.解一元二次方程:(1)()5133x x x +=+(2)23640x x +-=40.解方程:(1)()()135x x ++=;(2)2267x x +=.41.用适当的方法解下列方程.(1)223x +=;(2)()()22132120y y ++++=.42.解方程:(1)4(3)3-=-x x x ;(2)22860x x -+=(配方法).43.(1)解方程:2230x x --=;(2)解方程:228122-=--x x x x.44.解下列一元二次方程:(1)2470x x --=(2)2531x x x -=+45.解方程(1)()220x x x -+-=(2)2178x x-=46.用适当的方法解下列方程:(1)2410x x -+=(2)(1)(2)2(2)x x x -+=+47.解方程:(1)260x x -=;(2)1(3)623x x x -=-.48.用适当的方法解方程(1)()2516x -=(2)2510x x --=49.解方程:(1)220x x -=;(2)2720x x -+=.50.解方程:(1)2280x -=(2)()2240x x -+=1.(1)10x =,22x =-(2)1x =2x =【分析】本题考查了解一元二次方程,解题的关键是掌握一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法等.(1)利用因式分解法解一元二次方程即可;(2)利用公式法解一元二次方程即可.【详解】(1)()2224x x +=+24424x x x ++=+220x x +=()20x x +=∴0x =或20x +=解得10x =,22x =-;(2)2314x x-=23410x x --=3a =,4b =-,1c =-()()22Δ44431280b ac =-=--´´-=>∴x ==解得x ,.2.(1)127,1x x ==-(2)1221,3x x ==【分析】本题考查了解一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.(1)运用因式分解法解方程即可;(2)运用因式分解法解方程即可.【详解】(1)解:267x x -=2670x x --=()()710x x -+=70x -=或10x +=\127,1x x ==-;(2)解:23520x x -+=()()1320x x --=10x -=或320x -=\1221,3x x ==.3.(1)1213x x =-=-,(2)12121x x =-=,【分析】本题考查了解一元二次方法,熟练掌握一元二次方程的求解方法是解题关键.(1)利用因式分解法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)解:∵2430x x ++=,()()130x x \++=,∴10x +=或30x +=,∴1213x x =-=-,;(2)()()()23=213x x x --+,整理得:211120x x +-=,∴()()1210x x +-=,120x \+=或10x -=,12121x x =-\=,.4.(1)124x x ==;(2)12243x x ==,.【分析】本题主要考查解一元二次方程,解一元二次方程的常用方法有直接开平方法、公式法、因式分解法.(1)整理成一般式,再利用公式法将方程的左边因式分解后求解可得;(2)利用公式法将方程的左边因式分解后求解可得.【详解】(1)解:()()628x x x -=-Q ,26216x x x \-=-,则28160x x -+=,即2(4)0x -=,124x x \==;(2)解:∵()()221230x x +--=.∴()()1231230x x x x ++-+-+=,∴1230x x ++-=或1230x x +-+= ∴12243x x ==,.5.(1)13x =,27x =-(2)1222x x =+=【分析】本题考查一元二次方程的解法.(1)先移项,然后直接开平方即可;(2)利用配方法解此方程,即可求解.【详解】(1)解:()22250x +-=,()2225x \+=,25x \+=±,25x \+=或25x +=-,13x \=,27x =-;(2)2420x x --=,242x x \-=,24424x x \-+=+,()226x \-=,2x \-=1222x x \==.6.(1)10x =,243x =(2)分式方程的根为0.5x =【分析】(1)用因式分解法解二元一元方程.(2)按照解分式方程的步骤解方程即可.【详解】(1)解:∵2340x x -=,∴()340x x -=,则0x =或340x -=,解得10x =,243x =;(2)2313162x x -=--两边都乘以()231x -,得:()42313x --=,解得:0.5x =,检验:当0.5x =时,()2310x -¹,∴x =7.(1)1x =2x =(2)13x =,21x =【分析】本题主要考查解一元二次方程.(1)利用公式法解一元二次方程即可.(2)利用因式分解法解一元二次方程即可.【详解】(1)解:231x x =-整理得:2310x x -+=2D ,x =,∴1x (2)2430x x -+=()3(1)0x x --=,30x -=或10x -=,解得:13x =,21x =.8.(1)12x =-,24x =-;(2)11x =,223x =-.【分析】本题考查了一元二次方程的解法-因式分解法,利用因式分解法解一元二次方程时,首先将方程右边化为0,左边分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.(1)利用十字相乘法求解即可;(2)利用因式分解法求解即可.【详解】(1)解:2680x x ++=,()()240x x ++=,20,40x x \+=+=,12x \=-,24x =-.(2)解:3(1)22x x x -=-,3(1)2(1)0x x x -+-=,(1)(32)0x x -+=,10x \-=或320x +=,11x \=,223x =-.9.(1)10x =,23x =(2)1x =2x =【分析】本题考查了解一元二次方程,解题的关键是掌握一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法等.(1)利用因式分解法解一元二次方程即可;(2)利用公式法解一元二次方程即可.【详解】(1)2412x x=24120x x -=()430x x -=∴40x =或30x -=解得10x =,23x =;(2)22430x x +-=2a =,4b =,3c =-()2244423400b ac D =-=-´´-=>∴x =∴1x 10.(1)10x =,22x =(2)12y =-22y =-【分析】本题考查了解一元二次方程,解题的关键是掌握一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法等.(1)利用因式分解法解一元二次方程即可;(2)利用配方法解一元二次方程即可.【详解】(1)2360x x -=()320x x -=∴30x =或20x -=解得10x =,22x =;(2)2420y y ++=2442y y ++=()222y +=2y +=解得12y =-22y =-11.(1)12x =,23x =-;(2)1x =【分析】本题主要考查解一元二次方程,分式方程,熟练掌握一元二次方程和分式方程的解法是解题的关键,(1)利用因式分解法解一元二次方程即可;(2)先化为整式方程,再解一元一次方程,然后对所求的方程的解进行检验即可得.【详解】解:(1)()()439239x x x +=+()()4392390x x x +-+=(()42)390x x -+=∴420x -=或390x +=,解得:12x =,23x =-.(2)26124x x x -=--去分母得,()()()2226x x x x +-+-=解得1x =检验:将1x =代入()()220x x +-¹∴原方程的解为1x =.12.(1)10x =,23x =;(2)11x =21x =-【分析】本题考查了解一元二次方程的因式分解法和配方法,熟练其解法是解题的关键.(1)由()230x x -=得,20x =或30x -=,即可求解;(2)将2240x x --=,配方得2215x x -+=,即()215x -=,开方后即可求解;【详解】解:(1)()230x x -=,20x \=或30x -=,解得:10x =,23x =;(2)2240x x --=,配方得:2215x x -+=,即()215x -=,开方得:1x -=,解得:11x =21x =-13.(1)12x =,22x =(2)123x =,24x =【分析】本题考查了用配方法与因式分解法解一元二次方程;根据方程的特点灵活选用合适的方法是解题的关键.(1)利用配方法求解即可;(2)利用平方差公式进行因式分解即可求解.【详解】(1)解:配方得:2445x x ++=,即()225x +=,两边开平方得:2x +=即12x =-,22x =;(2)解:分解因式得:()()3240x x --+=,即320x -=或40x -+=,故123x =,24x =.14.(1)123x x ==(2)11=-x 21=-x .【分析】本题主要考查了用直接开平方法和公式法解一元二次方程.(1)用直接开平方法,即可求解;(2)利用公式法解一元二次方程即可.【详解】(1)解:()294x x x -+=,整理得:2690x x -+=,即()230x -=,∴123x x ==.(2)226x x +=整理得:2260x x +-=,()24446280b ac D =-=-´-=>,∴x ==∴11=-+x 21=-x .15.(1)11x =21x =(2)14x =-,223x =【分析】本题考查了解一元二次方程,选择合适方法解一元二次方程是解题的关键.(1)利用配方法或公式法解一元二次方程即可;(2)先移项,再利用因式分解法解一元二次方程即可.【详解】(1)解:22410x x -+=,移项,得:2122x x -=-,配方,得:212112x x -+=-+,即()2112x -=,开方,得1x -=,∴11x =21x =;(2)()()3424x x x +=+,移项,得:()()34240x x x +-+=,因式分解,得()()4320x x +-=,∴40x +=或320x -=,∴14x =-,223x =.16.(1)12715x x =-=(2)12213x x =-=,【分析】本题考查了因式分解解一元二次方程,正确掌握相关性质内容是解题的关键.(1)先移项,再进行因式分解,得()()5710x x +-=,令每个因式为0,进行计算,即可作答.(2)先移项,提公因式得()()3210x x +-=,令每个因式为0,进行计算,即可作答.【详解】(1)解:2572x x=-25270x x +-=()()5710x x +-=解得12715x x =-=,(2)解:()()3121x x x -=-()()31210x x x ---=()()31210x x x -+-=()()3210x x +-=解得12213x x =-=,17.(1)1211x x ==(2)1234x x ==-,【分析】本题考查了解一元二次方程;(1)根据配方法解一元二次方程,即可求解;(2)根据因式分解法解一元二次方程,即可求解.【详解】(1)解:2210x x --=,∴221x x -=,∴22111x x -+=+,∴2(1)2x -=,∴1x -=解得:1211x x ==;(2)()()()23213x x x -+=-,∴20()3)((21)3x x x -+--=,∴0(3213)()x x x -+-+=,∴(3)(4)0x x -+=,∴30x -=或40x +=,解得:1234x x ==-,18.(1)121,2x x =-=(2)121,0.5x x ==【分析】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.(1)用因式分解法求解即可;(2)先移项,再用因式分解法求解.【详解】(1)∵()220x x x -+-=∴()()210x x -+=∴20x -=或10x +=∴121,2x x =-=(2)∵2213x x+=∴22310x x -+=∴()()2110x x --=∴10x -=或210x -=∴121,0.5x x ==19.(1)12x =22x =(2)13x =,21x =【分析】(1)根据配方法得到2(2)3x -=,再开平方即可解答;(2)根据因式分解法得到(3)(32)0x x x --+=,进而可得30x -=或320x x -+=即可解答.本题考查一元二次方程,熟练运用一元二次方程的解法是解题的关键.【详解】(1)解:∵2410x x -+=,∴241x x -=-,∴2443x x -+=,∴2(2)3x -=,∴2=x∴12x =22x =(2)解:∵2(3)2(3)0x x x -+-=,∴(3)(32)0x x x --+=,∴30x -=或320x x -+=,∴13x =,21x =.20.(1)10x =,21x =(2)152x =,21x =-【分析】本题考查了解一元二次方程,熟练掌握利用因式分解法、公式法解一元二次方程是解题的关键.(1)利用因式分解法解一元二次方程即可;(2)利用公式法解一元二次方程即可.【详解】(1)解:20x x -=,∴()10x x -=,∴0x =或10x -=,解得:10x =,21x =;(2)解:22350x x --=,则2a =,3b =-,5c =-,∴()()23425490D =--´´-=>,∴x 解得:152x =,21x =-.21.(1)122x x ==-(2)原方程无实数根【分析】本题主要考查一元二次方程的解法,熟练掌握配方法解方程是解题的关键;(1)由题意易得244x x +=-,然后进行配方即可求解;(2)由题意易得2232x x -=-,则有2312x x -=-,然后进行配方即可求解【详解】(1)解:移项,得244x x +=-,配方,得2224242x x ++=-+,即2(2)0x +=,122x x \==-.(2)解:移项,得2232x x -=-.二次项系数化为1,得2312x x -=-.配方,得2223331244x x æöæö-+-=-+-ç÷ç÷èøèø,即237416x æö-=-ç÷èø.因为任何实数的平方都不会是负数,所以原方程无实数根.22.(1)1211x x ==(2)122,5x x ==【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.(1)将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得;(2)利用因式分解法求解可得.【详解】(1)解:224x x -=Q ,22141x x \-+=+,即2(1)5x -=,则1x -=,1x \=±\1211x x =+=;(2)解:2(2)3(2)0x x ---=Q ,()()2230x x \---=,(2)(5)0x x \--=,则20x -=或50x -=,\122,5x x ==.23.(1)1222x x =-+=-(2)12113x x =-=,【分析】本题主要考查了解一元二次方程:(1)先去括号,再把含未知数的项移到方程左边,然后利用配方法解方程即可;、(2)把方程左边利用十字相乘法分解因式,进而解方程即可.【详解】(1)解:∵()428x x x -=-,∴2482x x x -+=,∴242x x +=,∴2446x x ++=,∴()226x +=,∴2x +=,解得1222x x =-=-(2)解:∵23210x x --=,∴()()3110x x +-=,∴310x +=或10x -=,解得12113x x =-=,.24.(1)21132x x ==-,(2)12332x x =-=,【分析】本题主要考查了解一元二次方程:(1)先把常数项移到方程右边,再把二次项系数化为1,接着把方程两边同时加上一次项系数一半的平方进行配方,最后解方程即可;(2)利用因式分解法解方程即可.【详解】(1)解:∵22530x x +-=,∴2253x x +=,∴25322x x +=,∴25254921616x x ++=,∴2549416x æö+=ç÷èø,∴5744x +=±,解得21132x x ==-;(2)解;∵22390x x --=,∴()()2330x x +-=,∴230x +=或30x -=,解得1x =25.(1)1x 2x =(2)1232x x ==,【分析】本题主要考查了解一元二次方程:(1)先把常数项移到方程右边,再把二次项系数化为1,接着把方程两边同时加上一次项系数一半的平方进行配方,最后解方程即可;(2)利用因式分解法解方程即可.【详解】(1)解:2220x x +-=,222x x \+=,2112x x \+=,2111121616x x \++=+,2117416x æö\+=ç÷èø,x \,1x \, 2x =(2)解:()236x x x -=-,()()232x x x \-=-,()()2320x x x \---=,()()230x x \--=,2030x x \-=-=,,1232x x \==,.26.(1)10x =,28x =-(2)11x =-,23x =【分析】本题主要考查了解一元二次方程:(1)利用因式分解法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)解:∵280x x +=,∴()80x x +=,∴0x =或80+=x ,解得10x =,28x =-;(2)解:∵22460x x --=,∴2230x x --=,∴()()310x x -+=,∴30x -=或10x +=,解得11x =-,23x =.27.(1)1213,4x x ==(2)126,2x x ==-【分析】本题考查了因式分解来解一元二次方程,正确掌握相关性质内容是解题的关键.(1)先移项,再提公因式,然后令每个因式为0,进行计算,即可作答.(2)运用十字相乘法进行因式分解,然后令每个因式为0,进行计算,即可作答.【详解】(1)解:(41)3(41)x x x -=-(41)3(41)0x x x ---=方程可化为()()3410x x --=,30x \-=或410x -=,解得1213,4x x ==.(2)解:24120x x --=,得()()620x x -+=,60x \-=或20x +=,解得126,2x x ==-.28.(1)13x =-,26x =-(2)1x =2x =【分析】本题考查了一元二次方程的解法,根据一元二次方程的特点选取适当的方法是解题的关键.(1)利用因式分解法解一元二方程即可;(2)利用公式法直接解方程即可 .【详解】(1)解:()()2233x x x +=+,∴()()3260x x x ++-=,∴()()360x x ++=,则30x +=或60x +=,∴13x =-,26x =-;(2)解:2521x x +=,原方程可变为25210x x +-=,这里5a =,2b =,1c =-.∵()2242451240b ac -=-´´-=>,∴x 即1x 29.(1)17x =,25x =-(2)13x =-,21x =-【分析】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,解一元二次方程的方法有直接开平方法、因式分解法、配方法、公式法等.(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)解:22350x x --=,因式分解得()()750x x -+=,即70x -=或50x +=,解得17x =,25x =-.(2)解:()2326x x +=+,移项得()()23230x x +-+=,因式分解得()()3320x x ++-=,即30x +=或320x +-=,解得13x =-,21x =-.30.(1)13x =,21x =(2)11x =-,24x =【分析】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.(1)根据因式分解法解一元二次方程即可求解;(2)根据因式分解法解一元二次方程即可求解.【详解】(1)解:2430x x -+=,∴()()310x x --=,∴30x -=或10x -=,∴13x =,21x =;(2)解:()()()3111x x x +=-+,∴()()()31110x x x +--+=,∴()()1310x x +-+=,∴()()140x x +-=,∴10x +=或40x -=,∴11x =-,24x =.31.(1)10x =,2x =(2)11x =,21x =-【分析】本题考查了解一元二次方程,解题的关键是掌握一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法等.(1)利用因式分解法解一元二次方程即可;(2)利用配方法解一元二次方程即可.【详解】(1)解:(0x x -=10x =,2x =(2)解:整理得:224x x +=22141x x ++=+()215x +=1x +=11x =,21x =32.(1)122,2x x ==-(2)124,8x x =-=【分析】此题考查了解一元二次方程,熟知解一元二次方程的因式分解法和直接开方法是解题的关键.(1)将方程的常数项移到右边,方程两边同时除以2,开方后即可得到方程的解;(2)利用因式分解法解答即可.【详解】(1)解:2280x -=移项得,228x =,系数化为1得,24x =,直接开平方得,2x =±,122,2x x \==-;(2)24320x x --=()()480x x +-=,40x +=或80x -=,\124,8x x =-=.33.(1)12x =,21x =-;(2)121,3x x ==【分析】本题考查解一元二次方程,熟练掌握用因式分解法解一元二次方程是解题的关键.(1)用因式分解法求解即可;(2)用因式分解法求解即可.【详解】(1)解: ()220x x x -+-=(2)(1)0x x -+=,20x -=或10x +=,12x \=,21x =-;(2)解:2430x x -+=,()()130x x --=,121,3x x \==.34.(1)1250x x =-=,(2)1211x x ==+【分析】本题主要考查了解一元二次方程:(1)利用因式分解法解方程即可;(2)利用配方法解方程即可.【详解】(1)解:∵250x x +=,∴()50x x +=,∴0x =或50x +=,解得1250x x =-=,;(2)解:∵2240x x --=,∴224x x -=,∴2215x x -+=,∴()215x -=,∴1x -=,解得1211x x ==+35.(1)11x =,2x =(2)1x =2x 【分析】此题主要考查一元二次方程的解法,熟练掌握因式分解法和公式法解一元二次方程是解题关键.(1(2)根据求根公式x =即可求解.【详解】(1)解:()()3121x x x -=-()()31210x x x ---=,∴()()1320x x --=,解得11x =,223x =;(2)解:22610x x -+=∴2a =,6b =-,1c =,∴()224642128b ac -=--´´=,∵x =∴x =,解得36.(1)1231,22x x ==-(2)1222x x ==【分析】本题考查了解一元二次方程的方法:配方法、直接开平方法.(1)运用直接开平方即可求得x 的值;(2)运用配方法解一元二次方程即可求解.【详解】(1)解:()2214x -=212x -=或212x -=-,解得1231,22x x ==-;(2)解:2410x x --=24414x x -+=+()225x -=2x -=2x -=37.(1)11x =21x =;(2)132x =,276x =-;【分析】此题考查了一元二次方程的解法,熟练掌握公式法和因式分解法是解题的关键.(1)用公式法解方程即可;(2)用因式分解法解方程即可.【详解】(1)2250x x --=由题意得,1,2,5a b c ==-=-,则()()22Δ4241524b ac =-=--´´-=,∴1x ===即11x =21x =;(2)()()23492230x x ---=则()()()323232230x x x +---=∴()()2332320x x éù-+-=ëû()()23670x x -+=∴230x -=或670x +=∴132x =,276x =-38.(1)16x =,24x =-(2)原方程无解.【分析】本题考查了解一元二次方程,解题的关键是掌握一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法等.(1)利用配方法解一元二次方程即可;(2)首先计算判别式得到(2244110200b ac D =-=-´´=-<,进而得到原方程无解.【详解】(1)22125x x -+=()2125x -=15x -=±解得16x =,24x =-;(2)2100x ++=1a =,b =10c =(2244110200b ac D =-=-´´=-<∴原方程无解.39.(1)11x =-,235x =(2)1x =2x =【分析】本题主要考查了解一元二次方程:(1)利用因式分解法解答,即可求解;(2)利用公式法解答,即可求解.【详解】(1)解:()5133x x x +=+()()51310x x x +-+=,∴()()5310x x -+=,∴530,10x x -=+=,解得:11x =-,235x =;(2)解:23640x x +-=,∵3,6,4a b c ===-,∴()2246434840b ac D =-=-´´-=>,∴x =,2x =40.(1)12x =-+22x =-(2)12x =,232x =.【分析】本题考查求解一元二次方程.掌握各类求解方法是解题关键.(1)利用公式法即可求解;(2)利用因式分解法即可求解;【详解】(1)解:将原方程化简可得:2420x x +-=,∴()2441224D =-´´-=∴1222x x ==-==-(2)解:移项可得:22760x x -+=,∴()()2320x x --=∴12x =,2x41.(1)1x =2x =(2)11y =-,2 1.5y =-【分析】本题主要考查了用适当的方法解一元二次方程.(1)用公式法解一元二次方程即可.(2)设21y x +=,则原式变形为:2320x x ++=,用因式分解法解出11x =-,22x =-,再把11x =-,22x =-代入21y x +=,解两个一元一次方程即可得到原方程的解.【详解】(1)解:原方程化为:2230x +-=,2a =,b =3c =-,()224423270b ac D =-=-´´-=>,x ==即(2)解:设21y x +=,则原式变形为:2320x x ++=,分解因式得:()()120x x ++=,解得:11x =-,22x =-,当211y +=-时,11y =-,当212y +=-时,2 1.5y =-,∴原方程的解为:11y =-,2 1.5y =-.42.(1)114x =,23x =(2)13x =,21x =【分析】本题考查解一元二次方程:(1)先移项,再用因式分解法求解;(2)先变形、移项,得到243x x -=-,再通过配方求解.【详解】(1)解:()433x x x -=-4(3)(3)0x x x ---=()()4130x x --=,410x -=或30x -=,114x \=,23x =;(2)解:(2)22860x x -+=方程变形得:243x x -=-,配方得:2441x x -+=,即2(2)1x -=,解得:13x =,21x =.43.(1)11x =-,23x =;(2)4x =-【分析】题目主要考查解一元二次方程及分式方程.(1)利用因式分解法求解即可;(2)先去分母,然后解一元二次方程,最后进行检验即可.【详解】解:(1)2230x x --=()()130x x +-=10x +=,30x -=,∴11x =-,23x =;(2)解:2812(2)x x x x -=--228(2)x x x -=-,2280x x +-=,解得124,2=-=x x ,经检验,2x =是增根,应舍去.故原方程的解为4x =-.44.(1)12x =,22x =(2)115x =-,21x =【分析】本题考查解一元二次方程:(1)利用公式法求解;(2)先化成一般形式,再利用因式分解法求解.【详解】(1)解:2470x x --=,Q 1a =,4b =-,7c =-,\()()224441744b ac D =-=--´´-=,\2x ==±,\12x =+,22x =;(2)解:2531x x x -=+,25410x x --=,()()5110x x +-=,510x +=或10x -=,解得115x =-,21x =.45.(1)1221x x ==-,(2)1244x x ==【分析】本题考查了因式分解法或公式法解一元二次方程,正确掌握相关性质内容是解题的关键.(1)先提公因式,再令每个因式为0,进行计算,即可作答.(2)先化为一般式,再运用公式法解方程,即可作答.【详解】(1)解:()220x x x -+-=()()210x x -+=∴2010x x -=+=,解得1221x x ==-,(2)解:2178x x-=∴28170x x --=则()246441176468132b ac D =-=-´´-=+=∴4x ===±1244x x ==46.(1)1222x x ==(2)122,3x x =-=【分析】本题考查解一元二次方程;(1)根据配方法解一元二次方程;(2)先将方程整理成右边为0的等式,再结合因式分解法解题.【详解】(1)解:2410x x -+=,∴2443x x -+=,∴()223x -=,∴2x -=解得:1222x x ==;(2)解:(1)(2)2(2)x x x -+=+,∴()()()12220x x x -+-+=,∴()()2120x x +--=,∴20x +=或30x -=,解得:122,3x x =-=.47.(1)10x =,26x =;(2)13x =,26x =-.【分析】本题考查解一元二次方程-因式分解法,解题的关键是掌握解一元二次方程的方法.(1)提公因式分解因式解方程即可(2)移项后,提公因式,利用因式分解法解方程即可.【详解】(1)解:260x x -=,(6)0x x -=,0x \=或60x -=,∴10x =,26x =;(2)解:1(3)623x x x -=-,(3)6(3)x x x -=--,(3)(6)0x x -+=,30x \-=或60x +=,∴13x =,26x =-.48.(1)19x =,21x =;(2)1x 2x =【分析】本题考查了解一元二次方程,掌握解一元二次方程的解法:直接开平方法和公式法是解题的关键.(1)根据平方根的定义可得54x -=±,解方程就可以解决问题;(2)先求得290D =>,再利用公式法求出方程的解即可.【详解】(1)解:()2516x -=,∴54x -=±,∴19x =,21x =;(2)解:2510x x --=,1a =,=5b -,1c =-,()()2Δ5411290=--´´-=>,∴x =,∴1x 2x 49.(1)10x =,212x =(2)1x =,2x 【分析】本题主要考查了解一元二次方程,对于(1),根据因式分解法求出解;对于(2),根据公式法即可得出方程的解.【详解】(1)220x x -=,解:因式分解,得(21)0x x -=,即0x =或210x -=,∴10x =,212x =;(2)2720x x -+=,解:由1a =,7b =-,2c =,则()2247412410b ac -=--´´=>,∴x =,∴1x ,2x 50.(1)122,2x x =-=(2)124,2x x ==-【分析】本题考查了解一元二次方程;(1)根据直接开平方法解一元二次方程,即可求解;(2)根据因式分解法解一元二次方程,即可求解.【详解】(1)解:2280x -=∴228x =∴24x =解得:122,2x x =-=(2)解:()2240x x -+=∴228=0x x --∴()()420x x -+=解得:124,2x x ==-,。
中考一元二次方程一选择题1. (2011甘肃兰州)下列方程中是关于x 的一元二次方程的是( )A .2210x x+= B . 20ax bx c ++=C .(1)(2)1x x -+= D .223250x xy y --=2.(10巴中)一元二次方程2210x x --=的根的情况为( )A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根 3.关于x 的方程220x kx k -+-=的根的情况是( )A 、有两个不相等的实数根B 、有两个相等的实数根C 、无实数根D 、不能确定 4.方程2x (x -3)=5(x -3)的根是( )A. 52x =B.3C. 1253,2x x ==D. 125,32x x =-=-5. (2011哈尔滨)若x=2是关于x 的一元二次方程x 2﹣mx+8=0的一个解.则m 的值是( ) A.6 B.5 C.2 D.﹣66.已知ac <0,则方程ax 2-bx +c =0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.只有一个实数根7.(2011张家界)已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( ) A 、1 B 、﹣1 C 、0 D 、无法确定8. (2011乌鲁木齐)关于x 的一元二次方程(a -1)x 2+x +|a|-1=0的一个根是0,则实数a 的值为( )A 、-1 B 、0 C 、1 D 、-1或19. 关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p =( ) A .4 B .0或2 C .1 D .1-10.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是( ) A.k <-1 B.k >-1,且k ≠0 C. k <1 D. k <1,且k ≠011.若代数式x 2+8x +m 是一个完全平方式,则m 的值为( )A.4B.-4C.16D.-16 12.一元二次方程2310x x -+=的两个根分别是12x x ,,则221212x x x x +的值是( ) A.3B.3-C.13D.13-13. (2011兰州)关于x 的方程2()0a x m b ++=的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程2(2)0a x m b +++=的解是 .14.(2010年,2分)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A .23000(1)5000x +=B .230005000x =C . 23000(1)5000x +=%D .23000(1)3000(1)5000x x +++= 15.三角形两边的长分别是8和6,第三边的长是一元二次方程x 2-16x +60=0的一个实数根,则该三角形的面积是( )A.24 B.24或 C.48 D.16.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A 、3 C 、6 D 、917. (2011•台湾20,4分)如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为421平方公分,则此方格纸的面积为多少平方公分( )A 、11B 、12C 、13D 、1418. (2011甘肃兰州)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .(1)2070x x -=B .(1)2070x x +=C .2(1)2070x x +=D .(1)20702x x -=19. (2011贵州毕节)广州亚运会期间,某纪念品原价168元,连续两次降价%a 后售价为128元,下列所列方程正确的是( )A .128%)1(1602=+aB .128%)1(1602=-aC .128%)21(160=-aD .128%)1(160=-a 20.(2011湖北黄石)平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定21条直线.则n 的值为( )A .5 B .6 C .7 D .821. (2011云南保山)据调查,某市2011年的房价为4000元/m 2,预计2013年将达到4840元/m 2,求这两年的年平均增长率.设年平均增长率为x ,根据题意,所列方程为( )A .4000(1+x )=4840B .4000(1+x )2=4840C .4000(1-x )=4840D .4000(1-x )2=4840 二填空题1.方程3(1)0x x +=的二次项系数是 ,一次项系数是 ,常数项是 .2.关于x 的一元二次方程1(3)(1)30n n x n x n +++-+=中,则一次项系数是 . 3. (2011梧州)一元二次方程x 2+5x+6=0的根是 .4.x 2+6x + =(x +3)2.5.(2010年,3分)已知x = 1是一元二次方程02=++n mx x 的一个根,则 222n mn m ++的值为 .6. (2011江苏镇江常州)已知关于x 的方程x 2+mx ﹣6=0的一个根为2,则m = ,另一个根是 .7. (2011山东滨州)若x=2是关于x 的方程2250x x a --+=的一个根,则a 的值为______.8. 若方程kx 2-6x +1=0有两个不相等的实数根,则k 的取值范围是 . 9.设x 1、x 2是方程3x 2+4x -5=0的两根,则=+2111x x ,.x 12+x 22= . 10.关于x 的方程2x 2+(m 2-9)x +m +1=0,当m = 时,两根互为倒数; 当m = 时,两根互为相反数.11.已知方程mx 2-mx +2=0有两个相等的实数根,则m 的值为 . 12.若x =1是一元二次方程x 2+x +c +=0的一个解,则c 2= .13.当c =__________时,关于x 的方程2280x x c ++=有实数根.(填一个符合要求的数即可)14.当x= 时,分式2231x x x +--的值为0.15.若x1=23-是二次方程x2+ax+1=0的一个根,则a=,该方程的另一个根x2= .16.设x1,x2是方程2x2+4x-3=0的两个根,则(x1+1)(x2+1)= __________,x12+x22=_________,1211x x+=__________,(x1-x2)2=_______.17. (2011•宁夏)某商场在促销活动中,将原价36元的商品,连续两次降价m%后现价为25元.根据题意可列方程为.18. (2011山西)“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的主要动力. 2010年全省全年旅游总收入大约1000亿元,如果到2012年全省全年旅游总收入要达到1440亿元,那么年平均增长率应为__________.19. 某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长是.20. (2011•山西)“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的丰要动力.2010年全省全年旅游总收入大约l000亿元,如果到2012年全省每年旅游总收入要达到1440亿元,21. (2011•江苏宿迁)如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是m(可利用的围墙长度超过6m).22. (2011天水)如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是.三、解答题1.解方程 4x2-8x+1=0(用配方法);2.当m为何值时,关于x的一元二次方程21402x x m-+-=有两个相等的实数根?此时这两个实数根是多少?3.已知关于x的一元二次方程x2+(m-2)x-m-1=0,试说明无论m取何值,这个方程总有两个不相等的实数根.4.(2011湖北黄石6分)解方程:0)10553(|4|222=--+--yxyx.5.已知a ,b ,c 2410b c ++-=(),求方程ax 2+bx +c =0的解.6. (2011山东淄博)已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2﹣mx+2m ﹣14=0的两个实数根. (1)当m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长;(2)若AB 的长为2,那么▱ABCD 的周长是多少?7. (2011山东日照8分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.8. (2011年广西桂林8分)某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?9. (2011新疆建设兵团10分)某商场推销一种书包,进价为30元,在试销中发现这种书包每天的销售量P (个)与每个书包销售价x (元)满足一次函数关系式.当定价为35元时,每天销售30个;定价为37元时,每天销售26个.问:如果要保证商场每天销售这种书包获利200元,求书包的销售单价应定为多少元?10. (2011湖北十堰6分)请阅读下列材料:问题:已知方程x 2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍。
【拔尖特训】2023-2024学年九年级数学上册尖子生培优必刷题【人教版】专题21.1一元二次方程 (限时满分培优测试)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分100分,建议时间:30分钟.试题共23题,其中选择10道、填空6道、解答7道.试题包含基础题、易错题、培优题、压轴题、创新题等类型,没有标记的为基础过关性题目.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•谯城区期中)下列是一元二次方程的是( )A .x 2=4xB .x 2+y 2=1C .xy =1D .2(x +1)=12.(2023春•肇源县月考)下列方程中是关于x 的一元二次方程的是( )A .x 2+1x =0B .x =x 2C .(x ﹣1)2=(x +3)(x ﹣2)+1D .ax 2+bx +c =03.(2023春•肇源县月考)将一元二次方程3x 2=5x ﹣1化成一般式后,二次项系数和一次项系数分别为( )A .3,5B .3,1C .3x 2,﹣5xD .3,﹣54.(2023春•瓯海区月考)将方程2x 2﹣1=3x 化为一元二次方程的一般形式后,二次项系数、一次项系数、常数项分别为( )A .2,1,3B .2,﹣1,3C .2,﹣3,﹣1D .2,﹣3,15.(2023春•巴东县期中)已知x =2是一元二次方程x 2+bx ﹣b =0的解,则b =( )A .﹣2B .﹣4C .0D .46.(2023•兰溪市模拟)如果关于x 的一元二次方程ax 2+bx +1=0的一个解是x =1,则代数式2023﹣a ﹣b 的值为( )A .﹣2022B .2022C .2023D .2024 7.(易错题)(2023•江汉区模拟)已知a 是方程x 2﹣2x ﹣2=0的根,则(1−1a+1)÷a 3a 2+2a+1的值是( ) A .16 B .12 C .19 D .28.(易错题)(2023春•莱西市期末)根据下表的对应值,试判断一元二次方程ax 2+bx +c =0的一个解的取值范围是( )A .﹣3<x <﹣1B .﹣0.03<x <0.02C .﹣1<x <1D .﹣0.07<x <﹣0.03x﹣3﹣114ax2+bx+c0.060.02﹣0.03﹣0.079.(易错题)(2023•盐都区二模)我国党的二十大报告指出从2020年到2035年基本实现社会主义现代化,从2035年到本世纪中叶把我国建成富强民主文明和谐美丽的社会主义现代化强国.2021年我国GDP约为115万亿元,如果以后每年按相同的增长率增长,2023年我国GDP约达135万亿元,将增长率记作x,可列方程为()A.115+115(1+x)=135B.115(1+x)=135C.115(1+x)2=135D.115(1+x)+115(1+x)2=13510.(培优题)(2023•阜新一模)如图,某校生物兴趣小组用长为18米的篱笆,一面利用墙(墙的长度足够),围成中间隔有一道篱笆的长方形花圃ABCD,为了方便出入,建造篱笆花圃时在BC边留了宽为1米的两个进出口(不需材料),若花圃的面积刚好为40平方米,设AB的长为x米,则可列方程为()A.x(18﹣3x)=40B.x(20﹣2x)=40C.x(22﹣3x)=40D.x(20﹣3x)=40二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2023春•沙坪坝区校级期中)若方程(a+4)x a2−14−3x+8=0是关于x的一元二次方程,则a的值为.12.(2023春•西城区校级期中)若方程5x2﹣x﹣3=x2﹣3+x的二次项系数是4,则方程的一次项系数是,常数项是.13.(2023春•崇左月考)把一元二次方程x(x﹣1)=4(x+1)化为一般形式是.14.(2023春•六安月考)若a是方程x2﹣2x﹣5=0的一个根,则2a2﹣4a=.15.(易错题)(2023•福田区校级模拟)若a是一元二次方程x2+2x﹣3=0 的一个根,则﹣2a2﹣4a的值是.16.(培优题)(2023春•瓯海区月考)如图,在一块长8m、宽6m的矩形绿地内,开辟出一块矩形的花圃,使花圃四周的绿地等宽,已知绿地的面积与花圃的面积相等,求花圃四周绿地的宽.设花圃四周绿地的宽为xm,可列方程为(不需要化简).三、解答题(本大题共7小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.(2023春•肇源县期中)方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m的值是多少?18.(易错题)(2023春•崇左月考)已知关于x的方程(m2﹣1)x2+x﹣2=0.(1)m为何值时,此方程是一元一次方程?(2)m为何值时,此方程是一元二次方程?19.(易错题)(2021秋•龙岗区校级期末)把下列方程化成一般形式,并写出它的二次项系数、一次项系数以及常数项.(1)(2x﹣1)(3x+2)=x2+2;(2)(2√2−x)(2√2+x)=(3+x)2.20.(2020秋•商河县校级月考)设a,b,c分别是一元二次方程的二次项系数、一次项系数、常数项,根据下列条件,写出该一元二次方程.(1)a:b:c=3:4:5,且a+b+c=36;(2)(a﹣2)2+|b﹣4|+√c−6=0.21.(培优题)(2022秋•瑞金市校级月考)(1)如图,利用一面墙(墙的长度不限),用20m长的篱笆,怎样围成一个面积为50m2的矩形场地?能围成一个面积为60m2的矩形场地吗?(2)如图,要设计一个长为15cm,宽为10cm的矩形图案,其中有两横两竖彩条,横竖彩条的宽度之比为5:4,若使所有彩条所占面积是原来矩形图案面积的三分之一,应如何设计每个彩条的宽度?(只列方程不计算)22.(培优题)(2023春•鄞州区期末)已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.23.(压轴题)已知a2﹣3a+1=0,求下列各式的值:(1)2a2﹣6a﹣3;(2)a2+a﹣2;(3)a﹣a﹣1.。
《一元二次方程》专项练习1.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-【答案】D【分析】根据一元二次方程的定义,再将0x =代入原式,即可得到答案.【解析】解:∵关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,∴210a -=,10a -≠,则a 的值为:1a =-.故选D .【点睛】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义. 2.用换元法解方程21x x ++21x x +=2时,若设21x x +=y ,则原方程可化为关于y 的方程是( ) A .y 2﹣2y +1=0B .y 2+2y +1=0C .y 2+y +2=0D .y 2+y ﹣2=0 【答案】A 【分析】方程的两个分式具备倒数关系,设21x x+=y ,则原方程化为y+1y =2,再转化为整式方程y 2-2y+1=0即可求解. 【解析】把21x x+=y 代入原方程得:y +1y =2,转化为整式方程为y 2﹣2y +1=0.故选:A . 【点睛】考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.3.如果关于x 的一元二次方程2310kx x -+=有两个实数根,那么k 的取值范围是( )A .94k …B .94k -…且0k ≠C .94k …且0k ≠D .94k -… 【答案】C【分析】根据关于x 的一元二次方程kx 2-3x+1=0有两个实数根,知△=(-3)2-4×k×1≥0且k≠0,解之可得.【解析】解:∵关于x 的一元二次方程kx 2-3x+1=0有两个实数根,∴△=(-3)2-4×k×1≥0且k≠0,解得k≤94且k≠0,故选:C . 【点睛】本题主要考查根的判别式与一元二次方程的定义,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4.将关于x 的一元二次方程20x px q -+=变形为2x px q =-,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如32()x x x x px q =⋅=-=…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:210x x --=,且0x >,则4323x x x -+的值为( )A .1B .3C .1+D .3【答案】C【分析】先求得2=+1x x ,代入4323x x x -+即可得出答案.【解析】∵210x x --=,∴2=+1x x ,x == ∴4323x x x -+=()()21213x+-x x++x =2221223x +x+-x -x+x =231-x +x+=()131-x++x+=2x ,∵x =,且0x >,∴x =,∴原式=2,故选:C . 【点睛】本题考查了一元二次方程的解,解题的关键是会将四次先降为二次,再将二次降为一次.5.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是( ) A .6B .7C .8D .9 【答案】D【分析】根据球赛问题模型列出方程即可求解.【解析】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x ﹣1)=36, 化简,得x 2﹣x ﹣72=0,解得x 1=9,x 2=﹣8(舍去),答:参加此次比赛的球队数是9队.故选:D .【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题. 6.国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x .则可列方程为( )A .()5000127500x +=B .()5000217500x ⨯+=C .()2500017500x +=D .()()2500050001500017500x x ++++=【答案】C【分析】设我国2017年至2019年快递业务收入的年平均增长率为x ,根据增长率的定义即可列出一元二次方程.【解析】设我国2017年至2019年快递业务收入的年平均增长率为x ,∵2017年至2019年我国快递业务收入由5000亿元增加到7500亿元即2019年我国快递业务收入为7500亿元,∴可列方程:()2 500017500x +=,故选C .【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系得到方程.7.如图是一张长12cm ,宽10cm 的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积224cm 是的有盖的长方体铁盒.则剪去的正方形的边长为______cm .【答案】2【分析】根据题意设出未知数,列出三组等【解析】设底面长为a,宽为b,正方形边长为解得a =10-2x ,b =6-x ,代入ab =24中得:整理得:2x 2-11x +18=0.解得x =2或x 【点睛】本题考查一元二次方程的应用8.已知a ,b 是方程230x x +-=的两个A .2023B .2021 【答案】A【分析】根据题意可知b=3-b 2,a+b=-1解.【解析】a ,b 是方程230x x +-=的两∴222201932019a b a b -+=-++【点睛】本题考查一元二次方程的根与系数9.一个三角形的两边长分别为2和5,【答案】13【分析】先利用因式分解法解方程x 2-8周长可求.【解析】解:∵x 2-8x +12=0,∴()x -∵三角形的两边长分别为2和5,第三边长∴三角形的第三边长是6,∴该三角形的周【点睛】本题考查了解一元二次方程的因式10.若关于x 的一元二次方程22x x ﹣A .1m < B .1m £三组等式解出即可.边长为x,由题意得:2()1221024x b a x ab +=⎧⎪+=⎨⎪=⎩,(10-2x )(6-x )=24,=9(舍去).故答案为2.,关键在于不怕设多个未知数,利用代数表示列出方程的两个实数根,则22019a b -+的值是( )C .2020D .2019,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=的两个实数根,∴23b b =-,1a b +=-,ab9()2220161620162023a b ab =+-+=++=;与系数的关系;根据根与系数的关系将所求式子进行,第三边长是方程28120x x -+=的根,则该三角形x +12=0,然后根据三角形的三边关系得出第三边的()260x -=,∴x 1=2,x 2=6,三边长是方程x 2-8x +12=0的根,当x =2时,2+2<5形的周长为:2+5+6=13.故答案为:13.的因式分解法及三角形的三边关系,熟练掌握相关性0m +=有实数根,则实数m 的取值范围是( )C .1m >D .m 1≥出方程.019=(a+b )2-2ab+2016即可求-3b =, 3;故选A . 子进行化简代入是解题的关键.三角形的周长为_______. 三边的长,则该三角形的 ,不符合题意,相关性质及定理是解题的关键.【答案】B【分析】根据方程的系数结合根的判别式0≥V ,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.【解析】Q 关于x 的一元二次方程220x x m +﹣=有实数根,2240m ∴=≥-V (-),解得: 1m ≤.故选B . 【点睛】本题考查了根的判别式,牢记“当0≥V 时,方程有实数根”是解题的关键.11.已知关于x 的一元二次方程x 2+bx ﹣1=0,则下列关于该方程根的判断,正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .实数根的个数与实数b 的取值有关【答案】A【分析】先计算出判别式的值,再根据非负数的性质判断△>0,然后利用判别式的意义对各选项进行判断.【解析】解:∵△=b 2﹣4×(﹣1)=b 2+4>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.12.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为( ) A .1-B .4-C .4-或1D .1-或4 【答案】A【分析】通过根与系数之间的关系得到22m αβ+=-+,2m m αβ=-,由()2222αβαβαβ+=+-可求出m 的值,通过方程有实数根可得到[]()222(1)40m m m --≥-,从而得到m 的取值范围,确定m 的值. 【解析】解:∵方程222(1)0x m x m m +-+-=有两个实数根α,β,∴()21221m m αβ-+=-=-+,221m m m m αβ-==-, ∵()2222αβαβαβ+=+-,2212αβ+=∴()()2222212m m m -+-=-, 整理得,2340m m --=,解得,11m =-,24m =,若使222(1)0x m x m m +-+-=有实数根,则[]()222(1)40m m m --≥-, 解得,1m £,所以1m =-,故选:A .【点睛】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键.13.关于x 的一元二次方程22(2)620k x x k k ++++-=有一个根是0,则k 的值是_______.【答案】1【分析】把方程的根代入原方程得到220k k +-=,解得k 的值,再根据一元二次方程成立满足的条件进行取舍即可.【解析】∵方程22(2)620k x x k k ++++-=是一元二次方程,∴k+2≠0,即k ≠-2;又0是该方程的一个根,∴220k k +-=,解得,11k =,22k =-,由于k ≠-2,所以,k=1.答案为:1.【点睛】本题考查了一元二次方程的解.解此类题时,要擅于观察已知的是哪些条件,从而有针对性的选择解题方法.同时要注意一元二次方程成立必须满足的条件,这是容易忽略的地方.14.已知1x ,2x 是一元二次方程240x x --=的两实根,则12(4)(4)x x ++的值是_____.【答案】16【分析】由根与系数的关系可得121x x =+, 124x x =-,然后把所求式子利用多项式乘法法则展开后代入进行计算即可.【解析】1x Q ,2x 是一元二次方程240x x --=的两实根,121x x ∴+=, 124x x =-,12(4)(4)x x ∴++12124416x x x x =+++12124()16x x x x =+++44116=-+⨯+4416=-++16=, 故答案为:16.【点睛】本题考查了一元二次方程根与系数的关系,代数式求值,熟练掌握根与系数的关系是解题的关键. 15.设a 、b 是方程220190x x +-=的两个实数根,则()()11a b --的值为_____.【答案】-2017【分析】根据根与系数的关系可得出1a b +=-,2019ab =-,将其代入()()()111a b ab a b --=-++中即可得出结论.【解析】∵a 、b 是方程220190x x +-=的两个实数根,∴1a b +=-,2019ab =-,∴()()()111a b ab a b --=-++2019112017=-++=-.故答案为:-2017.【点睛】本题考查了根与系数的关系,牢记“两根之和等于b a -,两根之积等于c a”是解题的关键. 16.已知12,x x 是一元二次方程2470x x --=的两个实数根,则2211224x x x x ++的值是_________.【答案】2【分析】由已知结合根与系数的关系可得:12x x +=4,12x x ⋅= -7,2211224x x x x ++=()212122x x x x ++,代入可得答案.【解析】解:∵12,x x 是一元二次方程2470x x --=的两个实数根,∴12x x +=4,12x x ⋅= -7,∴2211224x x x x ++=()212122x x x x ++=()2427+⨯-=2,故答案为:2. 【点睛】本题考查的知识点是一元二次方程根与系数的关系,难度不大,属于基础题17.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是( )A.12x(x+1)=110 B.12x(x﹣1【答案】D【分析】设有x个队参赛,根据参加一次足【解析】解:设有x个队参赛,则x(x 【点睛】本题考查的是一元二次方程的应用18.阅读理解:对于x3﹣(n2+1)x+n这类x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2理解运用:如果x3﹣(n2+1)x+n=0,那么因此,方程x﹣n=0和x2+nx﹣1=0的所有解决问题:求方程x3﹣5x+2=0的解为___【答案】x=2或x=﹣或x=﹣1【分析】将原方程左边变形为x3﹣4x﹣于x的方程求解可得.【解析】解:∵x3﹣5x+2=0,∴x3﹣4x∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(∴x﹣2=0或x2+2x﹣1=0,解得x=2【点睛】此题主要考查一元二次方程的应用19.若菱形ABCD的一条对角线长为8,A.16 B.24【答案】B【分析】解方程得出x=4或x=6,分两种6时,6+6>8,即可得出菱形ABCD的周长【解析】解:如图所示:∵四边形ABCD∵x2﹣10x+24=0,因式分解得:(x﹣4分两种情况:①当AB=AD=4时,4+4②当AB=AD=6时,6+6>8,∴菱形ABC【点睛】本题考查菱形的性质、解一元二次键.)=110 C.x(x+1)=110 D.x(x﹣1)=一次足球联赛的每两队之间都进行两场场比赛,共要比﹣1)=110.故选:D.的应用,找准等量关系列一元二次方程是解题的关键这类特殊的代数式可以按下面的方法分解因式:﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或的所有解就是方程x3﹣(n2+1)x+n=0的解._____..x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣或x=﹣1,故答案为:x=2或x=﹣的应用,解题的关键是根据题意找到解方程的方法边CD的长是方程x2﹣10x+24=0的一个根,则该菱形C.16或24 D.48分两种情况:①当AB=AD=4时,4+4=8,不能构成的周长.BCD是菱形,∴AB=BC=CD=AD,)(x﹣6)=0,解得:x=4或x=6,+4=8,不能构成三角形;ABCD的周长=4AB=24.故选:B.元二次方程-因式分解法、三角形的三边关系,熟练掌110共要比赛110场,可列出方程.的关键.:)=(x﹣n)(x2+nx﹣1).x2+nx﹣1=0,1]=0,据此得到两个关1)=0,或x=﹣1.方法.该菱形ABCD的周长为( )能构成三角形;②当AB=AD=熟练掌握并灵活运用是解题的关21.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______. 【答案】2. 【分析】根据“关于x 的一元二次方程ax 2+2x+2﹣c =0有两个相等的实数根”,结合根的判别式公式,得到关于a 和c 的等式,整理后即可得到的答案.【解析】解:根据题意得:△=4﹣4a (2﹣c )=0,整理得:4ac ﹣8a =﹣4,4a (c ﹣2)=﹣4,∵方程ax 2+2x+2﹣c =0是一元二次方程,∴a≠0,等式两边同时除以4a 得:12c a -=-,则12c a+=,故答案为2. 【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.22.中国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x 步,则依题意列方程为____________.【答案】x(x+12)=864【分析】本题理清题意后,可利用矩形面积公式,根据假设未知数表示长与宽,按要求列方程即可.【解析】因为宽为x ,且宽比长少12,所以长为x+12,故根据矩形面积公式列方程:x(x+12)=864,故答案:x(x+12)=864.【点睛】本题考查一元二次方程的实际应用,此类型题目去除复杂题目背景后,按照常规公式,假设未知数,列方程求解即可.23. 1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b =( )A .2-B .3-C .4D .6-【答案】A【分析】先把x=1代入方程220x ax b ++=得a+2b=-1,然后利用整体代入的方法计算2a+4b 的值【解析】将x =1代入方程x 2+ax +2b =0,得a +2b =-1,2a +4b =2(a +2b )=2×(-1)=-2.故选A. 【点睛】此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键24.已知1x ,2x 是方程2320x x --=的两根,则2212x x +的值为( )A .5B .10C .11D .13【答案】D 【分析】先利用完全平方公式,得到2212x x +21212)2x x x x =+-(,再利用一元二次方程根与系数关系:12b x x a+=-,12c x x a=即可求解.【解析】解:2212x x +()221212)232213x x x x =+-=-⨯-=(故选:D . 【点睛】此题主要考查完全平方公式的应用和一元二次方程根与系数关系,灵活运用完全平方公式和一元二次方程根与系数关系是解题关键.25.若x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,则代数式x 12﹣2x 1+2x 2的值等于_____.【答案】2028【分析】根据一元二次方程的解的概念和根与系数的关系得出x 12-4x 1=2020,x 1+x 2=4,代入原式=x 12-4x 1+2x 1+2x 2=x 12-4x 1+2(x 1+x 2)计算可得.【解析】解:∵x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,∴x 1+x 2=4,x 12﹣4x 1﹣2020=0,即x 12﹣4x 1=2020,则原式=x 12﹣4x 1+2x 1+2x 2=x 12﹣4x 1+2(x 1+x 2)=2020+2×4=2020+8=2028,故答案为:2028.【点睛】本题主要考查根与系数的关系,解题的关键是掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 26.解方程:x 2﹣5x +6=0【答案】x 1=2,x 2=3【分析】利用因式分解的方法解出方程即可.【解析】利用因式分解法求解可得.解:∵x 2﹣5x +6=0,∴(x ﹣2)(x ﹣3)=0,则x ﹣2=0或x ﹣3=0,解得x 1=2,x 2=3.【点睛】本题考查解一元二次方程因式分解法,关键在于熟练掌握因式分解的方法步骤.27.已知1x ,2x 是一元二次方程2220x x k -++=的两个实数根.(1)求k 的取值范围;(2)是否存在实数k ,使得等式12112k x x +=-成立?如果存在,请求出k 的值,如果不存在,请说明理由.【答案】(1)1k ≤-;(2)k =【分析】(1)根据方程的系数结合 ≥0,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围; (2)根据根与系数的关系可得出x 1+x 2=2,x 1x 2=k +2,结合12112k x x +=-,即可得出关于k 的方程,解之即可得出k 值,再结合(1)即可得出结论.【解析】解:(1)∵一元二次方程有两个实数根,∴2(2)4(2)0k ∆=--+…解得1k ≤-;(2)由一元二次方程根与系数关系,12122,2x x x x k +==+ ∵12112k x x +=-,∴1212222x x k x x k +==-+即(2)(2)2k k +-=,解得k =.又由(1)知:1k ≤-,∴k =【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合12112k x x +=-,找出关于k 的方程. 28.已知关于x 的一元二次方程26(41)0x x m -++=有实数根.(1)求m 的取值范围.(2)若该方程的两个实数根为1x 、2x ,且124x x -=,求m 的值.【答案】(1)2m ≤.(2)1m =.【分析】(1)根据方程的系数结合根的判别式△≥0,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围;(2)由根与系数的关系可得出x 1+x 2=6,x 1x 2=4m+1,结合|x 1-x 2|=4可得出关于m 的一元一次方程,解之即可得出m 的值.【解析】(1)∵关于x 的一元二次方程x 2-6x+(4m+1)=0有实数根,∴△=(-6)2-4×1×(4m+1)≥0,解得:m≤2;(2)∵方程x 2-6x+(4m+1)=0的两个实数根为x 1、x 2,∴x 1+x 2=6,x 1x 2=4m+1,∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=42,即32-16m=16,解得:m=1.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)利用根与系数的关系结合|x 1-x 2|=4,找出关于m 的一元一次方程.29.已知关于x 的一元二次方程22(21)30x m x m +-+-=有实数根.(1)求实数m 的取值范围;(2)当m=2时,方程的根为12,x x ,求代数式221122(2)(42)x x x x +++的值.【答案】(1)134m ≤;(2)1. 【分析】(1)根据△≥0,解不等式即可;(2)将m=2代入原方程可得:x 2+3x+1=0,计算两根和与两根积,化简所求式子,可得结论.【解析】(1)△=2222(21)41(3)441412413m m m m m m --⨯⨯-=-+-+=-+∵原方程有实根,∴△=4130m -+≥解得134m ≤ (2)当m=2时,方程为x 2+3x+1=0,∴x 1+x 2=-3,x 1x 2=1,∵方程的根为x 1,x 2,∴x 12+3x 1+1=0,x 22+3x 2+1=0,∴(x 12+2x 1)(x 22+4x 2+2)=(x 12+2x 1+x 1-x 1)(x 22+3x 2+x 2+2)=(-1-x 1)(-1+x 2+2)=(-1-x 1)(x 2+1)=-x 2-x 1x 2-1-x 1=-x 2-x 1-2=3-2=1.【点睛】本题考查了根与系数的关系以及一元二次方程的解,根的判别式等知识,牢记“两根之和等于b a -,两根之积等于c a”是解题的关键. 30. 2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x 元,每个月的销量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?【答案】(1)y =220﹣2x ;(2)当每件商品的售价定为65元或85元时,每个月的利润恰好为2250元;(3)当x =75,即售价为75元时,月利润最大,且最大月利润为2450元.【分析】(1)根据月销量等于涨价前的月销量,减去涨价(x-60)与涨价1元每月少售出的件数2的乘积,化简可得;(2)月销售量乘以每件的利润等于利润2250,解方程即可;(3)根据题意列出二次函数解析式,由顶点式,可知何时取得最大值及最大值是多少.【解析】(1)由题意得,月销售量y =100﹣2(x ﹣60)=220﹣2x (60≤x ≤110,且x 为正整数)答:y 与x 之间的函数关系式为y =220﹣2x .(2)由题意得:(220﹣2x )(x ﹣40)=2250化简得:x 2﹣150x +5525=0解得x 1=65,x 2=85答:当每件商品的售价定为65元或85元时,每个月的利润恰好为2250元.(3)设每个月获得利润w 元,由(2)知w =(220﹣2x )(x ﹣40)=﹣2x 2+300x ﹣8800∴w =﹣2(x ﹣75)2+2450 ∴当x =75,即售价为75元时,月利润最大,且最大月利润为2450元.【点睛】此题考查一元二次方程的应用,二次函数的应用,解题关键在于理解题意得到等量关系列出方程. 31.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x (元),日销量为y (件),日销售利润为w (元).(1)求y 与x 的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w (元)与销售单价x (元)的函数关系式,当x 为何值时,日销售利润最大,并求出最大利润.【答案】(1)10280y x =-+;(2)10元;(3)x 为12时,日销售利润最大,最大利润960元【分析】(1)根据题意得到函数解析式;(2)根据题意列方程,解方程即可得到结论;(3)根据题意得到()()()26128010171210w x x x =--+=--+,根据二次函数的性质即可得到结论.【解析】解:(1)根据题意得,()20010810280y x x =--=-+,故y 与x 的函数关系式为10280y x =-+;(2)根据题意得,()()610280720x x --+=,解得:110x =,224x =(不合题意舍去),答:要使日销售利润为720元,销售单价应定为10元;(3)根据题意得,()()()261028010171210w x x x =--+=--+, 100-<Q ,∴当17x <时,w 随x 的增大而增大,当12x =时,960w =最大,答:当x 为12时,日销售利润最大,最大利润960元.【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.32.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?【答案】销售单价为180元时,公司每天可获利32000元【分析】根据题意设降价后的销售单价为x 元,由题意得到1003005200[32000]x x -+-()()=,则可得到答案. 【解析】解:设降价后的销售单价为x 元,则降价后每天可售出3005200[]x +-()个, 依题意,得:1003005200[32000]x x -+-()()=, 整理,得:2360324000x x +﹣=,解得:12180x x ==.180200<,符合题意. 答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元. 【点睛】本题考查二次函数的实际应用,解题的关键是熟练掌握二次函数的实际应用.《一元二次方程》中考真题1.已知2是关于x 的一元二次方程240x x m -+=的一个实数根,则实数m 的值是( ) A .0 B .1C .−3D .−1【答案】B【分析】把x =2+代入方程就得到一个关于m 的方程,就可以求出m 的值.【解析】解:根据题意得2(24(20m -⨯++=,解得1m =;故选:B .【点睛】本题主要考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.2.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .只有一个实数根 【答案】A【分析】先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案. 【解析】解:根据定义得:2110,x x x =--=☆1,1,1,a b c ==-=-Q ()()22414115b ac ∴∆=-=--⨯⨯-=>0, ∴ 原方程有两个不相等的实数根,故选.A【点睛】本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判别式,掌握以上知识是解题的关键.3.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( ) A .4 B .5 C .6 D .7【答案】C【分析】设这种植物每个支干长出x 个小分支,根据主干、支干和小分支的总数是43,即可得出关于x 的一元二次方程,解之取其正值即可得出结论【解析】设这种植物每个支干长出x 个小分支,依题意,得:2143x x ++=, 解得: 17x =-(舍去),26x =.故选C .【点睛】此题考查一元二次方程的应用,解题关键在于列出方程4.关于x 的一元二次方程2(3)10x k x k +-+-=根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 【答案】A【分析】先计算判别式,再进行配方得到△=(k-1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.【解析】△=(k-3)2-4(1-k)=k 2-6k+9-4+4k=k 2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A .【点睛】本题考查的是根的判别式,一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.5.已知关于x 的一元二次方程(m -1)x 2+2x +1=0有实数根,则m 的取值范围是( ) A .m <2 B .m≤2 C .m <2且m≠1 D .m≤2且m≠1【答案】D【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围.【解析】解:因为关于x 的一元二次方程x 2-2x +m =0有实数根,所以b 2-4ac =22-4(m -1)×1≥0,解得m≤2.又因为(m -1)x 2+2x +1=0是一元二次方程,所以m -1≠0.综合知,m 的取值范围是m≤2且m≠1,因此本题选D .【点睛】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,找出关于m 的一元一次不等式组是解题的关键.6.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .180(1﹣x )2=461B .180(1+x 【答案】B【分析】本题为增长率问题,一般用增长后的180万只,4月份的利润将达到461万只【解析】解:从2月份到4月份,该厂家口故选:B .【点睛】本题考查了一元二次方程的实际应7.关于x 的一元二次方程22x mx +A .2m =- B .3m = 【答案】A【分析】设1x ,2x 是2220x mx m ++再由()2221212122x x x x x x +=+-⋅代入即可【解析】设1x ,2x 是222x mx m ++∴40m ∆=-≥,∴0m ≤,∴1x +∴()2221212122x x x x x x +=+-⋅4=∴3m =或2m =-,∴2m =-,故选【点睛】本题考查一元二次方程根与系数的8.已知关于x 的一元二次方程x 2+5x ﹣A .﹣7 B .7【答案】A【分析】根据根与系数的关系即可求出答案【解析】解:设另一个根为x ,则x +2【点睛】此题主要考查一元二次方程根与系9.设1x ,2x 是方程2234x x +-=的两)2=461 C .368(1﹣x )2=442 D .368(1+x 增长后的量=增长前的量×(1+增长率),如果设这个增万只”,即可得出方程.厂家口罩产量的平均月增长率为x ,根据题意可得方实际应用,理解题意是解题关键.20m m ++=的两个实数根的平方和为12,则m 的值C .3m =或2m =- D .3m =-或m =m +=的两个实数根,由根与系数的关系得12x x +=入即可. 0m +=的两个实数根,22x m =-,212x x m m ⋅=+,222222212m m m m m --=-=,A .系数的关系;牢记韦达定理,灵活运用完全平方公式m =0的一个根是2,则另一个根是( ) C .3D .﹣3出答案.=﹣5,解得x =﹣7.故选:A .根与系数的关系,正确理解一元二次方程根与系数的0的两个实数根,则1211+x x 的值为______. )2=442 设这个增长率为x ,根据“2月份可得方程:180(1+x )2=461,的值为( ) 22m -,212x x m m ⋅=+,方公式是解题的关键. 系数的关系是解题关键.【答案】34【分析】由韦达定理可分别求出1x +【解析】解:由方程2234x x +-=12121231132·24x x x x x x -++===-.故答案为【点睛】本题考查一元二次方程根与系数的10.如图,在一块长15m 、宽10m 的矩形空面积为126m 2,则修建的路宽应为_____【答案】1【分析】把所修的两条道路分别平移到矩形式列方程求解即可.【解析】解:设道路的宽为x m ,根据题意解得:x 1=1,x 2=24(不合题意,舍去【点睛】此题主要考查了一元二次方程的应本题的关键.11.已知关于x 的一元二次方程2x 【答案】1【分析】利用因式分解法求出x 1,x 2,再根【解析】解22430(0)x mx m m -+=解得x 1=3m,x 2=m ,∴3m-m=2解得m=1【点睛】此题主要考查解一元二次方程,12.一元二次方程()()32x x --=的根【答案】123,2==x x【分析】利用因式分解法把方程化为x-【解析】解:30x -=或20x -=,所以2x 与12x x g 的值,再化简要求的式子,代入即可得解0可知1232x x +=-,124·22x x -==- 案为:34 系数的关系,利用韦达定理可简便运算.矩形空地上,修建两条同样宽的相互垂直的道路,___米. 到矩形的最上边和最左边,则剩下的草坪是一个长方据题意得:(10﹣x )(15﹣x )=126, ),则道路的宽应为1米;故答案为:1.程的应用,把中间修建的两条道路分别平移到矩形地2430(0)mx m m -+=>的一个根比另一个根大2,再根据根的关系即可求解.> (x-3m )(x-m )=0 ∴x-3m=0或x-m=0 =1故答案为:1. ,解题的关键是熟知因式分解法的运用. 0的根是_____. -3=0或x-2=0,然后解两个一次方程即可. 所以123,2==x x .故答案为123,2==x x .可得解. ,剩余分栽种花草,要使绿化个长方形,根据长方形的面积公矩形地面的最上边和最左边是做,则m 的值为_____.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.13.三角形的两边长分别为4和7,第三边的长是方程28120x x -+=的解,则这个三角形的周长是________. 【答案】17【分析】先利用因式分解法求解得出x 的值,再根据三角形三边之间的关系判断能否构成三角形,从而得出答案. 【解析】解:解方程28120x x -+=得x 1=2,x 2=6,当x=2时,2+4=6<7,不能构成三角形,舍去; 当x=6时,2+6>7,能构成三角形,此时三角形的周长为4+7+6=17.故答案为:17.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x 步,则可列方程为_____. 【答案】x (x ﹣12)=864.【分析】由长和宽之间的关系可得出宽为(x-12)步,根据矩形的面积为864平方步,即可得出关于x 的一元二次方程,此题得解.【解析】解:∵长为x 步,宽比长少12步,∴宽为(x ﹣12)步.依题意,得:x (x ﹣12)=864.【点睛】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.15.用配方法求一元二次方程()()23616x x +-=的实数根.【答案】1x 2x . 【分析】首先把方程化为一般形式为2x 2-9x-34=0,然后变形为29x x 172﹣=,然后利用配方法解方程. 【解析】原方程化为一般形式为22x 9x 340﹣﹣=,29x x 172﹣=,298181x x 1721616-++,29353x 416-(=,9x 4-±=,所以12x ,. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.16.已知关于x 的一元二次方程24280x x k --+=有两个实数根12,x x . (1)求k 的取值范围;(2)若33121224x x x x +=,求k 的值.。
一、一元二次方程真题与模拟题分类汇编(难题易错题)1.已知x1、x2是关于x的﹣元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求a的取值范围;(2)若(x1+1)(x2+1)是负整数,求实数a的整数值.【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x1+x2=﹣26aa+,x1x2=6aa+,由(x1+1)(x2+1)=x1x2+x1+x2+1=﹣66a-是是负整数,即可得66a-是正整数.根据a是整数,即可求得a的值2.【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=﹣,x1x2=,∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.∵(x1+1)(x2+1)是负整数,∴﹣是负整数,即是正整数.∵a是整数,∴a﹣6的值为1、2、3或6,∴a的值为7、8、9或12.【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.2.解方程:(3x+1)2=9x+3.【答案】x1=﹣13,x2=23.【解析】试题分析:利用因式分解法解一元二次方程即可.试题解析:方程整理得:(3x+1)2﹣3(3x+1)=0,分解因式得:(3x+1)(3x+1﹣3)=0,可得3x+1=0或3x﹣2=0,解得:x 1=﹣13,x 2=23. 点睛:此题主要考查了一元二次方程的解法,解题关键是认真观察一元二次方程的特点,然后再从一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法中合理选择即可.3.用适当的方法解下列一元二次方程:(1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32. 【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1∴△=b 2-4ac=16+8=24>0∴x=2b a -±=41222-=-±⨯∴x 1=-1,x 2=-1 (2)(y +2)2-(3y -1)2=0[(y+2)+(3y-1)][ (y+2)-(3y-1)]=0即4y+1=0或-2y+3=0解得y 1=-14,y 2=32.4.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.5.淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A 商品的成本为30元/件,网上标价为80元/件.(1)“双十一”购物活动当天,甲网店连续两次降价销售A 商品吸引顾客,问该店平均每次降价率为多少时,才能使A 商品的售价为39.2元/件?(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A 商品的成本、网上标价与甲网店一致,一周可售出1000件A 商品.在“双十一”购物活动当天,乙网店先将A 商品的网上标价提高a %,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A 商品数量相比原来一周增加了2a %,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.【答案】(1)平均每次降价率为30%,才能使这件A 商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为100元.【解析】【分析】(1)设平均每次降价率为x ,才能使这件A 商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论; (2)根据总利润=每件的利润×销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出a 的值,再将其代入80(1+a %)中即可求出结论.【详解】(1)设平均每次降价率为x ,才能使这件A 商品的售价为39.2元,根据题意得:80(1﹣x )2=39.2,解得:x 1=0.3=30%,x 2=1.7(不合题意,舍去).答:平均每次降价率为30%,才能使这件A 商品的售价为39.2元.(2)根据题意得:[0.5×80(1+a %)﹣30]×1000(1+2a %)=30000,整理得:a 2+75a ﹣2500=0,解得:a 1=25,a 2=﹣100(不合题意,舍去),∴80(1+a %)=80×(1+25%)=100.答:乙网店在“双十一”购物活动这天的网上标价为100元.【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.已知关于x的方程x2﹣(2k+1)x+4(k﹣12)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?【答案】(1)详见解析;(2)k=32或2.【解析】【分析】(1)计算判别式的值,利用完全平方公式得到△=(2k﹣3)2≥0,然后根据判别式的意义得到结论;(2)利用求根公式解方程得到x1=2k﹣1,x2=2,再根据等腰三角形的性质得到2k﹣1=2或2k﹣1=3,然后分别解关于k的方程即可.【详解】(1)∵△=(2k+1)2﹣4×4(k﹣12)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)() 2k12k3 x=2±+﹣∴x1=2k﹣1,x2=2,∵a、b、c为等腰三角形的三边,∴2k﹣1=2或2k﹣1=3,∴k=32或2.【点睛】本题考查了根的判别式以及等腰三角形的性质,分a是等腰三角形的底和腰两种情况是解题的关键.7.某产品每件成本为20元,经过市场调研发现,这种产品在未来20天内的日销售量m (单位:件)是关于时间t(单位:天)的一次函数,调研所获的部分数据如下表:这20天中,该产品每天的价格y(单位:元/件)与时间t的函数关系式为:1254y t=+(t为整数),根据以上提供的条件解决下列问题:(1)直接写出m关于t的函数关系式;(2)这20天中哪一天的日销售利润最大,最大的销售利润是多少?(3)在实际销售的20天中,每销售一件商品就捐赠a 元(4a <)给希望工程,通过销售记录发现,这20天中,每天扣除捐赠后的日销利润随时间t 的增大而增大,求a 的取值范围.【答案】(1)2100m t =-+;(2)在第15天时日销售利润最大,最大利润为612.5元;(3)2.54a ≤<.【解析】【分析】(1)从表格可看出每天比前一天少销售2件,即可确定一次函数关系式;(2)根据日利润=日销售量×每件利润列出函数解析式,然后根据函数性质求最大值,即可确定答案;(3)根据20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值范围【详解】(1)设该函数的解析式为:m=kx+b由题意得:98=k b 94=3k b +⎧⎨+⎩解得:k=-2,b=100∴m 关于t 的函数关系式为:2100m t =-+.(2)设前20天日销售利润为W 元,由题意可知,()1210025204W t t ⎛⎫=-++- ⎪⎝⎭ 21151002t t =-++ ()2115612.52t =--+ ∵102<,∴当15t =时,612.5W =最大. ∴在第15天时日销售利润最大,最大利润为612.5元. (3)由题意得:()1210025204W t t a ⎛⎫=-++--⎪⎝⎭ ()211525001002t a t a =-+++-, ∴对称轴为:152t a =+,∵每天扣除捐赠后的日销利润随时间t 的增大而增大,且120t ≤≤,∴15220a +≥,∴ 2.5a ≥,∴2.54a ≤<.【点睛】本题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,掌握解决最值问题的方法是解答本题的关键.8.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x 的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.9.已知关于x 的方程(a ﹣1)x 2+2x +a ﹣1=0.(1)若该方程有一根为2,求a 的值及方程的另一根;(2)当a 为何值时,方程的根仅有唯一的值?求出此时a 的值及方程的根.【答案】(1)a=15,方程的另一根为12;(2)答案见解析. 【解析】【分析】(1)把x=2代入方程,求出a 的值,再把a 代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=1时,为一元一次方程;②当a≠1时,利用b 2-4ac =0求出a 的值,再代入解方程即可.【详解】(1)将x =2代入方程2(a 1)x 2x a 10-++-=,得4(a 1)4a 10-++-=,解得:a =15. 将a =15代入原方程得24x 2054x 5-+-=,解得:x 1=12,x 2=2. ∴a =15,方程的另一根为12; (2)①当a =1时,方程为2x =0,解得:x =0.②当a≠1时,由b 2-4ac =0得4-4(a -1)2=0,解得:a =2或0.当a =2时, 原方程为:x 2+2x +1=0,解得:x 1=x 2=-1;当a =0时, 原方程为:-x 2+2x -1=0,解得:x 1=x 2=1.综上所述,当a =1,0,2时,方程仅有一个根,分别为0,1,-1.考点:1.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.10.阅读下面的材料,回答问题:解方程x 4﹣5x 2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设x 2=y ,那么x 4=y 2,于是原方程可变为y 2﹣5y +4=0 ①,解得y 1=1,y 2=4. 当y =1时,x 2=1,∴x =±1;当y =4时,x 2=4,∴x =±2;∴原方程有四个根:x 1=1,x 2=﹣1,x 3=2,x 4=﹣2.(1)在由原方程得到方程①的过程中,利用 法达到 的目的,体现了数学的转化思想.(2)解方程(x 2+x )2﹣4(x 2+x )﹣12=0.【答案】(1)换元,降次;(2)x 1=﹣3,x 2=2.【解析】【详解】解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;(2)设x 2+x =y ,原方程可化为y 2﹣4y ﹣12=0,解得y 1=6,y 2=﹣2.由x 2+x =6,得x 1=﹣3,x 2=2.由x 2+x =﹣2,得方程x 2+x +2=0,b 2﹣4ac =1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x 1=﹣3,x 2=2.。
初三数学一元二次方程组的专项培优易错难题练习题附答案解析一、一元二次方程1,已知关于x的方程x2- (2k+1) x+k2+i = 0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.【答案】(1)k> 3 ;(2) A.【解析】【分析】(1)根据关于x的方程x2—(2k+1)x+k2 + 1=0有两个不相等的实数根,得出 ^〉。
,再解不等式即可;(2)当k=2时,原方程x2-5x+5=0,设方程的两根是m、n,则矩形两邻边的长是m、n, 利用根与系数的关系得出m+n=5, mn=5,则矩形的对角线长为J m2n2,利用完全平方公式进行变形即可求得答案 . 【详解】(1) •••方程x2—(2k+1)x+ k2+1 = 0有两个不相等的实数根,A= [-(2k+1)]2-4X 1 x(史1)=4k-3>0, ,3. . k > 一,4(2)当k=2时,原方程为x2- 5x+ 5 = 0, 设方程的两个根为m, n,• - m + n= 5, mn= 5,矩形的对角线长为:Vm2~n2 jm n 2mn J15 .【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1) ^〉。
时,方程有两个不相等的实数根;( 2) 4=0时,方程有两个相等的实数根;(3) 4〈0时,方程没有实数根.2.父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过大众点评”或美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程5中,大众点评网上的购买价格比原有价格上涨一m%,购买数量和原计划一样:美团”网29上的购头价格比原有价格下降了一m元,购买数量在原计划基础上增加15m%,最终,在20【答案】(1) 120; (2) 20. 【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为 x 元,列不等式为 0.8x?80W7680解出即可;解法二:根据单价=总价一数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花 店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,表示在 大众点评120a (1-25%) (1+3m%),在 美团”网上的购买实际消费总额:a[120 (1 - 25%) - -9-m] (1+15m%);根据 在两个网站的实际消费总额比原计划20的预算总额增加了 一 m%'列方程解出即可.2试题解析:(1)解:解法一:设标价为 x 元,列不等式为 0.8x?80W7680 x<120解法二:7680+ 80+0.8=96 + 0.8=12兆), 答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,由题意得:120X0由(1 — 25%) (1 + 5m%) +a[120 X 0.81 — 25%) - -m] (1+15m%) =120 x 0282 20(1 — 25%) X2 (1+ — m%)),即 72a (1+ — m%) +a (72 — — m) ( 1+15m%) =144a 2 220(1+ 15m%),整理得:0, 0675m 2-1.35m=0, m 2- 20m=0,解得:m 1=0 (舍)2m 2=20.答:m 的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出 大众点评”或 美团”实际消费总额是解题关键.3.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、 五两月的水费分别是按哪种方案计算的?并求出 而的值.两个网站的实际消费总额比原计划的预算总额增加了一 m%,求出m 的值.2网上的购买实际消费总额:【答案】4. .. 1.7 X 35=59.5 1.7 X 80=136 151,这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),五月份用水量超过m吨(或水费是按F =1一■工-丽来计算的)w则有151=1.7X80+(80—m) X--100即m2-80m+1500=0解得m〔二30, m2=50.又..•四月份用水量为35吨,m1=30<35,「51=30舍去.m=50【解析】5.观察下列一组方程:①x2 x 0;②x2 3x 2 0;③x2 5x 6 0;④x2 7x 12 0;它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为连根一元二次方程1若x2kx 56 0也是连根一元二次方程”,写出k的值,并解这个一元二次方程;2请写出第n个方程和它的根.【答案】(1) x1 = 7, x2= 8. (2) x1=n—1, x2= n.【解析】【分析】(1)根据十字相乘的方法和连根一元二次方程”的定义,找到56是7与8的乘积,确定k值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k=— 15,则原方程为x2—15x+56=0,则(x—7)(x—8)=0,解得x1=7, x2=8.(2)第n 个方程为x2-(2n- 1)x+ n(n -1)=0, (x- n)(x— n + 1)=0,解得x1 = n_1, x2= n. 【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.2 _ k6.关于x的万程kx k 2 x — 0有两个不相等的实数根.41求实数k的取值范围;2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k的值;若不存在,说明理由.【答案】(1) k 1且k 0; (2)不存在符合条件的实数k,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】【分析】1由于方程有两个不相等的实数根,所以它的判别式V 0,由此可以得到关于k的不等式,解不等式即可求出k的取值范围.2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k的等式,解出k值,然后判断k值是否在1中的取值范围内.【详解】解:1依题意得V (k 2)2 4k k 0,k 1 ,又Q k 0,k的取值范围是k 1且k 0;2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,2 k理由是:设万程kx k 2 x - 0的两根分别为x1,X2,4k 2x1 x2由根与系数的关系有:k ,1x1 x24又因为方程的两个实数根之和等于两实数根之积的算术平方根,由1知,k 1,且k 0,4 “人什一k —不符合题意,3因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。
一元二次方程竞赛题目1、有若干个大小相同的球,可将它们摆成正方形或正三角形,摆成正三角形时比摆成正方形时每边多两个球,求球的个数.2、解关于x的方程:x2-(p2+q2)x+pq(p+q)(p-q)=0.3、已知方程(2000x)2-2001×1999x-1=0的较大根为a,方程x2+1998x-1999=0的较小根为β,求α-β的值.4、解方程:(3x-1)(x-1)=(4x+1)(x-1).5、解方程:x2-3|x|-4=0.6、已知二次方程3x2-(2a-5)x-3a-1=0有一个根为2,求另一个根,并确定a的值.7、解关于x的方程:ax2+c=0(a≠0).8、解关于x的方程:(m-1)x2+(2m-1)x+m-3=0.9、解关于x的方程:a2(x2-x+1)-a(x2-1)=(a2-1)x.10、求k的值,使得两个一元二次方程11、若k为正整数,且关于x的方程(k2-1)x2-6(3k-1)x+72=0有两个不相等的正整数根,求k的值.12、关于x的一元二次方程x2-5x=m2-1有实根a和β,且|α|+|β|≤6,确定m的取值范围.13、设a,b,c为△ABC的三边,且二次三项式x2+2ax+b2与x2+2cx-b2有一次公因式,证明:△ABC一定是直角三角形.14、解方程:(2)20x2+253x+800=0;(3)x2+|2x-1|-4=0.15、解下列关于x的方程:(1)abx2-(a4+b4)x+a3b3=0;(2)(2x2-3x-2)a2+(1-x2)b2=ab(1+x2).16、若对任何实数a,关于x的方程x2-2ax-a+2b=0都有实数根,求实数b的取值范围.17、若方程x2+ax+b=0和x2+bx+a=0有一个公共根,求(a+b)2000的值.18、若a,b,c为△ABC的三边,且关于x的方程4x2+4(a2+b2+c2)x+3(a2b2+b2c2+c2a2)=0有两个相等的实数根,试证△ABC是等边三角形.。
2019-2020九上第一章《一元二次方程》寒假较难题提优训练(一)一、选择题1. 与去年同期相比,我国石油进口量增长了,而单价增长了,总费用增长了,则a =( ) A. 5 B. 10 C. 15 D. 202. 在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次.若参加该会的学生为x 名,根据题意可列方程为( )A. x (x +1)=253B. x (x −1)=253C. 12x (x +1)=253D. 12x (x −1)=253 3. 已知关于x 的方程kx 2+(2k +1)x +(k −1)=0有实数根,则k 的取值范围为( )A. k ≥−18B. k >−18 C. k ≥−18且k ≠0 D. k <−18 4. 关于x 的一元二次方程x 2+(a 2−2a)x +a −1=0的两个实数根互为相反数,则a 的值为( )A. 2B. 0C. 1D. 2或05. 抛物线y =ax 2+bx +c 的顶点为D(-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b 2-4ac <0;②当x > -1时,y 随x 增大而减小;③a +b +c <0;④若方程ax 2+bx +c -m =0没有实数根,则m >2;⑤3a +c <0.其中正确结论的个数是( )A. 2个B. 3个C. 4个D. 5个6. 新定义:若两个关于x 的一元二次方程可写作:a 1(x −m)2+n =0与a 2(x −m)2+n =0,则称为“同族二次方程”.如2(x −3)2+4=0与3(x −3)2+4=0是“同族二次方程”.现有关于x 的一元二次方程2(x −1)2+1=0与(a +2)x 2+(b −4)x +8=0是“同族二次方程”,那么代数式ax 2+bx +2018能取的最小值是( )A. 2011B. 2013C. 2018D. 20237.已知关于x,y的方程组{x+2y=k+22x−3y=3k−1以下结论:①当x=1,y=2时,k=3;②当k=0,方程组的解也是y−x=17的解;③存在实数k,使x+y=0;④不论k取什么实数,x+9y的值始终不变,其中正确的是()A. ②③B. ①②③C. ②③④D. ①②③④二、填空题8.已知等腰三角形的一边长为9,另一边长为方程x2−8x+15=0的根,则该等腰三角形的周长为______.9.(1)分解因式:2a3−8a=________________。
【拔尖特训】2024-2025学年九年级数学上册尖子生培优必刷题【人教版】专题21.5解一元二次方程:因式分解法(限时满分培优测试)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分100分,建议时间:30分钟.试题共23题,其中选择10道、填空6道、解答7道.试题包含基础题、易错题、培优题、压轴题、创新题等类型,没有标记的为基础过关性题目.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•靖西市期中)解方程2(4x﹣3)2=3(4x﹣3)最适当的方法是()A.直接开方法B.配方法C.公式法D.分解因式法2.(2023•河东区二模)方程x2﹣4x﹣5=0的根是()A.x1=﹣1,x2=5B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=﹣53.(2023•武山县一模)一元二次方程x2=3x的解为()A.x=0B.x=3C.x=0或x=3D.x=0 且x=34.(2023•邯郸模拟)已知一元二次方程的两根分别为x1=3,x2=﹣4;则这个方程为()A.(x﹣3)(x+4)=0B.(x+3)(x﹣4)=0C.(x+3)(x+4)=0D.(x﹣3)(x﹣4)=05.(2023春•蜀山区期末)方程2x2﹣3x+1=0根的符号是()A.两根一正一负B.两根都是负数C.两根都是正数D.无法确定6.(易错题)(2022秋•益阳期末)已知三角形两边的长分别是4和3,第三边的长是一元二次方程x2﹣8x+15=0的一个实数根,则该三角形的面积是()A.12或4√5B.6或2√5C.6D.2√57.(易错题)(2023春•肇源县期中)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰的长,则这个三角形的周长是()A.12B.15C.12或15D.18或98.(培优题)(2021秋•洪湖市校级月考)设m是方程x2+5x=0的一个较大的根,n是方程x2﹣x﹣6=0的一个较小的根,则m+n的值是()A .﹣4B .﹣3C .﹣2D .29.(创新题)(2021•南沙区二模)对于实数m ,n ,先定义一种新运算“⊗”如下:m ⊗n ={m 2+m +n ,当m ≥n 时,n 2+m +n ,当m <n 时,若x ⊗(﹣2)=10,则实数x 等于( ) A .3 B .﹣4 C .8 D .3或810.(创新题)(2021•菏泽二模)给出一种运算:对于函数y =x n ,规定y '=n ×x n ﹣1.若函数y =x 4,则有y '=4×x 3,已知函数y =x 3,则方程y '=9x 的解是( )A .x =3B .x =﹣3C .x 1=0,x 2=3D .x 1=0,x 2=﹣3二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2023•宝鸡二模)方程x (x +4)=0的解是 .12.(2023•利州区一模)若x 2+x =5+√5,则x 的值是 .13.(2023•槐荫区一模)若菱形的两条对角线长是方程x 2﹣7x +12=0的两个根,则该菱形的周长等于 .14.(易错题)(2022秋•林州市期末)对关于x 的一元二次方程:x 2=ax ,下列是小聪的求解过程:解:两边都减a 2,得x 2﹣a 2=ax ﹣a 2;①两边分别分解因式,得(x +a )(x ﹣a )=a (x ﹣a );②两边都除以x ﹣a ,得x +a =a ;③两边都减a ,得x =0.④以上解题过程中,开始出现错误的那一步对应的序号是 .15.(易错题)(2022•杭州模拟)对于实数a ,b ,定义运算“⊗”:a ⊗b ={ab −b 2(a ≥b)a 2−ab(a <b),例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x 1,x 2是一元二次方程x 2﹣6x +5=0的两个根,则x 1⊗x 2= .16.(压轴题)(2023春•上城区期末)有学者认为,阿拉伯数学家花拉子米的《代数学》关于一元二次方程的几何求解法与中国古代数学的“出入相补原理”相近,可能受到中国传统数学思想的影响.花拉子米关于x 2+10x =39的几何求解方法如图1,在边长为x 的正方形的四个边上向外做边长为x 和52的矩形,再把它补充成一个边长为x +5的大正方形,我们得到大正方形的面积为(x +5)2=x 2+10x +25=39+25=64(因为x 2+10x =39).所以大正方形边长为x +5=8,得到x =3.思考:当我们用这种方法寻找x 2+6x =7的解时,如图2中间小正方形的边长x 为 ;阴影部分每个正方形的边长为.三、解答题(本大题共7小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.解方程:(1)(x﹣2)(x﹣5)=2;(2)2(x﹣3)2=x2﹣9.18.选用适当的方法,解下列方程:(1)2x2+5x+2=0;(2)(2x+3)2=4(2x+3);(3)x2﹣2x=12.(4)x2+5x+6=0.19.用因式分解法解一元二次方程:(1)x2﹣2x=0;(2)4x2﹣4x+1=0;(3)4(x﹣2)2﹣9=0;(4)(x+1)2﹣4(2x﹣1)2=0.20.(2023•白城模拟)下面是小勇解一元二次方程的过程,请认真阅读并完成相应的任务.解:2x2+4x﹣6=0,二次项系数化为1,得x2+2x﹣3=0.…第一步,移项,得x2+2x=3.…第二步,配方,得x2+2x+4=3+4,即(x+2)2=7.…第三步,由此,可得x+2=±√7⋯第四步,x1=2+√7,x2=2−√7⋯第五步.任务:(1)上面小勇同学的解法中运用“配方法”将该一元二次方程化为两个一元一次方程,体现的数学思想是(填“消元”或“降次”);其中配方法依据的一个数学公式是;(2)“第二步”变形的依据是;(3)上面小勇同学的解题过程中,从第步开始出现错误,直接写出正确的解.21.(易错题)(2023春•滨江区校级期中)下面是小明解一元二次方程2x(x﹣5)=3(5﹣x)的过程:解:原方程可化为2x(x﹣5)=﹣3(x﹣5),……第一步方程两边同除以(x﹣5)得,2x=﹣3,……第二步系数化为1得x=−3 2.小明的解答是否正确?若正确,请说明理由;若不正确,请指出从第几步开始出现错误,分析出现错误的原因,并写出正确的解答过程.22.(培优题)(2023•裕华区校级模拟)在实数范围内定义新运算“△”,其规则为:a△b=a2﹣ab,根据这个规则,解决下列问题:(1)求(x+2)△5=0中x的值;(2)证明:(x+m)△5=0中,无论m为何值,x总有两个不同的值.23.(压轴题)(2023•天元区模拟)定义:如果关于x的方程a1x2+b1x+c1=0(a1≠0,a1、b1、c1是常数)与a2x2+b2x+c2=0(a2≠0,a2、b2、c2是常数),其中方程中的二次项系数、一次项系数、常数项分别满足a1+a2=0,b1=b2,c1+c2=0,则称这两个方程互为“对称方程”.例如:方程2x2﹣3x+1=0的“对称方程”是﹣2x2﹣3x﹣1=0,请根据上述内容,解决以下问题:(1)直接写出方程x2﹣4x+3=0的“对称方程”;(2)若关于x的方程3x2+(m﹣1)x﹣n=0与﹣3x2﹣x=﹣1互为“对称方程”,求m、n的值及3x2+(m ﹣1)x﹣n=0的解.。
8、解方程:(y 4)( y 3)(y 2)( y 1) 1 0
第一章《一元二次方程》竞赛拔尖题
2
1、若关于x 的方程x 2ax
A. 2 x 2ax 3a 2 0
B. 2 x 2ax 5a 6 0
C. 2 x 2ax 10a 21
D. 2 x 2ax 2a 3 0
7a 10 0没有实根,那么必有实根的方程是
2、若关于x 的一元二次方程(b c)x 2 (a b)x c a 0有两个相等的实数根,
则a 、b 、
c 之间的关系是( )
b c , a c
—— B. b ——
2 2 a b ,
----
D. a b c
2 A. a C. c 3、若 2是关于x 的方程x 2 0的一个根,则a 的值为
4、已知 2 x 2 5x 2016
2)3 (x 1)2 1
的值为
x 2
5、满足 / 2 # \ n 2 (n n 1)
1的整数n 有
6、设整数a 使得关于x 的一元二次方程5x 2 5ax 26a 143 0的两个根都是整数,则
a 的值是
2
7、设a 、b 是整数,方程x ax b 0的一根是 7^2/3 ,求a+b 的值
9、求方程x 2 12x 5 5j x 2
12x 9的实数根的和与积 个时,求实数a 的取值范围
11、设等腰三角形的一腰与底边长分别是方程
2 c x 6x a 0的量根,当这样的三角形只有
12、已知3个不同的实数 a 、
2 b 、c 满足a-b+c=3,方程x 2 ax 1 0 和 x bx c 0 有一 个相同的实根,方程 x 2 2 a 0和x cx b 0也有一个相同的实根.求a 、b 、c 的值
13、已知在关于x 的分式方程 k 一 1
--- 二2①和一元二次方程 (2 - k ) x 2
+3mx+ (3 - k ) n=0②中, X - 1
k 、m 、n 均为实数,方程①的根为非负数.
(1 )求k 的取值范围;
(2)当方程②有两个整数根 X 1、X 2, k 为整数,且k=m+2, n=1时,求方程②的整数根;
(3)当方程②有两个实数根 X 1、X 2,满足 x 1 (x 1 - k ) +x 2 (x 2- k ) = (x 1 - k ) (x 2- k ),且 k 为负整数时,试判断 m| W 是否成立?请说明理由.
15支少一元,试求初三年级共有多少学生 ?并确 (2 )若按批发价每购 15支与按零售价每购 定m 的值
10、一个批发兼零售的文具店规定: 凡一次购买铅笔 301支以上(包括301支)可以按批发
10、 (1)不难知道,x 的取值范围应为 240 V X w 300(x 为正整数);
铅笔的零售价每支应为m2-1/x 元; 铅笔的批发价每支应为
(2)从给出条件可得到如
下等式: 15*(m2-1)/x — 15 *(m2-1)/x+60 = 1.
整理后,得
X2 + 60x — 900(m2 — 1) = 0.
解得x1 = 30(m — 1),或x2 = — 30(m — 1)(不合题意,舍去).
怎样去求X 与m 的值呢?首先应当注意已获得的等式和不等式
,即
① 240 V xw 300;
② X = 30(m — 1)
从上式可见,求X 、m 的值,只要能确定其中的一个值即可__则 240 V 30(m — 1) w 300
••• 8V m — 1 w 10 9V mw 11
再考虑 m 为正整数,故 m = 10或 m = 11.
又因m = 10时,m2 — 1 = 99V 100,不合题意应舍去.当m = 11时,m2 — 1= 120> 100,此时x = 300.经检验X = 300是所列方程的根.
11、 a=9 或 0 V aw 8
12、 a=— 2,b=— 3,c=2
13、( 1 )•••关于x 的分式方程
二2的根为非负数,
/• X>0且 XMl, •••解得k A 1且kM ,
又•••一元二次方程(2 - k ) x 2
+3mx+ (3 - k ) n=0 中 2 - kM0, /• kM2参考答
案:
1、A 2 C 3、 77
4、 2020
5、4
6、18
7、0
8、 y 1
5 75 ,y3 y4 丁 两根之和为一 12,两根之积为一 4© m2-1/x+60 元
y 2 9、
综上可得:k>- 1且k^l且kM2;
(2)•••—元二次方程(2 - k) x2+3mx+ (3- k) n=0有两个整数根X1、X2, 且k=m+2, n=1 时,.••把k=m+2, n=1 代入原方程得:- mx2+3mx+ (1 - m) =0,即:mx2- 3mx+m- 1=0, ••△ >0,即△= (- 3m) 2 - 4m ( m - 1),且m^Q
:,△ =9m2- 4m( m - 1) =m( 5m+4),
•X1、x2是整数,k、m都是整数,
•X1 + X2=3, X1?X2= __ =1-Z,
m m
•-1 -丄为整数,
ID
/• m=1 或-
1,
•••把m=1代入方程mx2- 3mx+m- 1=0 得: x2- 3x+1 - 1=0 ,
x2-
3x=0,
x (x- 3) =0 ,
x i=0, X2=3;
把m=- 1代入方程mx2- 3mx+m- 1=0 得:- x2+3X- 2=0 ,
X2-
3x+2=0 ,
(X- 1) (x-2) =0,
X1 = 1 ,
X2=2 ;
(3) |m| w不成立,理由是:
由(1)知:k>- 1 且kMl且k^2
• k是负整数,
••• k= -
1,
(2 - k) x2+3mx+ (3 - k) n=0且方程有两个实数根X1、X2,
.、,3in 3m 3 - k 4
…X1 + X2= - —= --------- = - m , X1X2 ~~—,
2-k k-2 2-k 3
X1 (X1 - k) +x2 (x2 - k) = (X1 - k) (X2 —k),
2 2 2
X1 - X1k+x2 - X2k=x1X2 - x1k -
X2k+k ,
X12+X22nx2+ k2,
(X1 + X2)2 - 2X1X2 -
X1X2=k2,
(X1 + X2)2- 3X1X2=k2,
(—m) 2—3^ = (—1) 2
3
m2—4=1, m2=5,
m=±S,
w不成立.。