数字后端流程(初学必看)
- 格式:pdf
- 大小:1.55 MB
- 文档页数:36
后端开发基础知识后端开发是指构建和维护网站、应用程序和服务器的技术。
它涵盖了很多不同的方面,包括数据库管理、服务器端编程语言、API设计等等。
在本文中,我们将介绍一些后端开发的基础知识。
一、数据库管理数据库是后端开发的重要组成部分。
它用于存储和管理数据,以供应用程序使用。
常见的数据库管理系统有MySQL、PostgreSQL和MongoDB等。
在使用数据库时,开发人员需要了解数据表的创建、查询、更新和删除等基本操作,以及如何优化数据库性能。
二、服务器端编程语言服务器端编程语言负责处理用户请求并生成响应。
常见的服务器端编程语言有Java、Python、Ruby和Node.js等。
开发人员需要了解编程语言的语法和特性,熟悉面向对象编程、异常处理和并发编程等概念。
三、API设计API(Application Programming Interface)是不同软件之间交互的接口。
在后端开发中,API通常用于与前端应用程序或移动应用程序进行通信。
良好设计的API具有清晰的接口规范、易于理解和使用。
开发人员需要了解RESTful API的设计原则,包括URL命名、HTTP方法和错误处理等。
四、安全性在后端开发过程中,安全性至关重要。
开发人员需要采取措施来保护用户数据和系统安全。
常见的安全性措施包括密码哈希、数据加密、跨站点请求伪造(CSRF)和跨站点脚本(XSS)攻击防御等。
五、性能优化性能优化是后端开发的一项重要任务。
开发人员需要定位和消除应用程序中的性能瓶颈,以提高响应速度和吞吐量。
性能优化方法包括缓存技术、数据库查询优化和并发处理等。
六、版本控制在后端开发中,版本控制工具用于管理代码的变更和版本。
常见的版本控制工具有Git和SVN等。
开发人员需要了解基本的版本控制概念,包括代码提交、分支管理和合并等。
七、部署和运维后端应用程序需要部署到服务器上并进行运维。
开发人员需要了解服务器环境的配置和管理,以及应用程序的部署和监控。
后端开发基础知识第一章:后端开发介绍后端开发是指构建和维护服务器端应用程序以实现业务逻辑和数据存储的过程。
它主要处理和管理数据,在服务器端与数据库和前端进行交互。
后端开发需要使用多种技术和工具,包括编程语言、数据库、服务器和网络等。
本章将介绍后端开发的基本概念和流程。
第二章:编程语言后端开发中最常用的编程语言包括Java、C#、Python、PHP、Ruby等。
每种编程语言都有其特定的优点和用途。
Java是一种面向对象的语言,具有良好的跨平台性和可扩展性,适合构建大型企业级应用。
C#是微软开发的一种语言,广泛用于Windows平台的开发。
Python是一种简单易学的语言,适用于快速开发原型和小型应用。
PHP是一种专门用于Web开发的语言,简单易学且与HTML语法相似。
Ruby是一种优雅而简洁的语言,以简化开发流程而闻名。
第三章:数据库数据库用于存储和管理应用程序的数据。
常见的关系型数据库有MySQL、Oracle、SQL Server,非关系型数据库有MongoDB、Redis、Cassandra等。
关系型数据库基于表格结构,相对严格且适合处理结构化数据。
非关系型数据库则以键值对或文档格式存储数据,适用于处理半结构化或非结构化数据。
选择适合的数据库取决于应用程序的需求和性能要求。
第四章:服务器服务器是后端开发的核心组件之一,它提供了基础设施来运行和托管应用程序。
常用的服务器操作系统有Linux、Windows Server等,常用的服务器软件有Apache、Nginx等。
服务器还需要配置和管理网络、安全和存储等方面。
后端开发人员需要熟悉服务器的基本概念和操作,以确保应用程序的可靠性和性能。
第五章:网络网络是后端开发中不可或缺的一部分,它负责将服务器和客户端连接起来,并传输数据。
后端开发人员需要了解网络协议、网络安全和网络性能优化等方面的知识。
常见的网络协议有HTTP、TCP/IP、WebSocket等。
ASIC/SoC后端设计作业流程剖析关键词place route DSM megacell clock_tree STA OPT ECO引言众所周知,ASIC产品是从用硬件描述语言(verilog HDL,VHDL)开始进行数字逻辑电路设计的,经过相关的仿真、综合出门级网表、验证直至完成电路布局布线并优化,最终经流片成功形成的芯片产品。
随着中国经济的持续稳定地增长,国内生产厂家对IC需求增长势头强劲与自身设计IC能力薄弱的突出矛盾已经被国家和企业认识。
为了缓解这一矛盾并更多地实现IC自主设计,近两年国内陆续出现了一些著名的传统通信系统厂商设立的IC设计队伍,以及归国留学人员领头创办的创业型IC设计公司,他们大多数有相当强的前端设计能力,但在IC后端设计领域的实践经验还较欠缺。
在完成前端逻辑设计综合出门级网表后,真正能做好后端设计的公司还不多,有的则通过委托设计服务的方式完成后端布局布线及流片。
本文作者有多年从事覆盖前后端IC设计全流程并有每年几次成功流片数百万门级深亚微米SoC 的经验,并担任IC设计的项目管理工作,对国外大公司的设计流程十分熟悉,并愿意就积累的经验与国内同行分享交流,以利于国内IC设计水平的提高。
本文着重介绍国内设计公司薄弱的后端设计,介绍其流程并对在设计过程中的关键步骤进行一些讨论。
传统的后端设计流程指的是从门级网表(gate level netlist)开始的,根据设计要求的不同,后端流程可以分为扁平流程(flat flow)和层次化流程(hierarchy flow)两种,在深亚微米DSM(deep sub-micron)领域,又增加了布局加逻辑合成的前后端合二为一的扁平流程(flat flow)和分层流程(hierarchy flow)。
我们首先介绍传统的两种后端流程。
前后端合一的流程将作为另一个专题在以后讨论。
一、扁平流程(Flat flow)介绍最简单的后端设计是扁平(flat)流程,一般四百万门以下的设计均可使用这一流程。
数字后端流程1. 数据准备。
对于CDN 的Silicon Ensemble而言后端设计所需的数据主要有是Foundry厂提供的标准单元、宏单元和I/O Pad的库文件,它包括物理库、时序库及网表库,分别以.lef、.tlf和.v的形式给出。
前端的芯片设计经过综合后生成的门级网表,具有时序约束和时钟定义的脚本文件和由此产生的.gcf约束文件以及定义电源Pad的DEF(Desi gn Exchange Format)文件。
(对synopsys 的Astro 而言,经过综合后生成的门级网表,时序约束文件SDC 是一样的,Pad的定义文件--tdf ,.tf 文件--technology file,Foundry厂提供的标准单元、宏单元和I/O Pad的库文件就与FRAM, CELL view, LM view 形式给出(Milkway 参考库and DB, LIB file)2. 布局规划。
主要是标准单元、I/O Pad和宏单元的布局。
I/O Pad预先给出了位置,而宏单元则根据时序要求进行摆放,标准单元则是给出了一定的区域由工具自动摆放。
布局规划后,芯片的大小,Core的面积,Row的形式、电源及地线的Ring和Strip都确定下来了。
如果必要在自动放置标准单元和宏单元之后,你可以先做一次PNA(power netw ork analysis)--IR drop and EM .3. Placement -自动放置标准单元。
布局规划后,宏单元、I/O Pad的位置和放置标准单元的区域都已确定,这些信息SE(Silicon Ensemble)会通过DEF文件传递给PC(Ph ysical Compiler),PC根据由综合给出的.DB文件获得网表和时序约束信息进行自动放置标准单元,同时进行时序检查和单元放置优化。
如果你用的是PC +Astro那你可用write_milkway, read_milkway 传递数据。
dbAddAntennaLayerRule_libId 4 "VIA12"20 '(0.203 083.3375) dbAddAntennaLayerRule_libId 4 "VIA23"20 '(0.203 083.3375) dbAddAntennaLayerRule_libId 4 "VIA34"20 '(0.203 083.3375) dbAddAntennaLayerRule_libId 4 "VIA45"20 '(0.203 083.3375) dbAddAntennaLayerRule_libId 4 "VIA56"20 '(0.203 083.3375)Astro 笔记Y uzh 2009-11-13Astro 是数字后端的布局布线的重要工具,还数字后端设计中,关于Astro 的设计主要由以下几部分组成:【1】新建一个pnr 文件夹,在其子目录下创建clf cons in log lib out rpt script tf 以及一个makefile 文件【2】clf 文件夹中主要存放工艺延时功耗负载等相关文件以便导入主要可以有以下几个部分:antenna_*lm.clf *.clf.logic *.clf.power *.clf.time 可以由Foundry 提供的工艺库文件中拷贝【3】cons 文件夹中主要存放Macro PAD Locationa 文件Pin Location 文件,dbdefine 文件以及antenna rules 文件以便导入设计中使用【4】in 文件夹中主要存放有DC 综合后生成的综合网表*.sv 文件时序约束文件*.sdc 以及*.sdf 文件,但是需要对sdc 文件进行相关修改后才能作为Astro 布局布线的时序约束参考因此需要有一个Makefile 文件对其内容进行修改【5】lib 文件夹中存放有standard cell 的工艺库文件(如silterra18)Foundry 工艺库中拷贝【6】tf 文件夹中存放有设计工艺库的技术文件(如silterra18_*lm.tf)Foundry 工艺库中拷贝【7】script 为了布局布线修改方便常会将运行的Astro 命令导出到相应的脚本文件中,CTS 前布局一次为一个脚本,CTS 后优化布局为一个脚本,最后布线以及check 为一个脚本,存放在script 文件夹中分别命名为pnr_1.scm pnr_2.scm pnr_3.scm【8】其余的文件夹分别存放输出的报告和网表以及gds 文件,其中log 文件夹中为Astro 运行报告,rpt 中为Astro CTS clock skew 分析报告,out 中为gds 文件和布局布线后网表,以及Wire RC 参数提取文件*spefAntenna_rules 文件是截取Antenna_rules_*lm.clf 文件的一部分一般只截取dbAddAntennaLayerRule 的定义设计中如下截取:define _libId (dbGetCurrentLibId)dbDefineAntennaRule _libId 4 2 0 0dbAddAntennaLayerRule _libId 4 "METAL1" 400 '(0.203 0 400.00 2200)dbAddAntennaLayerRule _libId 4 "METAL2" 400 '(0.203 0 400.00 2200)dbAddAntennaLayerRule _libId 4 "METAL3" 400 '(0.203 0 400.00 2200)dbAddAntennaLayerRule _libId 4 "METAL4" 400 '(0.203 0 400.00 2200)dbAddAntennaLayerRule _libId 4 "METAL5" 400 '(0.203 0 400.00 2200)dbAddAntennaLayerRule _libId 4 "METAL6" 400 '(0.203 0 8000.00 30000)Astro 笔记Y uzh 2009-11-13dbDefine 文件是为了Astro 做时钟树综合优化时作准备的,在CTS 之前需调用该文件,Astro 做时钟树时只对它默认的DFF 的时钟管脚做相关处理一般是定义了clock 但我们设计需要对一些多扇出的复位信号scan 链信号做处理就需要专门声明下这也是时钟树需要处理的信号,就在dbDefine 做这样的声明,一般有同步复位、异步复位、scan_enable 以及宏单元的clk 信号,异步复位最常用需要做scan 链才定义SE,有Memory 时才定义clk,具体设置如下:(let* ((selectedlist (geGetSelectedSet (getEditWindow))))(for-each (lambda (x)(let* ((instName (dbFetchObjectField (geGetEditCell) x "name")))(dbDefineSyncPin (geGetEditCell) instName '( ("RN" "nonInvertRise" 0) ("RN" "invertRise" 0)) )(dbDefineSyncPin (geGetEditCell) instName '( ("SN" "nonInvertRise" 0) ("SN" "invertRise" 0)) );; (dbDefineSyncPin (geGetEditCell) instName '( ("SE" "nonInvertRise" 0) ("SE" "invertRise" 0)) );; (dbDefineSyncPin (geGetEditCell) instName '( ("CLK" "nonInvertRise" 0) ("CLK" "invertRise" 0)) )))selectedlist))tdf 文件定义相关的PAD 或者是PIN 的位置信息,坐标描述方法基本一致设计中根据实际的需要略有不同如下:tdfPurgePadConstrdefine step15define offset50define off0pin "clk"39 0 0"right"0(set! offset(+ step1 offset))pin "rstn"39 0 0"right"0(set! offset(+ step1 offset))pin "scan_mode"39 0 0"right"0(set! offset(+ step1 offset))pin "mic_fm_sel" 39 0 0 "right" 0 (set! offset(+ step1 offset))在Astro 布局布线时需要根据DC 综合时设置生成的时序约束文件对相关cel(l standard cell)进行布局优化,通常在Place 设置时考虑congestion 和time 因素,通常考虑关键性的时序路径,满足设计的时序约束条件,而对于非关键路径的cell 可以放置的远离些,增加延时,如果将非关键路径的cell 布局在关键时序路径布局区域就会对其产生影响,使其布线拥塞增加布线难度。
如何快速学习后端开发随着互联网的普及和发展,后端开发的工作也越来越受欢迎,成为了大量学生和职场人士追逐的方向。
但是,学习后端开发并不是一件难事,初学者需要经过大量学习和实践才能掌握后端开发的技能。
接下来,本文将分享一些快速学习后端开发的方法和技巧。
一、学习基础知识1.编程语言学习后端开发需要熟悉一门或多门编程语言,比如:Java、Python、PHP、JavaScript等。
初学者应该选择一种容易理解和掌握的编程语言,并系统地了解该语言的语法规则、数据类型、函数等基础知识。
2.数据结构数据结构是后端开发的一种常见的基础知识。
通过学习数据结构,可以更好地理解数据间的关系,提高后端开发的效率和代码质量。
3.算法算法是后端开发的另一种常见基础知识。
学习算法可以帮助开发者解决实际问题,并帮助理解一些标准库的使用方法,提高代码编写的质量和效率。
二、学习框架和工具1.应用框架应用框架是后端开发中最常用的工具之一,它可以帮助开发者快速构建一个完整的Web应用程序。
学习一个好的应用框架可以提高代码编写的效率和质量。
2.数据库数据库是后端开发中的重要组成部分,它能够存储和管理数据。
初学者需要了解不同的数据库类型,比如:MySQL、Oracle、MongoDB等,并学习如何进行数据的操作和管理。
3.版本控制工具版本控制工具是用来管理代码版本和协同开发的重要工具。
学习一种好的版本控制工具,如Git可以更好地管理代码,并提高团队协作的效率。
三、实践和项目练习学习后端开发并不是仅学习理论知识,实践和项目练习也是非常关键的。
初学者可以从一些简单的项目开始练习,比如:搭建一个简单的博客、制作一个在线商城等。
通过实践,可以更好的了解开发技巧和细节,锻炼实践能力,提高自己的编程能力和经验。
四、阅读相关书籍和文章学习后端开发是一个长期和系统的过程,阅读相关书籍和文章可以帮助学生快速了解相关的知识和技能。
初学者可以阅读一些经典的后端开发著作,并收集相关的技术文章和工具教程加深自己的理解和积累经验。
前端和后端的开发流程1.产品经理收集需求并进行分析。
The product manager collects and analyzes requirements.2.设计师进行界面设计和交互设计。
Designers do interface design and interaction design.3.前端工程师根据设计稿编写前端页面。
Front-end engineers write front-end pages according to the design drafts.4.前端工程师进行页面布局和样式设计。
Front-end engineers do page layout and style design.5.前端工程师进行页面逻辑与交互设计。
Front-end engineers do page logic and interaction design.6.前端工程师进行页面性能优化。
Front-end engineers optimize page performance.7.后端工程师进行服务端接口定义与设计。
Back-end engineers define and design server-side interfaces.8.后端工程师进行数据库设计与开发。
Back-end engineers do database design and development.9.后端工程师进行业务逻辑设计与开发。
Back-end engineers do business logic design and development.10.后端工程师进行服务端接口开发与调试。
Back-end engineers do server-side interface development and debugging.11.测试人员进行前后端联调测试。
Testers do front-end and back-end integration testing.12.测试人员进行性能测试与安全测试。
基本后端流程(漂流&雪拧)----- 2010/7/3---2010/7/8本教程将通过一个8*8的乘法器来进行一个从verilog代码到版图的整个流程(当然只是基本流程,因为真正一个大型的设计不是那么简单就完成的),此教程的目的就是为了让大家尽快了解数字IC设计的大概流程,为以后学习建立一个基础。
此教程只是本人探索实验的结果,并不代表内容都是正确的,只是为了说明大概的流程,里面一定还有很多未完善并且有错误的地方,我在今后的学习当中会对其逐一完善和修正。
此后端流程大致包括一下内容:1.逻辑综合(逻辑综合是干吗的就不用解释了把?)2.设计的形式验证(工具formality)形式验证就是功能验证,主要验证流程中的各个阶段的代码功能是否一致,包括综合前RTL 代码和综合后网表的验证,因为如今IC设计的规模越来越大,如果对门级网表进行动态仿真的话,会花费较长的时间(规模大的话甚至要数星期),这对于一个对时间要求严格(设计周期短)的asic设计来说是不可容忍的,而形式验证只用几小时即可完成一个大型的验证。
另外,因为版图后做了时钟树综合,时钟树的插入意味着进入布图工具的原来的网表已经被修改了,所以有必要验证与原来的网表是逻辑等价的。
3.静态时序分析(STA),某种程度上来说,STA是ASIC设计中最重要的步骤,使用primetime对整个设计布图前的静态时序分析,没有时序违规,则进入下一步,否则重新进行综合。
(PR后也需作signoff的时序分析)4.使用cadence公司的SOCencounter对综合后的网表进行自动布局布线(APR)5.自动布局以后得到具体的延时信息(sdf文件,由寄生RC和互联RC所组成)反标注到网表,再做静态时序分析,与综合类似,静态时序分析是一个迭代的过程,它与芯片布局布线的联系非常紧密,这个操作通常是需要执行许多次才能满足时序需求,如果没违规,则进入下一步。
6.APR后的门级功能仿真(如果需要)7.进行DRC和LVS,如果通过,则进入下一步。
8.用abstract对此8*8乘法器进行抽取,产生一个lef文件,相当于一个hard macro。
9.将此macro作为一个模块在另外一个top设计中进行调用。
10.设计一个新的ASIC,第二次设计,我们需要添加PAD,因为没有PAD,就不是一个完整的芯片,具体操作下面会说。
11.重复第4到7步1.逻辑综合1)设计的8*8verilog代码如下module mux (clk,clr,data1,data2,dataout);input clk,clr;input [7:0] data1,data2;output reg [15:0] dataout;always @(posedge clk)beginif(!clr)begindataout<=0;endelsebegindataout<=data1*data2;endendendmodule2)综合之前,我们要选取库,写好约束条件,修改dc的启动文件synopsys_dc.setup,目标库选择TSMC(此设计都是用TSMC18的库)的typical.db。
(选择max库会比较好) Dc的命令众多,但是最基本的命令差不多,此设计的约束文件命令如下:create_clock -period 10 [get_ports clk] //用于时钟的创建set_clock_latency -source -max 0.2 [get_ports clk] //外部时钟到core的clk连线延时set_clock_latency -max 0.1 [get_ports clk] //core的clk到寄存器clk端的net连线延时set_clock_uncertainty -setup 2 [get_ports clk] //时钟延时的不确定性,求setup违规时会被计算进去set_clock_uncertainty –hold 1 【all_clocks】set_input_delay -max 0.5 -clock clk [get_ports [list [remove_from_coll [all_inputs] clk] ] //输入延时,外部信号到input端的连线延时set_output_delay -max 0.5 -clock clk [all_outputs] //输出延时set_driving_cell -lib_cell INVX4 [all_inputs] //输入端的驱动强度set_load -pin_load 0.0659726 [all_outputs] //输出端的驱动力set_wire_load_model -name tsmc18_wl10 -library typical //内部net的连线模型set_wire_load_mode enclosed //定义建模连线负载相关模式set_max_area 0compilereport_timingreport_constraintchange_names -rule verilog –hierset_fix_multiple_ports_net –allwrite -format verilog -hier -output mux.sv //输出网表,自动布局布线需要write -format ddc -hier -output mux.ddc //输出ddcwrite_sdf mux.sdf //输出延时文件,静态时序分析时需要write_sdc mux.sdc //输出约束信息,自动布局布线需要3)逻辑综合启动design_vision。
Read->mux.v输入约束文件。
File->excute script->verti.con之后会产生mux.sv,mux.sdc,mux.sdf,mux.ddc等文件4)时序分析综合以后我们需要分析一下时序,看时序是否符合我们的要求,综合实际上是一个setup 时间的满足过程,但是我们综合的时候,连线的负载只是库提供的(即上面的wire_load),并不是实际的延时,所以一般做完综合以后,时间余量(slack)应该为时钟的30%(经验值),以便为后面实际布局布线留下充足的延时空间。
因为如果slack太小,甚至接近于0,虽然我们看起来是没有时序违规的,但是实际布局以后,时序肯定无法满足。
使用report_timing命令,可以查看时序分析报告:****************************************Report : timing-path full-delay max-max_paths 1-sort_by groupDesign : muxVersion: D-2010.03-SP1Date : Fri Jul 2 12:29:44 2010****************************************Operating Conditions: typical Library: typical(模型库)Wire Load Model Mode: enclosedStartpoint: data2[4] (input port clocked by clk)Endpoint: dataout_reg_15_(rising edge-triggered flip-flop clocked by clk)Path Group: clkPath Type: maxDes/Clust/Port Wire Load Model Library------------------------------------------------mux tsmc18_wl10 typical (线载模型及库)Point Incr Path-------------------------------------------------------------------------- clock clk (rise edge) 0.00 0.00 clock network delay (ideal) 0.00 0.00 input external delay 0.50 0.50 f data2[4] (in) 0.01 0.51 f mult_14/b[4] (mux_DW_mult_uns_0) 0.00 0.51 f mult_14/U131/Y (INVX1) 0.54 1.05 r mult_14/U161/Y (NOR2X1) 0.14 1.18 f mult_14/U39/S (CMPR42X1) 0.68 1.87 f mult_14/U12/CO (ADDFX2) 0.32 2.19 f mult_14/U11/CO (ADDFX2) 0.23 2.42 f mult_14/U10/CO (ADDFX2) 0.23 2.65 f mult_14/U9/CO (ADDFX2) 0.23 2.88 f mult_14/U8/CO (ADDFX2) 0.23 3.10 f mult_14/U7/CO (ADDFX2) 0.23 3.33 f mult_14/U6/CO (ADDFX2) 0.23 3.56 f mult_14/U5/CO (ADDFX2) 0.23 3.79 f mult_14/U4/CO (ADDFX2) 0.23 4.02 f mult_14/U3/CO (ADDFX2) 0.23 4.25 f mult_14/U2/CO (ADDFX2) 0.22 4.47 f mult_14/product[15] (mux_DW_mult_uns_0) 0.00 4.47 f dataout_reg_15_/RN (DFFTRXL) 0.00 4.47 f data arrival time 4.47clock clk (rise edge) 10.00 10.00 clock network delay (ideal) 0.30 10.30 clock uncertainty -0.10 10.20 dataout_reg_15_/CK (DFFTRXL) 0.00 10.20 r library setup time -0.19 10.01 data required time 10.01-------------------------------------------------------------------------- data required time 10.01 data arrival time -4.47-------------------------------------------------------------------------- slack (MET) 5.55 我们来看以上报告,dc报告的时候会显示出关键路径,即延时最大的路径,时序分析包括两段,前面一段是信号的延迟时间,即data arrival time 为4.47,下面是计算要求时间,也即相对于时钟,设计所能忍受的最大延时,由于到达寄存器clk端延时,即clock network delay,所以设计增加了0.30的余量,同样由于时钟的不确定度(可能提前也可能延后0.1),我们取最坏情况,就是时钟超前0.1,则时间余量减去0.1,最后一个是门的建立时间要求,是0.19,最后得到数据的要求时间。