运算定律和简便运算
- 格式:pptx
- 大小:59.63 KB
- 文档页数:8
加减乘除法的运算定律:
1、加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a。
2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
a+b+c=a+(b+c)。
3、乘法交换律:两个数相乘,交换因数的位置,积不变。
a*b=b*a
4、乘法结合律:三个数相乘,可以先乘前两个数,或者先乘后两个数,积不变。
a*b*c=a*(b*c)。
5、乘法分配律:两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加,积不变。
(a+b)*c=a*c+b*c。
6、减法的性质:减去一个数再加上一个数,等于减去这两个数的差。
a-b-c=a-(b+c)。
7、除法的性质:连续除去两个数,等于除去这两个数的积。
a/b/c=a/(b*c)。
在运算方面上的一系列定律,统称为运算定律。
可以使计算更简便。
小学四年级数学简便计算:运算定律和性质1、加法交换律:两个加数交换位置,和不变。
这叫做加法交换律。
用字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
这叫做加法结合律。
用字母表示:(a+b)+c= a +( b+c)3、乘法交换律:两个因数交换位置,积不变。
这叫做乘法交换律。
用字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
这叫做乘法结合律。
用字母表示:(a×b)×c= a ×( b×c)5、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
这叫做乘法分配律。
用字母表示:(a+b)×c= a×c+b×ca ×( b+c) =a×b+a×c拓展:(a-b)×c= a×c-b×ca ×( b-c) =a×b-a×c6、减法的性质1:一个数连续减去两个数,可以减去这两个减数的和。
用字母表示:a-b-c= a -( b+c)a -( b+c) = a-b-c7、减法的性质2:一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数。
用字母表示:a-b-c= a-c-b8、除法的性质1:一个数连续除以两个数,可以除以这两个除数的积。
用字母表示:a÷b÷c= a ÷( b×c)a ÷( b×c) = a÷b÷c9、除法的性质2:一个数连续除以两个数,可以先除以第二个除数,再除以第一个除数。
用字母表示:a÷b÷c= a÷ c ÷ b网络搜集整理,仅供参考。
加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a + b) + c = a + (b + c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35=(65+35)+(28+72)=100+98 =488+100 =93+(165+35)= 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a—c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
小学四年级:运算定律与简便计算公式整理(附练习题)小学四年级:运算定律与简便计算一、运算定律必须弄清加法交换律 a b = b a例:25 37=37 25加法结合律 a b c=a (b c)例:25 37 63=25 (37 63)(扩展) a-b-c=a-(b c)例:125-37-63=25-(37 63)a-b c=a-(b-c)例:300-159 59=300-(159-59)乘法交换律a×b×c=a×c×b例:25×9×4=25×4×9乘法结合律a×b×c=(a×c) ×b例:128×3×8=(125×8) ×3乘法分配律a×(b c)=a×b a×c例:8×(125 25)=8×125 8×25(扩展)a÷b÷c=a÷(c×b)例:100÷5÷2=100÷(5×2)a÷(c×b)= a÷b÷c例:100÷(5×2)=100÷5÷2二、必须背下来的几个算式2×5=102×50=1004×25=1008×25=20012×5=608×125=100037×3=111333=111×3999=333×3=111×9三、加法简便计算训练1、凑整法简便计算:例:(28 36) 64=28 (36 64)=28 100=128182 18 276 24=(182 18)(276 24)=200 300=500小结:多数相加,看尾数是否能凑成整数,将凑成整数的配对先加。
加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a + b) + c = a + (b + c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35=(65+35)+(28+72)=100+98 =488+100 =93+(165+35)= 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a—c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
定律与简便计算(一)加减法运算定律1、加法交换律定义:两个加数交换位置,与不变字母表示:例如:16+23=23+16 546+78=78+5462、加法结合律定义:先把前两个数相加,或者先把后两个数相加,与不变.字母表示:注意:加法结合律有着广泛得应用,如果其中有两个加数得与刚好就是整十、整百、整千得话,那么就可以利用加法交换律将原式中得加数进行调换位置,再将这两个加数结合起来先运算。
例1、用简便方法计算下式:(1)63+16+84(2)76+15+24 (3)140+639+860 3、减法交换律、结合律注:减法交换律、结合律就是由加法交换律与结合律衍生出来得。
减法交换律:如果一个数连续减去两个数,那么后面两个减数得位置可以互换。
字母表示:例2、简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数得与。
字母表示:例3、简便计算:(1)369-45—155 (2)896—580-1204、拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些得时候,我们可以把这个数拆分成整百、整千与一个较小数得与,然后利用加减法得交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…例4、计算下式,能简便得进行简便计算:(1)89+106(2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170(2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)63+71+37+29 (8)85-17+15—33 (9)34+72-43-57+28 (二)乘除法运算定律1、乘法交换律定义:交换两个因数得位置,积不变。
字母表示:例如:85×18=18×85 23×88=88×232、乘法结合律定义:先乘前两个数,或者先乘后两个数,积不变.字母表示:乘法结合律得应用基于要熟练掌握一些相乘后积为整十、整百、整千得数。
四则运算的运算定律
(一)加法运算定律:
1、两个加数交换位置,和不变,这叫做加法交换律。
字母公式:a+b=b+a
2、先把前两个数相加,或者先把后两个数相加,和不变,这叫做加法结合律。
字母公式:(a+b) +c=a+(b+c)
(二)乘法运算定律:
1、交换两个因数的位置,积不变,这叫做乘法交换律。
字母公式:a×b=b×a
2、先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。
字母公式:(a×b)×c=a×(b×c)
3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
用字母公式:(a+b)×c=a×c+b×c或a×(b+c) =a×b+a×c 拓展:(a-b)×c=a×c-b×c或a×(b-c) =a×b-a×c
(三)减法简便运算:
1、一个数连续减去两个数,可以用这个数减去这两个数的和。
用字母表示:a-b-c=a-(b+c)
2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
用字母表示:a-b-c=a—c-b
(四)除法简便运算:
1、一个数连续除以两个数,可以用这个数除以这两个数的积。
用字母表示:a÷b÷c=a÷(b×c)
2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。
用字母表示:a÷b÷c=a÷c÷b。
加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a + b) + c = a + (b + c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35=(65+35)+(28+72)=100+98 =488+100 =93+(165+35)= 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a—c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
运算定律与简便计算●知识盘点1.主要内容加法和乘法的运算定律与简便计算。
2.主要目标(1)理解并掌握加法、乘法的运算定律,并懂得用字母表示的运算的定律的含义。
(2)懂得运用各项运算定律(含用字母表示)可以进行验算的道理。
(3)会运用加法、乘法的各项运算定律进行简便计算,提高自己运用定律进行简便计算的能力。
(4)在理解、掌握、运用加法、乘法的运用定律中,体会和感受运算定律在生活中的应用。
3.知识要点(1)加法交换律:两个数相加,交换加数的位置,他们的和不变。
字母表示:a+b=b+a(2)加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,它们的和不变。
字母表示:(a+b)+c=a+(b+c)(3)乘法交换律:两个数相乘,交换两个因素的位置,它们的积不变。
字母表示:a×b=b×a(4)乘法结合律:三个数相乘,先乘前两个数,或先乘后两个数,它们的积不变。
字母表示:a×b×c=a×(b×c)(5)乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母表示:(a+b)×c=a×c+b×c(6)从一个数里连续减去几个数,可以先把所有的减数相加,再用被减数减去它们的和。
字母表示:a-b-c=a-(b+c)●例题解析【例1】一家电影院,走廊左边有379个座位,右边有427个座位,一共有几个座位?(用两种方法计算)【分析】这是一道简单的一步加法计算题,要求用两种方法计算,可以用左边的座位数加上右边的座位数,也可以用右边的座位数加上左边的座位数。
【解答】379+427=806(个) 427+379=806(个)【评注】观察上面两种解法,可以看出:两个加数都相同,结果也相等。
但加数的位置不同,刚好互换。
我们可以得出结论:两个数相加,交换加数的位置,和不变。
这就是加法交换律,可以用字母表示:a+b=b+a。