中科院高等数学甲历年真题
- 格式:pdf
- 大小:2.67 MB
- 文档页数:29
《高等数学》考试试卷A 卷及答案解析一.填空题(共24分,每小题3分)1.设函数x y z =,则__________________________=dz .2.方程333z e xyz e -=确定()y x z z ,=,则__________________=∂∂x z. 3. 曲线t t x sin -=,t y cos 1-=,2sin 2tz =在π=t 处切线方程为_________________________________________.4. 函数2u x y z =+在点(2,1,0)M 处最大的方向导数为__________________.5. 交换二次积分222(,)y y I dy f x y dx =⎰⎰的积分次序,得__________________=I .6.设平面曲线)10(:2≤≤=x x y L ,则曲线积分__________________=⎰ds x L.7. 幂级数∑∞=12n n n x n的收敛域是 ________________________.8. 微分方程022=+'-''y y y 的通解为___________________________.二、选择题(共12分,每小题3分)1. 设曲面2232y x z +=在点)5 , 1 , 1(M 处的切平面方程为064=+-+λz y x ,则λ=( ).(A) 15- (B) 0 (C) 5- (D) 52. 函数),(y x f 在点),(y x 处可微是函数),(y x f 在该点处存在偏导数的( ). (A) 必要条件 (B) 充分条件(C) 充要条件 (D) 既非充分又非必要条件3. 设曲线L 是单位圆周122=+y x 按逆时针方向,则下列曲线积分不等于零的是( ).(A) ds y L⎰ (B) ds x L⎰ (C) dx y xdy L⎰+ (D) ⎰+-L y x ydxxdy 224. 下列级数中收敛的是( ).(A) ∑∞=122n n n (B) ∑∞=+12n n n(C) ∑∞=+1)2121(n n n (D) ∑∞=133n n n三、解答题:(共59分)1.(7分)求二元函数()3132,23---=y x xy y x f 的极值. 2. (7分)设函数2,x z f x y y ⎛⎫= ⎪⎝⎭,其中()v u f ,具有二阶连续偏导数,求yx zx z ∂∂∂∂∂2 , .3.(7分)计算二重积分dxdy xy D⎰⎰2,其中D 是由圆周422=+y x 与y 轴所围成的右半区域.4.(7分)将函数())1ln(x x f +=展成1-x 的幂级数,并写出可展区间5.(7分)计算曲面积分(2)I xy x y z dS ∑=+++⎰⎰,其中∑为平面1x y z ++=在第一卦限中的部分.6. (8分) 求微分方程x xe y y y 223=+'-''的通解.7. (8分)计算曲线积分()()y d y xy dx yx x I L⎰+-+-=2322其中L 为曲线22x x y -=从)0,2(A 到)0,0(O 的弧段.8.(8分)利用高斯公式计算曲面积分()()d xdy x z dzdx y dydz x I ⎰⎰∑-+++=33332,其中∑为由上半球面224y x z --=与锥面22y x z +=围成的空间闭区域的整个边界曲面的外侧.四.(5分)设()f x 是在(,)-∞+∞内的可微函数, 且()()f x f x α'<, 其中01α<<. 任取实数0a , 定义1ln (),1,2,3n n a f a n -==.证明:级数11()n n n a a ∞-=-∑绝对收敛.《高等数学》考试试卷A 卷答案一、填空题(共24分,每小题3分) 1. dy xy ydx y dz x x 1ln -+= 2. 3z z yzx e xy ∂=∂- 3.2022-=-=-z y x π4.5. 2(,)xI dx f x y dy =⎰⎰6.()11127. )21, 21[- 8. )sin cos (21x c x c e y x +=二、选择题(共12分,每小题3分) 1. C 2. B 3. D 4. D 三、解答题(共64分) 1. (7分)解: 令⎪⎩⎪⎨⎧=-==-=022022y x f x y f yx 得驻点⎩⎨⎧==00y x ,⎩⎨⎧==22y x 2 分 x f xx 2-=,2=xy f ,2-=yy f 4 分 在(0,0)处, 2 , 2 , 0-===C B A04 2<-=-B AC , ∴(0,0)为非极值点. 5 分在(2,2)处 2 , 2 , 04-==<-=C B A04 2>=-B AC ∴ 1)2 , 2(=f 为函数),(y x f 的极大值. 7 分2.(7分) 解:2121f xy f yx z '+'=∂∂ 3分)21(212f xy f yy y x z '+'∂∂=∂∂∂ ])([ 22])([11222212221221112x f yx f xy f x x f y x f y f y ''+-''+'+''+-''+'-= 223122113212221f y x f y x f yx f x f y ''+''-''-'+'-= 7 分3. (7分) 解:⎰⎰⎰⎰--=224 0222y Dxdx dy y dxdy xy3分⎰--=2 2 22)4(21dy y y 5 分 1564)4(2 0 42=-=⎰dy y y 7 分4. (7分)解:1(1)ln(1)1n n n x x n ∞+=-+=+∑ 11≤<-x 1 分)211ln(2ln )]1(2ln[)1ln(-++=⋅-+=+x x x 3分10)21(1)1(2ln +∞=∑-+-+=n n n x n∑∞=++-+-+=011)1(2)1()1(2ln n n n nx n 6分 1211≤-<-x ⇒ 31≤<-x 7分5.(7分)解::1z x y ∑=--dS ∴== 2分(2DI xy ∴=+⎰⎰4分1102xDdx xydy dxdy -=+⎰5分()13202xx x dx =-++6分12=7分6.(8分)解 (1)先求微分方程023=+'-''y y y 的通解Y特征方程 0232=+-r r 即 0)1)(2(=--r r ,21=r ,12=rx x e c e c Y 221+= 3 分(2)求原方程的一个特解*y 2 =λ 是特征方程的根,故设 x x e bx ax e b ax x y 222)()(+=+=*5分令bx ax x Q +=2)(,则b ax x Q +='2)(,a x Q 2)(=''将)(x Q ',)(x Q ''代入方程x x Q p x Q ='++'')()2()(λ 得 x b ax a =++22则 ⎩⎨⎧=+=1212b a a , 解之得⎪⎩⎪⎨⎧==021b a , x xe y 221=*7 分 所求通解 x x x xe e c e c y 222121++= 8 分7.(8分) 解:⎰++-+-OAL dy y xy dx yx x )2()(322dxdy x y dxdy y Px Q DD)()(22⎰⎰⎰⎰+=∂∂-∂∂= 3 分 ⎰⎰⋅=θd ρd cos 2 0220 ρρθπ5 分⎰==20 443cos 4ππθθd 6 分dy y xy dx yx x I OA ⎰+-+--=)2()(43322π 7 分2434320-=-=⎰ππxdx 8 分8. (8分) 解:由高斯公式dV z y x I )333(222⎰⎰⎰Ω++= 3 分2244 03 sin d d r dr ππθφφ=⎰⎰⎰ 6 分192(152π=- 8 分9.(5分)解:对任意设2n ≥,由拉格朗日中值定理,有111212121'()ln ()ln (),()n n n n n n n n n n f a a f a f a a a a a f ξαξ----------=-=-<-2 分其中1n ξ-介于1n a -与2n a -之间. 于是有11101,2,.n n n a a a a n α---<-=3分又级数1101n n a a α∞-=-∑收敛, 由比较审敛法知级数11()n n n a a ∞-=-∑绝对收敛.5分。
目录
2016年中国科学院大学601高等数学(甲)考研真题(回忆版)及详解[视频讲解]
2015年中国科学院大学601高等数学(甲)考研真题及详解[视频讲解]
2014年中国科学院大学601高等数学(甲)考研真题及详解[视频讲解]
2013年中国科学院大学601高等数学(甲)考研真题及详解
2012年中国科学院高等数学(甲)考研真题及详解
2011年中国科学院高等数学(甲)考研真题及详解
2010年中国科学院高等数学(甲)考研真题及详解
2009年中国科学院高等数学(甲)考研真题及详解
2008年中国科学院高等数学(甲)考研真题及详解
2007年中国科学院高等数学(甲)考研真题及详解
2006年中国科学院高等数学(甲)考研真题及详解
2005年中国科学院高等数学(A)考研真题及详解
2004年中国科学院高等数学(A)考研真题及详解
2003年中国科学院高等数学(A)考研真题及详解。
中国科学院大学硕士研究生入学考试《高等数学(甲)》考试大纲中国科学院大学硕士研究生入学考试高等数学(甲)考试大纲一、 考 试 性 质中国科学院大学硕士研究生入学高等数学(甲)考试是为招收理学非数学专业硕士研究生而设置的选拔考试。
它的主要目的是测试考生的数学素质,包括对高等数学各项内容的掌握程度和应用相关知识解决问题的能力。
考试对象为参加全国硕士研究生入学考试、并报考理论物理、原子与分子物理、粒子物理与原子核物理、等离子体物理、凝聚态物理、天体物理、天体测量与天体力学、空间物理学、光学、物理电子学、微电子与固体电子学、电磁场与微波技术、物理海洋学、海洋地质、气候学等专业的考生。
二、 考试的基本要求要求考生系统地理解高等数学的基本概念和基本理论,掌握高等数学的基本方法。
要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、数学运算能力和综合运用所学的知识分析问题和解决问题的能力。
三、 考试方法和考试时间高等数学(甲)考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。
四、考试内容和考试要求(一)函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形数列极限与函数极限的概念 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →=, e xx x =+∞→)11(lim 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 函数的一致连续性概念考试要求1. 理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2. 理解函数的有界性、单调性、周期性和奇偶性。
掌握判断函数这些性质的方法。
3. 理解复合函数的概念,了解反函数及隐函数的概念。
会求给定函数的复合函数和反函数。