2014年中国科学院大学601高等数学(甲)考研真题及详解(圣才出品)
- 格式:pdf
- 大小:647.04 KB
- 文档页数:11
2014年全国硕士研究生入学统一考试数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)B(2)D(3)D(4)B(5)B(6)A(7)(B )(8)(D )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)012=---z y x(10)11=-)(f(11)12+=x xy ln (12)π(13)[-2,2](14)25n三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)【答案】2121111111110202211212112=-=--=--=--=--=+--++→→+∞→+∞→+∞→+∞→⎰⎰⎰u e lim u u e lim x )e (x lim ,xu x )e (x lim xtdt dt t )e (lim )x ln(x dt ]t )e (t [lim u u u u x x x xx x x x x 则令(16)【答案】20202232222=+=+='++'⋅++')x y (y xy y y x xy y y x y y yx y )(y 20-==或舍。
x y 2-=时, 21106606248062480633333223223-==⇒==+-=+-+-=+-⋅+⋅+-=+++y ,x x x x x x )x (x )x (x x y x xy y04914190141411202222222362222>=''=''=''+-''-''=''+'+'++''⋅+'⋅+'+'+''+')(y )(y )(y )(y )(y y x y x y x y y y x )y (x y y y y y y y )y ( 所以21-=)(y 为极小值。
目录
2016年中国科学院大学601高等数学(甲)考研真题(回忆版)及详解[视频讲解]
2015年中国科学院大学601高等数学(甲)考研真题及详解[视频讲解]
2014年中国科学院大学601高等数学(甲)考研真题及详解[视频讲解]
2013年中国科学院大学601高等数学(甲)考研真题及详解
2012年中国科学院高等数学(甲)考研真题及详解
2011年中国科学院高等数学(甲)考研真题及详解
2010年中国科学院高等数学(甲)考研真题及详解
2009年中国科学院高等数学(甲)考研真题及详解
2008年中国科学院高等数学(甲)考研真题及详解
2007年中国科学院高等数学(甲)考研真题及详解
2006年中国科学院高等数学(甲)考研真题及详解
2005年中国科学院高等数学(A)考研真题及详解
2004年中国科学院高等数学(A)考研真题及详解
2003年中国科学院高等数学(A)考研真题及详解。
2014年全国硕士研究生入学统一考试数学二试题一、选择题:1〜8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合 题目要求的,请将所选项前的字母填在答题纸..指定位置上•11、当x0时,若In ■ (1 2x), (1 -cosx)〉均是比x 高阶的无穷小,则:-的取值范围是()(A ) (2,(B ) (1,2)1 (C )(-,1)2(D )1(02)【答案】B【考点】等价无穷小、高阶无穷小【详解】1 x )0 时,ln :(1 2x) ~ (2x):,1(1(1 _cosx)-〜!- 1 2平x12 )2因为它们都是比x 高阶的无穷小,故用>1,1,即1 ::: :• ::: 2a2、下列曲线中有渐近线的是()【详解】 对于选项A ,xim (x sin x )不存在,因此没有水平渐近线,同理可知,选项 A 没有铅直渐近线,y x +si nx而lim lim 不存在,因此选项 A 中的函数没有斜渐近线;x 厂X x 匚- x对于选项B 和D,我们同理可知,对应的函数没有渐近线;+ - 11y x+sin-对于C 选项,y = x sin.由于lim limx=1,又xx x ¥x11lim_ y -1 x 二 lim.sin 0 .所以 y = x ■ sin 存在斜渐近线 y = x .故选 C. x 】- x 】- X x(A) y 二 x sin x(C) y 二 x sinx【答案】C【考点】函数的渐近线2(B ) y = x sinx (D) y = x 2 sin 丄 x(4)设函数f(x)具有2阶导数,g(x) = f(0)(1 -x) • f (1)x,则在区间[0,1]内()(A)勺f(X)_0 时,f(x) —g(x)当(B)勺f(X)_0 时,f(x)乞g(x)当(C)勺f(X)_0 时, f (x) _g(x)当(D)当勺f (x) _0 时,f(xHg(x)【答案】D【考点】函数单调性的判别、函数图形的凹凸性【详解】【解法一】令F(x) =g(x) -f(x)则F (x) (0) f (1) - f (x)由拉格朗日中值定理知,存在(0,1),使得f(1)-f(0) =(1-0)f「)= f「) 即F ( J =0又因为F ”(x)二-f (x)若「(x) 一0,则F (x)乞0,所以F(x)单调递减,当(0, ), F (x) 0,F(x)单调递增,当( ,1),F (x) <0,F(x)单调递减,又F(0) =0.F(1) =0,所以F(x) 一0,即f(x)乞g(x),故选D【解法二】令f(x)=x2,则函数f(x)具有2阶导数,且「(x)_0所以g(x)二f (0)(1 —X) f (1)x 二x当x [0,1]时,f (x^g(x),故选D4、曲线x#7,上对应于心的点处的曲率半径是()y =t 2 4t 1【答案】C【考点】参数方程求导、曲率及曲率半径 【详解】巴25、设函数 f (x) =arctan x ,若 f (x) =xf (),则 lim 2 =() T x 2 (A )1 (B )23(C 2(D)1【答案】D【考点】 函数求导、函数求极限【详解】** f (x) arcta n x 1xx 1 2.•2 x - arctanx…J —arcta nxI I 6、设函数u(x, y)在有界闭区域 D 上连续,在D 的内部具有2阶连续偏导数,且满足0及EXy-2-2T ”0,则() x :y(A ) u(x, y)的最大值和最小值都在 D 的边界上取得 (B ) u(x, y)的最大值和最小值都在D 的内部取得(C ) u(x, y)的最大值在D 的内部取得,u(x, y)的最小值在 D 的边界上取得 (D ) u(x, y)的最小值在D 的内部取得,u(x, y)的最大值在 D 的边界上取得【答案】A(A 」50100(C)10、.. 10叫.Hx2 3X1 - 3 - \72 X 2 + X n29、【考点】二元函数极值的充分条件 【详解】2 2 2 2 2 因为寻于,故V 与C 号异号.又 7=0,则AC -B 2:::0,所以函数u (x,y )在区域D 内没有极值.又连续函数在有界闭区域内有最大值和最小值,故最大值和最小值在7、行列式【答案】B【详解】【解法一】 故选B 【解法二】8、设为3维向量,则对任意常数k,l ,向量组:k 3 / 2 H 3线性无关是向量组〉1,〉2, ?3线性无关的() (A ) 必要非充分条件 (B ) 充分非必要条件 (C ) 充分必要条件 (D ) 既非充分也非必要条件 【答案】A【考点】向量组的线性相关性 【详解】:■、填空题:9〜14小题,每小题4分,共24分.请将答案写在答题纸 指定位置上1二dx 二:x 22x 5D 的边界点取到.(A ) (ad -be)2(B )2-(ad -be)(C ) a 2d 2 -b 2c 2(D ),2 2 2 , 2b c -a d【考点】分块矩阵的行列式运算、 行列式的性质、行列式按行(列)展开定理3【答案】3二8【考点】无穷限的反常积分【详解】10、设f(x)是周期为4的可导奇函数,且f (x) =2(x—1),x・[0,2],贝U f(7) = 【答案】1【考点】一阶微分方程、周期函数【详解】11、设z =z(x,y)是由方程e2yz x2 y2z =确定的函数,则41【答案】-丄(dx dy)2【考点】隐函数求偏导、全微分【详解】12、曲线L的极坐标方程是r - v,贝V L在点(rc) =(「)处的切线的直角坐标方程2 2是______ . ______Q TF【答案】y - - 2 x •—Tt2【考点】参数方程求导、极坐标与直角坐标的转化、切线方程【详解】把极坐标方程化为直角坐标方程丄x = r cos — v COST令••y = r sin J - ^sin)13、一根长为1的细棒位于x轴的区间[0,1]上,若其线密度^(x) --x22x 1,则该细棒的质心坐标x =11【答案】20【考点】质心坐标【详解】b_ J xP(x)dx x 二 a质心横坐标公式:b.,(x)dxa2 214、设二次型 f (x 1, x 2, x3^x 1 -x 2 2a^x 3 4x 2x 3的负惯性指数 为1,贝U a 的取值范围是 _______ . _____ 【答案】[-2,2]【考点】二次型的规范形、矩阵的特征值、配方法化二次型为标准形 【详解】【解法一】则’1 • '2 • ‘3二tr(A) =1 -1 • 0 =0,即特征值必有正有负,共 3种情况; 因二次型的负惯性指数为 1=特征值1负2正或1负1正1零;1 0 a^0-12=T+a 2E0,即 a^[—2,2] a 2【解法二】三、解答题:15〜23小题,共94分.请将解答写在答题纸 指定位置上.解答应写出文字说明、证 明过程或演算步骤•15、(本题满分10分)【考点】函数求极限、变限积分函数求导、等价无穷小、洛必达法则 【详解】16、(本题满分10分) 已知函数y =y(x)满足微分方程 x 2 y 2y 、1-y ■,且y(2) =0,求y(x)的极大值与极小值 【考点】微分方程、函数的极值所以:x 二114 2312\j0x (—x 2+2x+1)dx (寸 3X 2X )0 11o (—x 2 2x 1)dx(寸 xx )20二次型对应的系数矩阵为:0 -1 2 a2°」=O ,记特征值为、J?, '3x In (1-)【详解】17、(本题满分10分)设平面区域 D -;(x, y) 1 _x 2y 2_4,x _0, y _0^,计算Xsin(、x口dxdy •Dx+y【考点】二重积分的计算、轮换对称性 【详解】积分区域D 关于y = x 对称,利用轮对称行, 18、(本题满分10分)_2_2设函数f (u)具有2阶连续导数,z=f(e x cosy)满足—f —| = (4z e x cosy)e 2x .dx dy若 f (0) = 0 , f (0) = 0,求 f (u)的表达式•【考点】多元函数求偏导、二阶常系数非齐次线性微分方程 【详解】 令 u = e x cosy即:f (u) -4f(u) =u对应的齐次微分方程的特征方程为:『-4 =0解得:* = 2, r 2 二-2故齐次微分方程的通解为: 设 f *(u) =au b ,则 f * (u) =a, f * (u) =0,、 1 * 1代入微分方程解得: a ,b =0,即f (u) u44故 f (u^C 1e 2x C 2e'x 丄4所以 f (u) =2Ge 2u -2C 2ed -丄,f (u^4C 1e 2u 4C 2e ②4因为 f (0) =0, f (0) =0,代入解得:G1,C 2116 1612x1- 2 x1所以 f(u) e e u16 16419、(本题满分10分)2u2uf (u)二 Ge C 2e设函数f(x), g(x)在区间[a,b]上连续,且f(x)单调增加,Omg(x)乞1.x证明:(I) (I) 0 兰 a g(t)dt 兰X —a, X^[a,b];ba+J g(t)dt b(II) f(x)dx » f (x)g(x)dxa -a【考点】定积分中值定理、不等式的证明【详解】(I)【解法一】因为函数g(x)在区间[a,b]上连续,且O_g(x)_1.XX x所以Odt 空g(t)dt » 1dta -a -ax即0 空g(t)dt 乞x「aa【解法二】x由定积分中值定理知:存在(a,b),使得g(t)dt =(x-a)g( J,L a又因为x • [a,b]时0乞g(x)空1,所以0 二(x-a)g( )^(x「a)x即0 g(t)dt _ x - aa【解法三】xx a+[g(t)dt(II )令F(x)「a f(u)g(u)du — .a a f (u)du20、(本题满分11分)设函数f(x) —,[0,1].定义数列1 +xt(x)二f(x),f2(X)二f ( f’X)),…,f n(x)二f (f n4(x)),-记S n是由曲线y = f n (x),直线X =1及X轴所围平面图形的面积,求极限lim nS n. n ?:【考点】定积分求面积、函数求极限【详解】21、(本题满分11分)汙2已知函数f (x, y)满足- 2( y 1),且f (y, y) = (y 1) - (2 - y)ln y.求曲线f (x, y) = 0 所围图形绕直线y =-1旋转所成旋转体的体积• 【考点】偏积分、隐函数、旋转体的体积 【详解】(f2由函数 f (x, y)满足 2(y1)可知:f (x,y)二 y 2 • 2y •「(x)又 f(y,y) =y 2 2y:(y) =(y 1)2-(2-y)ln y所以:(y) =1 -(2 - y)ln y所以 f(x,y)二 y 2 2y 「(x)二 y 2 2y 1 _(2 — x)ln x = (y 1)2 _(2-x)ln x 令 y 1,贝U f(x, y) =0对应的曲线方程为:z 2 =(2-x)lnx ,定义域为[1,2]则曲线f(x,y)=0所围图形绕直线y =-1旋转,即Z 2=(2-X )I nx 绕z =0旋转,所成的旋转体体积22、(本题满分11 分)3 -4'1 _2设A0 1 _1 1,E 为3阶单位矩阵2 0一(I) 求方程组 Ax =0的一个基础解系; (II) 求满足AB =E 的所有矩阵B . 【考点】解线性方程组 【详解】% = -x 4x 2 =2x 4 (I )方程组Ax =0的同解方程组为2 〜,即基础解系为 帆=3x 4 X 4 二 X 4-1(II ) Ax 二的同解方程组为: Ax 的同解方程组为: X2 X1 X3X4■■n、 1 = —X4 —1■-1"■-1x2 =2x4 +121 0的同解方程组为:,即通解为k3+X3 =3X4 +1310丿X4 = X4 + 0、、0丿4 Ax =X[ = —X4 x2=2X4 x3 —3x4X4 =X4X +2 2& -1 3k 。
中国科学院———中国科技大学2010年招收攻读硕士学位研究生入学考试试卷试卷名称:高等数学(A )考生须知:1.本试卷满分150分,全部考试时间总计180分钟。
2.所有答案必须写在答题纸上,写在试卷纸或草稿纸上一律无效。
_____________________________________________________________________一、选择题(每题只有一个答案是正确的,每小题5分,共25分)(1)当0→x 时,xx 1sin1是( )A. 无穷小量B. 无穷大量C. 有界且非无穷小量D. 无穷且非无穷大量 (2)设)(x f 可微且满足12)0()(lim=--→xf x f x ,则曲线)(x f y =在))0(,0(f 处的切线斜率为( )A .2- B. 2 C .21-D.21(3)二元函数),(y x f 在),(00y x 处的两个偏导数存在是),(y x f 在),(00y x 处可微的( )A. 充分条件B. 必要条件C. 充分必要条件D. 既非充分也非必要条件(4)正项级数∑∞=1n n a 收敛的充分条件是( )A .11<+nn a a )(N n ∈ B.1<nn a )(N n ∈C.∑∞=++11)(n n na a收敛 D.∑∞=12n na 收敛(5)下列广义积分中发散的是( ) A.dx x x x ⎰+∞+022)1(ln B. dxx⎰-1211C.dx x x x⎰+∞-12)1(ln D.dx xx ⎰∞++02)1ln(二、填空题(每小题5分,共25分)(1)=---→xx xexx 222sin1lim2________。
(2)曲线x y sin =)0(π≤≤x 和x 轴围成的图形绕x 轴旋转一周的旋转体的体积是____________。
(3)二重积分=++⎰⎰≤+dxdy yx yx y x 122sin sin sin 3sin 2________。