DWI和ADC原理及应用
- 格式:ppt
- 大小:1.34 MB
- 文档页数:19
头颅MRI中不同序列DWI和ADC的区别文章来源于同仁医院影像中心付琳弥散加权成像(DWI)是MR新近发展的一种成像技术,它对水分子的随机运动(布朗运动)非常敏感。
当水分子弥散正常时,其图像显示等信号改变。
当水分子弥散受限制时,DWI上就会出现异常高信号。
DWI上组织的信号强度影响因素1.扩散敏感梯度场的强度2.扩散敏感梯度场持续时间3.两个扩散敏感梯度场的间隔时间4.组织中水分子的扩散自由度•扩散敏感梯度场参数称之为b值•B值=γ2G2δ2(Δ-δ/3 )•γ代表悬磁比;G代表梯度场强度•Δ代表两个梯度场强间隔时间;•δ代表梯度场强持续时间•DWI在临床上最常用于超急性脑梗死的诊断和鉴别诊断•目前,DWI开始广泛应用于MS的活动病灶、部分肿瘤、血肿、肉芽肿及脓肿等病变的诊断•另外,其他脏器如:肝脏、肾脏、乳腺、脊髓及骨髓等可以进行DWI,提供一定的信息急性缺血性脑梗死是一种致死率和致残率均高的常见疾病,影像学的早期诊断有利于尽早挽救可逆性缺血性坏死脑组织,对于指导临床治疗具有非常重要的意义。
常规MRI检查技术不能充分显示缺血的范围和严重程度,新发展的弥散加权成像(DWI)对急性期,特别是超急性期脑缺血的检测表现出极大的优势,为溶栓和神经保护提供了直观、个体化的影像学信息。
在脑梗塞的超急性期及急性期,病变区的病理变化是细胞毒性水肿,缺血区的含水量没有变化,仅仅是细胞内外含水量发生了变化,常规MRI检查往往无阳性表现。
•DWI的信号强度大小由表观弥散系数(ADC)进行定量测定。
通过ADC值的变化可以反映缺血过程的变化以及不同缺血区域的演变规律。
研究表明:从缺血区边缘带到梗塞中心,ADC值逐渐降低。
早期出现ADC值下降的缺血组织最终演变为不可逆性恢复的梗死灶。
•DWI可以鉴别可逆性及不可逆性缺血组织,有助于挽救频死的缺血半暗带组织。
已经证实一些患者在缺血症状后2小时给予静脉溶栓,DWI异常信号范围可以明显缩小,甚至完全消失。
弥散加权成像(DWI和ADC图)原理及临床应用转载自:熊猫放射什么是功能磁共振成像?以常规T1WI和T2WI为主的各种磁共振成像技术,主要显示人体器官或组织的形态结构及其信号强度变化,统称常规MRI检查或常规MR成像序列。
随着MRI系统硬件和软件的发展,相继出现了多种超快速成像序列(如EPI技术),单次采集数据的时间已缩短至毫秒。
以超快速成像序列为主的MRI检查,能够评价器官的功能状态,揭示生物体内的生理学信息,统称为功能磁共振成像,或功能性成像技术(functional imaging techniques)。
这些技术包括弥散加权成像(DWI)、灌注加权成像(PWI),脑功能成像(fMRI),心脏运动和灌注实时成像(real-time imaging),磁共振波谱成像(MRS),全身成像,磁共振显微成像等。
b因子在弥散加权成像中有何作用?弥散(diffusion)是描述水和其他小分子随机热运动(布朗运动)的术语。
宏观看,水分子的净移动可通过表观弥散系数(ADC)描述,并通过应用两个梯度脉冲测量,其成像机制与相位对比MRA类似。
DWI的信号强度变化取决于组织的ADC状态和运动敏感梯度(MPG)的强度。
MPG由b因子(即弥散梯度因子,又称b值)控制。
b因子实际上决定ADC参与构成图像对比度的份额,即弥散权重的程度。
在DWI扫描序列中,如果采用长TR和长TE,且b=0,将形成普通的T2WI对比(SE-EPI)或T2*WI对比(GRE-EPI)图像。
随着b 因子增大(通常为500~1000s/mm2),图像的对比度也由T2权重逐步向弥散权重转变。
当MR图像中病变组织的高信号并非由于T2时间延长,而是反映ADC降低时,就形成所谓的DWI。
是否开启MPG是DWI与常规MRI 的不同点。
如何分析DWI和ADC图?弥散加权序列扫描产生2种图像,即弥散图(DWI)和ADC图。
在弥散图中,病变或受损组织的信号强度往往高于正常组织,而弥散自由度最大区域的信号强度最低,这使病变组织在DWI的信号表现类似于常规“T2WI”。
DWI原理和应用一、DWI的概念 1.定义:弥散又称扩散,是指分子从周围环境的热能中获取运动能量而使分子发生的一连串的、小的、随机的位移现象并相互碰撞,也称分子的热运动或布朗运动。
2. DWI技术就是检测扩散运动的方法之一,由于一般人体MR成像的对象是质子,主要是水分子中的质子,因此DWI技术实际上是通过检测人体组织中水分子扩散运动受限制的方向和程度等信息间接反映组织微观结构的变化。
3. 生物组织内的水分子的扩散分为三大类:细胞外扩散,细胞内扩散,跨膜扩散,且扩散运动受到组织结构、细胞内细胞器和组织大分子的影响。
4. 影响水分子弥散的因素:膜结构的阻挡,大分子蛋白物质的吸附,微血管内流动血液的影响(?)。
5. DWI中的水分子: 1)无创探测活体组织中水分子扩散的唯一方法 2)信号来源于组织中的自由水 3)结合水尽管运动受限,但仍不能产生信号 4)不同组织对自由水扩散限制程度不同 5)产生DWI对比 6)检测组织中自由水限制性扩散的程度6. 常规DWI,主要对细胞外自由水运动敏感 T2WI基础上,施加扩散梯度,组织信号衰减 1)自由水扩散越自由=信号丢失多,DWI信号越低 2)自由水扩散越受限=信号丢失少,DWI信号越高 7. 在均匀介质中,任何方向的弥散系数都相等,这种弥散称为各向同性扩散(eg.脑脊液);在非均匀介质中,各方向的弥散系数不等,这种弥散称为各向异性扩散(eg.脑白质纤维素)。
各向异性扩散在人体组织中是普遍存在的,其中最典型的是脑白质神经纤维束。
水分子在神经纤维长轴方向上扩散运动相对自由,而在垂直于神经纤维长轴的方向上,水分子的扩散运动将明显受到细胞膜和髓鞘的限制。
二、 DWI的原理 1.以SE-EPI序列来介绍DWI的基本原理。
射频脉冲使体素内质子的相位一致,射频脉冲关闭后,由于组织的T2弛豫和主磁场不均匀将造成质子逐渐失相位,从而造成宏观横向磁化矢量的衰减。
除了上述两种因素以外,我们在某个方向上施加一个扩散梯度场,人为在该方向上制造磁场不均匀,造成体素内质子群失相位,然后在施加一个强度与持续时间完全相同的反向扩散梯度场,则会出现两种情况:在该方向上没有位移的质子不会受两次梯度场强的影响而失相位,而移动的质子因两次梯度场引起的相位变化不能相互抵消,而失相位信号衰减。
磁共振成像中DWI,ADC重建的原理是什么?
弥散运动即布朗运动。
弥散运动即布朗运动,是指分子在温度驱使下无规律随机的、相互碰撞、相互超越的运动过程。
常规MRI序列中水分子弥散运动队信号的影响非常小。
DWI是在常规序列的基础上,在XYZ轴三个互相垂直的方向上市价弥散敏感梯度,从而获得反映体内水分子弥散运动状况的MR图像。
在DWI中通常以表观弥散系数ADC描述组织中水分子弥散的快慢,并可得到ADC图。
将每一像素的ADC值进行自然对数运算后即可得到DWI图,因此同一像素在ADC图和DWI图中的信号强度通常相反,即弥散运动快的像素,其ADC值高,在DWI上呈低信号,反之亦然。
核磁共振成像的优点MR 所显示的解剖结构逼真,使病变组织和正常组织均可清晰显示.具有高的软组织对比分辨力.无骨伪影干扰.不用对比剂即可进行血流成像,其多参数成像便于对照比较、并可获得多方位成像对软组织有极好的分辨力。
对膀胱、直肠、子宫、骨、关节、肌肉等部位的检查优于CT通过调节磁场可自由选择所需剖面。
能得到其它成像技术所不能接近或难以接近部位的图像。
对于椎间盘和脊髓,可作矢状面、冠状面、横断面成像,可以看到神经根、脊髓和神经节等。
不像CT只能获取与人体长轴垂直的横断面
•2018-06-05。