统计学计算题(有答案)
- 格式:doc
- 大小:356.50 KB
- 文档页数:5
统计学分组式标准差例题及答案1.一家电子公司研发了10种产品,现在想要评估这些产品的销售情况。
以下是每种产品的销售额(单位:万元):10,15,20,13,18,12,17,16,14,19计算这些产品销售额的标准差。
答案:首先计算平均值:(10+15+20+13+18+12+17+16+14+19)/10=15.4然后逐个计算每个销售额与平均值的差的平方,并求和:(10-15.4)²+(15-15.4)²+(20-15.4)²+(13-15.4)²+(18-15.4)²+(12-15.4)²+(17-15.4)²+(16-15.4)²+(14-15.4)²+(19-15.4)²=77.8最后将求和结果除以n(样本数量),再开根号即可得到标准差。
在本例中,n=10。
√(77.8/10)≈2.792.在一次测试中,50名学生的数学成绩如下(满分100分):78,81,85,90,68,73,76,92,88,84,79,89,80,83,87,71,93,75,82,89, 77,91,86,74,72,84,81,79,69,88,94,72,75,87,91,80,83,77,89,82,93,7 8,86,68,75,73,80,88,90,76,82计算学生的数学成绩的标准差。
答案:首先计算平均值:(78+81+85+90+68+73+76+92+88+84+79+89+80+83+87+71+93+75+82+89+77+91+86+74+72+84+81+79+69+88+94+72+75+87+91+80+83+77+89+82+93+78+8 6+68+75+73+80+88+90+76+82)/50≈81.7然后逐个计算每个数学成绩与平均值的差的平方,并求和:(78-81.7)²+(81-81.7)²+(85-81.7)²+(90-81.7)²+(68-81.7)²+(73-81.7)²+(76-81.7)²+(92-81.7)²+(88-81.7)²+(84-81.7)²+(79-81.7)²+(89-81.7)²+(80-81.7)²+(83-81.7)²+(87-81.7)²+(71-81.7)²+(93-81.7)²+(75-81.7)²+(82-81.7)²+(89-81.7)²+(77-81.7)²+(91-81.7)²+(86-81.7)²+(74-81.7)²+(72-81.7)²+(84-81.7)²+(81-81.7)²+(79-81.7)²+(69-81.7)²+(88-81.7)²+(94-81.7)²+(72-81.7)²+(75-81.7)²+(87-81.7)²+(91-81.7)²+(80-81.7)²+(83-81.7)²+(77-81.7)²+(89-81.7)²+(82-81.7)²+(93-81.7)²+(78-81.7)²+(86-81.7)²+(68-81.7)²+(75-81.7)²+(73-81.7)²+(80-81.7)²+(88-81.7)²+(90-81.7)²+(76-81.7)²+(82-81.7)²≈709.62最后将求和结果除以n(样本数量),再开根号即可得到标准差。
统计学习题答案三、计算题1、某班级40名学生,某门课程考试成绩如下:87 65 86 92 76 73 56 60 83 7980 91 95 88 71 77 68 70 96 6973 53 79 81 74 64 89 78 75 6672 93 69 70 87 76 82 79 65 84试根据以上资料编制组距为10的分配数列。
解:所编制的分配数列如下所示:某班学生某门课程考试成绩分组资料2、某工业局所属10个企业(工厂)计划利润和实际利润如下:单位:万元(1(2)按利润计划完成程度分组,分为三组。
①未完成计划者;②完成计划和超额完成计划10%以内者;③超额完成计划10%以上者。
(3)汇总各组企业数、实际利润和计划利润。
解:(1)根据资料,算得各厂利润计划完成程度指标如下(2)(3)某工业局所属企业利润计划完成情况统计表三、计算题1某企业产量计划完成程度为103%,实际比上年增长5%,试问计划规定比上年增长多少? 解:设计划规定比上年增长x%,则有15%103%100%1%x +=⨯+于是,有 15%%100%100% 1.94%103%x +=⨯-=2某企业计划生产某产品工时消耗较上期降低5%,实际较上期降低4.5%,试确定降低劳动量计划完成程度指标。
解:降低劳动量计划完成程度(%)=100% 4.5%100.5%100%5%-=-实际执行结果表明,降低劳动量还有0.5%没有完成。
3某公司所属甲、乙两分公司销售额资料如下: 金额单位:万元计算上表各空栏数字,并分别说明各是什么类型的指标。
解:表中各空栏数字计算结果如下:金额单位:万元本期计划、本期实际、上期实际三个指标为总量指标;实际比重(%)为结构相对指标;计划完成(%)为计划完成程度相对指标;本期实际为上期实际(%)为动态相对指标。
4某产品按五年计划规定最后一年产量应达到50万吨,计划执行情况如下表:试计算该产品计划完成程度及提前多少时间完成五年计划规定的指标。
[统计学原理计算题答案]统计学计算题及答案【试卷考卷】统计学计算题及答案篇(一):统计学试题及答案一、填空题(每空1分,共10分)1.从标志与统计指标的对应关系来看,标志通常与( )相同。
2.某连续变量数列,其首组为开口组,上限为80,又知其邻组的组中值为95,则首组的组中值为( )。
3.国民收入中消费额和积累额的比例为1:0.4,这是( )相对指标。
4.在+A的公式中,A称为( )。
5.峰度是指次数分布曲线项峰的( ),是次数分布的一个重要特征。
6.用水平法求平均发展速度本质上是求( )平均数。
7.按习惯做法,采用加权调和平均形式编制的物量指标指数,其计算公式实际上是( )综合指数公式的变形。
8.对一个确定的总体,抽选的样本可能个数与( )和( )有关。
9.用来反映回归直线代表性大小和因变量估计值准确程度的指标称( )。
二、是非题(每小题1分,共10分)1.统计史上,将国势学派和图表学派统称为社会经济统计学派。
2.统计总体与总体单位在任何条件下都存在变换关系统计学原理试题及答案统计学原理试题及答案。
3.学生按身高分组,适宜采用等距分组。
4.根据组距数列计算求得的算术平均数是一个近似值。
5.基尼系数的基本公式可转化为2(S1+S2+S3)。
6.对连续时点数列求序时平均数,应采用加权算术平均方法。
7.分段平均法的数学依据是Σ(Y-YC)2=最小值。
8.平均数、指数都有静态与动态之分。
9.在不重复抽样下,从总体N中抽取容量为n的样本,则所有可能的样本个数为Nn个10.根据每对x和y的等级计算结果ΣD2=0,说明x与y 之间存在完全正相关。
三、单项选择题(每小题2分,共10分)1.在综合统计指标分析的基础上,对社会总体的数量特征作出归纳、推断和预测的方法是A.大量观察法B.统计分组法C.综合指标法D.模型推断法2.对同一总体选择两个或两个以上的标志分别进行简单分组,形成A.复合分组B.层叠分组C.平行分组体系D.复合分组体系3.交替标志方差的最大值为A.1B.0.5C.0.25D.04.如果采用三项移动平均修匀时间数列,那么所得修匀数列比原数列首尾各少A.一项数值B.二项数值C.三项数值D.四项数值5.可变权数是指在一个指数数列中,各个指数的A.同度量因素是变动的B.基期是变动的C.指数化因数是变动的D.时期是变动的四、多项选择题(每小题2分,共10分)1.反映以经济指标为中心的三位一体的指标总体系包括A.社会统计指标体系B.专题统计指标体系C.基层统计指标体系D.经济统计指标体系E.科技统计指标体系2.典型调查A.是一次性调查B.是专门组织的调查C.是一种深入细致的调查D.调查单位是有意识地选取的E.可用采访法取得资料3.下列指标中属于总量指标的有A.月末商品库存额B.劳动生产率C.历年产值增加额D.年末固定资金额E.某市人口净增加数4.重复抽样的特点是A.各次抽选互不影响B.各次抽选相互影响C.每次抽选时,总体单位数逐渐减少D.每次抽选时,总体单位数始终不变E.各单位被抽中的机会在各次抽选中相等5.下列关系中,相关系数小于0的现象有A.产品产量与耗电量的关系B.单位成本与产品产量的关系C.商品价格与销售量的关系D.纳税额与收入的关系E.商品流通费用率与商品销售额的关系五、计算题(每小题10分,共60分)要求:(1)写出必要的计算公式和计算过程,否则,酌情扣分。
1、某生产车间30名工人日加工零件数(件)如下: 30 26 42 41 36 44 40 37 37 25 45 29 43 31 36 36 49 3447 33 43 38 42 32 34 38 46 43 39 35 要求:(1)根据以上资料分成如下几组:25—30,30—35,35—40,40—45,45—50,计算各组的频数和频率,编制次数分布表;(2) 根据整理表计算工人平均日产零件数。
(20分)则工人平均劳动生产率为:17.38301145===∑∑fxf x(2)当产量为10000件时,预测单位成本为多少元?(15分)xbx a y n x b n y a x x n y x xy n b c 5.2808010703125.232105.26151441502520250512503210128353)(222-=+==+=⨯+=-=-=-=--=-⨯⨯-⨯=--=∑∑∑∑∑∑∑因为,5.2-=b ,所以产量每增加1000件时,即x 增加1单位时,单位成本的平均变动是:平均减少2.5元 (2)当产量为10000件时,即10=x 时,单位成本为55105.280=⨯-=c y 元>课程的测试,甲班平均成绩为81分,标准差为9.5分;乙班的成绩分组资料如下: 计算乙班学生的平均成绩,并比较甲.乙两班哪个班的平均成绩更有代表性? 解:乙班学生的平均成绩∑∑=fxf x ,所需的计算数据见下表:75554125===∑∑fxf x (比较甲.乙两班哪个班的平均成绩更有代表性,要用变异系数σν的大小比较。
)甲班%65.207549.1549.152405513200)(2======-=∑∑xff x x σνσσ%73.11815.9===xσνσ 从计算结果知道,甲班的变异系数σν小,所以甲班的平均成绩更有代表性。
计算(1)产品产量总指数及由于产量增长而增加的总成本.(2)总成本指数及总成本增减绝对额. 解;(1)产品产量总指数为: %42.1112102342106351120605010060%10550%102100%12000==++=++⨯+⨯+⨯=∑∑qp qkp 由于产量增长而增加的总成本:∑∑=-=-242102340000qp q kp(2)总成本指数为:%62.10721022660501006046120011==++++=∑∑qp qp总成本增减绝对额:∑∑=-=-162102260011qp q p. 解:商品流转次数c=商品销售额a/库存额bba c =商品销售额构成的是时期数列,所以67.23837163276240200==++==∑na a 库存额b 构成的是间隔相等的时点数列,所以33.533160327545552453224321==+++=+++=b b b b b 第二季度平均每月商品流转次数475.433.5367.238===ba c 第二季度商品流转次数3*4.475=13.4251. 2008年某月份甲、乙两市场某商品价格和销售量、销售额资料如下:试分别计算该商品在两个市场上的平均价格. 解:甲市场的平均价格为:04.123270033220027001507001080007350011009007001100137900120700105==++=++⨯+⨯+⨯==∑∑fxf x乙市场的平均价格为74.1172700317900700800120031790013795900120960001051260009590096000126000==++=++++==∑∑xM M x。
第一部分 计量资料的统计描述、最佳选择题1、描述一组偏态分布资料的变异度,以( )指标较好。
A 、全距B 、标准差C 、变异系数D 、四分位数间距E 、方差2.用均数和标准差可以全面描述( )资料的特征。
A .正偏态分布B .负偏态分布C .正态分布D .对称分布E .对数正态分布3.各观察值均加(或减)同一数后( )。
A .均数不变,标准差改变B .均数改变,标准差不变9.最小组段无下限或最大组段无上限的频数分布资料,可用( )描述其集中趋势。
A .均数B .标准差C .中位数D .四分位数间距E .几何均数10.血清学滴度资料最常用来表示其平均水平的指标是()。
A .算术平均数B .中位数C .几何均数D .变异系数E .标准差二、简答题1、对于一组近似正态分布的资料,除样本含量 n 外,还可计算 ,S 和 ,问各说明什么?2、试述正态分布、标准正态分布及对数正态分布的 联系和区别。
3、说明频数分布表的用途。
4、变异系数的用途是什么?5、试述正态分布的面积分布规律。
三、计算分析题1、根据 1999 年某地某单位的体检资料, 116 名正常 成年女子的血清甘油三酯( mmol/L )测量结果如右表, 请据此资料: (1)描述集中趋势应选择何指标?并计算之。
(2)描述离散趋势应选择何指标?并计算之。
( 3)求该地正常成年女子血清甘油三酯的 95%参考值范围。
( 4)试估计该地正常成年女子血清甘油三酯在 0.8mmol/L 以下者及 1.5mmol/L 以下者各占正常女子总人数的百分比。
2、某些微丝蚴血症者 42 例治疗后 7 年用间接荧火抗体试验得抗体滴度如下。
求平均抗体滴度。
C .两者均不变D .两者均改变4.比较身高和体重两组数据变异度大小宜采用(A .变异系数B 5.偏态分布宜用( A .算术均数 B.方差 C .极差 D )描述其分布的集中趋势。
.标准差 C .中位数0 的常数后,(B .标准差C .几何均数 )分布的资料,均数等于中位数。
9.(1)工人日产量平均数: =64.85(件∕人)(2)通过观察得知,日产量的工人数最多为260人,对应的分组为60~70,则众数在60~70这一组中,则众数的取值范围在60~70之间。
利用下限公式计算众数: =65.22(件)(3)首先进行向上累计,计算出各组的累计频数:比较各组的累计频数和330.5,确定中位数在60~70这一组。
利用下限公式计算中位数:(4)分析:由于o e M M x <<,所以该数列的分布状态为左偏。
10.(1)全距R=最大的标志值—最小的标志值=95—55=40(2)∑∑=ff x x ii 平均日装配部件数=73.8(个)462412448.739568.7385248.7375128.736548.7355++++⨯-+⨯-+⨯-+⨯-+⨯-==7.232(件) (3)∑∑==-=ni ini ii ff x x1122)(σ方差46241244)8.7395(6)8.7385(24)8.7375(12)8.7365(4)8.7355(22222++++⨯-+⨯-+⨯-+⨯-+⨯-==98.56(个)(4)%46.138.7393.9%100==⨯=xV σσ标准差系数 13.267281101269084702550430⨯+⨯+⨯+⨯+⨯==∑∑ff x x ii 甲甲企业的平均日产量=81.16(件)1001811042903070850230⨯+⨯+⨯+⨯+⨯==∑∑ff x x ii 乙乙企业的平均日产量=83.2(件)26728)16.81110(126)16.8190(8416.8170256.1815046.1813022222⨯-+⨯-+⨯-+⨯-+⨯-=)()()(41.293==17.13(件)∑∑==-=ni ini i i ff x x 112)(乙乙的标准差σ10018).283110(42).28390(302.83708.283502.2833022222⨯-+⨯-+⨯-+⨯-+⨯-=)()()(76.345==18.59(件).11%21%1006.1813.117%100=⨯=⨯=甲甲甲甲企业的标准差系数:x V σσ%3.322%100.2839.518%100=⨯=⨯=乙乙乙乙企业的标准差系数:x V σσ由计算结果表明:甲企业的标准差系数小于乙企业,因此甲企业工人的日产量资料更有代表性。
9.(1)工人日产量平均数:45 60 55 140 65 260 75 150 85 50660=64.85(件 / 人)(2)通过观察得知,日产量的工人数最多为 260人,对应的分组为 60~70,则众数在60~70这一组中,则众数的取值范围在 60~70 之间。
利用下限公式计算众数:nx fi i i 1nf ii 1众数M °(f mfm 1 )=65.22 (件)(3)首先进行向上累计,计算出各组的累计频数:10.(1)全距 只=最大的标志值一最小的标志值 =95—55=40x f⑵平均日装配部件数x ―」55 4 65 12 75 24 85 6 95 450=73.8 (个)n_X i x f ii 1 n260 140 (260 140 (260 15C)(70 60)660 12330.5比较各组的累计频数和 330.5,确定中位数在60~70这一组 利用下限公式计算中位数:~~2-Sm 1M e L 壬60 660 2002(70 60) 65(件)260⑷分析:由于x M e M o ,所以该数列的分布状态为左偏。
平均差 A.Df ii 1|55 73.8 4 |65 73.8| 12 |75 73.8| 24 |85 73.8 6 |95 73.8 44 12 24 6 4=7.232 (件)⑷标准差系数V-100% x9.93 73.813.46%X i f i30 4 50 25 70 84 90 126 110 28267=81.16 (件)乙企业的平均日产量X 乙xf j 30 2 50 8 70 30 90 42 110 182(X i X) f ii 1nf ii 12 2 2 2 2(55 73.8) 4 (65 73.8)12 (75 73.8) 24 (85 73.8)6 (95 73.8) 4⑶方差4 12 24 6 4=98.56 (个)标准差n(x x)2 f ii 1n、、98.56 9.93(件)13.甲企业的平均日产量x 甲=83.2 (件)(30 81.16)2 4 (50 81.16)2 25 (70 81.16)2 84 (90 81.16)2 126 (110 81.16)228267n(X i x)2f ii 1 niii 1(30 83.22 2 (50 83.22 8 (70 832)30 (90 832)2 42 (110 832)218X100345.76 =18.59 (件)甲企业的标准差系数: V 甲甲100% 17.13 100% 21.11%X 甲81.16乙企业的标准差系数: V 乙乙100% 18.59 100%22.33%X 乙83.2由计算结果表明:甲企业的标准差系数小于乙企业, 因此甲企业 工人的日产量资料更有代表性。
1、某企业制定了销售额的五年计划,该计划要求计划期的最后一年的年销售额应达到1200万元。
实际执行最后两年情况如下表:请根据上表资料,对该企业五年计划的完成情况进行考核。
1、计划完成相对数=1410/1200*100%=117.5%该计划完成相对数指标为正指标,计划完成相对数又大于100%,所以表示该计划超额完成。
从第四年5月至第五年4月的一年的年销售额之和恰好为1200万元,所以该计划在第五年4月完成,提前8个月完成。
2、某地区制定了一个植树造林的五年计划,计划中设定的目标是五年累计植树造林面积为2000万亩。
实际执行情况如下:请对该长期计划的完成情况进行考核。
2、计划完成程度相对数=2100/2000*100%=105%计划完成相对数指标大于100%,且该指标为正指标,所以该计划超额完成截止第五年第三季度累计完成2000万亩造林面积,所以提前1个季度完成3、某班学生统计学课程考试成绩情况如下表:请根据上述资料计算该班统计学课程的平均成绩、成绩的中位数、众数和成绩的标准差。
4、某学校有5000名学生,现从中按重复抽样方法抽取250名同学,调查其每周观看电视的小时数的情4> 样本平均数X= Sxf/Sf-l250/250-5样 ________ __________二>/刀(好予f/(工f—1)二V 1136/249二2. 14抽样平均误差U二s/ Vn=0.14因为F (t) =95%,所以日.96抽样极限误差△二t U 二 1. 96*0. 14=0. 27 区间下限=5-0. 27=4. 73 区间上限二5+0. 27-5. 27全校学生每周平均收看电视的吋间在(4.73,5.27)小时之间,概率保证程度为95%5、某企业对全自动生产线上的产品随机抽取1000件进行检验,发现有45件是不合格的,设定允许的极限误差为 1.32%。
请对全部产品的合格率进行区间估计。
5、样本合格率p=955/1000=95.5% 抽样平均误差u二V pChp)/n= 0.66%因为△=1.32%,所以t= A/ u =2所以F.(.t)-95. 45%区间下限二95. 5%-l. 32%=94. 18%区间上限二95. 5%+l. 32%二96. 82%所以我们以95. 45%的概率估计全部产品和合格率是在(94.18%, 96. 82%)之间。
统计学计算题要求:计算三种产品的成本总指数以及由于单位产品成本变动使总成本使总成本变动的绝=本使总成本变动的绝对额;(-)★标准答案:4. 某厂三个车间一季度生产情况如下:第一车间实际产量为200件,完成计划95%;第二件,完成计划105%,请车间实际产量280件,完成计划100%;第三车间实际产量650根据资料计算:(1)产量计划平均完成百分比;8. 某市场上某种蔬菜早市每斤0.25元,中午每斤0.2元,晚市每斤0.1元,现在早、中、9. 某商店出售某种商品第一季度价格为6.5元,第二季度价格为6.25元,第三季度为6元,第四季度为6.2元,已知第一季度销售额3150元,第二季度销售额3000元,第三季度销10. 某厂生产某种机床配件,要经过三道工序,各加工工序的合格率分别为95.74%,★标准答案:试根据上表已知数据计算空格中的数字(保留一位小数并分别说明⑵、⑹、⑻、⑼栏是何试计算:(1)三种商品的销售额总指数(2)三种商品的价格综合指数和销售量综合指数18. 某自行车车库4月1日有自行车320辆,4月6日调出70辆,4月18日进货120辆,419. 某厂开展增产节约运动后,1月份总成本为10000元,平均成本为10元,2月份总成本为3000元,平均成本为8元,3月份总成本为35000元,平均成本为7.2元,试问,第试计算该地区三种水果的价格指数及由于价格变动对居民开支的影响。
2003年年末定额流动资金占有额为320万元。
根据上表资料,分别计算该企业定额流动资24. 某市2002年社会商品零售额12000万元,2003年增加为15600万元。
物价指数提高要求:(1)计算并填列表中所缺数字。
(2)计算该地区1997—2001年间的平均国民生产总值。
要求:⑴填满表内空格31.★标准答案:3(1)计算平均每个小组的日产量;★标准答案:计算平均每个小组的日产量(产量。
要求:(1)分别计算2000年、2001年的进出口贸易差额;(2)计算2001年进出口总额比例相对数及出口总额增长速度;(3)分析我国进出口贸易状况。
1、甲乙两班同时参加《统计学原理》课程的测试,甲班平均成绩为81分,标准差为9.5分,乙
班的成绩分组资料如下:
按成绩分组学生人数(人)
60以下 4
60~70 10
70~80 25
80~90 14
90~100 2
计算乙班学生的平均成绩,并比较甲乙两班,哪个班的平均成绩更有代表性?
2、某车间有甲乙两个生产组,甲组平均每个人的日产量为36件,标准差为9.6件,乙组工人产
量资料如下:
日产量(件)工人数(人)
15 15
25 38
35 34
45 13
要求:(1)计算乙组平均每个工人的日产量和标准差
(2)比较甲乙两生产小组的日产量更有代表性
3
月份 1 2 3 4 5 6 8 11 12
库存额60 55 48 43 40 50 45 60 68 又知1月1日商品库存额为63万元,试计算上半年,下半年和全年的平均商品库存额。
4
品名单位销售额2002比2001销售量增长(%)
2001 2002
电视台5000 8880 23
自行车辆4500 4200 -7
合计9500 13080
(2)计算由于销售量变动消费者增加或减少的支出金额
5、某商店两种商品的销售额和销售价格的变化情况如下:(万元)
商品单位销售额1996比1995年销售价格提高(%)
1995 1996
甲米120 130 10
乙件40 36 12
要求:(1)计算两件商品销售价格总指标和由于价格变动对销售额的影响绝对值(2)计算销售量总指数,计算由于销售变动消费者增加或减少的支出金额
6、某企业上半年产品量和单位成本资料如下:
要求:(1)计算相关系数,
说明两个变量相关的密切程度 (2)配合回归方程,指出产量每增加1000件时,单位成本平均变动多少? 月份 产量(千克) 单位成本(元) 1 2 73
2 3 72
3 4 71 4 3
73 5 4 69 6
5
68
7、根据企业产品销售额(万元)和销售利润率(%)资料计算出如下数据:(重点题目)n=7 ∑x=18090 ∑y=31.1 ∑2x=535500 ∑2y=174.15
xy =9318
要求:(1)确定以利润为因变量的直线回归方程 (2)解释式中回归系数的经济含义
8、某企业第二季度产品产量和单位成本资料如下:
要求:(1)定量判断产量和单位成本间的相关程度 (2)建立直线回归方程,并说明b 的经济含义 解:(1)所需计算数据见下表: 月份产量单位成本4 5 63 4 573 69 689 16 25219 276 340
合计1221050835 因为,,所以产量每增加1000件时,即增加1单位时,单位成本的平均变动是:平均减少2.5元
月份 产量(千件) 单位成本(元) 4 3 73 5 4 69 6 5 68。