单相桥式全控整流电路设计-(纯电阻负载)word版本
- 格式:doc
- 大小:237.50 KB
- 文档页数:12
1 单相桥式全控整流电路的功能要求及设计方案介绍1.1 单相桥式全控整流电路设计方案1.1.1 设计方案图1设计方案1.1.2 整流电路的设计主电路原理图及其工作波形图2 主电路原理图及工作波形主电路原理说明:(1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。
因此在0~α区间,4个晶闸管都不导通。
(2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。
(3)在u2负半波的(π~π+α)区间,在π~π+α间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。
(4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。
2 触发电路的设计2.1 晶闸管触发电路触发电路在变流装置中所起的基本作用是向晶闸管提供门极电压和门极电流,使晶闸管在需要导通的时刻可靠导通。
根据控制要求决定晶闸管的导通时刻,对变流装置的输出功率进行控制。
触发电路是变流装置中的一个重要组成部分,变流装置是否能正常工作,与触发电路有直接关系,因此,正确合理地选择设计触发电路及其各项技术指标是保证晶闸管变流装置安全,可靠,经济运行的前提。
,开始启动A/D转换;在A/D转换期间,START应保持低电平。
2.1.1 晶闸管触发电路的要求晶闸管触发主要有移相触发、过零触发和脉冲列调制触发等。
触发电路对其产生的触发脉冲要求:(1)触发信号可为直流、交流或脉冲电压。
(2)触发信号应有足够的功率(触发电压和触发电流)。
(3)触发脉冲应有一定的宽度,脉冲的前沿尽可能陡,以使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。
电力电子课程设计单相全控桥式晶闸管整流电路设计(纯电阻负载)院别:机械与电子工程学院专业班级:电气工程自动化0803姓名:徐浩学号:2008011251指导老师:施云2011年1 月6日电力电子课程设计一、设计课题目单相全控桥式晶闸管整流电路设计(纯电阻负载)二、设计要求1、单相全控桥式晶闸管整流电路的设计要求为:负载为阻性负载.2、技术要求:(1).电网供电电压:交流100V/50Hz;(2).输出功率:500W;(3).移相范围:0度—180度;三、课程设计的性质和目的1、性质:是电气信息专业的必修实践环节;2、目的:(1).培养学生综合运用知识解决问题的能力与实际动手能力;(2).加深理解《电力电子技术》课程的基本理论;(3).初步掌握电力电子电路的设计方法。
前言电力电子学,又称功率电子学(Power Electronics)。
它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。
它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。
电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。
随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。
在电能的生产和传输上,目前是以交流电为主。
电力网供给用户的是交流电,而在许多场合,例如电解、蓄电池的充电、直流电动机等,需要用直流电。
要得到直流电,除了直流发电机外,最普遍应用的是利用各种半导体元件产生直流电。
这个方法中,整流是最基础的一步。
整流,即利用具有单向导电特性的器件,把方向和大小交变的电流变换为直流电。
整流的基础是整流电路。
1 单相桥式全控整流电路的功能要求及设计方案介绍1.1 单相桥式全控整流电路设计方案1.1.1 设计方案单相电源输出触发电路保护电路整流主电路负载电路图1设计方案1.1.2整流电路的设计主电路原理图及其工作波形图2 主电路原理图及工作波形主电路原理说明:(1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。
因此在0~α区间,4个晶闸管都不导通。
(2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。
(3)在u2负半波的(π~π+α)区间,在π~π+α间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。
(4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。
2 触发电路的设计2.1 晶闸管触发电路触发电路在变流装置中所起的基本作用是向晶闸管提供门极电压和门极电流,使晶闸管在需要导通的时刻可靠导通。
根据控制要求决定晶闸管的导通时刻,对变流装置的输出功率进行控制。
触发电路是变流装置中的一个重要组成部分,变流装置是否能正常工作,与触发电路有直接关系,因此,正确合理地选择设计触发电路及其各项技术指标是保证晶闸管变流装置安全,可靠,经济运行的前提。
,开始启动A/D转换;在A/D转换期间,START应保持低电平。
2.1.1 晶闸管触发电路的要求晶闸管触发主要有移相触发、过零触发和脉冲列调制触发等。
触发电路对其产生的触发脉冲要求:(1)触发信号可为直流、交流或脉冲电压。
(2)触发信号应有足够的功率(触发电压和触发电流)。
(3)触发脉冲应有一定的宽度,脉冲的前沿尽可能陡,以使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。
电力电子技术实验报告实验名称:单相桥式全控整流电路的仿真与分析班级:自动化091组别: 08 成员:金华职业技术学院信息工程学院年月日一. 单相桥式全控整流电路(电阻性负载) .............................................. 错误!未定义书签。
1. 电路的结构与工作原理 (1)2. 单相桥式全波整流电路建模 (2)3. 仿真结果与分析 (4)4. 小结 (6)二. 单相桥式全控整流电路(阻-感性负载) ............................................. 错误!未定义书签。
1. 电路的结构与工作原理................................................................. 错误!未定义书签。
2. 建模................................................................................................. 错误!未定义书签。
3. 仿真结果与分析............................................................................. 错误!未定义书签。
4. 小结................................................................................................. 错误!未定义书签。
三. 单相桥式全控整流电路(反电势负载)......................................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................. 错误!未定义书签。
单相桥式全控整流电路的设计 一、1. 设计方案及原理1.1 原理方框图1.2 主电路的设计电阻负载主电路主电路原理图如下:Rid1.3主电路原理说明1.3.1电阻负载主电路原理(1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。
因此在0~α区间,4个晶闸管都不导通。
假如4个晶闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。
(2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。
(3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。
(4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。
1.4整流电路参数的计算电阻负载的参数计算如下:(1)整流输出电压的平均值可按下式计算U d=0.45U2(1+cos错误!未找到引用源。
)(1-1)当α=0时,U取得最大值,即d U= 0.9 2U,取2U=100V则U d =90V,dα=180o 时,d U =0。
α角的移相范围为180o 。
(2) 负载电流平均值为I d =U d /R=0.45U 2(1+cos 错误!未找到引用源。
)/R(1-2)(3)负载电流有效值,即变压器二次侧绕组电流的有效值为 I2=U2/R )sin 21(παπαπ-+ (1-3) (4)流过晶闸管电流有效值为 IVT= I2/2 (1-4)二、元器件的选择晶闸管的选取晶闸管的主要参数如下:①额定电压U TN通常取DRM U 和RRM U 中较小的,再取靠近标准的电压等级作为晶闸管型的额定电压。
目录1 引言 (1)2 主要任务 (1)2.1工作原理 (1)2.1.1单相桥式全控整流电路带在阻感负载时的电路及其波形 (1)2.1.2单相桥式全控整流电路带在阻感负载时的工作原理 (2)2.2整流电路的参数计算 (2)2.3触发电路的设计 (4)3 电路仿真 (4)3.1MATLAB软件介绍 (4)3.2仿真图 (5)4.仿真结果及分析 (7)4.1仿真结果 (7)4.2仿真结果分析 (7)5 总结 (7)参考文献 (8)致谢 (9)1 引言整流电路(Rectifier)是电力电子电路中出现最早的一种,它的作用是将交流电能变为直流电能供给直流用电设备。
整流电路的分类(1)按组成的器件可分为不可控、半控、全控三种。
(2)按电路结构可分为桥式电路和零式电路。
(3)按交流输入相数分为单相电路和多相电路。
(4)按变压器二次侧电流的方向是单向或双向,分为单拍电路和双拍电路。
交流-直流变流器又称整流器、AC-DC变流器,其作用是将交流电转变为直流电,一般也称整流,并且在整流的同时还对直流电压电流进行调节,以符合用电设备的要求。
整流电路的仿真可以用powersys模型库中的二极管和晶闸管等模块来构建,对三相整流电路模型库中有6-pulsediode bridge、 6-pulse thyristorbridge、 universalbridge 等模块可以调用,使用这些模块可以使仿真更方便。
复杂的大功率多相整流器可以在三相桥的基础上构建。
2.主要任务2.1工作原理2.1.1单相桥式全控整流电路带阻感负载时的电路(如图1)及其波形(如图2)图1 单相桥式全控整流电路带阻感负载时电路图图2 单相桥式全控整流电路阻感负载时的波形图2.1.2单相桥式全控整流电路带阻感负载时的电路工作原理在电源电压u 2正半周期间,VT1、VT4承受正向电压,若在ωt=α时触发,VT1、VT4导通,电流经VT1、负载、VT4和T 二次侧形成回路,但由于大电感的存在,u 2过零变负时,电感上的感应电动势使VT1、VT4继续导通,直到VT2、VT3被触发导通时,VT1、VT4承受反相电压而截止。
目录1 设计方案及原理 (1)原理方框图 (1)主电路的设计 (1)主电路原理说明 (2)整流电路参数的计算 (2)2 元器件的选择 (3)晶闸管的选用 (3)变压器的选用 (4)3 触发电路的设计 (4)对触发电路的要求 (4)3.2 KJ004 集成触发器 (4)4 保护电路的设计 (5)过电压保护 (6)过电压保护 (6)过电流保护 (7)电流上涨率 di/dt 的克制 (7)4.1.4 电压上涨率 du/dt 的克制 (7)5 仿真剖析与调试 (8)成立仿真模型 (8)仿真结果剖析 (9)心得领会 . (11)参照文件 . (12)附录 . ...................................................... 错误!不决义书签。
单相桥式全控整流电路的设计1设计方案及原理1.1 原理方框图系统原理方框图如1-1 所示:触发电路保护电路驱动电路整流主电路负载图 1-1系统原理方框图1.2 主电路的设计主电路原理图以下列图1-2 所示:图 1-2单相桥式全控整流电路原理图1.3 主电路原理说明在电源电压 u2 正半周时期, VT1、VT4 蒙受正向电压,若在触发角 α 处给 VT1、VT4加触发脉冲, VT1、VT4导通,电流从电源 a 端经 VT1、负载、 VT4流回电源 b 端。
当 u2 过零时,流经晶闸管的电流也降到零, VT1和 VT4关断。
在电源电压 u2 负半周时期,仍在触发延缓角 α 处触发 VT2和 VT3, VT2 和 VT3导通,电流从电源 b 端流出,经过 VT3、 R 、 VT2流回电源 a 端。
到 u2 过零时,电流又降为零, VT2 和 VT3 关断。
今后又是 VT1和 VT4导通,这样循环的工作下去。
该电路的移向范围是0―π。
此外,因为该整流电路带的是反电动势负载,因此不是正半轴的随意时辰都能开通晶闸管的,要开通晶闸管一定在沟通电刹时价大于E 的时候去触发。
1 绪论晶闸管出现前的时期可称为电力电子技术的史前期或黎明时期。
晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组。
并且,其应用范围也迅速扩大。
电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。
晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。
对晶闸管电路的控制方式主要是相位控制式,简称相控方式。
晶闸管的关断通常依靠电网电压等外部条件来实现。
这就使得晶闸管的应用受到了很大的局限。
70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。
全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。
在80年代后期,以绝缘栅极双极型晶体管(IGBT)为表的复合型器件异军突起。
它是MOSFET和BJT的复合,综合了两者的优点。
与此相对,MOS控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)复合了MOSFET和GTO。
电力电子学,又称功率电子学(Power Electronics)。
它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。
它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。
电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。
在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。
本课程体现了弱电对强电的控制,又具有很强的实践性。
能够理论联系实际,在培养自动化专业人才中占有重要地位。
它包括了晶闸管的结构和分类、晶闸管的过电压和过电流保护方法、可控整流电路、晶闸管有源逆变电路、晶闸管无源逆变电路、PWM控制技术、交流调压、直流斩波以及变频电路的工作原理。
设计题目: 单相桥式全控整流电路电阻性负载 设计条件:(1) 电网:380V ,50Hz ;(2) 晶闸管单相桥式全控整流电路;(3) 负载阻值:15Ω;负载工作电压:50V~150V 可调。
设计任务:(1) 电源变压器设计,计算变压器容量、变比、2次侧电压有效值; (2) 晶闸管选择,计算晶闸管额定电压、额定电流; (3) 主电路图设计。
一.主电路图设计和工作原理 1.主电路图及其工作波形单相桥式全控整流电路如图1(a)所示。
电路由四个晶闸管和负载电阻R d 组成。
晶闸管V 1和V 4组成一对桥臂,V 2和V 3组成另一对桥臂。
图 1 单相全控桥式整流电路电阻性负载及其波形(a)电路; (b) 电源电压; (c) 触发脉冲; (d) 输出电压;(e) 晶闸管上的电压; (f) 变压器副边电流T +-u 2+-u 1i 2V 2aV 1V 4V 3bu di dR d(a)0αθu 2ωt (b)u g 0ωt 1ωt 2ωt (c)u d 0ωtωt0u V1,4i 20ωt(d)(e)(f)2. 晶闸管的工作原理通过理论分析和实验验证表明:1) 只有当晶闸管同时承受正向阳极电压和正向门极电压时晶闸管才能导通,两者不可缺一。
2) 晶闸管一旦导通后门极将失去控制作用,门极电压对管子随后的导通或关断均不起作用,故使晶闸管导通的门极电压不必是一个持续的直流电压,只要是一个具有一定宽度的正向脉冲电压即可,脉冲的宽度与晶闸管的开通特性及负载性质有关。
这个脉冲常称之为触发脉冲。
3) 要使已导通的晶闸管关断,必须使阳极电流降低到某一数值之下(约几十毫安)。
这可以通过增大负载电阻,降低阳极电压至接近于零或施加反向阳极电压来实现。
这个能保持晶闸管导通的最小电流称为维持电流,是晶闸管的一个重要参数。
.3.电路工作原理晶闸管V 1和V 4组成一对桥臂,V 2和V 3组成另一对桥臂。
当变压器二次电压U 2为正半周时(a 端为正,b 端为负),相当于控制角a 的瞬间给V 1和V 4以触发脉冲,V 1和V 4即导通,这时电流从电源a 端经V 1 d R V 4流回到电源b 端。
1 引言电力电子技术是利用电力电子器件实现工业规模电能变换的技术,有时也称为功率电子技术。
一般情况下,它是将一种形式的工业电能转换成另一种形式的工业电能。
是建立在电子学、电工原理和自动控制三大学科上的新兴学科。
随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。
要得到直流电,除了直流发电机外,最普遍应用的是利用各种半导体元件产生直流电。
这个方法中,整流是最基础的一步。
整流,即利用具有单向导电特性的器件,把方向和大小交变的电流变换为直流电。
整流的基础是整流电路。
整流电路(Rectifier)是电力电子电路中出现最早的一种,它的作用是将交流电能变为直流电能供给直流用电设备。
典型的单相可控整流电路包括单相半波可控整流电路、单相整流电路、单相全波可控整流电路及单相桥式半控整流电路等。
单相可控整流电路的交流侧接单相电源。
这次课程设计我设计的是单相桥式全控整流电路电阻性负载,与单相半波可控整流电路相比,桥式全控的电源利用率更高一些,应用范围更广泛一些。
2 单相桥式全控整流电路2.1 单相桥式全控整流电路带电阻负载的工作情况分析单相桥式全控整流电路带电阻负载电路如图2-1:图2.1 单相桥式全控整流电路原理图在单相桥式全控整流电路,闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂。
在u2正半周(即a 点电位高于b 点电位),若4个晶闸管均不导通,id=0,ud=0,VT1、VT4串联承受电压u2。
在触发角a 处给VT1和VT4加触发脉冲,VT1和VT4即导通,电流从电源a 端经VT1、R 、VT4流回电源b 端。
当u2过零时,流经晶闸管的电流也降到零,VT1和VT4关断。
在u2负半周,仍在触发角a 处触发VT2和VT3,VT2和VT3导通,电流从电源b 端流出,经VT3、R 、VT2流回电源a 端。
单相桥式全控整流电路电阻负载1. 简介单相桥式全控整流电路是一种常见的电力电子器件,用于将交流电转换为直流电。
它由四个可控硅元件组成,通过适当的触发脉冲控制,实现对交流电的整流和调节。
本文将详细介绍单相桥式全控整流电路在电阻负载下的工作原理、特点和应用。
2. 工作原理单相桥式全控整流电路由四个可控硅元件组成,分别为两个正向可控硅(SCR)和两个反向可控硅。
其拓扑结构如下图所示:+---->----+| |+------+ +------+| | | || SCR1 +---+---+---+ SCR2 || | | | | |+------+---+---+---+------+D1 D2 D3 D4当输入交流电源施加到该电路时,通过适当的触发脉冲,可以实现对正向可控硅和反向可控硅的导通和关断。
在正半周周期内,当SCR1导通时,D1反向偏置,SCR2关断,电流从SCR1、负载和D2依次流过。
在负半周周期内,当SCR2导通时,D4反向偏置,SCR1关断,电流从SCR2、负载和D3依次流过。
通过适当的触发角控制SCR1和SCR2的导通时间,可以实现对输出直流电压的调节。
3. 特点3.1 全控整流单相桥式全控整流电路能够实现对输入交流电的全波整流,并且可以通过调节触发角来控制输出直流电压的大小。
这种全控整流方式使得输出具有较好的稳定性和可调性。
3.2 高效率由于可控硅元件具有较低的导通压降和较高的导通效率,在单相桥式全控整流电路中使用可控硅元件进行整流可以提高系统的能量转换效率。
3.3 适应性强单相桥式全控整流电路适用于各种负载类型,包括阻性负载、感性负载和容性负载等。
无论是纯阻性负载还是复杂的非线性负载,该电路都能够正常工作并提供稳定的输出。
3.4 可靠性高可控硅元件具有较高的耐压能力和较低的温升,因此单相桥式全控整流电路具有较好的可靠性和稳定性。
同时,可控硅元件寿命长,能够满足长时间工作的要求。
1绪论电力电子技术又称为功率电子技术,他是用于电能变换和功率控制的电子技术。
电力电子技术是弱电控制强电的方法和手段,是当代高新技术发展的重要内容,也是支持电力系统技术革命发展的重要基础,并节能降耗、增产节约提高生产效能的重要技术手段。
微电子技术、计算机技术以及大功率电力电子技术的快速发展,极大地推动了电工技术、电气工程和电力系统的技术发展和进步。
电力电子器件是电力电子技术发展的基础。
正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。
而二十世纪九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。
电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。
功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。
电力电子技术在电力系统中的应用中也有了长足的发展,电力电子装置与传统的机械式开关操作设备相比有动态响应快,控制方便,灵活的特点,能够显著地改善电力系统的特性,在提高系统稳定、降低运行风险、节约运行成本方面有很大潜力。
随着科学技术的日益发展,人们对电路的要求也越来越高, 由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能, 是目前获得直流电能的主要方法, 得到了广泛应用。
在电能的生产和传输上,目前是以交流电为主。
电力网供给用户的是交流电,而在许多场合,例如电解、蓄电池的充电、直流电动机等,需要用直流电。
要得到直流电,除了直流发电机外,最普遍应用的是利用各种半导体元件产生直流电。
这个方法中,整流是最基础的一步。
整流,即利用具有单向导电特性的器件,把方向和大小交变的电流变换为直流电,整流的基础是整流电路。
2设计任务2.1设计目的1.加深理解《电力电子技术》课程的基本理论。
单相桥式全控整流电路电阻性负载的设计整流电路是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
因为电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能的变换和控制,而构成的一门完整的学科。
其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好实验和课程设计。
又因为整流电路应用非常广泛,而锯齿波移相触发晶闸管全控整流电路又有利于夯实基础,所以本课程设计主要研究单结晶体管触发的单相桥式全控整流电路。
一、主电路图设计和工作原理1、主电路图图1 单相桥式全控整流主电路单相桥式全控整流电路如图1所示。
电路由四个晶闸管和负载电阻R组成。
晶闸管VT1和VT4 组成一对桥臂,VT2和VT3组成另一对桥臂。
2、晶闸管的工作原理通过理论分析和实验验证表明:<1)只有当晶闸管同时承受正向阳极电压和正向门极电压时晶闸管才能导通,两者缺一不可。
<2)晶闸管一旦导通后门极将失去控制作用,门极电压对管子随后的导通或关断均不起作用,故使晶闸管导通的门极电压不必是一个持续的直流电压,只要是一个具有一定宽度的正向脉冲电压即可,脉冲的宽度与晶闸管的开通特性及负载性质有关。
这个脉冲常称之为触发脉冲。
<3)要使已导通的晶闸管关断,必须使阳极电流降低到某一数值之下<约几十毫安)。
这可以通过增大负载电阻,降低阳极电压至接近于零或施加反向阳极电压来实现。
这个能保持晶闸管导通的最小电流称为维持电流,是晶闸管的一个重要参数。
3、电路工作原理晶闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂。
当变压器二次电压U为正半周时<a端为正,b端为负),相当于控制角的瞬间给VT12和VT4以触发脉冲,VT1和VT4导通,这时电流从电源a端经VT1、R、VT4流回到电源b端。
单相桥式全控整流电路(电阻性负载)————————————————————————————————作者:————————————————————————————————日期:1.单相桥式全控整流电路(电阻性负载)1.1单相桥式全控整流电路电路结构(电阻性负载)单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
单相桥式全控整流电路(电阻性负载)电路图如图1所示:图1 单相桥式全控整流电路(电阻性负载)1.2单相桥式全控整流电路工作原理(电阻性负载)1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个晶闸管的漏电阻相等,则uT1.4= uT2.3=1/2 u2。
2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。
电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(ud=u2)和电流输出,两者波形相位相同且uT1.4=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则uT2.3=1/2 u2。
晶闸管VT1、VT4一直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
此时,uT2.3=uT1.4= 1/2 u2。
4)在u2负半波的ωt=π+α时刻:触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。
此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。
晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。
晶闸管VT1、VT4和VT2、VT3在对应时刻不断周期性交替导通、关断。
1 引言1.1 电力电子简介电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。
电力电子技术分为电力电子器件制造技术和变流技术(整流,逆变,斩波,变频,变相等)两个分支。
整流电路的作用是将交流降压电路输出的电压较低的交流电转换成单向脉动性直流电,这就是交流电的整流过程,整流电路主要由整流二极管组成。
经过整流电路之后的电压已经不是交流电压,而是一种含有直流电压和交流电压的混合电压,习惯上称单向脉动性直流电压。
电源电路中的整流电路主要有半波整流电路、全波整流电路和桥式整流三种。
一般认为,电力电子技术的诞生是以1957年美国通用电气公司研制出的第一个晶闸管为标志的,电力电子技术的概念和基础就是由于晶闸管和晶闸管变流技术的发展而确立的。
此前就已经有用于电力变换的电子技术,所以晶闸管出现前的时期可称为电力电子技术的史前或黎明时期。
1.2 设计要求(单相桥式全控整流电路)设计条件:1.电源电压:交流100V/50Hz2.输出功率:500W3.触发角4.纯电阻负载2 单相桥式全控整流电路(纯电阻负载)2.1 单项桥式全控整流电路带电阻性负载电路分析单项桥式全控整流电路带电阻性负载电路如图(1):图(1)在单项桥式全控整流电路中,晶闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂。
在U2正半周即a点电位高于b点电位,若4个晶闸管均不导通负载电流Id为零,Ud也为零,VT1、VT4串联承受电压U2,设VT1和VT4的漏电阻相等则各承受U2的一半。
若在触发角α处给VT1和VT4加触发脉冲VT1、VT4即导通电流从a端经VT1、R、VT4流回电源b端。
当U2为零时流经晶闸管的电流也降到零VT1和VT4关断。
在U2负半周仍在触发延迟角α处触发VT2和VT3,VT2和VT3的α=0处为ωt=π,VT2和VT3导通电流从电源的b端流出经VT3、R、VT2流回电源a端。
郑州航院机电工程学院电力电子课程设汁一一单相桥式全控整流电路电阻性负我目录一、概述 (2)二、设计任务与要求2.1、设计题目 (2)2.2、设计条件 (2)2.3、设计任务 (2)2.4、注意事项 (3)三、设计方案简介3.1单相桥式全控整流电路电阻性负载主电路 (3)3. 2单相桥式全控幣流电路电阻性负载触发电路的设计 (4)四、相关器件的选型与参数的计算4.1计算控制角的移相范围4. 2变压器参数的确定 (5)4. 3晶闸管参数的确定 (6)4. 4触发电路参数的确定 (7)五、结束语 (8)六、参考文献 (8)郑州航院机电工程学院电力电子课程设计一单柑桥式全控整流电路电阻性负戦一、概述电力电子技术的应用已深入到工业生产和社会生活的各方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效的节约能源,并成为新能源与电网的中间接口。
电力电子器件是电力电子技术发展的基础。
正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。
而二十世纪九十年代各种全控大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。
电力电子技术的应用领域己经深入到国名经济的各个部门以及人们的日常生活。
二、设计任务与要求2. 1设计题目:单相桥式全控整流电路电阻性负载2.2设计条件:(1)电网:380V, 50Hz:(2)晶闸管单相桥式全控整流电路;(3)负载电床在100V-150V之间连续可调:(4)负载电阻20Q ;2.3设计任务:(1)电源变压器设计,计算变压器容臺、变比、2次侧电压有效值,2次侧电压有效值在满足负载最大电压要求下,适当留出裕量,然而裕量不应过大,具体大小由设计人员灵活学握:(2)计算控制角移相范围:(3)计算晶闸管额定电流:(4)计算晶闸管额定电压:(5)设计基于单节晶体管的简易触发电路,要求给出同步变压器参数、稳斥二极管参数、单节晶体管参数;估算隰、C的取值范用:(6)电路图设计,给岀主电路、触发电路相结合的完整电路图。
单相桥式全控整流电路设计-(纯电阻负载)
单相桥式全控整流电路的设计
一、
1. 设计方案及原理 1.1 原理方框图
1.2 主电路的设计
电阻负载主电路主电路原理图如下:
R
id
1.3主电路原理说明
1.3.1电阻负载主电路原理
(1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电
压。
因此在0~α区间,4个晶闸管都不导通。
假如4个晶
闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。
(2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。
(3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状
态,晶闸管VT1、VT4承受反向电压也不导通。
(4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3
→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周
期的方向施加到负载电阻上,负载上有输出电压(ud=-
u2)和电流,且波形相位相同。
1.4整流电路参数的计算
电阻负载的参数计算如下:
(1)整流输出电压的平均值可按下式计算
U d=0.45U2(1+cos)(1-1)当α=0时,
U取得最大值,即d U= 0.9 2U,取2U=100V则U d
d
=90V,α=180o时,
U=0。
α角的移相范围为180o。
d
(2)负载电流平均值为
I d =U d /R=0.45U 2(1+cos )/R (1-2)
(3)负载电流有效值,即变压器二次侧绕组电流的有效值为 I2=U2/R )sin 21(
π
απαπ-+ (1-3) (4)流过晶闸管电流有效值为
IVT= I2/2 (1-4)
二、元器件的选择
晶闸管的选取
晶闸管的主要参数如下: ①额定电压U TN
通常取DRM U 和RRM U 中较小的,再取靠近标准的电压等级作为晶闸管型的额定电压。
在选用管子时,额定电压应为正常工作峰值电压的2~3倍,以保证电路的工作安全。
晶闸管的额定电压 {}RRM DRM TN U U U ,min =
U TN =(2~3)U TM (2-1) U TM :工作电路中加在管子上的最大瞬时电压 ②额定电流I T(AV)
I T(AV) 又称为额定通态平均电流。
其定义是在室温40°和规定的冷
却条件下,元件在电阻性负载流过正弦半波、导通角不小于170°的电路中,结温不超过额定结温时,所允许的最大通态平均电流值。
将此电流按晶闸管标准电流取相近的电流等级即为晶闸管的额定电流。
在实际使用时不论流过管子的电流波形如何、导通角多大,只要其最大电流有效值不大于额定电流的有效值,散热冷却符合规定,则晶闸管的发热、温升就能限制在允许的范围。
在实际使用时不论流过管子的电流波形如何、导通角多大,只要其最大电流有效值不大于额定电流的有效值,散热冷却符合规定,则晶闸管的发热、温升就能限制在允许的范围。
对于电阻负载的单相桥式全控整流电路计算为:
取U2=100V,当α<90°
当0 o时Ud=100V,P=500W,
由P=U2/R得出R=20
带入(1-2)、(1-3)和(1-4)得,
负载电流I2的有效值,即I2=5A
流过晶闸管的电流有效值I VT=3.53A
额定电流I T(AV) =2.25A
则电流定额为1.5的额定电流为3.37A
三、仿真分析与调试
(1)电阻负载的单相桥式全控整流仿真电路图:
分析:单相桥式全控整流电路(电阻性负载)是典型单相桥式全控整流电路,共用了四个晶闸管,两只晶闸管接成共阳极,两只晶闸管接成共阴极,每一只晶闸管是一个桥臂,桥式整流电路的工作方式特点是整流元件必须成对以构成回路,负载为电阻性。
其中晶闸管的触发需要有触发脉冲,本设计触发脉冲选择频率f为
100Hz的触发脉冲,通过调节延迟时间来改变触发延迟角。
波形图分别代表电路输出电压和晶体管VT2上的电压、。
下列波形分别是触发延迟角α为0°、36°、144°时的波形变化。
α=0°时的波形为
α=36°时的波形为
α=144°时的波形为
四、心得体会
通过这次对单相桥式全控整流电路的课程设计,让我对整流电路有了更加清晰的认识,同时也对触发电路和保护电路也有了更深刻的认识,这次课程设计应用到multisim软件,设计时借助multisim 软件进行系统模型仿真,用该软件对该电路进行分析,大大简化了计算和绘图步骤。
书写课程设计说明书时使用WORD软件,使我掌握了许多关于WORD编辑和排版技巧,提高了自身对一些基本软件的应用技能。
总之,这次课程设计不仅增加了我的知识积累,让我有机会将课堂上所学的电力电子理论知识运用到实际中,这次课程设计的每个实验细节和每个数据,都离不开老师您的细心指导。
帮助我能够很顺利的完成了这次课程设计。
由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。
主要参考文献
1、樊立萍,王忠庆.电力电子技术.北京:北京大学出版社,2006
2、徐以荣,冷增祥.电力电子技术基础.南京:东南大学出版社,1999
3、王兆安,黄俊.电力电子技术.北京:机械工业出版社,2005
4、童诗白.模拟电子技术.北京:清华大学出版社, 2001
5、阎石.数字电子技术.北京:清华大学出版社, 1998
6、邱关源.电路.北京:高等教育出版社,1999
单相桥式全控整流电路的设计
洛阳理工学院
题目:
单相全控桥式晶闸管整流电路的设计(纯电阻)
姓名: 李金凯
学院: 电气工程与自动化学院
专业: 电气工程及其自动化
班级: B120405 学号: B12040518 指导教师: 张刚
2015年 6月 5日
课程设计任务书
学生姓名:学号:
指导教师:工作单位:
题目: 单相全控桥式晶闸管整流电路的设计(纯电阻负载)
初始条件:1、电源电压:交流100V/50Hz
2、输出功率:500W
3、移相范围0º~180º
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)
1、根据课程设计题目,收集相关资料、设计主电路、控制电路;
2、用MATLAB/Simulink对设计的电路进行仿真;
3、撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理、
选择元器件参数,说明控制电路的工作原理、绘出主电路典型波形,绘出触发信号(驱动信号)波形,并给出仿真波形,说明仿真过程中遇到的问题和解决问题的方法,附参考资料;
5、通过答辩。
时间安排:2015.6.1-6.5。