地图投影判别
- 格式:ppt
- 大小:5.61 MB
- 文档页数:36
地图学 实验教材李永青 主编资源与环境学院土地资源教研室目录实验一:地图投影的判别 (2)实验二:用等比数列法进行河流的概括、选取 (4)实验三:利用点状符号设计分区统计图表 (5)实验一 地图投影的判别一、目的辨认各类地图投影是为了了解地图投影的变形性质和分布特点,以便于正确使用地图。
通过实习学会判别地图投影的方法。
二、用具地图集、两脚规、直尺、钱币、透明纸。
三、要求从地图集中选择一些常见的地图投影加以辨认,具体包括世界图、东西半球、南北半球、大洲图和一些分国图。
要求将辨认的结果填入记录表格内。
四、实习内容地图投影是地图的数学基础,它直接影响地图的使用,地图是地理工作者不可缺少的工具,有很多地理知识是从地图上获得的,如果在使用地图时不了解投影的特性往往会得出错误的结论。
例如:在小比例尺等角或等积投影图上式算距离,在等角投影图上对比不同地区的面积以及在等积投影图上观察各地区的形状特征等都会得出错误结论。
目前国内外出版的地图,大部分都注明投影的名称。
有的还附有有关投影的资料,这对于使用地图当然是很方便的。
但是也有一些地图没注明投影的名称和有关说明。
因此,需要我们运用有关地图投影的知识来判别投影。
地图投影的辨认,主要是对小比例尺地图而言,大比例持往往是属于国家地形图系列,投影资料一般易于查知。
另外由于大比例尺地图包括的地区范围小,不管采用什么投影,变形都是很小的,使用时可忽略不计。
地图投影的辨认是一项比较复杂的工作,有时比计算一个具体投影还要困难,同时,也不是所有的投影都能采用辨别的方法。
但辨认一般的常用投影并不是很困难的通常按下列步骤进行辨认。
1.根据地图上经纬线的形状确定投影类型。
首先对地图经纬线网作一般观察,应用所学过的各类投影的特点确定其投影是属于哪一类型,如方位、圆柱、圆锥还是伪圆锥、伪圆柱投影等。
判别经纬线形状的方法如下:直线只要用直尺比量便可确认,判断曲线是否为圆弧可将透明纸覆盖在曲线之上,在透明纸上沿曲线按一定间隔定出三个以上的点,然后沿曲线移动透明纸,使这些点位于曲线的不同位置,如这些点处处都与曲线吻合,则证明曲线是圆弧,否则就是其他曲线。
地图投影的判别与选择第五节地图投影的判别与选择⼀、地图投影的判别地图投影是地图的数学基础,它直接影响地图的使⽤。
地图是地理⼯作者不可缺少的⼯具,有很多地理知识是从图上获得的。
如果在使⽤地图时,不了解投影的特性,往往会得出错误的结论。
例如在⼩⽐例尺等⾓或等积投影图上量算距离,在等⾓投影图上对⽐不同地区的⾯积,以及在等积投影图上观察各地区的形状特征等。
⽬前,国内外出版的地图上⼤多数都注明地图投影名称,这对于使⽤地图,当然是很⽅便的。
但是,也有⼀些地图不注明投影名称和有关说明,因此,我们必须运⽤地图投影的知识,根据不同投影的特征——经纬线形状,结合制图区域所在的地理位置、轮廓形状及地图的内容和⽤途等,综合进⾏分析、判断和进⾏必要的量算来判别它们。
地图投影的判别,主要是对⼩⽐例尺地图⽽⾔。
⼤⽐例尺地图往往是属于国家地形图系列,投影资料⼀般易于查知。
另外由于⼤⽐例尺地图包括的地区范围⼩,不管采⽤什么投影,变形都是很⼩的,在使⽤时可以忽略不计。
判别地图投影⼀般是先根据经纬线⽹形状确定投影种类,如⽅位、圆柱、圆锥等,其次是判定投影的变形性质,如等⾓、等积或任意投影。
(⼀)确定投影种类对于常见的地图投影,⼀般还是⽐较容易确定它的种类的,表2-16列出⼀些常见投影,供判别时参考。
判别经纬线形状的⽅法如下:直线只要⽤直尺量度,便可确定。
判断曲线是否为圆弧,可以将透明纸覆盖在曲线之上,在透明纸上沿曲线按⼀定间隔定出三个以上的点,然后沿曲线移动透明纸,使这些点位于曲线的不同位置,如这些点处处都与曲线吻合,则证明曲线是圆弧,否则就是其他曲线。
判别同⼼圆弧与同轴圆弧,则可以量测相邻圆弧间的垂线距离,若处处相等则为同⼼圆弧,否则是同轴圆弧。
(⼆)确定投影的变形性质当已确定投影的种类后,对有些投影的变形性质是⽐较容易判定的。
例如已确定为圆锥投影,那么只须量任⼀条经线上纬线间隔从投影中⼼向南、北⽅向的变化就可以判别变形性质:如果相等,则为等距投影;逐渐扩⼤,为等⾓投影;逐渐缩⼩,为等积投影。
地图投影判别图一:正轴等角方位投影特点:等角方位投影指投影后经线长度比与纬线长度比相等(m=n),是以等角条件决定ρ=f(ψ)函数形式的一种方位投影,ρ代表纬圈半径。
该投影的长度比和面积比随距投影中心愈远而变形愈大。
为使投影区域变形能够得到改善,故采用正轴等角割方位投影。
用途:美国UPS投影,我国设计的全球百万分一分幅地图,在极区均采用正轴等角方位投影。
图二:切圆锥投影特点:视点在地球中心,纬线投影在圆锥面上仍为圆,不同的纬线投影为不同的圆,这些圆都互相平行,经线投影为相交于圆锥顶点的一束直线。
如果将圆锥沿一条母线剪开展为平面,则成扇形,其顶角小于360°,在平面上纬线不再是圆,而是以圆锥顶点为圆心的同心圆弧,经线成为由圆锥顶点向外放射的直线束,经线间的夹角与相应的经度差成正比。
用途:由于圆锥投影具有上述的变形分布规律,因此该投影适于编制处于中纬地区沿纬线方向东西延伸地域的地图,同时,圆锥投影的经纬网又比较简单,所以在中纬度的国家广泛应用。
图三:等距圆锥投影特点:等距圆锥投影上虽然具有长度、面积和角度变形,但变形值却比较小,它的角度变形小于等积圆锥投影,面积变形小于等角圆锥投影。
用途:例如苏联出版的苏联全图。
说明:图二与图三都属于圆锥投影。
圆锥投影的各种变形都是纬度ψ的函数,随纬度变化而变化,而与经度λ无关。
圆锥面与球面相切的切线,或圆锥表面与球面相割的两条割线,即标准纬线。
距标准纬线愈远,其变形愈大。
标准纬线外的变形分布规律均为正变形,而标准纬线之间呈负变形。
图四:正轴等积切圆柱投影特点:正轴等面积切圆柱投影又称“兰勃特等积圆柱投影”。
设将圆柱投影面与球面上赤道相切,按等面积条件,用数学方法将经纬线网投影到圆柱面上。
经线为等距平行直线,纬线为垂直经线的平行直线,纬线间隔随纬度增加而缩小。
角度与长度变形在高纬度地带很显著。
用途:适用于赤道附近地区的地图。
图五:等角圆柱墨卡托投影特点:在等角圆柱投影中,球面上微分圆投影后的图形保持圆形,即一点上的长度比向任何方向均相等。
关于地图学中几种投影的总结类型一、方位投影方位投影是以平面作为投影面,使平面与地球表面相切或相割,并将球面上的经纬线投影到平面上所得到的图形。
方位投影可分为透视方位投影类和非透视方位投影两。
根据投影面和地球球面相切位置的不同,透视投影可分为三种①当投影面切于地球极点时,称为正轴方位投影。
②当投影面切于赤道时,称为横轴方位投影。
③当投影面切于既不在极点也不在赤道时,称为斜轴方位投影。
一、正轴方位投影投影中心为极点,纬线为同心圆,经线为同心圆的半径,两条经线间的夹角与实地相等。
等变形线都是以投影中心为圆心的同心圆。
包括等角、等距变形性质,主要用于制作两极地区图。
1.正轴等角方位投影平射正轴方位投影又叫等角方位投影或球面投影。
投影条件:视点位于球面上,投影面切于极点。
特点:①纬线投影为以极点为圆心的同心圆,纬线方向上的长度比大于1。
赤道上的长度变形比原来扩大1倍。
②经线投影为以极点为圆心的放射性直线束,经线夹角等于相应的经差,沿经线方向上的长度比大于1,赤道上各点沿经线方向上的长度变形比原来扩大1倍。
③这种投影的误差分布规律是,由投影中心向外逐渐增大。
④经纬线投影后,仍保持正交,所以经纬线方向就是主方向,又因为m = n,即主方向长度比相等,⑤没有角度变形,但面积变形较大,在投影边缘面积变形是中心的四倍。
2.正轴等距方位投影等距方位投影属于任意投影,它既不等积也不等角。
投影后经线保持正长,经线上纬距保持相等。
角度、面积等变形线为以投影中心为圆心的同心圆。
在此投影中,球面上的微圆投影为椭圆,且误差椭圆的长半径和纬线方向一致,短半径与经线方向一致,并且等于微圆半径r 又由于自投影中心,纬线扩大的程度越来越大,所以变形椭圆的长半径也越来越长,椭圆就越来越扁了。
等距正轴方位投影常用来做两极的投影。
二.横轴方位投影平面与球面相切,其切点位于赤道上的任意点。
特点:通过投影中心的中央经线和赤道投影为直线,其他经纬线投影后都是对称于中央经线和赤道的曲线1.横轴等距方位投影其特点是在中央经线上从中心向南向北,纬线间隔相等;在赤道上,自投影中心向西,向东,经线间隔是逐渐扩大的。
地图投影的判别不同类型的投影通常具有不同的经纬线特点,因此投影类型可以通过判别经纬线网的形状来确定。
在确定投影类型时,准确区分经纬线是直线与曲线、同心圆弧与同轴圆弧,是非常重要的。
不同的投影具有不同的变形特点。
判别投影的类型和变形性质,是正确使用地图的基础。
由于大比例尺地图通常属于国家基本比例尺地形图,投影简单,易于查知,且包含的制图区域小,无论采用何种投影,变形都很小。
因此,地图投影的判别主要是针对小比例尺地图而言。
判别地图投影,一般先是根据经纬线网的形状确定投影的类型,如方位投影、圆柱投影、圆锥投影等;然后是判定投影的变形性质,如等角、等积或任意投影。
1、确定投影类型不同类型的投影通常具有不同的经纬线特点,因此投影类型可以通过判别经纬线网的形状来确定。
在确定投影类型时,准确区分经纬线是直线与曲线、同心圆弧与同轴圆弧,是非常重要的。
直线只要用直尺比量,便可确定。
判断曲线是否为圆弧,可用点迹法,即将透明纸覆盖在曲线上,在透明纸上沿曲线按一定间距定出3至6个点,然后沿曲线徐徐向一端移动透明纸,若这些点始终都不偏离此曲线,则证明此曲线是圆弧,否则就是其它曲线。
判别纬线是同心圆弧还是同轴圆弧,可量算相邻圆弧间的纬线间隔(即经线长),若处处相等,则证明这些圆弧为同心圆弧,否则便是同轴圆弧。
此外,由于正轴圆锥投影与正轴方位投影的经纬线形状有时可能完全相同,因此,在判别时,可以通过以下两种方法来区分:一是量算相邻两条经线的夹角是否与实地经差相等。
若相等则为方位投影,否则就是圆锥投影;二是分析制图区域所处的地理位置。
若制图区域在极地一带,则为正轴方位投影,若在中纬度地带,则为圆锥投影。
2、确定投影变形性质在确定了投影的类型之后,可以进一步根据经纬线网的图形特征,确定投影的变形性质。
通常,中央经线上纬线间距的变化规律是确定投影变形性质的重要标志。
如已确定某投影为圆锥投影,那么中央经线上的纬线间距如果相等,则为等距投影;如从中部向上下两端逐渐扩大,为等角投影;如从中部向上下两端逐渐缩小,为等积投影。