生物竞赛课件线粒体与叶绿体
- 格式:ppt
- 大小:3.58 MB
- 文档页数:69
线粒体和叶绿体是细胞内两个能量转换的细胞器。
线粒体广泛存在于各类真核细胞中,而叶绿体仅存在于植物细胞中。
它们能将能量转换成驱动细胞进行生命活动所需要的能源。
它们的形态特征主要是呈现封闭的双层膜结构,且内膜经过折叠并演化为极大扩增的内膜为线粒体的氧化磷酸化和叶绿体的光合作用的复杂的化学反应提供了基地与框架。
其次,它围成了一个包含能催化其它细胞生命化学反应的多种酶的内腔(基质)。
线粒体和叶绿体都是高效的产生A TP的精密装置。
尽管它们最初的能量来源有所不同,但却有着相似的基本结构,而且以类似的方式合成A TP。
线粒体和叶绿体都具有环状DNA及自身转录RNA与转译蛋白质的体系。
很多学者把线粒体和叶绿体的遗传信息统称为真核细胞的第二遗传信息系统,或称核外基因及其表达体系。
虽然线粒体和叶绿体具有自己的遗传物质和进行蛋白质合成的全套机构,但组成线粒体和叶绿体的各种蛋白质成分是由核DNA和线粒体DNA或叶绿体DNA分别编码的。
所以线粒体和叶绿体都是半自主性的细胞器。
第一节线粒体与氧化磷酸化1890年,德国科学家Altmann首先在光学显微镜下观察到动物细胞内存在着一种颗粒状的结构,称作生命小体。
1987年Benda重复了以上实验,并将之命名为线粒体。
1904年Meves在植物细胞中也发现了线粒体,从而确认线粒体是普遍存在于真核生物所有细胞中的一种重要细胞器。
1900年Michaelis用詹纳斯绿B(Janus green B)对线粒体进行活体染色,证实了线粒体可进行氧化还原反应。
1912年Kingsbury第一个提出线粒体是细胞内氧化还原反应的场所。
1913年Engelhardt证明磷酸化和氧的消耗耦联在一起。
1943~1950年,Knnedy 和Lehninger进一步证明,柠檬酸循环、氧化磷酸化和脂肪酸氧化均发生在线粒体内。
次年,Lehninger又发现磷酸化需要电子传递。
近20年来,由于生化技术和电镜技术的不断改进和创新,使线粒体的结构与功能的研究有了很大的进展。