Ex. (x,y)R (y,z)R (x,z)R (x,x)R etc.
A1
A It is straight to prove that R is reflexible, symmetric and transitive, so, it is an equivalence relation.
Symmetry
Let A={1,2,3}, RAA {(1,1),(1,2),(1,3),(2,1),(3,1),(3,3)} symmetric. {(1,2),(2,3),(2,2),(3,1)} antisymmetric. {(1,2),(2,3),(3,1)} antisymmetric and asymmetric. {(11),(2,2)} symmetric and antisymmetric. symmetric and antisymmetric, and asymmetric!
• R is reflexive relation on A if and only if IAR
Visualized Reflexivity
A={a,b,c} a
1 0 0 1 1 1 MR 0 1 1
b
c
Symmetry
Relation R on A is Symmetric if whenever (a,b)R, then (b,a)R Antisymmetric if whenever (a,b)R and (b,a)R then a=b. Asymmetric if whenever (a,b)R then (b,a)R (Note: neither anti- nor a-symmetry is the negative of symmetry)