Ch09_IntroductiontoBinomialTrees(金融工程学,华东
- 格式:ppt
- 大小:186.62 KB
- 文档页数:32
Binomial TreesA useful and very popular technique for pricing a stock option involves constructing a binomial tree .1. A one-step binomial modelConsider a European call with $21,1/4K T == and 0$20S =. To simplify analysis, we assume that at the end of three months, we have $22$18T S or =. Hence, the option value is either $1 or $0. The option specified in such a way does not involveuncertainty about the value of the portfolio, hence it’s return must equal the risk-free interest rate.Consider a portfolio consisting of a long position in ∆ shares of the stock and a short position in one call option. Ifa.Stock price goes up from $20 to $22, the share are worth 22∆ and value of the option is $1, so the portfolio value is 22∆ - 1;b.Stock price goes down from $20 to $18, the portfolio is worth 18∆, therefore∆−=∆22118hence 0.25∆=. A riskless portfolio therefore consists of long 0.25 shares and short 1 option. In both cases, the value of the portfolio is $4.5. If the risk-free interest rate is 12%/pa, the present value of the portfolio is0.121/4e−×=4.5 4.367Let f denotes the option price, so the cost of the portfolio today is×−=−200.255f ftherefore f = 0.633. This shows that in the absence of arbitrage, the current value of the option must be $0.633.A GeneralisationNow we assume that at the end of T, S T can move up to S0u, u>1, which give payoff f u, or move down to S0d, d<1, which gives payoff f dS0 fS0u f u S0d f dAt the end of the life of the option, the value of the portfolio is either S 0u ∆ - f u or S 0d ∆ - f d , but they must the sameS 0u ∆ - f u = S 0d ∆ - f d or00u df f S u S d −∆=− (1)In this case the portfolio is riskless and must be equal the risk-free interest rate. The present value of the portfolio is(S 0u ∆ - f u )e -rTand the cost of setting up the portfolio is S 0∆ - f , it then follows:S 0∆ − f = (S 0u ∆ − f u )e -rTorf = S 0∆ − (S 0u ∆ − f u )e -rTSubstituting for ∆ from equation (1), we havef = e -rT [p f u + (1 − p ) f d ) (2) whererT e dp u d −=−For instance, in the previous example, u = 1.1, d = 0.9, r = 0.12, T = 0.25, f u = 1, and f d = 0, we can calculate:0.121/40.90.65231.10.9e p ×−==−therefore:()0.120.250.652310.347700.633f e −×=×+×=which is the same as before.It is important to note that in this discussion we do not involve the probabilities of the stock price moving up or down.2Risk-neutral ValuationThough equation (2) is derived without assumption about probabilities of up and down movements, it is natural to interpret p and (1 −p) as the probabilities of an up and down movements in stock price. Thereforep f u+ (1 −p) f dis the expected payoff from the option. With this interpretation of p, equation (2) then states that the value of the option today is its expected future value discounted at the risk-free rate (see the derivation of Black-Scholes solution).On the other hand, with p being the probability of moving up, the expected stock price at time T, E(S T), is given byE(S T) = p S0u + (1 −p) S0dSubstituting from equation (2) for p, this reduces toE(S T) = S0e rT (3) showing that the stock price grows, on average, at the risk-free rate. Setting the probability of the up movement equal to p is equivalent to assuming that the return on the stock equals the risk-free rate. This result is based on risk-neutral principle, which states that expected return on all securities is the risk-free interest rate.Returning to the previous example, let p be the probability of moving up, then p must satisfy22p + 18(1 −p) = 20e0.12×0.25or 4p = 20e0.12×0.25− 18, and hence, p = 0.6523.At the end of the three months, the call option has a 0.6523 probability of being worth 1 and 0.3477 probability of being worth 0, so its expected value is0.6523×1 + 0.3477×0 = 0.6523Discounting at the risk-free rate, the present value of the option is$0.6523e−0.12×0.25 = $0.633.Hence, no-arbitrage and risk-neutral give the same answer.3 Two-step Binomial TreesThe upper number is S; the lower number is f . The start priceis $20 and in each of two time steps may go up or down byDEF24.2 3.219.8 0.0 16.2 0.010%. Each time step is three months long, and the risk-free interest rate is 12%/pa, and K = $21. Clearly, at node D the option price is $24.2 − $21 = $3.2, but at nodes E and F the option is out of the money and its value is zero.At node C, the option price is 0, using the notation introduced before, u = 1.1, d = 0.9, r = 0.12, and T = 0.25, so that p = 0.6523, and from equation (2) at B:e−0.12×0.25(0.6523×3.2 + 0.3477×0) = 2.0257We now calculate the option price at the initial node A. Similarly, we havee−0.12×0.25(0.6523×2.0257 + 0.3477×0) = 1.2823A GeneralisationWe now assume that S0 is the initial price and the time step is δt years. The following notations are self-explained:f u = e-rδt[p f uu+ (1 −p) f ud) (4)f d = e-rδt[p f ud+ (1 −p) f dd] (5)f = e-rδt[p f u+ (1 −p) f d] (6) Substituting (4) and (5) into (6), we havef = e-2rδt[p2f uu+ 2p(1 −p) f ud+ (1 −p) f ud] (7) We explain this in the following diagram:Stock and option prices in a general two-step treeS 0u 2f uuS 0udf udS 0d 2f ddS fFollowing the derivation of equation (3), we can obtain similar result based on the principle of risk-neutral valuation. The values p2, 2p(1 − p), and (1 −p)2 are the probabilities that the upper, middle, and lower final nodes will be reached. The option price is equal to its expected payoff in a risk-neutral world discounted at the risk-free interest rate given in equation (7).4 A Put Option ExampleThe procedures described above are applicable to any deriva-tive dependent on a stock whose price changes are binomial. Consider a two-year European put option on a stock with spotprice S = $50 and K = $52 and r = 5%. We suppose there are two time steps and in each case the stock price either moves up or down by a proportional amount of 20%:72 0 48 432 20So, u = 1.2, d = 0.8, the risk-neutral probability p is given by0.0510.81.20.8rTe d ep u d×−−==−−The possible final stock prices are: $72, $48 and $32, and in this case f uu = 0; f ud = 4, and f dd = 20, from equation (7):f = e−2×0.05×1(0.62822×0 + 2×0.6282×0.3718×4 + 0.37182×20) = 4.1923This result can be equally obtained using equation (6) and working back through the tree one step at a time.5 American OptionsWe now consider the above put option again with the same condi- tions. But it’s now an American. We evaluate it using a binomial72 048 432 20tree. The procedure is to work back through the tree from the end to the beginning, testing at node if early exercise being optimal. The stock prices and their probabilities are unchanged. The values for the option at the final nodes are also unchanged. At B, early exercise leads to negative payoff, so from equation (2) the value of the option is 1.4147. At C, equation (2) gives the value of the option as 9.4636. But early exercise at K = $52 leads to a payoff of $12, which is the optimal value of the option. Finally, at A, equation (2) givese−0.05×1(0.6282×1.4147 + 0.3718×12) = 5.0894But if exercise at A the payoff is $2, which is clearly not optimal. So the value of the option is $5.0894.6 DeltaIn deriving the Black-Scholes equation, we knowV S ∂∆=∂It is an important parameter in the pricing and hedging of options. In general we define the delta of a stock option is the ratio of the change in the price of the stock option to the change in the price of the underlying stock. In the following case:The delta of the above call option is:100.252218−=−Stock price = $22 Option price = $1 Stock price = $18 Option price = $0In the example of European put option, the delta at the end of the first time step is1.41479.46360.40246040−=−− and is either040.16677248−=−− or4201.00004832−=−−at the end of the second time step. Clearly, delta changes overthe two time steps. Thus, in order to maintain a riskless hedge using an option and the underlying stock, we need to adjust our holdings in the stock periodically.7Matching Volatility with u and dIn above discussion, values of u and d are given. But in practice, they are chosen to match the volatility of the stock price. We suppose that the expected return (in the real world) on a stock is µand it volatility is σ. The step length is δt, and the stock price goes up by a proportional amount u or goes down by d. The probability of an up movement (in the real world) is assumed to be q.Stock price change in (a) the real world, and (b) the risk-neutral world The expected stock price at the end of the first time step is S 0e µδt. But on the binomial tree the expected stock price at thisS 0u S 0dtime is:qS 0u + (1 − q ) S 0dEquating the two stock prices:qS 0u + (1 − q ) S 0d = S 0e µδt ort e dq u d µδ−=− (8)As stock return follows an Itô process, its variance over the period of δt is σ2δt. But on the tree in (a), the variance of the return isqu 2 + (1 − q )d 2 − [qu + (1 − q )d ]2Equating the two variancesqu 2 + (1 − q )d 2 − [qu + (1 − q )d ]2 = σ2δt (9) Substituting (8) into (9), we havee µδt (u + d ) − ud − e 2µδt = σ2δt Ignoring high order terms of δt , we can solve the above equation by,u ed e σσ−== (10)In our previous analysis we show that we can replacethe tree in (a) by that in (b) that represents the of risk-neutral. The probability p can be expressed asr t e dp u d δ−=−The expected stock price is S 0e r δt . The variance of the stockprice return ispu 2 + (1 − p )d 2 − [pu + (1 − p )d ]2 = e µδt (u + d ) − ud − e 2µδt Substituting for u and d from (10), we find this equals σ2δt when higher order terms of δt are ignored.This analysis shows that when we move from the real world to the risk-neural world the expected return on the stock changes, but its volatility remains the same (at least in the limit as δt tends to zero). This is an illustration of an important general result known as Girsanov’s theorem.The binomial models presented so far have been unrealistically simple. In real practice, the life of the option is typically divided into 30 or time steps of length δt. In each time step there is a binomial stock price movement. This means that 31 terminal stock prices and 230, or about 1 billion, possible stock prices paths are considered.。
two period binomial tree证明
两期二项树是在金融衍生品定价中经常用到的工具,特别是在期权定价中。
在证明二项树的情况下,我们通常使用离散时间的风险中性定价原理,以下是两期二项树的基本证明步骤:
假设有一个在两期内的期权,期权在第一期可能有两个状态:上涨(U)和下跌(D)。
在第二期,这两个状态仍然存在。
我们考虑一个风险中性的市场,即在不考虑风险的情况下,市场中所有的资产的期望回报率相同。
1.设定参数:
-设定期初资产价格为S。
-设定上涨因子为U,下跌因子为D,其中U>1,D<1。
-设定无风险利率为r,时间间隔为Δt。
2.构建二项树:
-在第一期结束时,资产价格可能是S*U或S*D。
-在第二期结束时,对于上涨状态,资产价格可能是S*U*U或S*U*D;对于下跌状态,资产价格可能是S*D*U或S*D*D。
3.计算期权价格:
-在第二期结束时,计算期权的支付。
这可能涉及到看涨期权和看跌期权的不同计算方式。
-对于欧式期权,一般取期权在第二期结束时的支付的期望折现值。
4.风险中性定价:
-根据风险中性定价原理,计算一个无套利的期初期权价格,使得在两种状态下的期权价格期望与实际期权价格相等。
以上是两期二项树的基本证明步骤。
这种方法可以推广到更多期数的二项树,并且在实际金融工程中得到广泛应用。
在具体的期权定价问题中,可能需要根据不同的期权类型和特定情境进行调整。
binomial_tree函数-回复什么是binomial tree函数?如何使用它进行期权定价?Binomial tree函数是金融领域中用于计算期权定价的一种数学模型。
它基于二项分布的观点,将时间划分为离散的步骤,并利用概率理论对期权价格进行建模。
在这篇文章中,我们将一步一步回答以下问题:什么是二项分布?如何构建一个二叉树模型?如何使用binomial tree函数计算期权定价?1. 什么是二项分布?二项分布是概率论中的一种离散概率分布。
它的特点是有固定次数的独立重复实验,每次实验的结果只有两种可能性,通常用成功或失败来表示。
成功的概率为p,失败的概率为(1-p)。
而二项分布的概率函数可以用以下公式定义:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,X表示成功次数,k表示成功的次数,n表示总的实验次数,C(n, k)表示组合数。
2. 如何构建一个二叉树模型?在期权定价中,二叉树模型被广泛应用。
它将时间划分为离散的步骤,每个步骤对应于树中的一个节点。
树的根节点表示期权的当前价格,每个节点都有两个分支,分别表示价格上涨和价格下跌的情况。
通过在树的每个节点上应用二项分布的公式,可以计算出该节点对应的期权价格。
首先,确定模型的参数,包括期权的成熟期、每个步骤的时间间隔、股票价格上涨和下跌的因子、以及每个节点的利率和分红率。
然后,从树的倒数第二层开始计算期权价格。
对于每个节点,分别计算其上涨价格和下跌价格,并将它们与对应的概率相乘,最后对两者进行贴现得到期权的价格。
递归地向上计算,直到达到根节点得到最终的期权价格。
3. 如何使用binomial tree函数计算期权定价?binomial tree函数是一种被广泛应用的计算期权定价的工具。
它可以使用前述的二叉树模型来计算期权价格。
根据不同的编程语言和工具包,具体使用该函数的方法可能会有所不同。
在这里,我们将以Python编程语言为例,简要介绍如何使用binomial tree函数进行期权定价。
binomial_tree函数“binomial_tree函数”是指在计算金融衍生品价格时常用的一种数学模型,被广泛运用于期权定价和风险管理等领域。
它基于二项式模型建立,通过离散时间模拟市场价格的演变,推算出衍生品的理论价格。
本文将从介绍二项式模型的基本原理开始,逐步解析“binomial_tree函数”的实现步骤,并探讨其应用场景和局限性。
首先,我们来了解一下二项式模型的基本原理。
二项式模型假设市场价格在每个时间步长内有两个可能的取值,即上涨或下跌。
通过设定上涨因子和下跌因子,可以构建一个二叉树形式的价格演变路径,其中每个节点代表一种可能价格。
二项式模型通过层层回溯计算,从最后一个节点向前推算,可以得到该衍生品的理论价格。
在实际应用中,我们通常使用“binomial_tree函数”来计算期权价格。
这个函数的输入包括:标的资产价格(即当前市场价格)、执行价格、到期时间、无风险利率、上涨因子、下跌因子和期权类型等参数。
其中,上涨和下跌因子可以从市场数据中推算得到。
下面,我们将逐步解析“binomial_tree函数”的实现步骤。
首先,我们可以构建一个空的二叉树,其中根节点为标的资产价格。
然后,从倒数第二层开始,根据上涨和下跌因子计算每个节点的价格。
具体来说,对于每个节点,可以通过将根节点价格乘以上涨因子或下跌因子来得到其对应的上涨或下跌价格。
接着,我们可以计算每个节点的期望价格,即上涨价格和下跌价格的加权平均值。
这样,我们可以在二叉树的每个节点上计算出对应的价格,并逐层向上回溯,最终得到期权的理论价格。
在实际应用中,我们可以通过编程语言(如Python或Matlab)来实现“binomial_tree函数”。
具体来说,我们可以使用循环结构逐层计算每个节点的价格,并将结果保存在一个二维数组中。
在计算过程中,我们还可以考虑早期行权的情况,即如果期权在中途被行权,我们可以使用行权价和标的资产价格的差值来代替期权价格。