2016年第十四届走美杯四年级初赛B卷
- 格式:docx
- 大小:842.77 KB
- 文档页数:4
第十一届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学四年级试卷(B 卷)一、填空题Ⅰ(每题8分,共40分) 1.40261254317⨯⨯+=_________.2.规定A ※B (3)(2)A B =+⨯-,12※17=_________.3.小宇春看一本故事书,每天看15页,24天刚好看完;如果每天多看3页,_________天可以看完.4.如图;一张桌子坐6人,两张桌子并起来可以坐10人,三张桌子并起来可以坐14人,照这样10张桌子排成两排,每排5张桌子,可以坐_________人.5.一瓶可乐2.5元,3个空瓶可以再换一瓶可乐,有30元,最多可以喝到_________瓶可乐.二、填空题Ⅱ(每题10分,共50分)6.三个连续的偶数,它们的平均数能被三个不同的质数整除,这三个偶数中最小的数最小是_________. 7.甲、乙看一本120页的书,10月1日开始,甲每天读8页;乙每天读13页,但是他每读两天就停一天.10月7日长假结束时,甲、乙二人_________比_________读得多_________页.8.一个数介于2013至2156之间,它除以5、11、13这三个数所得的余数相同,这个余数最大是_________.9.右面的算式是由1~9九个数字组成的,其中“7”已填好,请将其余各数填入□,使得等式成立.10.一天,奇奇到动物园,他看到猴子,熊猫和狮子三种动物,这三种动物总数量在26~32之间,猴子和狮子的总数量比熊猫的数量多.熊猫和狮子的总数量比猴子数量的2倍多,猴子和熊猫的总数量比狮子的3倍还要多.熊猫的数量比狮子的数量的1倍少.熊猫有________只.三、填空题Ⅲ(每题12分,共60分)11.如图,在ABC △中,M 是边AB 的中点,N 是边AC 上的三等分点,CM 是BN 相交于点K .若B C K△的面积等于1,则ABC △的面积等于________.7-=-=÷12.甲、乙二人分别从A、B两地同时出发匀速相向而行,8小时两人相遇,若两人每小时都多走2千米,则6小时两人就相遇在距离AB中点3千米的地点,已知甲比乙行得快,那么甲原来每小时行________千米.13.在算式987654321+-⨯÷+-⨯÷中任意加括号,使得计算结果N是自然数,N的最小值是________.14.有一个十位数,从左往右数,它的第一位是几,这个十位数中就有几个0;它的第二位是几,这个十位数中就有几个1;它的第三位是几,这个十位数中就有几个2;……;它的第十位是几,这个十位数中就有几个9.这个十位数是________.15.请对55⨯表格黑白染色的情况各不相同(不允许⨯表格中的25个格子进行黑白染色,使得其中每个22旋转和翻)_________.第十一届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学四年级试卷(B卷)参考答案1 2 3 4 5 6 7 82013317 225 20 44 18 28 乙、甲、9 49 10 11 12 13 14 15见解析无解 4 6.5 1 6210001000 见解析参考解析一、填空题Ⅰ(每题8分,共40分)1.40261254317⨯⨯+=_________.【考点】速算巧算【难度】☆【答案】2013317【解析】原式40265003172013003172013317=⨯+=+=.2.规定A※B(3)(2)=+⨯-,12※17=_________.A B【考点】定义新运算【难度】☆【答案】225【解析】原式(123)(172)225=+⨯-=.3.小宇春看一本故事书,每天看15页,24天刚好看完;如果每天多看3页,_________天可以看完.【考点】基本应用题【难度】☆【答案】20【解析】全书共有1524360÷+=(天).⨯=(页),360(153)204.如图,一张桌子坐6人,两张桌子并起来可以坐10人,三张桌子并起来可以坐14人,照这样10张桌子排成两排,每排5张桌子,可以坐_________人.【考点】基本应用题【难度】☆【答案】44【解析】每排可以坐45222⨯=(人).⨯+=(人),222445.一瓶可乐2.5元,3个空瓶可以再换一瓶可乐,有30元,最多可以喝到_________瓶可乐. 【考点】最值问题 【难度】☆☆【答案】18【解析】30 2.512÷=(瓶),不断地用空瓶换可乐,1234÷=(瓶),4311÷= ,这时有两个空瓶子,找店主借1个空瓶,可以换一瓶可乐,最后喝完后再把瓶子还给店主,1241118+++=(瓶).二、填空题Ⅱ(每题10分,共50分)6.三个连续的偶数,它们的平均数能被三个不同的质数整除,这三个偶数中最小的数最小是_________. 【考点】组合最值 【难度】☆☆【答案】28【解析】三个连续偶数的平均数就是中间数,三个最小的质数是2、3、5,中间数23530⨯⨯=,最小的数是30228-=.7.甲、乙看一本120页的书,10月1日开始,甲每天读8页;乙每天读13页,但是他每读两天就停一天.10月7日长假结束时,甲、乙二人_________比_________读得多_________页. 【考点】应用题——周期问题 【难度】☆☆【答案】乙、甲、9【解析】甲共读7856⨯=(页),7321÷= ,725-=(天),乙共读了13565⨯=(页),所以乙比甲多读了65569-=(页).8.一个数介于2013至2156之间,它除以5、11、13这三个数所得的余数相同,这个余数最大是_________. 【考点】余数问题 【难度】☆☆☆【答案】4【解析】先找出2013至2156之间同时是3个数倍数的数,51113715⨯⨯=,71532145⨯=,余数不能超过除数,所以余数最大可以是4,此时这个数是214542149+=.9.右面的算式是由1~9九个数字组成的,其中“7”已填好,请将其余各数填入□,使得等式成立.【考点】组合、数字谜 【难度】☆☆☆【答案】【解析】从最后一个空入手,只能填8或9,填8时不可能满足前面的除法算式,所以只能填9,说明第一个除法算式的商是2,百位只能填1,两位数的十位一定大于5,只能填6或8,继续补充完整,可得到上述两种答案.10.一天,奇奇到动物园,他看到猴子,熊猫和狮子三种动物,这三种动物总数量在26~32之间,猴子和狮子的总数量比熊猫的数量多.熊猫和狮子的总数量比猴子数量的2倍多,猴子和熊猫的总数量比狮子的3倍还要多.熊猫的数量比狮子的数量的1倍少.熊猫有________只. 【考点】不定方程7-=-=÷93546821÷=-=-77-=-=÷12864539【难度】☆☆☆【答案】无解【解析】此题有问题,对上述题目做一下分析:设猴子、熊猫和狮子分别是x 、y 、z 只,根据题意得:263223x y z x z y y z x x y z y z≤++≤⎧⎪+>⎪⎪+>⎨⎪+>⎪<⎪⎩由3x y z +>和y z <得,2z x <由x z y +>得,3y z <;而(3)中24y z x z +>>,即3y z >,矛盾.三、填空题Ⅲ(每题12分,共60分)11.如图,在ABC △中,M 是边AB 的中点,N 是边AC 上的三等分点,CM 是BN 相交于点K .若B C K△的面积等于1,则ABC △的面积等于________.【考点】几何、面积比例 【难度】☆☆☆【答案】4【解析】连接AK ;由于M 是AB 的中点,由燕尾模型知△BKC 由于N 是AC 上靠近C 的三等分点,由燕尾模型知△AKB 的面积为△BKC 面积的2倍;故△ABC 的面积为△BKC 面积的1124++=倍,答案为4.12.甲、乙二人分别从A 、B 两地同时出发匀速相向而行,8小时两人相遇,若两人每小时都多走2千米,则6小时两人就相遇在距离AB 中点3千米的地点,已知甲比乙行得快,那么甲原来每小时行________千米.【考点】行程问题 【难度】☆☆☆【答案】6.5【解析】()8(22)6V V V V +⨯=+++⨯甲乙甲乙推出12V V +=甲乙千米每时,全长为72千米;又后一次的6小时两人有路程差326⨯=千米,故=66=1V V -÷甲乙千米每时,求得(121)2 6.5V =+÷=甲千米每时.13.在算式987654321+-⨯÷+-⨯÷中任意加括号,使得计算结果N 是自然数,N 的最小值是________. 【考点】巧填算符 【难度】☆☆☆【答案】1【解析】为了削减第一个乘号的效果,要使这个乘号的乘数缩小,于是想到其左侧可把“87-”括起来;为了发挥第一个除号的效果,要把“9”放在被除数范围内,于是想到:“[]9(87)65+-⨯÷”;最后的除号由于除数是1无法改变,故实际没有利用之处,后半部想继续缩减结果的话,应利用减号,发现不加括号已经是最好的效果;最终,[]9(87)6543211+-⨯÷+-⨯÷=是最小结果.14.有一个十位数,从左往右数,它的第一位是几,这个十位数中就有几个0;它的第二位是几,这个十位数中就有几个1;它的第三位是几,这个十位数中就有几个2;……;它的第十位是几,这个十位数中就有几个9.这个十位数是________. 【考点】数论、逻辑推理 【难度】☆☆☆☆ 【答案】6210001000【解析】设这个数是0129a a a a ,那么由数字和可知:012901290129a a a a a a a a ++++=⨯+⨯+⨯++⨯ ,化简得:02349238a a a a a =+++ ;又012910a a a a ++++= ,综上易得6a 、7a 、8a 、9a 只可能全为0或有3个0和1个1,并且0a 是最大数; 91a =时只能09a =,1a 无法填出,不成立; 81a =时只能08a =,1a 无法填出,不成立; 71a =时只能07a =,1a 无法填出,不成立;61a =时只能06a =,1a 不能填1,至少填2,此时21a =,成立,此数为6210001000; 1a 填3以上的数时会造成数字和超过10,不成立;若6a 、7a 、8a 、9a 全为0,那么0a 至少是4,且一定不超过5,再结合023452349a a a a a =+++≤知4a 、5a 中必然有一个数是1,另一个数是0,即此数为1234100000a a a 或1235010000a a a ;但是这两种情况都无法填出;综上,本题有唯一答案6210001000.15.请对55⨯表格中的25个格子进行黑白染色,使得其中每个22⨯表格黑白染色的情况各不相同(不允许旋转和翻)_________.【考点】组合,染色 【难度】☆☆☆☆☆【答案】见解析【解析】若在22⨯方格中确定了一个角的颜色,其他3格有8种可能性.以左上角的44⨯大方格为例,里面每个格都可以作为一个22⨯的左上角,根据抽屉原理,左上角同一色的22⨯块不超过8个. 故而在每个44⨯的大方格都染有8黑8白,继而可以推出每条边上14⨯的方格都是黑白数相同,即2黑2白,故而四个角一定是同色.不妨设四个角都是白色,那么四条边中心三个都是2黑1白.四个角的格子会在1个22⨯的正方形中用到,四条边中间的格子会在2个中用到,中心33⨯的格子会在4个中用到.16种22⨯的染法共需用32黑32白,故而中心9格中有5白4黑. 若22⨯的上半部分是2白,那么下半部分有4种可能.下半部分2白同理,故而横向连续的2白有4或5组,其中若第一行有则最后一行一定有,为5组,第一行没有则最后一行也没有,为4组.若第一行和最后一行都没有2白组,那么白色22⨯正方形一定在中间三行,继而可得一定在中间33⨯内,要满足有4个2白组的条件,又不能出现一行3连白和一行3连黑直接相邻,试验可知不存在满足情况的条件.所以第一行和最后一行都有2白组.同理,最左边列和最右列都有纵向2白组.所以每条边中间都一定是黑色.继而可知横向2黑组和纵向2黑组都各有5组.由对称性,不妨设第一行左到右为“白白黑黑白”,由于有一个黑正方形,要么和某个边的两黑相连,要么就在中心33⨯,那么中心部分剩下5个都是白色,根据之前的要求,只有右⨯.若在中心33图一种填法,易知产生矛盾,不满足要求.故而黑正方形和某边两黑相连.那么由对称性,将已经确定的填好,如右下图所示.考虑A处,若为黑,那么B处为白,C处为黑,矛盾;故而A处只能为白.在此基础上,对黑色剩下5个块进行试验,可以得到满足要求的解:.。
第十三届走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学四年级试卷(B 卷)2015年3月8日南京填空题I (每题8分,共40分)1 计算 5X13X31 X73X137= _________________【解析】:本题考查多位数乘法的计算。
直接列式子计算。
2、用1个1、2个2、2个3组成一些4位数,则能够组成的不同 4位数一共有【解析】:本题考查排列组合。
1,2,2,3,3五个数字拿岀 1或2或3。
有①2233②1223③1233这三种组合。
分析第 ①种,当两个 2连在一起, 3223 3322两个2中间隔一个数,2323 3232两个2中间隔两个数 2332.这样第一种小情况有 种。
第②种,同样分析,但是 1和3可以互换一次,所以有6 >2=12种。
第③种,把22和33互换,用换位思考的方法,同第②种。
所以一共有 6+12+12得30种4、一个自然数能够表示成 5个连续的自然数之和,那么将符合以上条件的自然数从小到大排列,前【解析】:平均数和最小公倍数概念。
第一、二句话可以理解这个数可以整除 2.5和3.5因为这是一个自然数,可以理解成这个数可以整除5和7.这样应该是 35、70、105等5、24点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从 52张扑克牌(不包括大小 王)中抽取 4张,用这4张扑克上的数(A=1、J=11、Q=12、 K=13 )通过加减乘除四则运算得出24,先找到算法者获胜,游戏规定 4张扑克牌都要用到,而且每张只能用1次,比如 2、3、4、Q 则可以有算法(2 X Q ) X (4-3)得到24。
如果在一次游戏中恰好抽到5、5、5、1则你的算法是 ______________________【解析】:24点算法。
5X (5-1越)=24。
这类问题平时训练可以记住集中特殊的算法。
让个。
4个。
相当于 5个拿走一个,只能拿走 223363、整除2015的数称为2015的因数,1和2015显然整除2015,称为2015的平凡因数,除了平 凡因数,2015还有一些非平凡因数,那么【解析】:考查因数概念和分解质因数方法。
走美三年级模拟测试详细解析 家家学名师网络小班 (1)—————————————————————————————————————————— 2011年“走进美妙的数学花园"中国青少年数学论坛趣味数学解题技能展示大赛初赛模拟注意事项:1. 考生要按要求在密封线内填好考生的有关信息. 2. 不允许使用计算器.小学四年级试卷(A 卷)一、填空题I(每题8分,共40分)1、9131391113149613÷+÷+÷+÷+÷=___________。
【答案:5】【解析】 9131391113149613÷+÷+÷+÷+÷==911+61313+149+÷+÷()() =2613279÷+÷ =2+3 =52. 6个数分别表示为a 、b 、c 、d 、e 和f 。
a 、b 、c 、d 的平均值为10;b ,c ,d ,e ,f 的平均值为14。
若f 是a 的两倍,那么,a 和e 的平均值等于_________。
【答案:15】【解析】 a +b+c+d =10×4 f+e+b+c+d =14×5 ∵f 是a 的两倍∴ 2a +e+b+c+d =70① a +b+c+d =40②① -②得a +e=30a 和e 的平均值=30÷2=153 . 如图所示,一根木棒上有5个等距离的点:A 、B 、C 、D 和E 。
第一次以A 点、 第二次以B 点、第三次以E 点为中心点,每次将木棒旋转180°的角度。
旋转3次后木棒上__________点在旋转后与旋转前位置相同。
【答案:D 】【解析】❶❷走美三年级模拟测试详细解析 家家学名师网络小班 (2)——————————————————————————————————————————4、数字“0”的概念公元前400年左右产生于美索不达米亚,而目前的用法则产生于公元7世纪左右的印度。
四年级走美杯考前模拟演练试题详解走美三年级模拟测试详细解析2022走进“精彩数学园\中国青年数学论坛”趣味数学解题技能展示大赛初赛模拟注意事项:1.考生要按要求在密封线内填好考生的有关信息.2.不允许使用计算器.小学四年级试卷(a卷)一、填空题i(每题8分,共40分)1、9? 13? 13? 9? 11? 13? 14? 9? 6.13?___________。
[答:5]【解析】9?13?13?9?11?13?14?9?6?13?(9?11+6)? 13? (13+14)? 9==26?13?27?9=2+3=52.6数字分别表示为a、B、C、D、e和f。
a、 B、C和D的平均值为10;b、 C、D、e和F的平均值为14。
如果f是a的两倍,那么a和E的平均值等于。
【答案:15】【分析】a+B+C+D=10×4f+e+B+C+D=14×5∵ f是A的两倍∴2a+e+b+c+d=70①a+b+c+d=40②① - ② 收到a+e=30a和E的平均值=30÷2=153.如图所示,一根木棒上有5个等距离的点:a、b、c、d和e。
第一次以a点、B点和E点为中心点,每次将木杆旋转180°。
旋转3次,放在棍子上,旋转后点的位置与旋转前相同。
【答案:d】[分析]――――――――――――――――――――――――――――――――――――――――――邹梅三年级模拟考试的详细分析4、数字“0”的概念公元前400年左右产生于美索不达米亚,而目前的用法则产生于公元7世纪左右的印度。
如果所有三位数字都表示为180“0”。
【解析】1-90-909 × 10=901-900-99×10=9090+90=1805、3×3的平方中9个数字的和为55,每行和每列的和在表格旁边给出,标记a的空间中的数字为9。
(每个空格包含一个数字)79二①33×3的平方中9个数字的和是55227+a+4=20a=9二、填空题ii罗马帝国的大帝凯撒被敌人围困。
四年级走美杯自测卷填空题Ⅰ(每题8分,共40分)1、2000年后为三个连续自然数乘积的第一个年份是 。
【解析】:11×12×13=1716,12×13×14=2184。
2、将正整数1,2,3,4,5,6,…,10000排成一行。
若一个数不能表示成两个合数的和,则将此数划去。
例如要划去1,但是因为8=4+4,8就不能划去。
根据上面规定划掉所有能划掉的数之后,将剩下的由小到达排列,这时从左数第2016个数是 。
【解析】:从8开始往后的偶数可以拆成两个偶合数的和;从13开始的奇数可以拆成9+2n 的形式(n 大于等于2),而1、2、3、4、5、6、7、9、11要划去,所以剩下的数列为8、10、12、13、14、15……,第2016项即为2025。
3、图中共有 个三角形。
【解析】:①由1个小三角形构成的三角形有24个;②由2个小三角形构成的三角形有20个;③由3个小三角形构成的三角形有8个;④由4个小三角形构成的三角形有8个;⑤由5个小三角形构成的三角形有4个;⑥由6个小三角形构成的三角形有4个;⑦由7个小三角形构成的三角形有4个;所以图中共有三角形24+20+8+8+4+4+4=72个。
4、四位数abcd 与cdab 的和为3636,差为396,那么四位数abcd 为 。
【解析】:100abcd ab cd =+,100cdab cd ab =+。
当ab cd >时: ()1001003636100100396ab cd cd ab ab cd cd ab ⎧+++=⎪⎨+-+=⎪⎩ 整理得36ab cd +=,4ab cd -=,所以20ab =,16cd =,2016abcd =。
同理,ab cd <时,1620abcd =。
5、A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是______箱,其中装有______小球个。
2016年第14届“走美杯”小学数学竞赛试卷(四年级初赛B卷)一、填空题Ⅰ(每题8分,共40分)1.(8分)计算:109×92479+6×109×15413=.2.(8分)给定一个除数(不为0)与被除数,总可以找到一个商与一个余数,满足被除数=除数×商+余数,其中,0≤余数<除数.这就是带余数的除法.当余数为0时,也称除数整除被除数,或者称除数是被除数的因数(被除数是除数的倍数).不超过988000并且能够被49整除的大于1的自然数共有个.3.(8分)只能被1与其自身整除的大于1的自然数称为素数或质数,比如2、3、5、7、11、13等.大于1的自然数如果不是素数,则称为合数.除唯一的偶数2之外,相邻的两个素数之间至少间隔一个合数,比如3、5;5、7;7、11等.两个连续的素数之间间隔的合数个数称为这两个连续素数的间隔数,间隔数为1的两个素数称为孪生素数,比如3、5;5、7;而7,11的间隔数为3,那么100以内的连续素数的最大间隔数为.4.(8分)大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,6,1+2+3+6=12,6就是最小的完美数,是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,567的所有因数之和为.5.(8分)将自然数15的0倍,1倍,2倍,3倍,4倍,5倍,…按照顺序写在下面0、15、30、45、60、75、…这一列数中可以一直写下去,并且后一个总比前一个数大,任何一个自然数要么是这一列数中的某一个,要么介于相邻的两个数之间,我们把这一列数叫做严格递增的无穷数列,从左至右的每一个数分别叫做这个数列的第一项,第二项,第三项,…,即第一项是0,第二项是15,第三项是30,…,依此类推,那么,介于这个数列的第135项与136项之间,并且与这两项中的较小的项的差是6,这个数为.二、填空题Ⅱ(每题10分,共50分)6.(10分)将一个正方形沿对角线剖分为4个直角三角形,然后按照如图所示方法移动4个直角三角形,中间空白处形成的正方形的对角线长为厘米.7.(10分)用一根长为36分米的铁丝做一个长方体框架,并且要求长是宽的2倍,长宽高都是整数分米.如果.不计损耗,可以做成的长方体体积最大为立方分米.8.(10分)在印度河畔的圣庙前,一块黄铜板上立着3根金针,针上穿着很多金盘.据说梵天创世时,在最左边的针上穿了由大到小的64片金盘,他要求人们按照“每次只能移动一片,而且小的金盘必须永远在大的金盘上面”的规则,将所有的64片金盘移动到最右边的金盘上面.他预言,当所有64片金盘都从左边的针移动到右边的时候,宇宙就会湮(yān)灭.现在最左边金针(A)上只有5片金盘,如图(1)所示,要按照规则,移动成图(2)的状态,至少需要移动步.9.(10分)在平面上,用边长为1的单位正方形构成正方形网略,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN.每一个格点多边形都能很容易地划分为若干个本原格点三角形,那么,图中的格点四边形EBGF可以划分为个本原格点三角形.10.(10分)用2颗红色的珠子,2颗蓝色、2颗紫色、2颗绿色的珠子串成如图所示的手链,要求两颗红色珠子相邻,两颗紫色珠子相邻,那么,可以串成种不同的手链.三、填空题Ⅲ(每题12分,共60分)11.(12分)古罗马的凯撒大帝发明了世界上最早的数学加密方法:按照字母表的顺序,将每一个字母对应到按照某种事先的约定确定的字母.例如,将这个字母对应到他后面的第三个字母,也就是A→D,B→E,C→F,…W→Z,X→A,Y→B,Z→C,于是按照这个加密方法,单词“HELLO”,被加密成“KHOOR”.按照这种加密方法,海亮收到了一个加密后的密文“LORYHBRX”,那么,这个信息的原文是.12.(12分)恰好有12个不同因数的最小的自然数为.13.(12分)两个不全为0的数的公共因数成为它们的公因数.求出26019,826,2065的全体公因数.14.(12分)在一个摆满棋子的正方形棋盘中,甲、乙两人轮流拿取棋子,规则为:在某行或某列中,取走任意连续放置的棋子(即不能跨空格拿取),不允许不取,也不能在多行(多列)中拿取,当棋盘中所有棋子被取尽时游戏结束.取走最后一棵棋子的一方获胜.面对如图所示的棋盘,先手有必胜策略,先手第一步应该取走(写出所有的正确方案),才能确保获胜.15.(12分)在的圆圈中填入从1到14的自然数(每一个数用而且只能用一次),使连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个7阶幻星图,这个相等的数称为7阶幻星图的幻和,那么,7阶幻星图的幻和为,并继续完成以下7阶幻星图.2016年第14届“走美杯”小学数学竞赛试卷(四年级初赛B卷)参考答案与试题解析一、填空题Ⅰ(每题8分,共40分)1.(8分)计算:109×92479+6×109×15413=20160313.【分析】先根据根据乘法的分配律和结合律变形为109×92479+109×92478,然后根据乘法的分配律简算即可.【解答】解:109×92479+6×109×15413=109×92479+109×92478=109×(92479+92478)=109×184957=20160313故答案为:20160313.【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.2.(8分)给定一个除数(不为0)与被除数,总可以找到一个商与一个余数,满足被除数=除数×商+余数,其中,0≤余数<除数.这就是带余数的除法.当余数为0时,也称除数整除被除数,或者称除数是被除数的因数(被除数是除数的倍数).不超过988000并且能够被49整除的大于1的自然数共有20163个.【分析】首先看988000除以49的商是多少,商就是小于988000的49的最大倍数,同时也是从1倍开始一共的整数倍个数,问题解决.【解答】解:依题意可知988000÷49=20163…13,故小于988000的49的最大倍数是20163倍.从1倍开始到20163倍共20163个数.故答案为:20163.【点评】本题考查整除的性质,从1倍开始最大的倍数就是能够被49整数的个数.3.(8分)只能被1与其自身整除的大于1的自然数称为素数或质数,比如2、3、5、7、11、13等.大于1的自然数如果不是素数,则称为合数.除唯一的偶数2之外,相邻的两个素数之间至少间隔一个合数,比如3、5;5、7;7、11等.两个连续的素数之间间隔的合数个数称为这两个连续素数的间隔数,间隔数为1的两个素数称为孪生素数,比如3、5;5、7;而7,11的间隔数为3,那么100以内的连续素数的最大间隔数为7.【分析】首先需要知道100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.然后观察最大间隔即可.【解答】解:100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.共25个.最大的间隔89和97共90,91,92,93,94,95,96共7个.故答案为:7【点评】本题的关键和突破口是数字间隔定义的理解,7和11的间隔是3而不是4,同时牢记100以内的质数观察找出最大间隔即可问题解决.4.(8分)大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,6,1+2+3+6=12,6就是最小的完美数,是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,567的所有因数之和为968.【分析】要想求出所有的因数和,需要分解质因数算出因数个数然后枚举出来一一相加即可.【解答】解:分解质因数576=32×26,因数共3×7=21个.576=1×576=2×288=3×192=4×144=6×96=8×72=9×64=12×48=18×32=16×36=242.1+576+2+288+3+192+4+144+6+96+8+72+9+64+12+48+18+32+16+36+24=968.故答案为:968.【点评】本题的关键是要计算出因数的个数,然后能够知道自己在枚举过程中是否有遗漏,同时成组写出来避免重复相加问题解决.5.(8分)将自然数15的0倍,1倍,2倍,3倍,4倍,5倍,…按照顺序写在下面0、15、30、45、60、75、…这一列数中可以一直写下去,并且后一个总比前一个数大,任何一个自然数要么是这一列数中的某一个,要么介于相邻的两个数之间,我们把这一列数叫做严格递增的无穷数列,从左至右的每一个数分别叫做这个数列的第一项,第二项,第三项,…,即第一项是0,第二项是15,第三项是30,…,依此类推,那么,介于这个数列的第135项与136项之间,并且与这两项中的较小的项的差是6,这个数为2016.【分析】首先是15倍是0倍开始的,那么第135,136项分别就是134倍和135倍.找出最小的数字加上6即可.【解答】解:数列的第135项即是15的134倍.134×15=2010.数列的第136项即是15的135倍.135×15=2025.与较小的数字2010相差6的数字而且在2010﹣2025之间的数字为2010+6=2016.故答案为:2016.【点评】本题的关键是看好倍数从0倍开始,不是1倍开始,对应的135项就是134倍,找到这两个数最小的加上6问题解决.二、填空题Ⅱ(每题10分,共50分)6.(10分)将一个正方形沿对角线剖分为4个直角三角形,然后按照如图所示方法移动4个直角三角形,中间空白处形成的正方形的对角线长为2厘米.【分析】两图比较可知,空白处是正方形,同时在正方形外每一个大三角形上都多出一个小的三角形.这4个小三角形正好可以拼接成里面空白的正方形.【解答】解:对角线的长度就是2个直角三角形的直角边长即1×2=2(厘米)故答案为:2【点评】本题的关键在于面积不变,多余的4个小三角形正好可以拼接成里面的正方形,边长就是小三角形直角边的2倍.问题解决.7.(10分)用一根长为36分米的铁丝做一个长方体框架,并且要求长是宽的2倍,长宽高都是整数分米.如果.不计损耗,可以做成的长方体体积最大为24立方分米.【分析】可以设长方体框架的宽是a分米,则长是2a分米,铁丝总长是36分米,∴高为(36﹣4a﹣4×2a)÷4,根据长方体的体积公式可以求出体积的关系式,再求体积最大值.【解答】解:根据分析,设长方体框架的宽是a分米,则长是2a分米,∵铁丝总长是36分米,∴高为(36﹣4a﹣4×2a)÷4,根据长方体的体积公式可以求出体积的关系式.V=2a×a×(36﹣4a﹣4×2a)÷4=2a×a×(9﹣3a)当a=2时,体积V取最大值24(平方分米).方法二:因为长、宽、高的和=36÷4=9,而长宽高均为整数分米,而且长是宽的两倍,满足条件的只有:1、2、6和2、4、3两组,①长、宽、高为1、2、6时,体积=1×2×6=12(平方分米);②长、宽、高为2、4、3时,体积=2×4×3=24(平方分米);故答案是:24.【点评】本题考查立体图形的体积,突破点是:根据长方体的体积公式可以求出体积的关系式,再求体积最大值.8.(10分)在印度河畔的圣庙前,一块黄铜板上立着3根金针,针上穿着很多金盘.据说梵天创世时,在最左边的针上穿了由大到小的64片金盘,他要求人们按照“每次只能移动一片,而且小的金盘必须永远在大的金盘上面”的规则,将所有的64片金盘移动到最右边的金盘上面.他预言,当所有64片金盘都从左边的针移动到右边的时候,宇宙就会湮(yān)灭.现在最左边金针(A)上只有5片金盘,如图(1)所示,要按照规则,移动成图(2)的状态,至少需要移动19步.【分析】这是一个汉诺塔的变形问题,根据汉诺塔问题的推理结果,要将n个盘从一个柱全部移到另一个柱上,需要2的n次方﹣1步,根据这个进行推理.【解答】解:为了叙述方便,将五个盘按从小到大编为1~5号第一步:要将5盘移到C柱,先将前4个移到B柱上,所以将5号移到C柱上至少需要2×2×2×2﹣1+1=16步此时3号和4号已经符合要求.第二步:将1号和2号移到C柱上需要2×2﹣1=3步至少需要16+3=19步具体移法如下表【点评】大家做这题的时候记住汉诺塔的问题的基本特征,在此基础上灵活运用.9.(10分)在平面上,用边长为1的单位正方形构成正方形网略,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN.每一个格点多边形都能很容易地划分为若干个本原格点三角形,那么,图中的格点四边形EBGF可以划分为24个本原格点三角形.【分析】这题根据毕克定理S=2×N+L﹣2即可求出这个图能分成多少个本原格点三角形,其中N表示内部的格点数,L表示边界上的格点数.【解答】解:内部的点是10,边界上的点是6,根据公式列出2×10+6﹣2=24故此题填24.【点评】遇到这种问题时,常运用毕克定理公式直接去求,在求的时候要注意分清是正方形格点问题还是三角形格点问题.10.(10分)用2颗红色的珠子,2颗蓝色、2颗紫色、2颗绿色的珠子串成如图所示的手链,要求两颗红色珠子相邻,两颗紫色珠子相邻,那么,可以串成16种不同的手链.【分析】根据题意,分三种情况:(1)两颗红色珠子和两颗紫色珠子之间有2颗珠子;(2)两颗红色珠子和两颗紫色珠子之间有1颗珠子;(3)两颗红色珠子和两颗紫色珠子相邻;把每种情况下可以串成的手链的数量相加,求出可以串成多数种不同的手链即可.【解答】解:因为是手链,所以旋转、翻转相同的只能算一种,(1)两颗红色珠子和两颗紫色珠子之间有2颗珠子时,与红色珠子相邻的两颗珠子有:蓝蓝、绿绿、蓝绿三种,其中蓝绿有2种可能,一共有4种可能性.(2)两颗红色珠子和两颗紫色珠子之间有1颗珠子时,单独的1颗有2种可能性,另外3颗有3种可能性,一共有:2×3=6(种).(3)两颗红色珠子和两颗紫色珠子相邻时,=6(种)4+6+6=16(种)答:可以串成16种不同的手链.故答案为:16.【点评】此题主要考查了排列组合问题,考查了加法原理和乘法原理的应用,要熟练掌握,注意不能多数、漏数.三、填空题Ⅲ(每题12分,共60分)11.(12分)古罗马的凯撒大帝发明了世界上最早的数学加密方法:按照字母表的顺序,将每一个字母对应到按照某种事先的约定确定的字母.例如,将这个字母对应到他后面的第三个字母,也就是A→D,B→E,C→F,…W→Z,X→A,Y→B,Z→C,于是按照这个加密方法,单词“HELLO”,被加密成“KHOOR”.按照这种加密方法,海亮收到了一个加密后的密文“LORYHBRX”,那么,这个信息的原文是ILOVEYOU.【分析】按照字母表的顺序,将每一个字母对应到按照某种事先的约定确定的字母.例如,将这个字母对应到他后面的第三个字母,也就是A→D,B→E,C→F,…W→Z,X→A,Y→B,Z→C,从以上加密方法可以看出:每个英文字母加密成他后面的第三个字母;解密的时候就把他译成前面的第三个字母.【解答】解:收到了一个加密后的密文是“LORYHBRX”,解密为L→I,O→L,R→O,Y→V,H→E,B→Y,R→O,X→U,于是这个信息的原文是:ILOVEYOU;故答案为:ILOVEYOU.【点评】首先仔细研究等差数列的加密方法,运用逆向推理的方法找到解密的方法.12.(12分)恰好有12个不同因数的最小的自然数为60.【分析】首先把12分成两个数的乘积或3个数的乘积,用因数减1当所求自然数的质因数个数,从最小的质数2开始考虑,使2的个数最多,算出乘积比较得出答案.【解答】解:12=1×12=2×6=3×4=2×2×3,有12个约数的自然数有:①2×2×…×2×2(11个2)=2048,②2×2×…×2(5个2)×3=96,③2×2×2×3×3=72,④2×2×3×5=60;从以上可以看出只有④的乘积最小;所以有12个约数的最小自然数是60.故答案为:60.【点评】此题主要考查一个合数的约数个数的计算公式:a=pα×qβ×rγ(其中a 为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.13.(12分)两个不全为0的数的公共因数成为它们的公因数.求出26019,826,2065的全体公因数1,7,59,413.【分析】寻找3个因数的公约数的方法叫做辗转相除法.找到最大约数,那么他们的所以因数都是满足条件的.【解答】解:根据辗转相除法三个数做差得出两个数即26019﹣2065=23954,2065﹣826=1239,较大的数除以较小的数.23954÷1239=19…413,再用较小的数除以余数,1239÷413=3整除,说明413就是他们的最大约数,再对413分解质因数=1×413=7×59,即26019,826,2065的全体因数为1,7,59,413.故答案为:1,7,59,413.【点评】本题考查知识点是辗转相除法,就是用大数除以小数,然后再用原来的小数除以余数,再用小的数除以余数最后为0则是整除,为1就是互质问题解决.14.(12分)在一个摆满棋子的正方形棋盘中,甲、乙两人轮流拿取棋子,规则为:在某行或某列中,取走任意连续放置的棋子(即不能跨空格拿取),不允许不取,也不能在多行(多列)中拿取,当棋盘中所有棋子被取尽时游戏结束.取走最后一棵棋子的一方获胜.面对如图所示的棋盘,先手有必胜策略,先手第一步应该取走1、3、5、7、9、258、456(写出所有的正确方案),才能确保获胜.【分析】这个游戏的策略主要是利用图形有对称性(1)先手取5号以及258、456号后,图形完全对称,显然是先手可以取胜.(2)先手取1号,①后手取2、3、4、7中的一个或两个,先手都可以取成正方形获胜;如果后手取3,那先手就取7,后手再取4,那先手就取2,这样就剩下5689这个正方形,在这种情况下,谁先取谁就输.如果后手取23,那先手就取47,剩下5689正方形.②后手取59中的一个,先手可以取另一个形成对称图形而获胜.③后手取3678中的一个或两个,先手一定可以获胜.如果后手取36,先手就可以取8,这时剩下47259,此时后手无论怎样取,先手都可以获胜.如果后手取8,先手就取36,情况同上.如果后手取78,那先手就取6,这时剩下23459,此时后手无论怎样取,先手都可以获胜.7如果后手取6,那先手就取78,情况同上.如果后手取3或7,先手可以参照①的情况获胜.(3)同理,先手取3、7、9也可以确保获胜.(4)除上述情况外,取任意其他一个或相邻两个、三个,后手都可以取成对称图形导致先手失败.(对称图形不包括2×3这样的6个)【解答】解:先手确保获胜只能取1、3、5、7、9、258、456这七种.【点评】这题题目是利用图形的对称知识获胜的,只有在形成对称图形之后才能保证自己获得最后一个棋子.15.(12分)在的圆圈中填入从1到14的自然数(每一个数用而且只能用一次),使连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个7阶幻星图,这个相等的数称为7阶幻星图的幻和,那么,7阶幻星图的幻和为30,并继续完成以下7阶幻星图.【分析】所有的数字和的2倍就是所有的幻和的7倍,那么(1+14)×14=210,那么210就是幻和的7倍,即可求出幻和.再根据数字规律填写7阶幻星图即可.【解答】解:所有的数字和的2倍(1+14)×14=210.幻和为:210÷7=30.7阶幻星图为:故答案为:30【点评】幻方的关键问题就是知道求所有的幻和时把所有的数字加了两遍,同时也考察同学们的数字规律和理解能力,综合分析幻方的能力.问题解决.。
第十三届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学四年级试卷(B卷)2015年3月8日南京填空题I(每题8分,共40分)1 计算 5×13×31×73×137=__________________【解析】:本题考查多位数乘法的计算。
直接列式子计算。
2、用 1 个 1、2 个 2、2 个 3 组成一些 4 位数,则能够组成的不同 4 位数一共有__________ 个。
【解析】:本题考查排列组合。
1,2,2,3,3五个数字拿出4个。
相当于5个拿走一个,只能拿走1或2或3。
有①2233②1223③1233这三种组合。
分析第①种,当两个2连在一起,2233 3223 3322 两个2 中间隔一个数,2323 3232 两个2 中间隔两个数2332. 这样第一种小情况有6种。
第②种,同样分析,但是1和3可以互换一次,所以有6×2=12种。
第③种,把22 和 33 互换,用换位思考的方法,同第②种。
所以一共有 6+12+12 得 30 种3、整除 2015 的数称为 2015 的因数,1 和 2015 显然整除 2015,称为 2015 的平凡因数,除了平凡因数,2015还有一些非平凡因数,那么2015的所有非平凡因数之和为______________【解析】:考查因数概念和分解质因数方法。
2015分解质因数2015=5×13×31,每两个因数两两组合,得5+403+13+155+31+65=672。
注明:分解质因数的方法,2015÷50=403,对于403的枚举量很大,很难分解,这里需要知道一个方法,只要试到这个数的开方数以下的质数。
20×20=400,所以只要把403除以20以内的质数就可以试出来。
,如果孩子不明白质因数,可以列举把结果给孩子看。
4、一个自然数能够表示成 5 个连续的自然数之和,也可以表示成 7 个连续的自然数之和,那么将符合以上条件的自然数从小到大排列,前3个数分别为______________【解析】:平均数和最小公倍数概念。
2016年第十四届天津市“走美杯”初赛试卷(六年级)一、填空题Ⅰ(每题8分,共40分)1.(8分)计算:3= .2.(8分)某种商品若以6折(标价的60%)降价出售,仍相对于进货价获利10%,那么该商品标价应为进货价的倍.3.(8分)有一种骰子是非标准的,其上的点数分别为2,3,3,5,5,6,用这样两个骰子一起投掷一次,点数之和恰好等于8概率为(用最简分数表示).4.(8分)甲乙丙三种书.甲每本5元,乙每本3元,丙1元3本.现在要买三种书共100本(三种书都要有),总价恰好为100元.写出所有可能的购书方案(甲书的本数,乙书的本数,丙书的本数).5.(8分)大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数,比如,6的所有因数为1,2,3,6,1+2+3+6=12.6就是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一,可以从计算自然数的所有因数之和开始,研究完美数2016的所有因数之和为.二、填空题Ⅱ(每题10分)6.(10分)如图所示的图案由半圆构成,已知最大的圆的半径R=3,则阴影部分图形的周长为,面积为(圆周率用π表示)7.(10分)埃及人擅长数学,他们很早之前就发明了个计算圆的面积的公式:S=()2.其中,d是圆的直径.在这个公式当中,相当于将圆周率π取值为(保留两位小数).8.(10分)如图.将长方形纸片ABCD的两边AD与BC对折,得到折痕EF,再将点B折到EF上,得到折痕AM与点N,如果AM=3,那么,MN= .9.(10分)如图所示,从一个正三角形开始以下操作:第一步,将三个边分别三等分,在每一条边的中间三分之一处,向外做边长等于原来边长三分之一的小正三角形,并删除底边,得到一个六角星;第二步,对六角星的每一条边继续第一步的操作,得到一个更为复杂的六角星;…这样一直下去,就会得到一个类似雪花的美丽图形,这个图形是瑞典数学家柯赫于1904年首先构造出来的,被称为“柯赫曲线”.设原三角形的面积为1,那么,第3步后,所得到图形的面积为.10.(10分)阿凯,宝夯刚刚和崔蕊成为朋友,他们想知道崔蕊的生日日期,崔蕊最终给他们十个可能日期:5月15日、5月16日、5月19日、6月17日、6月18日、7月14日、7月16日、7月17日、8月14日、8月15日.崔蕊只告诉了阿凯她生日的月份,告诉了宝夯她生日的日子,但阿凯和宝夯进行了下面一段奇怪的对话,就都知道崔蕊的生日了.宝夯:我不知道崔蕊的生日.阿凯:你说话之前我不知道崔磊的生日,现在我知道了.宝夯,那我也知道崔蕊的生日了.那请问崔蕊的生日在哪一天?你的答案是:.三、填空题Ⅲ(每题12分,共60分)11.(12分)古罗马的凯撒大帝发明了世界上最早的数学加密方法.我们现在介绍一种“等差数列加密法”:以单词为单位,需要加密的单词的第一个字母对应到它后面的第一个字母(在字母表中的顺序,后同),第二个字母对应到它在字母表后面的第二个字母.第三个字母对应到它后面的第三个,….比如.需要加密HELLO,H→I,E→G,L→O,L→P,O→T.加密后的密文为IGOPT.按照这种加密为法,小明收到了一个加密后的信息“JNRZJEVC”,那么,这个信息的原文是.12.(12分)只能被1与其自身整除的大于1的自然数称为素数或质数,比如2,3,5,7,11,13等.大于1的自然数如果不是素数,则称为合数.古希腊时代的人们已经知道,素数有无穷多个,其证明思路蕴含在以下问题中:前两个素数组成的算式2×3+1=7;同样,前三个素数的算式2×3×5+1=31,也是素数;前4个素数的算式2×3×5×7+1=211,前5个素数的算式2×3×5×7×11+1=2331,可以验证也是素数;但前6个素数的算式2×3×5×7×13+1=30031不是素数.显然2,3,5,7,11,13都不能整除这个数,所以,一定有比前6个素数大的素数整除30031,请写出满足条件的素数中的最大者:.13.(12分)将从1开始到100的连续的自然数相乘.得1×2×3×…×100.记为100!(读作100的阶乘)用3除100!显然,100!被3整除.得到一个商;再用3除这个商,…,这样一直用3除下去,直到所得的商不能被3整除为止,那么,在这个过程中用3整除了次.14.(12分)在中的圆圈中填入从1到16的自然数(每一个数用而且只能用一次),使连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个8阶幻星图,这个相等的数称为8阶幻星图的幻和.那么,8阶幻星图的幻和为,并继续完成以下8阶幻星图.2016年第十四届天津市“走美杯”初赛试卷(六年级)参考答案与试题解析一、填空题Ⅰ(每题8分,共40分)1.(8分)计算:3= .【分析】本题属于阶梯式繁分数的化简,应从下往上依次化简,最后得出结果.【解答】解:3=3+=3+=3+=3+=【点评】掌握阶梯式繁分数化简的方法:从下往上依次化简,是解答此题的关键.2.(8分)某种商品若以6折(标价的60%)降价出售,仍相对于进货价获利10%,那么该商品标价应为进货价的倍.【分析】先把进货价看成单位“1”,则实际的售价就为1+10%;再把商品标价看成单位“1”,实际的售价(1+10%)对应的数量就是60%,由此用除法求出商品标价应为进货价的几倍即可.【解答】解:(1+10%)÷60%=110%÷60%=答:该商品标价应为进货价的倍.故答案为:.【点评】分清楚两个不同的单位“1”,根据进价、标价、售价、利润之间的关系求解.3.(8分)有一种骰子是非标准的,其上的点数分别为2,3,3,5,5,6,用这样两个骰子一起投掷一次,点数之和恰好等于8概率为(用最简分数表示).【分析】首先分析枚举出数字和为8的情况,除以总数36即可.【解答】解:依题意可知:点数和为8的情况有(2,6),(6,2)然后第一个3对应两个5,第二个三对应2个5,同理第一5对应2个3,第二个5页对应2个3.共10中情况.和为8的概率为=故答案为:【点评】本题考查对概率的理解和运用,关键问题是找到数字和为8的所以情况,问题解决.4.(8分)甲乙丙三种书.甲每本5元,乙每本3元,丙1元3本.现在要买三种书共100本(三种书都要有),总价恰好为100元.写出所有可能的购书方案(甲书的本数,乙书的本数,丙书的本数)第一种:甲4本,乙18本,丙78本,第二种:甲8本,乙11本,丙81本,第三种:甲12本,乙4本,丙84本..【分析】根据题意可设要购甲书x本,乙书y本,丙书z本,根据题意可知5x+3y+ z=100,x+y+z=100,据此来解由这两个方程组成的方程组即可.【解答】解:设要购甲书x本,乙书y本,丙书z本得14x+8y+100=30014x+8y=2008(x+y)+6x=200x+y+x=25x+y=25x需是4的倍数,当x=4时,y=18,z=100﹣4﹣18=78当x=8时,y=11,z=100﹣8﹣11=81当x=12时,y=4,z=100﹣12﹣4=84当x大于12时,不合题意所以共有三种购书方案:第一种:甲4本,乙18本,丙78本第二种:甲8本,乙11本,丙81本第三种:甲12本,乙4本,丙84本故答案为:第一种:甲4本,乙18本,丙78本,第二种:甲8本,乙11本,丙81本,第三种:甲12本,乙4本,丙84本.【点评】本题的重点是根据题意列出方程组,再进行化简,然后进行讨论.5.(8分)大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数,比如,6的所有因数为1,2,3,6,1+2+3+6=12.6就是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一,可以从计算自然数的所有因数之和开始,研究完美数2016的所有因数之和为6552 .【分析】首先对2016进行分解质因数2016=25×7×32计算出因数个数6×2×3=36个,然后按照乘积成对的找出第一个数字从小到大找18对,相加即可.【解答】解:分解质因数2016=25×7×32因数个数为6×2×3=36个.2016=1×2016=2×1008=3×672=4×504=6×336=7×288=8×252=9×224=12×168=14×144=16×126=18×112=21×96=24×84=28×72=32×63=36×56=48×422016的因数和为=1+2016+2+1008+3+672+4+504+6+336+7+288+8+252+9+224+12+168+14+144+1 6+126+18+112+21+96+24+84+28+72+32+63+36+56+48+42=6552故答案为:6552.【点评】本题关键是会计算因数的个数,所以在计算中自己可以检验是否有遗漏数字,剩下的问题就是计算,也是遵循规律计算不重复不遗漏.得到答案二、填空题Ⅱ(每题10分)6.(10分)如图所示的图案由半圆构成,已知最大的圆的半径R=3,则阴影部分图形的周长为21π,面积为(圆周率用π表示)【分析】由题意,阴影部分图形的周长由两部分组成,外周是以3为半径的大圆,内周是5个以为半径的圆的一半与10个以为半径的圆;面积为大圆面积减去5个半圆的面积.【解答】解:由题意,阴影部分图形的周长由两部分组成,外周是以3为半径的大圆,周长为2π×3=6π,内周是5个以为半径的圆的一半,周长为2π××=π,10个以为半径的圆,周长为2π××=π,所以阴影部分图形的周长为6π+π+π=21π;面积为大圆面积减去5个半圆的面积,即=,故答案为:21π;.【点评】本题考查不规则图形的周长与面积的计算,考查分割法的运用,正确分割是关键.7.(10分)埃及人擅长数学,他们很早之前就发明了个计算圆的面积的公式:S=()2.其中,d是圆的直径.在这个公式当中,相当于将圆周率π取值为 3.16 (保留两位小数).【分析】因为d=2r,代入S=()2可得圆周率π的取值.【解答】解:因为d=2r,所以S=()2==所以,π=≈3.16.故答案为:3.16.【点评】本题考查了求圆周率的值,关键是利用代入法解答.8.(10分)如图.将长方形纸片ABCD的两边AD与BC对折,得到折痕EF,再将点B折到EF上,得到折痕AM与点N,如果AM=3,那么,MN= .【分析】想求出MN就需要和已知线段AM的关系找到,在直角三角形中斜边的中线等于斜边的一半即可解决.【解答】解:设EF与AM交点为P.根据对称性AP=BP=PM.在直角三角形中斜边的中线等于斜边的一半可知.BP=AM=PM∵对称性可知MNPB是平行四边形.MN=BP∴MN=.故答案为:.【点评】本题的关键的是找到直角三角形的斜边中线,根据对称性就能够找到MN和已知线段AM的关系,问题解决.9.(10分)如图所示,从一个正三角形开始以下操作:第一步,将三个边分别三等分,在每一条边的中间三分之一处,向外做边长等于原来边长三分之一的小正三角形,并删除底边,得到一个六角星;第二步,对六角星的每一条边继续第一步的操作,得到一个更为复杂的六角星;…这样一直下去,就会得到一个类似雪花的美丽图形,这个图形是瑞典数学家柯赫于1904年首先构造出来的,被称为“柯赫曲线”.设原三角形的面积为1,那么,第3步后,所得到图形的面积为.【分析】根据第一步所得到的六角星分析,他的面积比原三角形的面积多出三个小三角形的面积,而且根据小三角形的边长是大三角形边长的三分之一可知,小三角形的面积是九分之一,可得图2的面积,同理可得图3的面积.【解答】解:图1的等边三角形的面积是1,在图2中,每条边上增加的等边三角形的面积是,共增加了3个等边三角形,所以图2的面积是1+3×=,图2的面积是,类似地,图3中外边缘增加的小等边三角形的面积是=共增加了12个小等边三角形,所以图3的面积是+12×=,故答案为.【点评】本题考查找规律,考查图形面积的计算,解题的关键是求出每条边上增加的等边三角形.10.(10分)阿凯,宝夯刚刚和崔蕊成为朋友,他们想知道崔蕊的生日日期,崔蕊最终给他们十个可能日期:5月15日、5月16日、5月19日、6月17日、6月18日、7月14日、7月16日、7月17日、8月14日、8月15日.崔蕊只告诉了阿凯她生日的月份,告诉了宝夯她生日的日子,但阿凯和宝夯进行了下面一段奇怪的对话,就都知道崔蕊的生日了.宝夯:我不知道崔蕊的生日.阿凯:你说话之前我不知道崔磊的生日,现在我知道了.宝夯,那我也知道崔蕊的生日了.那请问崔蕊的生日在哪一天?你的答案是:8月15日.【分析】因为崔蕊最终给他们十个可能日期:5月15日、5月16日、5月19日、6月17日、6月18日、7月14日、7月16日、7月17日、8月14日、8月15日,5月份有15,16,193个日子,6月份17,18两个日子,7月份有14,16,17三个日子,8月份有14,15两个日子,因为18和19只出现一次,并且崔蕊只告诉了告诉了宝夯她生日的日子,如果是18或者19的话,宝夯就知道崔蕊的生日了,所以出生的日子绝对不会是18和19,所以阿凯知道的月份是7,8两个月;宝夯知道是月份是7或8就知道了生日,而14在7和8月份都出现了,说明宝夯知道的是7月16日、7月17日、8月15中的一个;7月有2个可能的日子,而8月只有一个,所以生日是8月15日,据此解答即可.【解答】解:因为崔蕊只告诉了宝夯她生日的日子,所以不可能是18和19,如果是其中之一的话,宝夯就知道崔蕊的出生日期了;则阿凯说宝夯说话之前我不知道崔磊的生日,现在知道了,所以阿凯推出绝对不是6月和5月宝夯知道是月份是7或8就知道了生日,而14在7和8月份都出现了,说明宝夯知道的是7月16日、7月17日、8月15中的一个;7月有2个可能的日子,而8月只有一个,所以生日是8月15日.故答案为:8月15日.【点评】解答本题的关键是根据日期特点及其条件推出两人不产生矛盾的结论即可.三、填空题Ⅲ(每题12分,共60分)11.(12分)古罗马的凯撒大帝发明了世界上最早的数学加密方法.我们现在介绍一种“等差数列加密法”:以单词为单位,需要加密的单词的第一个字母对应到它后面的第一个字母(在字母表中的顺序,后同),第二个字母对应到它在字母表后面的第二个字母.第三个字母对应到它后面的第三个,….比如.需要加密HELLO,H→I,E→G,L→O,L→P,O→T.加密后的密文为IGOPT.按照这种加密为法,小明收到了一个加密后的信息“JNRZJEVC”,那么,这个信息的原文是ILOVEYOU .【分析】充分理解题中的定义分析.HELLO,H在第一个位置,后第一个字母是I,E在第二个位置,后面第二个字母是G,L在第三个位置,后第三个字母是O,L在第四个位置,后第四个字母是P,O在第五个位置,后面第五个字母是T.【解答】解:JNRZJEVC对应的是:①J前一个字母I②N前二个字母是L③R前第三个字母是O④Z前第四个字母V⑤J前第五个字母E⑥E前第六个字母Y⑦V前第七个字母O⑧C前第八个字母U故JNRZJEVC对应的是:ILOVEYOU.【点评】所求问题与题中给出的例子恰恰是相反的,逆向思维的运用.要配合原题中的例句读前面的已知条件更容易理解对应位置.12.(12分)只能被1与其自身整除的大于1的自然数称为素数或质数,比如2,3,5,7,11,13等.大于1的自然数如果不是素数,则称为合数.古希腊时代的人们已经知道,素数有无穷多个,其证明思路蕴含在以下问题中:前两个素数组成的算式2×3+1=7;同样,前三个素数的算式2×3×5+1=31,也是素数;前4个素数的算式2×3×5×7+1=211,前5个素数的算式2×3×5×7×11+1=2331,可以验证也是素数;但前6个素数的算式2×3×5×7×13+1=30031不是素数.显然2,3,5,7,11,13都不能整除这个数,所以,一定有比前6个素数大的素数整除30031,请写出满足条件的素数中的最大者:509 .【分析】把30031分解为两个数相乘即可解决问题.【解答】解:因为30031的个位数是1,所以30031是两个个位数是1或个位数是9的数的积,由此可以得到30031=59×509,∴满足条件的素数中的最大者为509,故答案为509.【点评】本题考查质数与合数、最大与最小数等知识,把数质因数分解即可解决问题.13.(12分)将从1开始到100的连续的自然数相乘.得1×2×3×…×100.记为100!(读作100的阶乘)用3除100!显然,100!被3整除.得到一个商;再用3除这个商,…,这样一直用3除下去,直到所得的商不能被3整除为止,那么,在这个过程中用3整除了48 次.【分析】首先本题中是要找到3的个数,注意的是9,27,81中含有不同的3,分别用100除以3,9,27,81得到的数字和就是题中所求的因数3的个数.【解答】解:在100!中计算出所有3的倍数相加即可,同时注意9,27,81中含有2,3,4个3.1﹣100中3的倍数共有100÷3=33…1.共33个.9的倍数共有100÷9=11…1.共11个.27的倍数共有100÷27=3…19共3个81的倍数共100÷81=1…19共1个.共33+11+3+1=48(个).【点评】本题的关键是要知道3的倍数中含有不同个数的因数3.分别除以9,27,81得到3的因数个数相加即可求解问题解决.14.(12分)在中的圆圈中填入从1到16的自然数(每一个数用而且只能用一次),使连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个8阶幻星图,这个相等的数称为8阶幻星图的幻和.那么,8阶幻星图的幻和为34 ,并继续完成以下8阶幻星图.【分析】此题中求同一直线上的4个圆圈中的数字之和,每个数字用两次,所以和是(1+16)×16=272,而同一直线上的4个圆圈中的数字之和都相等,这样的和是8个,所以和是272÷8=34.根据和是34填空即可.【解答】解:(1+16)×16=272272÷8=34.如图:【点评】此题考查了学生数字的搭配规律,以及整数的运算方法,解题的思想就是注意每行中应该有大数和小数配合.。
第十四届“走进美妙的数学花园”上海初赛四年级试题详解一、填空题(每小题8分,共40分)【第1题】(4+8+12+16+20+……+2012+2016《考点》整数计算(等差数列)〖解析〗项数:(2016-4)÷4+1=5044+8+12+16+20+……+2012+2016=(4+2016)×504÷2=1010×504=509040【第2题】所有自然数如图排列,数300位于字母______的下面。
《考点》找规律〖解析〗从上表可得数所对应的字母为:123456789101112 (300)A C E G F DB AC E G很明显是7个字母一周期,300÷7……6,周期里的第6个字母是D。
【第3题】右图的两个竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么六位数美妙数学花园=。
《考点》数字迷〖解析〗法一:由右图可以得到学+园=10,数+花=10,那么数、花同奇或同偶,所以数-花一定是偶数,学要向数借1才可以减园,即10+学-园=6,所以园=7,学=3。
由此可以推出数-1-花=1或10+数-1-花=1,(1)若数-花=2,那么数=6,花=4,妙=0,美=2,美妙数学花园=206347。
(2)若花-数=8,那么花=9,数=1,妙=1,与不同的汉字代表不同的数字相矛盾。
故答案为206347。
法二:如果“数学”比“花园”大,则“美妙”=20,“数学”=(16+110)÷2=63,“花园”=47,则美妙数学花园=206347;如果“数学”比“花园”小,则“美妙”=21,“数学”=(110-64)÷2=23,数字2重复,不合题意。
【第4题】如图是一个棋盘,将一个白子和一个黑子放在棋盘线交叉点上,但不能在同一条棋盘线上,有种不同的放法。
《考点》加乘原理〖解析〗图中一共有12个交叉点,第一个棋子不管放在那个交叉点上,都只剩下6个交叉点。
第十四届“走进美妙的数学花园”初赛四年级一、填空题(每小题8分,共40分)1. 4812162016=__________+++++。
2. 所有自然数如图排列,数300位于字母_____的下面。
3. 右图的两个竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么六位数美妙数学花园=_______________。
4. 如图是一个棋盘,将一个白字和一个黑子放在棋盘线交叉点上,但不能在同一条棋盘线上,有________种不同的放法。
5. 某校有47个同学参加数学竞赛,将参赛者任意分成五组,必有一组的女生多于2人,参赛者中任意选取12人必有男生,参赛的男生有_______人。
二、填空题(每小题10分,共50分)6. 如图,在一个长、宽分别为22厘米和13厘米的大长方形内放了四个正方形,没有被正方形覆盖的小长方形(图中阴影部分)中最多还可以不重叠地放下______个边长是整数的正方形。
(161514)13121110985674321GF E D C B A 园花学数0116102+-园花学数妙美7. 将1~9九个数字填入下列九个“○”中,使等式成立。
==5568⨯⨯○○○○○○○○○8. 自然数N 有很多个约数,把它的所有约数两两求和得到一组新数,其中最小的为4,最大的为2684,N 等于__________。
9. 甲、乙、丙三个工厂计划购买数量相等的钢材,后来丙厂需要钢材的数量减少了,若干数量的钢材给甲乙两厂,结果甲厂比丙厂多300吨,丙厂比乙厂少240吨,最后丙厂从甲乙两厂收回362880元,每吨钢材的价格是________元。
10. 甲、乙两人沿着同一条100米的跑道赛跑,甲从起跑线起跑,乙的起跑点位于甲的前面15米处,两人同时起跑。
当甲到达终点时,乙离终点还有5米,甲追上乙时距离终点还有_________米。
三、填空题(每小题12分,共60分)11. 由35个边长为1的小正方形拼成一个75⨯的长方形,其中有一格含有“☆”。
2016年第14届“走美杯”小学数学竞赛试卷(五年级初赛B卷)一、填空题Ⅰ(每题8分,共40分)1.(8分)计算:××××××=(写成小数的形式,精确到小数点后两位)2.(8分)1角硬币的正面与反面如图所示,拿三个1角硬币一起投掷一次,得到两个正面一个反面的概率为.3.(8分)大于0的自然数,如果满足所有自然数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,4,1+2+3+6=12,6就是最小的完美数.是否有无限个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,8128的所有因数之和为.4.(8分)某大型会议上,要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案有种.5.(8分)将从1开始到25的连续的自然数相乘,得到1×2×3×…×25,记为25!(读作25的阶乘)用3除25!显然,25!被3整除,得到一个商,再用3除这个商,…,这样一直用3除下去,直到所得的商不能被3整除为止.那么,在这个过程中用3整除了次.二、填空题Ⅱ(每题10分,共50分)6.(10分)如图,已知正方形ABCD中,F是BC边的中点,GC=2DG,E是DF 与BG的交点,四边形ABED的面积与正方形ABCD的比是.7.(10分)如图所示,将一张A4纸沿着长边的2个中点对折,得到2个小长方形,小长方形的长与宽之比与A4纸相同.如果设A4纸的长为29.4厘米,那么,以A4纸的宽为边长的正方形面积为平方厘米(精确到小数点后一位).8.(10分)由一些顶点和边构成的图形称为一个图,对一个图用不同颜色给顶点染色,要求具有相同边的两个顶点染不同的颜色.称为图的点染色,图的点染色通常要研究的问题是完成染色所需要的最少的颜色数,这个数称为图的色数.如图的图称为皮特森图,皮特森图的色数为.9.(10分)在平面上,用边长为1的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN,每一个格点多边形都能够很容易地划分为若干个本原格点三角形.那么,如图中的格点四边形EBGF可以划分为个本原格点三角形.10.(10分)在放置有若干小球的一排木格中,甲乙两人轮流移动小球,移动的规则为:每人每次可以选择某一木格中的任意数目的小球,并将其移动到该木格右边紧邻的那一木格中;当所有小球全部移动到最右端的木格中时,游戏结束,移动最后一个小球的一方获胜.面对如图所示的局面(每个木格中的数字代表小球的数目,木格下方的数字表示木格编号),先手必胜策略,那么,为确保获胜,先手第一步应该移动号木格中的个小球.三、填空题Ⅲ(每题12分,共60分)11.(12分)m,n是两个自然数,满足26019×m﹣649×n=118,那么,m=,n=.12.(12分)以下由1、2构成的无穷数列有个有趣的特征,从第一项开始,把数字相同的项合成一个组,再按照顺序将每组的项数写下来,则这些数构成的无穷数列恰好是它自身.这个数列被称为库拉库斯基数列.按照这个特征,继续写出这个数列后8项(从第14项到第21项),如果已知这个数列的前50项的和为75,第50项为2,则可知道第73项、74项、第75项、第76项分别.13.(12分)不全为零的两个自然数的公因数中的最大者,称作这两个数的最大公因数.如果不全为2个自然数的最大公因数为1,则这两个数称为互素的或互质的,比如.2与3互素.3与8互素;12与15不是互素的.因为它们的最大公因数是3,不超过81的自然数中,有个数与81互素.14.(12分)任何一个直角三角形都有这样的性质:以两个直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积.这就是著名的勾股定理,在西方又被称为毕达哥拉斯定理.勾般定理有看悠悠4000年的历史,出现了数百个不同的证明.魏晋时期的中国古代数学家刘徽给出了如图1所示的简洁而美妙的证明方法,如图2是以这个方法为基础设计的刘徽模式勾股拼围板刘徽模式勾股拼图板的5个组块,还可以拼成个如图3所示的平行四边形,如果其中的直角三角形直角边分别为3厘米与4厘米,那么,这个平行四边形的周长为厘米15.(12分)在的圆圈中填入1到16的自然数,(每一个只能用一次),连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个8阶幻星图,这个相等的数称为8阶幻星图的和.那么,8阶幻形图的幻和为,并继续完成以下8阶幻星图.2016年第14届“走美杯”小学数学竞赛试卷(五年级初赛B卷)参考答案与试题解析一、填空题Ⅰ(每题8分,共40分)1.(8分)计算:××××××= 1.67(写成小数的形式,精确到小数点后两位)【分析】把分数的分子分母交叉约分,化成最简分数,然后用最简分数的分子除以分母把商保留两位小数即可.【解答】解:××××××===2048÷1225≈1.67故答案为:1.67.【点评】完成本题要注意先约分,再根据分数化小数的方法计算即可.2.(8分)1角硬币的正面与反面如图所示,拿三个1角硬币一起投掷一次,得到两个正面一个反面的概率为.【分析】每个硬币只有正面与反面两种情况,所以拿三个1角硬币一起投掷一次,可能出现••=8种情况,每种两个正面一个反面的概率为×3=;据此解答即可.【解答】解:••=8(种),×3=;答:得到两个正面一个反面的概率为.故答案为:.【点评】本题考查了概率与排列组合知识的灵活应用,关键是求出拿三个1角硬币一起投掷一次,可能出现的情况数.3.(8分)大于0的自然数,如果满足所有自然数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,4,1+2+3+6=12,6就是最小的完美数.是否有无限个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,8128的所有因数之和为16256.【分析】首先对8128进行分解质因数,计算出因数个数,共14个,找出这7对数字相加即可.【解答】解:分解质因数8128=26×127.8128个因数共有(6+1)×(1+1)=14(个).8128=1×8128=2×4064=4×2032=8×1016=16×508=32×254=64×127.8128的因数和为:1+8128+2+4064+4+2032+8+1016+16+508+32+254+64+127=16256.故答案为:16256.【点评】本题的关键是先进行分解质因数同时计算出8128的因数共有多少个,不重复不遗漏的计算和.成对出现都一起计算比较方便.4.(8分)某大型会议上,要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案有36种.【分析】首先考虑特殊情况的两个人,分为不选小张、小赵、小李、小罗、小王5种情况.进行讨论.【解答】解:从5个人中选4人中有①不选小张,小赵有2种选择,剩下3人任意选择,共有3×2×1×2=12种;②不选小赵,小张有2种选择,剩下3人任意选择,共有3×2×1×2=12种;③从小赵,小王,小李选出两个参加共有3种情况.翻译2种,导游1种,礼仪2种,司机1种;共3×2×2=12种;共12+12+12=36种;故答案为:36【点评】排列组合是奥数的重要知识点.注意是5选4的排列.把特殊的对象安排好在进行排列.5.(8分)将从1开始到25的连续的自然数相乘,得到1×2×3×…×25,记为25!(读作25的阶乘)用3除25!显然,25!被3整除,得到一个商,再用3除这个商,…,这样一直用3除下去,直到所得的商不能被3整除为止.那么,在这个过程中用3整除了10次.【分析】被整除多少次就是要看因数3的个数,注意的是9中含有2个3.分别用25除以3,9得到的商的和就是因数3的个数.即可求解.【解答】解:被整除次数就是看因数3的个数.25÷3=8…1和25÷9=2…7.3的倍数有8个,9的倍数有2个,共8+2=10(个).故答案为:10.【点评】此类题中想要找到所有的因数3的个数,需要分别除以3再除以9,因为9的倍数中含有2个3需要再计算一次.以此类推.问题解决.二、填空题Ⅱ(每题10分,共50分)6.(10分)如图,已知正方形ABCD中,F是BC边的中点,GC=2DG,E是DF 与BG的交点,四边形ABED的面积与正方形ABCD的比是5:8.【分析】按题意,作CG的中点H,连接FH,设正方形ABCD的边长为1份,求得△BCG、△DEG的面积所占的份数,再用正方形的面积减去△BCG、△DEG 的面积和,即可得到四边形ABED的面积,不难求出四边形ABED的面积与正方形ABCD的比.【解答】解:如图,作CG 的中点H ,连接FH ,设正方形ABCD 的边长为1份,则:份;份; 又∵S △DEG :S △DFH =1:4,∴份;四边形ABED 的面积=正方形ABCD 的面积﹣S △BGC ﹣S △DEG =1=,即:四边形ABED 的面积与正方形ABCD 的面积的比为:5:8故答案是:5:8.【点评】本题考查了三角形面积,本题突破点是:利用线段之间的比,算出面积比,再用正方形的面积减去三角形的面积即可求得四边形与正方形的面积比.7.(10分)如图所示,将一张A4纸沿着长边的2个中点对折,得到2个小长方形,小长方形的长与宽之比与A4纸相同.如果设A4纸的长为29.4厘米,那么,以A4纸的宽为边长的正方形面积为 432.2 平方厘米(精确到小数点后一位).【分析】根据题意可知原A4纸的长:原A4纸的宽=原A4的宽:原A4纸长的一半,据此比例式可求出原A4纸宽的平方是多少,即是以A4纸的宽为边长的正方形面积.据此解答.【解答】解:设原A4纸的宽是a29.4:a=a :a 2=29.4×a2≈432.2答:以A4纸的宽为边长的正方形面积为432.2平方厘米.故答案为:432.2.【点评】本题的重点是根据小长方形的长与宽之比与A4纸相同,列出比例式进行解答.8.(10分)由一些顶点和边构成的图形称为一个图,对一个图用不同颜色给顶点染色,要求具有相同边的两个顶点染不同的颜色.称为图的点染色,图的点染色通常要研究的问题是完成染色所需要的最少的颜色数,这个数称为图的色数.如图的图称为皮特森图,皮特森图的色数为3.【分析】首先分析五点染色的需求最少是3个颜色,3色可以染外边的五点,枚举即可.【解答】解:依题意可知:因为是5个点循环,数字1和2循环最后还缺一个颜色.染色顺序如图所示:每一个数字代表一个颜色.故答案为:3【点评】本题考查对染色问题的理解和分析,重点是循环的五点至少需要3个颜色.问题解决.9.(10分)在平面上,用边长为1的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN,每一个格点多边形都能够很容易地划分为若干个本原格点三角形.那么,如图中的格点四边形EBGF可以划分为36个本原格点三角形.【分析】这题根据毕克定理S=2×N+L﹣2即可求出这个图能分成多少个本原格点三角形,其中N表示内部的格点数,L表示边界上的格点数.【解答】解:内部格点有15个,边界格点有8个15×2+8﹣2=36故此题填36.【点评】此题属于格点问题,遇到这类问题直接运用公式即可,在运用公式时一定要分清是正方形格点问题还是三角形格点问题,以免公式运用错误.10.(10分)在放置有若干小球的一排木格中,甲乙两人轮流移动小球,移动的规则为:每人每次可以选择某一木格中的任意数目的小球,并将其移动到该木格右边紧邻的那一木格中;当所有小球全部移动到最右端的木格中时,游戏结束,移动最后一个小球的一方获胜.面对如图所示的局面(每个木格中的数字代表小球的数目,木格下方的数字表示木格编号),先手必胜策略,那么,为确保获胜,先手第一步应该移动1号木格中的2个小球.【分析】由题意可知,这个游戏的题的策略是奇数性的利用,由图可知,3号格和1号格里的球数不相同,要确保获胜,先手必须先要取成3号格和1号格里的球数相同,所以先手必须将1号格中的2个小球移入0号格,后手无论怎么移,都会导致这两格球数不一样,先手只须保持两格一样即可最后获胜;据此解答即可.【解答】解:由图可知,3号格和1号格里的球数不相同,要确保获胜,先手必须先要取成3号格和1号格里的球数相同,所以先手必须将1号格中的2个小球移入0号格,后手无论怎么移,都会导致这两格球数不一样,先手只须保持两格一样即可最后获胜.所以为确保获胜,先手第一步应该移动1号木格中的2个小球.故答案为:1,2.【点评】解答此题要明确:先手必须先要取成3号格和1号格里的球数相同才能获胜.三、填空题Ⅲ(每题12分,共60分)11.(12分)m,n是两个自然数,满足26019×m﹣649×n=118,那么,m=2+11×t,n=80+441×t.【分析】要想找到m和n的关系需要将原式中的数字化简,首先分解质因数再进行枚举法找规律即可.【解答】解:分解质因数649=11×59,26019=441×59,118=2×59原式=441m﹣11n=2①当m=1时,441m﹣11n最小的数字是1,不满足条件.②当m=2时,n=80是满足条件的.③当m=3时,441m﹣11n最小可以等于3不满足条件.④当m=4时,441m﹣11n最小可以得4.不满足条件.发现倍数增加一倍得数最小增加1.那么需要让得数等于2增加的数字需要是11的倍数.⑤当m=2+11时,n=80+441⑥当n=2+22时,n=80+882…那么当m=2+11t时(t=0,1,2,3,…),n=80+441t(t=0,1,2,3,…)故当m=2+11t时,n=80+441t.【点评】本题的关键是找到m和n的关系,中间利用字母t转换,找到数字变化的规律表示出来.问题解决.12.(12分)以下由1、2构成的无穷数列有个有趣的特征,从第一项开始,把数字相同的项合成一个组,再按照顺序将每组的项数写下来,则这些数构成的无穷数列恰好是它自身.这个数列被称为库拉库斯基数列.按照这个特征,继续写出这个数列后8项12112212(从第14项到第21项),如果已知这个数列的前50项的和为75,第50项为2,则可知道第73项、74项、第75项、第76项分别1221.【分析】把两列数列上下写成两排,前一问可以根据规律填出:122112122122112112212…,可得从第14项到第21项;如果前50项全部为1,则和应该是50,现在和为75,说明有25个2,每个2意味着上面一列多一个数,现在有25个,说明第50个数2对应的数字是上排第74,75个,所以第73项、74项、第75项、第76项,形如abba,再确定奇偶性和第一个不同,第一个是1,所以74,75个数字为2,所以第73项、74项、第75项、第76项为1221.【解答】解:把两列数列上下写成两排,前一问可以根据规律填出:122112122122112112212…所以从第14项到第21项是12112212;如果前50项全部为1,则和应该是50,现在和为75,说明有25个2,每个2意味着上面一列多一个数,现在有25个,说明第50个数2对应的数字是上排第74,75个,所以第73项、74项、第75项、第76项,形如abba,因为下排每增加一个数字,意味着上排对应数字改变一次奇偶性,如下排第二个数字为2,对应上排数字从1变成2,下排第二个数字2,对应上排数字改变为1,…,以此类推,下排第50个,意味着对应数字改变了49次奇偶性,所以奇偶性和第一个不同,第一个是1,所以74,75个数字为2,所以第73项、74项、第75项、第76项为1221.故答案为12112212;1221.【点评】本题考查奇偶性问题,考查学生规律的寻找,考查学生分析解决问题的能力,属于中档题.13.(12分)不全为零的两个自然数的公因数中的最大者,称作这两个数的最大公因数.如果不全为2个自然数的最大公因数为1,则这两个数称为互素的或互质的,比如.2与3互素.3与8互素;12与15不是互素的.因为它们的最大公因数是3,不超过81的自然数中,有54个数与81互素.【分析】在81个数字中,找到不是互质的,其余就是互质的.所有3的倍数都不是与81互质,不超过81的意思是可以取到81,3的倍数是不符合题意的.【解答】解:在不超过81的数字中3的倍数有81÷3=27(个).在不超过81的数字中有27是和81有最大公约数大于1的数.互质的共有81﹣27=54(个)故答案为:54【点评】此题是逆向思维,要找到互质的,首先找到不互质的更为容易,特别注意1和81也是互质的.所以不需要讨论.14.(12分)任何一个直角三角形都有这样的性质:以两个直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积.这就是著名的勾股定理,在西方又被称为毕达哥拉斯定理.勾般定理有看悠悠4000年的历史,出现了数百个不同的证明.魏晋时期的中国古代数学家刘徽给出了如图1所示的简洁而美妙的证明方法,如图2是以这个方法为基础设计的刘徽模式勾股拼围板刘徽模式勾股拼图板的5个组块,还可以拼成个如图3所示的平行四边形,如果其中的直角三角形直角边分别为3厘米与4厘米,那么,这个平行四边形的周长为厘米【分析】直角边为3和4的那么斜边长为5,在根据这个平行四边形的面积是不变的,高为4时求出一边即可求出周长.【解答】解:依题意可知:这个图形的面积是32+42=25(平方厘米),斜边长为5.再根据最后的平行四边形的面积是底乘高.在高位4时,底边长为:25÷4=(厘米)周长为:=(厘米)故答案为:【点评】本题的关键是根据面积相当求出当高为4时候的底边长,根据勾股定理知道斜边为5,边长相加既是周长.问题解决.15.(12分)在的圆圈中填入1到16的自然数,(每一个只能用一次),连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个8阶幻星图,这个相等的数称为8阶幻星图的和.那么,8阶幻形图的幻和为34,并继续完成以下8阶幻星图.【分析】8条线的幻和相加就是把所有的数字加了2遍.根据幻和的8倍就是所有数字和的2倍即可求解.【解答】解:根据所有的数字和的两倍就是幻和的8倍可得:1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16=136.136×2=272,272÷8=34.首先根据幻和为34,34﹣2﹣4=28,那么28=16+12唯一情况.在接下来根据数字规律进行分析即可.故答案为:34【点评】本题的关键问题是所有的数字和的2倍等于每一条线的幻和相加.问题解决.。
第十三届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学四年级试卷(B卷)2015年3月8日南京填空题I(每题8分,共40分)1 计算 5×13×31×73×137=__________________【解析】:本题考查多位数乘法的计算。
直接列式子计算。
2、用 1 个 1、2 个 2、2 个 3 组成一些 4 位数,则能够组成的不同 4 位数一共有__________ 个。
【解析】:本题考查排列组合。
1,2,2,3,3五个数字拿出4个。
相当于5个拿走一个,只能拿走1或2或3。
有①2233②1223③1233这三种组合。
分析第①种,当两个2连在一起,2233 3223 3322 两个2 中间隔一个数,2323 3232 两个2 中间隔两个数2332. 这样第一种小情况有6种。
第②种,同样分析,但是1和3可以互换一次,所以有6×2=12种。
第③种,把22 和 33 互换,用换位思考的方法,同第②种。
所以一共有 6+12+12 得 30 种3、整除 2015 的数称为 2015 的因数,1 和 2015 显然整除 2015,称为 2015 的平凡因数,除了平凡因数,2015还有一些非平凡因数,那么2015的所有非平凡因数之和为______________【解析】:考查因数概念和分解质因数方法。
2015分解质因数2015=5×13×31,每两个因数两两组合,得5+403+13+155+31+65=672。
注明:分解质因数的方法,2015÷50=403,对于403的枚举量很大,很难分解,这里需要知道一个方法,只要试到这个数的开方数以下的质数。
20×20=400,所以只要把403除以20以内的质数就可以试出来。
,如果孩子不明白质因数,可以列举把结果给孩子看。
4、一个自然数能够表示成 5 个连续的自然数之和,也可以表示成 7 个连续的自然数之和,那么将符合以上条件的自然数从小到大排列,前3个数分别为______________【解析】:平均数和最小公倍数概念。