新人教版八年级上期末教学质量数学试题有答案 (精选真题)
- 格式:doc
- 大小:992.32 KB
- 文档页数:7
最新人教版八年级数学(上册)期末质量检测卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.若最简二次根式1a +与8能合并成一项,则a =__________.3.分解因式:3x -x=__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、D5、B6、A7、D8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1002、13、x(x+1)(x-1)4、﹣2<x<25、46、15.三、解答题(本大题共6小题,共72分)x1、22、-3.3、(1)1;(2)m>2;(3)-2<2m-3n<184、(1)略;(2)4.5、(1)略(2)等腰三角形,理由略6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
最新人教版八年级上册数学期末考试试题(附答案)最新人教版八年级上册数学期末考试试题(附答案)考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷。
2.请将所有试题的解答都写在答题卷上。
3.全卷共五个大题,满分150分,时间120分钟。
一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上。
1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是()A。
B。
C。
D。
2.使分式x-1有意义的x的取值范围是()A.x=1.B.x≠1.C.x=-1.D.x≠-1.3.计算:(-x)3·2x的结果是()A.-2x4B.-2x3C.2x4D.2x34.化简:=()-x-1x-1A.1.B.0.C.x。
D.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为()A.11.B.12.C.13.D.11或136.如果(x-2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6.B.p=1,q=-6.C.p=1,q=6.D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有()①x2-y2-1x y x-y-1②x3x xx2 1③x-y x2-2xy y2④x2-9y2x3y x-3y 2A.1个B.2个C.3个D.4个.9.如图,在Rt△ABC中,∠A=90°,∠C=30°,∠ABC的平分线BD交AC于点D,若AD=3,则BD+AC=()A、10.B、15.C、20.D、30.10.XXX准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x套,根据题意可得方程为()A。
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
新人教版八年级上学期期末数学测试卷一、 选择题 〔每题 3 分,共 33 分〕1、以下运算不正确 的是()...235B 、 2 36336D 、 (-2x) 33A 、 x ·x =x(x ) =x C 、 x +x =2x=-8x2、以下式子中,从左到右的变形是因式分解的是().A . (x - 1)(x - 2) = x 2- 3x + 2B .x 2- 3x + 2= (x - 1)(x - 2)C .x 2+ 4x + 4=x(x 一 4)+4D .x 2 +y 2= (x + y)(x — y)3、以下各组的两项不是同类项的是〔 〕A 、 2ax 2 与 3x 2B 、- 1 和 3C 、 2x y 2 和- y 2x D 、 8xy 和- 8xy4. 一个容量为 80 的样本最大值是 141,最小值是 50,取组距为 10,那么能够分成〔 〕A .10 组B .9 组C .8 组D .7组5.1.如图,羊字象征桔祥和美好,以以下图的图案与羊有关,其中是轴对称图形的有 ( )A .1个B .4个C .3个D .2个16.点〔 -4 , y 1〕,〔2, y 2〕都在直线 y=-2 x+2 上,那么 y 1、y 2大小关系是 ( )〔 A 〕 y 1 >y 2 〔 B 〕y 1 =y 2 〔 C 〕 y 1 <y 2〔D 〕不能够比较7.如图:如图, l 1 反响了某公司的销售收入与销售量的关系, l 2 反响了该公司产品的销售 本钱与销售量的关系,当该公司盈余〔收入大于本钱〕时,销售量〔〕A 小于3吨 B大于3吨C小于4吨D 大于 4吨EGCCDABD FHAE B (7 题)(8 题)(9 题) 8.如图, C 、 E 和 B 、 D 、F 分别在∠ GAH 的两边上,且 AB = BC = CD = DE = EF ,假设∠A =18 °,那么∠ GEF 的度数是 〔 〕A . 108°B . 100°C . 90°D . 80° 9.如图,在△ ABC 中, AB=AC , BD=BC , AD=DE=EB ,那么∠ A 是〔 〕A 、30°B 、45°C 、 60°D 、20°10.某水电站的蓄水池有 2 个进水口, 1 个出水口,每个进水口进水量与时间的关系如图 甲所示,出水口出水量与时间的关系如图乙所示 . 某天0 点到 6 点, 进行机组试运行 , 试机时最少翻开一个水口, 且该水池的蓄水量与时间的关系如图丙所示: 给出以下3 个判断: ①0点到 3 点只进水不出水;②3 点到 4 点 , 不进水只出水;③4 点到 6 点不进水不出水 .那么上述判断中必然正确的选项是〔 〕A 、①B 、②C 、②③D 、①②③V 〔万米 3 〕V 〔万米 3〕V 〔万米 3〕2651O1〔时间〕O1〔时间〕O3 4 5 6〔时间〕甲 乙 丙11.如图,是在同一坐标系内作出的一次函数y 1、y 2 的图象 l 1、l 2,设 y 1= k 1x + b 1,y 2=k 2x+ b 2,那么方程组 y 1= k 1x + b 1的解是_______. y 2= k 2x + b 2x =- 2x =- 2 x =- 3 x =- 3A 、 y = 2B 、 y = 3C 、 y = 3D 、 y = 4 二、 填空:〔每题 3 分,共 21 分〕12.假设 4 x 2 2 kx 1 是完满平方式,那么 k=_____________ 。
最新人教版八年级上册数学期末测试题(附答案)过池塘,分别测量AC和BC的长度,再利用勾股定理求出AB的长度。
已知AC=15m,BC=20m,求AB的长度。
解题思路:根据勾股定理,设AB=x,则有x²=15²+20²,解得x=25.因此,AB的长度为25m。
19.(本小题满分6分)已知点A(2,-3),B(5,1),C(-1,4),求三角形ABC的周长。
解题思路:根据两点间距离公式,可求出AB、BC、CA的长度,然后将它们相加即可得到三角形ABC的周长。
计算过程如下:AB的长度:√[(5-2)²+(1-(-3))²] = √34BC的长度:√[(5-(-1))²+(1-4)²] = √41CA的长度:√[(2-(-1))²+(-3-4)²] = √74因此,三角形ABC的周长为√34+√41+√74.20.(本小题满分8分)已知函数f(x)=3x²-4x+5,求f(2a)与f(a+1)的值,并判断它们的大小关系。
解题思路:将2a和a+1代入函数f(x)中,即可求出f(2a)和f(a+1)的值。
计算过程如下:f(2a) = 3(2a)²-4(2a)+5 = 12a²-8a+5f(a+1) = 3(a+1)²-4(a+1)+5 = 3a²+2a+4因此,f(2a) = 12a²-8a+5,f(a+1) = 3a²+2a+4.接下来判断它们的大小关系,即f(2a)与f(a+1)的大小关系。
将它们相减,得到12a²-11a+1,根据一元二次方程的解法,可得a=1或a=1/12.将这两个值代入12a²-11a+1的值,发现当a=1时,f(2a)>f(a+1);当a=1/12时,f(2a)f(a+1)的解集为a∈(0,1/12)U(1/12,∞),而f(2a)<f(a+1)的解集为a=1/12.21.(本小题满分8分)如图,在平面直角坐标系中,点A(1,2)、B(-3,4)、C(-2,-1)、D(2,-3)依次连线,得到四边形ABCD。
2022—2023学年度第一学期期末教学质量监测八年级数学试题一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是A B C D2 在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为A (-4,5)B (-5,4)C (4,-5)D (5,-4)3 下列图象中,y是x的函数的是A B C D4 已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为A 0B 2cC 2a+2bD 2a+2b-2c5 对于一次函y=3x-1数,下列说法正确的是A 图象经过第一、二、三象限B 函数值y随x的增大而增大C 函数图象与直线y=3x相交D 函数图象与轴交于点(0,13)6 在△ABC中,∠ACB为钝角 用直尺和圆规在边AB上确定一点D,使∠ADC=2∠B,则符合要求的作图痕迹是ABCD7 下列命题中,假命题是A 两个全等三角形的面积相等B 周长相等的两个等边三角形全等C 三角形的一个外角大于与它不相邻的一个内角D 两条直线被第三条直线所截,同旁内角互补8 如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是A BC=DEB AE=DBC ∠A=∠DEFD ∠ABC=∠D9 如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是A B C D10 在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,如图,折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是A 乙先出发的时间为0.5小时B 甲的速度比乙的速度快C 甲出发0.4小时后两车相遇D 甲到B地比乙到A地迟5分钟二、填空题(本大题共5小题,共15分)11 在函数y=4x槡-3x-2中,自变量的取值范围是12 如图,直线y1=mx经过P(2,1)和Q(-4,-2)两点,且与直线y2=kx+b交于点P,则不等式kx+b>mx>-2的解集为13 如图,在△ABC中,AB=AC,点D为BC的中点,∠BAD=24°,AD=AE,∠EDC=度 第12题图 第13题图 第14题图 第15题图14 如图,在△ABC中,CD是AB边上的高线,BE平分∠ABC交CD于点E,BC=7,DE=2,则△BCE的面积等于15 如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在直线AC上,且△OMC的面积是△OAC的面积的14,则点M的坐标为三、解答题(本大题共7小题,共55分。
人教版八年级上册数学《期末》考试题及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)11的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.如果y,那么y x 的算术平方根是( )A .2B .3C .9D .±33.若α、β为方程2x 2-5x-1=0的两个实数根,则2235++ααββ的值为( )A .-13B .12C .14D .154.下列选项中,矩形具有的性质是( )A .四边相等B .对角线互相垂直C .对角线相等D .每条对角线平分一组对角5.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 6.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a -- 7.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .68.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩10.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.因式分解:2218x -=__________.3.已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x y -的值为________. 4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =________.5.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是________.6.如图,∠AOB=60°,OC 平分∠AOB ,如果射线OA 上的点E 满足△OCE 是等腰三角形,那么∠OEC 的度数为________。
初二年级第一学期期末考试数学试卷本试卷包括两道大题,共24道小题。
共6页。
全卷满分120分。
考试时间为120分钟。
考试结束后,将答题卡交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共24分)1.-64的立方根是()A.-4B.8C.-4和4D.-8和82.若3-m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>33.如图,在△ABC中,AB=AC,∠A=40︒,AB的垂直平分线交AB于点D,交AC于点E,连结BE,则∠CBE 的度数为()A.70︒B.80︒C.40︒D.30︒第3题图第5题图4.如果a、b、c是一个直角三角形的三边,则a,b,c可能为()A.1,2,4B.1,3,5C.3,4,7D.5,12,13, x15<x≤20S S5. 如图,要测量河两岸相对的两点 A 、B 的距离,先在 AB 的垂线 BF 上取两点 C 、D ,使 BC =CD ,再作出 BF的垂线 DE ,使点 A 、C 、E 在同一条直线上(如图所示) 可以说明△ ABC ≌△EDC ,得 AB =DE ,因此测得DE 的长就是 AB 的长,判定△ ABC ≌△EDC ,最恰当的理由是() A .边角边 B .角边角 C .边边边D .边边角AS 3S 2B S1 C第 6 题图第 8 题图6.如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交 AD 边于点 E ,且 AE =3,则 AB 的长为().5 A .4B .3C .2D .27. 小 明统计了他家今年 11 月 份打电话的次数及通话时间,并列出了频数分布表:通话时间 x/min 0<x≤5 5<x≤10 10<x≤15 频数(通话次数)1916510则通话时间不超过 15min 的频率为( )A .0.1B .0.4C .0.5D .0.88.如图所示,以 △RtABC 的三边向外作正方形,其面积分别为 S 1,2,3 且 S 1 = 4, S 2 = 8, 则S 3 =()A .4B .8C .12D .32二、填空题(每小题 3 分,共 18 分)9.因式分解: am + an + ap = .10.计算: a 3 ⋅ a 5 =.11.25 的平方根是.12.若代数式 x - 2 - 2 - x 有意义,则 x 的值为.13.如图,△ABC 中,∠C = 90︒ ,AB =10,AD 是△ABC 的一条角平分线,若 CD =3,则△ABD 的面积为.16 - 9 ⎪• 4 18.因式分解 x 3 - 4 x2314.如图, ∠C = ∠ABD = 90︒, AC = 4, BC = 3, BD = 12 ,则 AD=.ACB D第 13 题图第 14 题图三、计算题(每小题 6 分,共 24 分)15. 3a •(a - 4)16.(x3y + 2 x 2 y 2 )÷ xy⎛ 1⎫17.⎝ 2 ⎭四、解答 题:(每小题 8 分,共 32 分)19..先化简,再求值 (x + y )2 - 2 x (x + y ),其中 x=3,y=2.320.已知:a+b=5,a2-b2=10,求a-b的值.21.如图,BD、CE△是ABC的高,且AE=AD,求证:AB=AC.第21题图22.如图,延长□A BCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.第22题图五、解答题(23题10分,24题12分,共22分)23.某校为了了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取了本校部分学生进行问卷调查(必选且只选一类节目),将调查结果进行整理后,绘制了如下不完整的条形统计图和扇形统计图,其中喜爱体育节目的学生人数比喜爱戏曲节目的学生人数的3倍还多1人.第23题图请根据所给信息解答下列问题:(1)求本次抽取的学生人数;(2)补全条形图,在扇形统计图中的横线上填上正确的数值;(3)该校有3000名学生,求该校喜爱娱乐节目的学生大约有多少人.24.如图,在△Rt ABC中,∠B=90,AB=7cm,AC=25cm.点P从点A沿AB方向以1cm/s的速度运动至点B,点Q从点B沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发.(1)求BC的长.(2)若运动2s时,求P、Q两点之间的距离.xk|b|1(3)P、Q两点运动几秒,AP=CQ.第24题图答案:一、1.A 2.A 3.D 4.D 5.A 6.B7.D8.C二、9.a(m+n+p)10.a811.±512.x=213.1514.13三、15.3a2-12a16.x2+2xy17.018.x(x+2)(x-2)四、19.-x2+y2,-520.221.略22.略五、23.(1)50(2)30%(3)108024.(1)24(2)13(3)24 72C.6D.9B B B八年级上册数学期末试题一.选择题45分1.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB△≌OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS1题图2题图3题图4题图2.某市准备在一块三条公路围成的平地△ABC上设立一个大型超市,要求超市到三条公路的距离相等,则超市应建立在△ABC的()A.两个内角的平分线的交点处C.两边中线的交点处B.两边高线的交点处D.两边的垂直平分线的交点处3.如图,已知∠BAC的平分线与BC的垂直平分线PQ相交于点P,PM⊥AC,PN⊥AB,垂足分别为M、N,AB=3,AC=7,则CM的长度为()A.4B.3C.2D.324.如图,在△ABC中,∠C=90°,AC=BC=6,D为AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合)且保持∠EDF=90°,连接EF,在此运动变化过程中,△SCEF的最大值为()A.3B.95.已知A、B两点的坐标分别为(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、关于y轴对称;③A、关于原点对称;④A、之间的距离为4,其中正确的有()A.1个B.2个C.3个D.4个6.若一个多边形的内角和与外角和之和是1800°,则此多边形是()边形A.八B.十C.十二D.十四7.六边形的对角线共有()A.9条B.15条C.12条D.6条8.妈妈问小欣现在几点了,小欣瞧见了镜子里的挂钟如图所示(分针正好指向整点位置)她就立刻告诉了妈妈正确的时间,请问正确的时间是()A.6点20分B.5点20分C.6点40分D.5点40分9.如图,∠A+∠B+∠C+∠D+∠E的度数为()A.90°B.180°C.270°D.360°10.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CHA.①②③④B.①②③C.②④D.①③11、下列正多边形中,不能铺满地面的是()A、正三角形C、正六边形B、正方形D、正七边形12、若一个三角形三个角度数的比为2:3:4,则这个三角形的()A、直角三角形C、钝角三角形B、锐角三角形D、正三角形13.如图,直线l1、l2、l3表示三条互相交叉的公路,现在建一个货物中转站,要求到三条公路的距离相等,则可选择的地址有()处A.一处B.两处C.三处D.四处14、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.30°或150°B.30°或150°C.60°或150°D.60°或120°15.下列因式分解结果正确的是()A.x2+2x-3=x(x+2)-3B.6p(p+q)-4q(p+q)=(p+q)(6p-4q)C.a2-2a+1=(a-1)2D.4x2-9=(4x+3)(4x-3)二、解答题16.如图,△ABC△和BDE中,AB=BC,BD=BE,∠ABC=∠EDB=90°,G、H分别为AD、CE 中点,试判断△BGH形状并证明17.如图,等边△ABC的边长为12cm,D为AC边上一动点,E为AB延长线上一动点,DE交CB于点P,点P为DE中点(1)求证:CD=BE(2)若DE⊥AC,求BP的长18.(7分)已知AB∥CD,点E为BC上一点,且AB=CD=BE,AE、DC的延长线交于点F,连BD(1)如图1,求证:CE=CF(2)如图2,若∠ABC=90°,G是EF的中点,求∠BDG的度数已知ABC△和DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上19.△(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD(2)如图2,若AD=AB,求证:AF=AE+BC20.如图,AD△为ABC的高,点H为AC的垂直平分线与BC的交点,HC=AB(1)如图1,求证:∠B=2∠C(2)如图2,若2∠DAF=∠B-∠C①求证:AC=BF+BA②直接写出AC FC的值DF21.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F(1)说明BE=CF的理由(2)如果AB=a,AC=b,求AE、BE的长( , a + x a + 1nna (C. = , a ≠ 0)D. =B.=xx 2m ma八年级第一学期期末质量检测试卷数学(总分 150 分,答题时间 120 分钟)A 卷(100 分)一.选择题(每小题 3 分,共 30 分)题号 1 2 3 4 5x67 8 9 10答案1.1 纳米等于 0.0000000001 米,则 35 纳米用科学记数法表示为()A .35×10-9 米B .3.5×10-9 米C .3.5×10-10 米D .3.5×10-8 米2.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A .B. C. D.3.下列各式: 1 1- x ) 4 x , x 2 - y 2 , 1 + x, 5x2 其中分式共有( )个 5 π -3 2 x xA.2B.3C.4D.54.下列各式正确的是()A.5.若把分式 x + y中的 x 和 y 都扩大 3 倍,那么分式的值()2 x yA.扩大 3 倍B.不变C.缩小 3 倍D.缩小 6 倍6.若分式 x - 1x 2 - 3x + 2A.-1的值为 0,则 x 等于( )B.1C.-1 或 1D.1 或 27.A 、B 两地相距 48 千米,一艘轮船从 A 地顺流航行至 B 地,又立即从 B 地逆流返回 A 地,共用去 9 小时,已知水流速度为 4 千米/时,若设该轮船在静水中的速度为 x 千米/时,则可列方程()A.48+=9 B.+=9 C.+4=9 D.+=9CD12.①3a5xy10axy a2-4()y-z x+z x-y,,⎪5122132中得到巴尔末公式,从而打开484848489696x+4x-44+x4-x x x+4x-48.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cmB.7.5cmC.11cm或7.5cmD.以上都不对9.如图:∠EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于()EA.90°B.75°C.70°D.60°A B F10.若平面直角坐标系中,△ABO关于x轴对称,点A的坐标为(1,-2),则点B的坐标为()A.(-1,2)B.(-1,-2)C.(1,2)D.(-2,1)二、填空题(每小题3分,共30分)11.如图1,AB,CD相交于点O,AD=△C B,请你补充一个条件,使得AOD≌△COB.你补充的条件是______.A C()a+21=,(a≠0)②=13.分式的最简公分母是。
新人教版八年级数学上册数学期末测试卷八年级数学试卷(试卷满分150分,考试时间120分钟)题目一二三总分1-1011-202122232425$262728得分》(一、选择题(每小题3分,共计30分)1、数—2,,722,2,—∏中,无理数的个数是()A、2个;B、3个C、4个; D 、5个$2、计算6x5÷3x2·2x3的正确结果是()A、1;B、xC、4x6;D、x43、一次函数12+-=xy的图象经过点()A.(2,-3) B.(1,0) C.(-2,3) D.(0,-1)4、下列从左到右的变形中是因式分解的有( )①1))((122--+=--yxyxyx②)1(23+=+xxxx③2222)(yxyxyx+-=-④)3)(3(922yxyxyx-+=-A.1个B.2 个C.3个D.4个/5、三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的()A、三条中线的交点;B、三边垂直平分线的交点;C、三条高的交战;D、三条角平分线的交点;6、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )得分阅卷人》7、如图,CFBE,,,四点在一条直线上,,,DACFEB∠=∠=再添一个条件仍不能证明⊿ABC≌⊿DEF的是()A.AB=DE B..DF∥AC<C.∠E=∠ABC D.AB∥DE8、下列图案中,是轴对称图形的是()、9.一次函数y=mx-n的图象如图所示,则下面结论正确的是()A.m<0,n<0 B.m<0,n>0 C.m>0,n>0 D.m>0,n<0。
10.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC 其中正确的结论有()A:1个B:2个C:3个D:4个A DB CAB F CDlOCB DA二、填空题(每小题3分,共计30分) 11、16的算术平方根是 .12、点A (-3,4)关于原点Y 轴对称的点的坐标为 。
人教版八年级上册数学《期末》考试卷及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A .2- B .2 C .212+ D .212- 4.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.如果2(21)12a a -=-,则a 的取值范围是( )A .12a <B .12a ≤C .12a >D .12a ≥ 6.估计()-⋅1230246的值应在( ) A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间7.实数a 在数轴上的位置如图所示,则化简22(4)(11)-+-a a 结果为( )A .7B .-7C .215a -D .无法确定7.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.如图,五边形ABCDE 中有一正三角形ACD ,若AB=DE ,BC=AE ,∠E=115°,则∠BAE 的度数为何?( )A .115B .120C .125D .13010.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,BO 的延长线交CE 于点E ,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )A .①②③B .①③④C .①④D .①②④二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________.3.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图,四边形ABCD 中,∠A=90°,AB=33,AD=3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 .三、解答题(本大题共6小题,共72分)1.解方程:21133x x x x =+++.2.先化简()222a 2a 1a 1a 1a 2a 1+-÷++--+,然后a 在﹣1、1、2三个数中任选一个合适的数代入求值.3.已知关于x 的一元二次方程22(21)10x m x m +++-=有两不相等的实数根. ①求m 的取值范围.②设x1,x2是方程的两根且221212170x x x x++-=,求m的值.4.如图,在四边形ABCD中,AB DC,AB AD=,对角线AC,BD交于点O,AC平分BAD∠,过点C作CE AB⊥交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若5AB=,2BD=,求OE的长.5.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、B5、B6、B7、A8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、-153、﹣24、20°.5、:略6、3三、解答题(本大题共6小题,共72分)1、32x =-2、53、①54m >-,②m 的值为53.4、(1)略;(2)2.5、解:(1)证明:如图,∵MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,∴∠2=∠5,4=∠6.∵MN∥BC,∴∠1=∠5,3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴EF13==.∴OC=12EF=6.5.(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形.∵∠ECF=90°,∴平行四边形AECF是矩形.6、(1)120件;(2)150元.。
-/61. A . 2. 人教版八年级上册数学《期末》考试卷及答案【一套】 班级: 姓名:、选择题(本大题共10小题,每题3分,共30分)下列二次根式中,最简二次根式的是() B .€05 将抛物线y €-3x 2平移,得到抛物线y €—3(x -1)2-2,下列平移方式中,正 确的是() A. 先向左平移 B . 先向左平移 C. 先向右平移 D. 先向右平移 再向上平移 2个单位 再向下平移 2个单位 再向上平移 2个单位 再向下平移 2个单位 1个单位, 1个单位, 1个单位, 1个单位, 3. 已知平面内不同的两点 A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为(() A. B.-5 C.1或-3 D.1或-5 4. A. 和取整数贝腋分式警f 的值为整数的皿有( B.4个 5. 3个 C.6个D.8个 为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分 麦苗,获得苗高(单位Cm)的平均数与方差为:兀甲 =x =13, 丙x =x =15:s 乙丁 2=s 甲 A. 2=3.6,s 丁甲 2=s 2=6.3.则麦苗又高又整齐的是(乙丙 B.乙 6. 如果分式A.7. C.丙 D . x I 一1 —-的值为0,那么x的值为()x +- B.1C.-1或1 D . 1或0 如图,在口ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F,连接。
已,若4CED的周长为6,贝归ABCD的周长为(A.6B.12C.18D.24形ABCD为菱形的是()A.AB=BCB.AC=BCC.ZB=8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边9.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()ACA.(—3,-2)B.(3,-2)C.(-2,-3)D.(2,-3)10.若b>0,则一次函数y二-x+b的图象大致是()二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:a2一9=.1mm,32.____________________________________________________ 若关于x 的方程丄+£=上埠无解,则m的值为.x一4x,4x2一163.___________________________________________ 若济是整数,则满足条件的最小正整数n为.4.如图,一次函数y=-x-2与y=2x+m的图象相交于点P(n,-4),则关于的不等式组{ 2x €m V —x —2—x —2V O 的解集为(只添一个即可),使四边形ABCD 是平行四边形..(只需写一个,不添加辅助线)5. ___________________________________________________________ 如图,四边形ABCD 的对角线相交于点O,AO=CO ,请添加一个条件6. 如图,在△ABC 和ADEF 中,点B 、F 、C 、E 在同一直线上,BF=CE,AC 〃 DF,请添加一个条件,使△ABC^^DEF,这个添加的条件可以是三、解答题(本大题共6小题,共72分)1•解分式方程:x 一216 —1,— x €2x 2—42•先化简,再求值:(1-亠)-"2一力€4,其中a=2+、.:2.a—1a2一ax一3(x一2)>43•解不等式组:]2x—1x+1,并将解集在数轴上表示出来.< (52)4•如图,在四边形ABCD中,AB//DC,AB=AD,对角线AC,BD交于点O,AC平分ZBAD,过点C作CE丄AB交AB的延长线于点E,连接OE・(1)求证:四边形ABCD是菱形;(2)若AB€,BD=2,求OE的长.5.如图,在四边形ABCD中,E是AB的中点,AD//ECZAED=ZB.(1)求证:△AED^AEBC;(2)当AB=6时,求CD的长.6•某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、A4、B5、D6、B7、B8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、(a,3)(a-3)_12、-1或5或33、74、-2VxV25、BO=DO.6、AC=DF(答案不唯一)三、解答题(本大题共6小题,共72分)1、原方程无解a2、原式二a_2二*'2+1.3、-7V xW1.数轴见解析.4、(1)略;(2)2.5、(1)略;(2)CD=36、(1)第一批饮料进货单价为8元.(2)销售单价至少为11元.。
第一学期期末质量检测题八年级数学一、单项选择题(本大题共10小题,每题2分,共20分)1.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6 B.x6C.x5 D.﹣x52.计算(﹣a3)2+(﹣a2)3的结果为()A.﹣2a6B.﹣2a5 C.2a6D.03.等腰三角形有一个角是90°,则另两个角分别是()A.30°,60°B.45°,45°C.45°,90°D.20°,70°4.一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°5.+的运算结果正确的是()A.B.C.D.a+b6.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40°B.45°C.50°D.60°7.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720°D.900°8.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A.B.C.D.CA D BEF9.计算(2x ﹣1)(1﹣2x )结果正确的是( ) A .4x 2﹣1B .1﹣4x 2C .﹣4x 2+4x ﹣1D .4x 2﹣4x +110.面积相等的两个三角形( ) A .必定全等 B .必定不全等 C .不一定全等D .以上答案都不对二、填空题(每小题3分,共30分)11.如图1,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______. 12.①())0(,10 53≠=a axy xy a ②() 1422=-+a a 13.分式28,9,12zyx xy z x x z y -+-的最简公分母是 。
最新人教版八年级上册数学期末质量监测试题(附答案) 注意事项:1. 答题前,考生务必将条形码粘贴在答题卡上规定位置,并认真核对条形码的信息与考生本人信息是否一致。
2. 全部答案在答题卡上完成,严格按照答题卡填涂要求做答,在本试卷上作答无效。
3. 考试结束后,将答题卡交回。
4. 本试题满分120分,答题时间120分钟。
第Ⅰ卷(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.若分式5x x 有意义,则实数x 的取值范围是( ) A .x =0B .x =5 C .x ≠5 D .x ≠02.计算(-ab 2)3的结果是( )A .-a 3b 5B .-a 3b 6C .-ab 6D .-3ab 23.如图,已知△ABC ≌△ADE ,若∠B =40°,∠C =75°, 则∠EAD 的度数为( )A .65°B .70°C .75°D .85°4.把8a 3-8a 2+2a 进行因式分解,结果正确的是( )A .2a (4a 2-4a +1)B .8a 2(a -1)C .2a (2a +1)2D .2a (2a -1)2 5. 若小明以四种不同的方式连接正六边形ABCDEF 的两条对角线,连接后的情形如下列选项中的图形所示,则下列哪一个图形不是轴对称图形( )6.下列各式中,正确的是( )A B CDC D(第3题图)A .b b ab b a +=+1B .222)(y x y x y x y x --=-+ C .31932-=--x x x D .22y x y x +-=+- 7. 如图,在△ABC 中,以点C 为圆心,以AC 长为半径画弧交边BC 于点D ,连接AD .若∠B =36°,∠C =40°,则∠BAD 的度数是( )A .70°B .44°C .34°D .24°8.如图,在Rt △ABC 中,∠ABC =90°,∠A =65°,将其折叠,使点A 落在边CB 上A′处,折痕为BD ,则∠A′D C =( )A .40°B .30°C .25°D .20°9.如图,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E ,△ABC 的面积为15,AB =6,DE =3,则AC 的长是( )A .8B .6C .5D .410.如图,在△ABC 中,BC 的垂直平分线EF 交∠ABC 的平分线BD 于E ,如果∠BAC =60°,∠ACE =24°,那么∠ABC 的大小是( )A .32°B .56°C .64°D .70° 第Ⅱ卷(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.如果多项式4x 2+ax +9是一个完全平方式,则a = ▲ .12.如图,BD 是△ABC 的中线,AB =8,BC =6,△ABD 和△BCD 的周长的差是 ▲ .(第7题图) A'D BC A (第8题图) (第9题)(第11题图) (第12题图)(第10题)13.实验证明,某种钢轨温度每变化1℃,每米钢轨就伸缩0.0000118米.数据0.0000118用科学记数法表示为 ▲ .14.某物流仓储公司用A ,B 两种型号的机器人搬运物品,已知A 型机器人比B 型机器人每小时多搬运20 kg ,A 型机器人搬运1000 kg 所用时间与B 型机器人搬运800 kg 所用时间相等,设B 型机器人每小时搬运x kg 物品,列出关于x 的方程为 ▲ .(第14题图)15.有些数学题,表面上看起来无从下手,但根据图形的特点,可补全成为特殊的图形,然后根据特殊几何图形的性质去考虑,常常可以获得简捷解法.根据阅读,请解答问题:如图所示,已知△ABC 的面积为16cm 2, AD 平分∠BAC ,且AD ⊥BD 于点D ,则△ADC 的面积为 cm 2.三、解答题(本大题共 8小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(每小题5分,共10分)(1)计算:2822)2)(2()2(a a b a b a a ab ÷+-++-;(2)化简:393296422-++÷++-a a a a a . 17. (本题8分)解方程:.14644=+--+x x x 18.(本题8分)如图所示,在平面直角坐标系中,△ABC 各顶点的坐标分别为A (4,0), B (-1,4),C (-3,1).(1)在图中作出△A′B′C′,使△A′B′C′和△ABC 关于x 轴对称;(2)写出点A′, B′,C′的坐标;(3)求△ABC 的面积.19.(本题8分)阅读与思考x 2+(p +q )x +pq 型式子的因式分解x 2+(p +q )x +pq 型式子是数学学习中常见的一类多项式,如何将这种类型的式子分解因式呢?我们通过学习,利用多项式的乘法法则可知:(x +p )(x +q )=x 2+(p +q )x +pq ,因式分解是整式乘法相反方向的变形,利用这种关系可得x 2+(p +q )x +pq =(x +p )(x +q ).利用这个结果可以将某些二次项系数是1的二次三项式分解因式,例如,将x 2-x -6分解因式.这个式子的二次项系数是1,常数项-6=2×(-3),一次项系数-1=2+(-3),因此这是一个x 2+(p +q )x +pq 型的式子.所以x 2-x -6=(x +2)(x -3).上述过程可用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数,如下图所示.这样我们也可以得到x 2-x -6=(x +2)(x -3).这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题:(1)分解因式:y 2-2y -24.(2)若x 2+mx -12(m 为常数)可分解为两个一次因式的积,请直接写出整数m 的所有可能值.20.(本题9分)如图,已知正五边形ABCDE ,AF ∥CD 交DB 的延长线于点F ,交DE 的延长线于点G .求证:FD =FG..21.(本题10分)某超市在2017年“双11”,销售一批用16800元购进的中老年人保暖内衣,发现供不应求.为了备战“双12”,积极参与支付宝扫码领红包活动,超市又(第20题)用36400元购进了第二批这种保暖内衣,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该超时购进的第一批保暖内衣是多少件?(2)两批保暖内衣按相同的标价销售,最后剩下的50件按六折优惠卖出,两批保暖内衣全部售完后利润没有低于进价的20%(不考虑其他因素),请计算每件保暖内衣的标价至少是多少元?22. (本题10分)动手操作:如下图,已知AB ∥CD ,点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以点E ,F 为圆心,大于EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .问题解决:(1)若∠ACD =78°,求∠MAB 的度数;(2)若CN ⊥AM ,垂足为点N ,求证△CAN ≌△CMN .实验探究:(3)直接写出当∠CAB 的度数为多少时?△CAM 分别为等边三角形和等腰直角三角形.23.(本题12分)在自习课上,小明拿来如下框的一道题目(原问题)和合作学习小组的同学们交流.(第22题)B小红同学的思路是:过点D 作DG ⊥AB 于点G ,构造全等三角形,通过推理使问题得解. 小华同学说:我做过一道类似的题目,不同的是∠ABC =30°,∠ADB =∠BEC =60°. 请你参考小明同学的思路,探究并解决以下问题:(1)写出原问题中DF 与EF 的数量关系为.(2)如图2,若∠ABC =30°,∠ADB =∠BEC =60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.(第23题) F E D B A C数学参考答案和评分标准。
最新人教版八年级上册数学期末考试试卷及答案八年级上册数学期末试卷及答案一、选择题:1.计算(a)的结果是:C.a82.若正比例函数的图像经过点(-1,2),则这个图像必经过点:B.(-1,-2)3.下列图形是轴对称图形的是:C.4.如图,△ACB≌△A’CB’,∠BCB’=30°,则∠ACA’的度数为:D.40°5.一次函数y=2x-2的图象不经过的象限是:A.第一象限6.从实数-2,-1,√3,π,4中,挑选出的两个数都是无理数的为:B.π,47.若a>0且a<1,ay=3,则ax-y的值为:D.328.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t(单位:分)之间的函数关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为:B.10分二、填空题:9.计算:2x3÷8-x2 = -1/410.一次函数y=(2k+4)x+5中,y随x增大而减小,则k的取值范围是:k<-211.分解因式:m2n-mn2 = mn(m-n)12.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=16°,则∠C的度数为:74°13.计算:(-1)^2009 - (π-3) = 214.当s<4时,s^2-4s+3的值为:负数15.若yx=t+1/22,代数式s-2st+t的值为:1/48416.经过点A(-1,-2)和点B(-2,0)的直线为y=-2x-4,因为直线y=2x过点A,所以2xk(-2)+b,即kx+b<4.所以解集为{x|x<-2且kx+b<4}。
17.在大量角器上对应的度数为114°。
因为小量角器的零度线在大量角器的零度线上,所以小量角器上的66°对应的角度就是大量角器上的66°。
人教版八年级上学期期末考试数学试题一、选择题1.以下是有关环保的四个标志,从图形的整体看,是轴对称图形的是( ) A. B. C. D.2.若分式2a+1有意义,则a 的取值范围是【 】 A. a=0 B. a="1" C. a≠﹣1 D. a≠03.正常情况下,一个成年人的一根头发大约是0.0000012千克,用科学记数法表示应该是( )A. 1.2×10﹣5B. 1.2×10﹣6C. 0.12×10﹣5D. 0.12×10﹣6 4.下列计算正确的是( )A. (﹣1)0=1B. (x +2)2=x 2+4C. (ab 3)2=a 2b 5D. 2a +3b =5ab 5.如图,已知12∠=∠,则不一定能使ABD ACD △≌△的条件是( )A. BD CD =B. AB AC =C. B C ∠=∠D. BAD CAD ∠=∠ 6.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是( )A. SSSB. SASC. ASAD. AAS7. 下列各式从左到右的变形是因式分解的是( )A (a+5)(a ﹣5)=a 2﹣25B a 2﹣b 2=(a+b )(a ﹣b )C. (a+b )2﹣1=a 2+2ab+b 2﹣1D a 2﹣4a ﹣5=a (a ﹣4)﹣58.如图,在△ABC 中,AB =AC ,AD 、CE 分别是△ABC 的中线和角平分线,当∠ACE =35°时,∠BAD 的度数是( )A. 55°B. 40°C. 35°D. 20°9.如图,有A 、B 、C 三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A. AC 、BC 两边高线的交点处B. AC 、BC 两边垂直平分线的交点处C. AC 、BC 两边中线的交点处D. ∠A 、∠B 两内角平分线的交点处10.一正多边形的内角和与外角和的和是1440°,则该正多边形是( )A. 正六边形B. 正七边形C. 正八边形D. 正九边形11.若x 2﹣2(k ﹣1)x+9是完全平方式,则k 的值为( )A. ±1 B. ±3 C. ﹣1或3 D. 4或﹣212.如图,直线l 外不重合的两点A 、B ,在直线l 上求作一点C ,使得AC+BC 的长度最短,作法为:①作点B 关于直线l 的对称点B′;②连接AB′与直线l 相交于点C ,则点C 为所求作的点.在解决这个问题时没有运用到的知识或方法是( )A. 转化思想B. 三角形的两边之和大于第三边C. 两点之间,线段最短D. 三角形的一个外角大于与它不相邻的任意一个内角13.4a -(b ﹣5)2=0,那么这个等腰三角形的周长为( )A. 13B. 14C. 13或14D. 914.已知a ,b ,c 是ABC ∆的三条边长,则22()a b c --的值是( )A. 正数B. 负数C. 0D. 无法确定15.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.240120420x x-=-B.240120420x x-=+C. 120240420x x-=-D.120240420x x-=+16.如图,在△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线相交于点D,DE⊥AB 交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正确的有()A. 2个B. 3个C. 4个D. 1个二、填空题17.(1)当x=_____时,分式242xx--的值为0.(2)已知(x+y)2=30,(x﹣y)2=18,则xy=_____.18.点P(1,﹣2)关于x轴对称的点的坐标为P′______.19.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC 的面积是_____.20.如图,△ABC是等腰直角三角形,AB=BC,已知点A的坐标为(﹣2,0),点B的坐标为(0,1),则点C 的坐标为__.三、解答题21.如图,有六个正六边形,在每个正六边形里有六个顶点,要求用两个顶点连线(即正六边形的对角线)将正六方形分成若干块,相邻的两块用黑白两色分开.最后形成轴对称图形,图中已画出三个,请你继续画出三个不同的轴对称图形(至少用两条对角线)22.基本运算(1)分解因式:①3224a b ab -②()228a b ab -+(2)整式化简求值:求[()()()2224x y x y x y +--+]÷4y 的值,其中()02x -无意义,且320x y -=.23.三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图,△ABC 中,AB=AC ,且∠A=36°.(1)在图中用尺规作边AB 的垂直平分线交AC 于D ,连接BD (保留作图痕迹,不写作法). (2)请问△BDC 是不是黄金三角形,如果是,请给出证明,如果不是,请说明理由.24.分式化简求值与解方程(1)分式化简求值2336a a a --÷522a a ⎛⎫+- ⎪-⎝⎭ ,其中2310a a +-=(2)解分式方程 :2212525x x x -=-+ 25.如图,在△ABC 中,D 是BC 边上的点(不与点B ,C 重合),连结AD(1)如图1,当点D 是BC 边上的中点时,则S △ABD :S △ACD =_________(直接写出答案)(2)如图2,当AD 是∠BAC 的平分线时,若AB=m ,AC=n ,S △ABD :S △ACD =_________ (用含m,n 的代数式表示).(3)如图3,AD 平分∠BAC ,延长AD 到E ,使得AD=DE,连结BE ,如果AC=2,AB=4,S △BDE =6,求△ABC 的面积.26.列分式方程解应用题元旦期间,甲、乙两位好友约着一起开两辆车自驾去黄山玩,其中面包车为领队,小轿车紧随其后,他们同时出发,当面包车行驶了200千米时,发现小轿车只行驶了180千米,若面包车的行驶速度比小轿车快10千米/小时,请问:(1)小轿车和面包车的速度分别多少?(2)当小轿车发现落后时,为了追上面包车,他就马上提速,面包车速度不变,他们约定好在面包车前面100千米的地方碰头,他们正好同时到达,请问小轿车需要提速多少千米/小时?(3)小轿车发现落后时,为了追上面包车,他就马上提速,面包车速度不变,他们约定好在面包车前面s 千米的地方碰头,他们正好同时到达,请问小轿车提速 千米/小时.(请你直接写出答案即可) 27.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:()1如图1,已知:在ABC 中,BAC 90∠=,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E.试猜想DE 、BD 、CE 有怎样的数量关系,请直接写出;()2组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将()1中的条件改为:在ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC α(∠∠∠===其中α为任意锐角或钝角).如果成立,请你给出证明;若不成立,请说明理由.()3数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F 是BAC ∠角平分线上的一点,且ABF 和ACF 均为等边三角形,D 、E 分别是直线m 上A 点左右两侧的动点(D 、E 、A 互不重合),在运动过程中线段DE 的长度始终为n ,连接BD 、CE ,若BDA AEC BAC ∠∠∠==,试判断DEF 的形状,并说明理由.答案与解析一、选择题1.以下是有关环保的四个标志,从图形的整体看,是轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的定义求解即可得答案.【详解】A,此图案不是轴对称图形,故该选项不符合题意;B、此图案是轴对称图形,故该选项符合题意;C、此图案不是轴对称图形,故该选项不符合题意;D、此图案不是轴对称图形,故该选项不符合题意;故选B.【点睛】本题主要考查轴对称图形,掌握其定义是解题的关键:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.若分式2a+1有意义,则a的取值范围是【】A. a=0B. a="1"C. a≠﹣1D. a≠0【答案】C【解析】分式分母不为0的条件,要使2a+1在实数范围内有意义,必须a+10a1≠⇒≠-.故选C3.正常情况下,一个成年人的一根头发大约是0.0000012千克,用科学记数法表示应该是( )A. 1.2×10﹣5B. 1.2×10﹣6C. 0.12×10﹣5D. 0.12×10﹣6【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000012=1.2×10﹣6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列计算正确的是( )A. (﹣1)0=1B. (x +2)2=x 2+4C. (ab 3)2=a 2b 5D. 2a +3b =5ab 【答案】A【解析】【分析】根据零指数幂法则、完全平方公式、积的乘方法则以及合并同类项法则逐个判断即可【详解】解:A 、(﹣1)0=1,故本选项正确;B 、应(x +2)2=x 2+4x +4,故本选项错误;C 、应为(ab 3)2=a 2b 6,故本选项错误;D 、2a 与3b ,不是同类项,不能合并,故本选项错误.故选:A .【点睛】本题考查了零指数幂法则、完全平方公式、积的乘方法则以及合并同类项法则,熟练掌握运算法则及乘法公式是解题的关键.5.如图,已知12∠=∠,则不一定能使ABD ACD △≌△的条件是( )A. BD CD =B. AB AC =C. B C ∠=∠D. BAD CAD ∠=∠【答案】B【解析】【分析】 根据全等三角形的判定:AAS 、SAS 、ASA 、SSS 、HL ,即可进行判断,需要注意SSA 是不能判断两个三角形全等.【详解】解:当BD=CD 时,结合题目条件用SAS 即可判断出两三角形全等,故A 选项错误; 当AB=AC 时,SSA 是不能判断两个三角形全等,故B 选项正确;当B C ∠=∠时,AAS 能用来判定两个三角形全等,故C 选项错误;当BAD CAD ∠=∠时,ASA 能用来判定两个三角形全等,故D 选项错误.【点睛】本题主要考查的是全等三角形的判定,正确的掌握全等三角形的判定方法是解题的关键.6.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是( )A. SSSB. SASC. ASAD. AAS【答案】A【解析】【分析】由作法可知,两三角形的三条边对应相等,所以利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【详解】解:由作法易得OD=O′D',OC=0′C',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS.故选:A.【点睛】本题考查了全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点;由作法找准已知条件是正确解答本题的关键.7. 下列各式从左到右的变形是因式分解的是()A. (a+5)(a﹣5)=a2﹣25B. a2﹣b2=(a+b)(a﹣b)C. (a+b)2﹣1=a2+2ab+b2﹣1D. a2﹣4a﹣5=a(a﹣4)﹣5【答案】B【解析】试题分析:根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、是整式的乘法,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选B.考点:因式分解的意义.8.如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线,当∠ACE=35°时,∠BAD的度数是()A. 55°B. 40°C. 35°D. 20°【答案】D【解析】【分析】根据角平分线的定义和等腰三角形的性质即可得到结论.【详解】∵CE是∠ACB的平分线,∠ACE=35°,∴∠ACB=2∠ACE=70°,∵AB=AC,∴∠B=∠ACB=70°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,故选D.【点睛】本题考查了等腰三角形的两个底角相等的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.9.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A. AC、BC两边高线的交点处B. AC、BC两边垂直平分线的交点处C. AC、BC两边中线的交点处D. ∠A、∠B两内角平分线的交点处【答案】B【解析】【分析】要求到三小区的距离相等,首先思考到A小区、B小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AB的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.【详解】根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在边AC和BC的垂直平分线上,故选:B.【点睛】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.10.一正多边形的内角和与外角和的和是1440°,则该正多边形是()A. 正六边形B. 正七边形C. 正八边形D. 正九边形【答案】C【解析】【分析】依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.【详解】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°+360°=1440°,n﹣2=6,n=8.故这个多边形的边数为8.故选:C.【点睛】考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.11.若x2﹣2(k﹣1)x+9是完全平方式,则k的值为()A. ±1B. ±3C. ﹣1或3D. 4或﹣2【答案】D【解析】试题解析:∵x2-2(k-1)x+9是完全平方式,∴k-1=±3,解得:k=4或-2,故选D12.如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B 关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()A. 转化思想B. 三角形的两边之和大于第三边C. 两点之间,线段最短D. 三角形的一个外角大于与它不相邻的任意一个内角【答案】D【解析】试题分析:∵点B和点B′关于直线l对称,且点C在l上,∴CB=CB′,又∵AB′交l与C,且两条直线相交只有一个交点,∴CB′+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边.故选D.考点:轴对称-最短路线问题.13.4a (b﹣5)2=0,那么这个等腰三角形的周长为()A. 13B. 14C. 13或14D. 9【答案】C【解析】【分析】首先依据非负数的性质求得a,b的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可.【详解】解:根据题意得,a﹣4=0,b﹣5=0,解得a=4,b=5,①4是腰长时,三角形的三边分别为4、4、5,∵4+4=8>5,∴能组成三角形,周长=4+4+5=13,②4是底边时,三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=14,所以,三角形的周长为13或14.故选C.【点睛】本题主要考查的是非负数的性质、等腰三角形的定义,三角形的三边关系,利用三角形的三边关系进行验证是解题的关键.14.已知a ,b ,c 是ABC ∆的三条边长,则22()a b c --的值是( )A. 正数B. 负数C. 0D. 无法确定【答案】B【解析】【分析】利用平方差公式将代数式分解因式,再根据三角形的三边关系即可解决问题.【详解】解:∵(a−b)2−c 2=(a−b+c)(a−b−c),∵a+c>b ,b+c>a ,∴a−b+c>0,a−b−c<0,∴(a−b)2−c 2<0.故选B .【点睛】本题考查因式分解的应用,三角形的三边关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( ) A.240120420x x-=- B.240120420x x -=+ C. 120240420x x -=- D. 120240420x x -=+ 【答案】D【解析】【分析】 由设第一次买了x 本资料,则设第二次买了(x +20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【详解】解:设他第一次买了x 本资料,则这次买了(x +20)本, 根据题意得:120240420x x -=+. 故选:D .【点睛】此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.16.如图,在△ABC 中,∠BAC=60°,∠BAC 的平分线AD 与边BC 的垂直平分线相交于点D ,DE ⊥AB交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正确的有()A. 2个B. 3个C. 4个D. 1个【答案】B【解析】【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD,DF=12AD,从而可证明②正确;③若DM平分∠ADF,则∠EDM=90°,从而得到∠ABC为直角三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】如图所示:连接BD、DC,①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF,∴①正确;②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°,∵DE⊥AB,∴∠AED=90°,∵∠AED=90°,∠EAD=30°,∴ED=12AD , 同理:DF=12AD , ∴DE+DF=AD ,∴②正确;③由题意可知:∠EDA=∠ADF=60°,假设MD 平分∠ADF ,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°,∴∠ABC=90°,∵∠ABC 是否等于90°不知道,∴不能判定MD 平分∠ADF ,故③错误;④∵DM 是BC 的垂直平分线,∴DB=DC ,在Rt △BED 和Rt △CFD 中DB DC DE DF =⎧⎨=⎩, ∴Rt △BED ≌Rt △CFD (HL ),∴BE=FC ,∴AB+AC=AE ﹣BE+AF+FC ,又∵AE=AF ,BE=FC ,∴AB+AC=2AE ,故④正确,所以正确的有3个,故选B .【点睛】本题考查了全等三角形的判定与性质,角平分线的性质,线段垂直平分线的性质,含30度角的直角三角形的性质,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.二、填空题17.(1)当x=_____时,分式242xx--的值为0.(2)已知(x+y)2=30,(x﹣y)2=18,则xy=_____.【答案】(1). -2(2). 3【解析】【分析】(1)根据分式值为零的条件可得x2﹣4=0,且x﹣2≠0,再解即可;(2)根据完全平方公式得到(x+y)2=(x﹣y)2+4xy,然后把(x+y)2=30,(x﹣y)2=18整体代入计算即可.【详解】(1)解:由题意得:x2﹣4=0,且x﹣2≠0,解得:x=﹣2,故答案为:﹣2;(2)解:(x+y)2=(x﹣y)2+4xy,∵(x+y)2=30,(x﹣y)2=18,∴30=18+4xy解得:xy=3,故答案:3.【点睛】此题主要考查了分式的值为零的条件及完全平方公式的变形,也考查了代数式的变形能力以及整体思想的运用,熟练掌握分式值为零的条件及完全平方公式时解决本题的关键,分式值为零需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.18.点P(1,﹣2)关于x轴对称的点的坐标为P′______.【答案】(1,2)【解析】【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即横坐标不变,纵坐标变成相反数,即可得出答案.【详解】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,-2)关于x轴对称点的坐标为(1,2),故答案为(1,2).【点睛】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即横坐标不变,纵坐标变成相反数,难度较小.19.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.【答案】42【解析】【详解】解:连接AO,可知AO 平分∠BAC ,由角平分线的性质可知点O 到AB 、AC 、BC 的距离相等,把求△ABC 的面积转化为求△AOB 、△AOC 、△BOC 的面积之和, 即1()422AB AC BC OD ++⋅=考点:角平分线的性质.20.如图,△ABC 是等腰直角三角形,AB=BC ,已知点A 的坐标为(﹣2,0),点B 的坐标为(0,1),则点C 的坐标为__.【答案】(3,2)-【解析】试题分析:作CD x ⊥轴于D ,根据条件可证得ACD ∆≌BAO ∆,故1AD OB ==,2CD OA ==,所以3OD =,所以(3,2)C -.考点:1.辅助线的添加;2.三角形全等.三、解答题21.如图,有六个正六边形,在每个正六边形里有六个顶点,要求用两个顶点连线(即正六边形的对角线)将正六方形分成若干块,相邻的两块用黑白两色分开.最后形成轴对称图形,图中已画出三个,请你继续画出三个不同的轴对称图形(至少用两条对角线)【答案】见解析;【解析】【分析】根据轴对称的定义和六边形的性质求解可得.【详解】解:如图所示.【点睛】考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质及正六边形的性质. 22.基本运算(1)分解因式:①3224a b ab -②()228a b ab -+(2)整式化简求值:求[()()()2224x y x y x y +--+]÷4y 的值,其中()02x -无意义,且320x y -=.【答案】(1)①2(21)(21)ab a a -+,②()22a b +;(2)52y x --,-19 【解析】(1)①先提取2ab ,再利用平方差公式即可求解;②先化简,再利用完全平方公式即可求解; (2)先根据整式的混合运算法则化简,再根据零指数幂的性质求出x ,y 的值,代入即可求解.【详解】(1)①3224a b ab -=22(41)ab a -=2(21)(21)ab a a -+②()228a b ab -+ 22448a ab b ab =-++2244a ab b =++()22a b =+(2)[()()()2224x y x y x y +--+]÷4y=2222(4816)4x y x xy y y ----÷=2(208)4y xy y --÷=52y x --∵()02x -无意义,且320x y -=,∴2x =,3y =代入上式得:原式=5322-⨯-⨯=-19.【点睛】此题主要考查因式分解与整式的运算,解题的关键是熟知其运算法则.23.三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图,△ABC 中,AB=AC ,且∠A=36°.(1)在图中用尺规作边AB 的垂直平分线交AC 于D ,连接BD (保留作图痕迹,不写作法). (2)请问△BDC 是不是黄金三角形,如果是,请给出证明,如果不是,请说明理由.【答案】(1)详见解析;(2)△BDC 是黄金三角形,详见解析【解析】(1)可根据基本作图中线段垂直平分线的作法进行作图;(2)求得各个角的度数,根据题意进行判断.【详解】解:(1)如图所示(2)△BDC 是黄金三角形∵ED 是AB 的垂直平分线∴ AD=BD∴∠ABD=∠A=36°而在等腰△ABC 中,∠ABC=∠C=72°∴∠CBD=∠ABC -∠ABD=72°-36°=36° ∴∠BDC=180°-∠C -∠CBD=180°-72°-36°=72° ∴△BDC 是等腰三角形且顶角∠CBD=36°∴△BDC 是黄金三角形.【点睛】此题主要考查等腰三角形的判定与性质,解题的关键是熟知垂直平分线的作法及等腰三角形的性质.24.分式化简求值与解方程(1)分式化简求值2336a a a --÷522a a ⎛⎫+- ⎪-⎝⎭,其中2310a a +-= (2)解分式方程 :2212525x x x -=-+ 【答案】(1)213(3)a a +,13;(2)356x =- 【解析】【分析】 (1)先化简分式得到213(3)a a +,再将2310a a +-=变形为231a a +=代入求值即可;(2)去分母,将分式方程化成整式方程,求出x 值,再检验即可.【详解】解:(1)2336a a a --÷522a a ⎛⎫+- ⎪-⎝⎭ =2345()3(2)22a a a a a a --÷---- =3(3)(3)3(2)(2)a a a a a a --+÷-- =3(2)3(2)(3)(3)a a a a a a --⨯--+ =13(3)a a + =213(3)a a + ∵其中2310a a +-= ∴231a a +=∴原式=131⨯=13; (2)解:2212525x x x -=-+ 去分母得:2(25)2(25)(25)(25)x x x x x +--=+-化简得:22410410425x x x x +-+=-635x =-356x =-, 经检验356x =-是原方程的解, ∴原方程的解是356x =-. 【点睛】本题考查了分式的化简求值与解分式方程,解题的关键是掌握运算法则和解法.25.如图,在△ABC 中,D 是BC 边上的点(不与点B ,C 重合),连结AD(1)如图1,当点D是BC边上的中点时,则S△ABD:S△ACD=_________(直接写出答案)(2)如图2,当AD是∠BAC的平分线时,若AB=m,AC=n,S△ABD:S△ACD=_________ (用含m,n的代数式表示).(3)如图3,AD平分∠BAC,延长AD到E,使得AD=DE,连结BE,如果AC=2,AB=4,S△BDE =6,求△ABC 的面积.【答案】(1)1:1;(2)m∶n;(3)9【解析】【分析】(1)过A作AE⊥BC于E,根据三角形面积公式求出即可;(2)过D作DE⊥AB于E,DF⊥AC于F,根据角平分线性质求出DE=DF,根据三角形面积公式求出即可;(3)根据已知和(1)(2)的结论求出△ABD和△ACD的面积,即可求出答案.【详解】解:(1)过A作AE⊥BC于E,∵点D是BC边上的中点,∴BD=DC,∴S ABD:S△ACD=(12×BD×AE):(12×CD×AE)=1:1,故答案为:1:1;(2)过D作DE⊥AB于E,DF⊥AC于F,∵AD为∠BAC的角平分线,∴DE=DF,∵AB=m,AC=n,∴S ABD:S△ACD=(12×AB×DE):(12×AC×DF)=m:n;(3)∵AD=DE,∴由(1)知:S△ABD:S△EBD=1:1,∵S△BDE=6,∴S△ABD=6,∵AC=2,AB=4,AD平分∠CAB,∴由(2)知:S△ABD:S△ACD=AB:AC=4:2=2:1,∴S△ACD=3,∴S△ABC=3+6=9,故答案为:9.【点睛】本题考查了角平分线性质和三角形的面积公式,能根据(1)(2)得出规律是解此题的关键.26.列分式方程解应用题元旦期间,甲、乙两位好友约着一起开两辆车自驾去黄山玩,其中面包车为领队,小轿车紧随其后,他们同时出发,当面包车行驶了200千米时,发现小轿车只行驶了180千米,若面包车的行驶速度比小轿车快10千米/小时,请问:(1)小轿车和面包车的速度分别多少?(2)当小轿车发现落后时,为了追上面包车,他就马上提速,面包车速度不变,他们约定好在面包车前面100千米的地方碰头,他们正好同时到达,请问小轿车需要提速多少千米/小时?(3)小轿车发现落后时,为了追上面包车,他就马上提速,面包车速度不变,他们约定好在面包车前面s 千米的地方碰头,他们正好同时到达,请问小轿车提速千米/小时.(请你直接写出答案即可)【答案】(1)小轿车的速度是90千米/小时,面包车的速度是100千米/小时;(2)小轿车需要提速30千米/小时;(3)102000 ss+【解析】【分析】(1)设小轿车的速度是x千米/小时,由题意可列出分式方程即可求解;(2)设小轿车需要提速a千米/小时,由题意可列出分式方程即可求解;(3)设小轿车需要提速b千米/小时,把(2)中100千米换成s即可求解.【详解】(1)解:设小轿车的速度是x千米/小时,由题意列方程得:18020010 x x=+解得x=90经检验 x=90是原方程的解,x+10=100答:小轿车的速度是90千米/小时,面包车的速度是100千米/小时.(2)解:设小轿车需要提速a 千米/小时,由题意列方程得1002010090100a +=+ 解得:a=30经检验a=30是原方程的解答:小轿车需要提速30千米/小时.(3)设小轿车需要提速b 千米/小时,由题意列方程得2090100s s b +=+ 解得b=102000s s+ 经检验a=102000s s+是原方程的解 故小轿车需要提速102000s s+千米/小时 故答案为:102000s s +. 【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程求解.27.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:()1如图1,已知:在ABC 中,BAC 90∠=,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E.试猜想DE 、BD 、CE 有怎样的数量关系,请直接写出;()2组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将()1中的条件改为:在ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC α(∠∠∠===其中α为任意锐角或钝角).如果成立,请你给出证明;若不成立,请说明理由.()3数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F 是BAC ∠角平分线上的一点,且ABF 和ACF 均为等边三角形,D 、E 分别是直线m 上A 点左右两侧的动点(D 、E 、A 互不重合),在运动过程中线段DE 的长度始终为n ,连接BD 、CE ,若BDA AEC BAC ∠∠∠==,试判断DEF 的形状,并说明理由.【答案】()1DE BD CE =+,理由见解析;() 2结论DE BD CE =+成立;理由见解析;() 3DFE 等边三角形,理由见解析.【解析】【分析】 (1)先利用同角的余角相等,判断出ABD=CAE ∠∠,进而判断△ADB ≌△CEA ,得出BD=AE ,AD=CE ,即可得出结论;(2)先利用三角形内角和及平角的性质,判断出ABD=CAE ∠∠,进而判断出△ADB ≌△CEA ,得出BD=AE ,AD=CE ,即可得出结论;(3)由(2)得,△ADB ≌△CEA ,得出BD=AE ,再判断出△FBD ≌△FAE ,得出BFD=AFE ∠∠,进而得出DFE=60∠︒ ,即可得出结论.【详解】()1DE BD CE =+,理由:BAC 90∠=,BAD CAE 90∠∠∴+=,BD m ⊥,CE m ⊥,ADB CEA 90∠∠∴==,BAD ABD 90∠∠∴+=,ABD CAE ∠∠∴=,在ADB 和CEA 中,90ADB CEA ABD CAE ABAC ⎧∠=∠=⎪∠=∠⎨⎪=⎩,ADB ∴≌()CEA AAS ,BD AE ∴=,AD CE =,DE AD AE BD CE ∴=+=+,故答案为DE BD CE =+;()2解:结论DE BD CE =+成立;理由如下:BAD CAE 180BAC ∠∠∠+=-,BAD ABD 180ADB ∠∠∠+=-,BDA BAC ∠∠=,ABD CAE ∠∠∴=,在BAD 和ACE 中,ABD CAE ADB CEA AB AC α∠=∠⎧⎪∠=∠=⎨⎪=⎩,BAD ∴≌()ACE AAS ,BD AE ∴=,AD CE =,DE DA AE BD CE ∴=+=+;()3DFE 为等边三角形,理由:由()2得,BAD ≌ACE ,BD AE ∴=,ABD CAE ∠∠=,ABD FBA CAE FAC ∠∠∠∴+=+,即FBD FAE ∠∠=,在FBD 和FAE 中,FB FA FBD FAE BD AE =⎧⎪∠=∠⎨⎪=⎩,FBD ∴≌()FAE SAS ,FD FE ∴=,BFD AFE ∠∠=,DFE DFA AFE DFA BFD 60∠∠∠∠∠∴=+=+=,DFE ∴为等边三角形.【点睛】本题是三角形综合题,主要考查全等三角形的判定和性质,等边三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质,等边三角形的判定和性质.。
2017年秋季学期初二数学期末教学质量检测
八年级数学
【注意事项】1.本试卷共120分,考试时问l20分钟.
2.请把答案填写到答题卡,在试卷上答题无效,
一、选择题(本大题共l2小题,每小题3分,满分36分,每小题只有一个正确的选项.)
1.“让世界的脚步,在防城港奔跑”,2017中国东盟围际马拉松赛l1月l9日在我市开跑,奖牌以金花茶为立体造型,下面花型设计图,轴对称图形的是
2.某种秋冬流感病毒的直径约为0.000000308米,该直径用科学记数法表示为
A. 0.308米
B. 3.08米
C. 3.08米
D. 3.1米3.已知=3,=4,则的值为
A.12
B.7
C.
D.
4.若分式有意义,则x应满足的条件是
A.x≠0 B.x≠3 C.x≥3 D. x≤3
5.已知点M(a,1)和点N(-2,b)关于y轴对称,则点N在
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.一个三角形三边长分别为l、3、x,且x为整数,则此三角形的周长是
A.9 B.8 C.7 D.6
7.如图,△ABC中,∠C=90,∠B=40.AD是∠BAC的平分线,则∠ADB的度数为
A. 65
B.105
C. 100
D. 115
8.下列计算正确的是
A. B. C. D.
9.如图,在△ABC中,∠ACB=90,∠A=30,BC=3cm,点D为AB的中点,则CD的值是
A. 3cm B.4cm C. 5cm D. 6cm
10.下列四个分式中,是最简分式的是
A. B. C. D.
11.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=50,则∠ABD+∠ACD的值为
A. 60
B. 50
C. 40
D. 30
12.已知a-b=3,则的值是
A.4 B.6 C.9 D.12
二、填空题(本大题共6小题,每小题3分,共l8分.)
13.计算:▲.
14.一个多边形的内角和为720,则这个多边形的边数为▲.
15.若,则n= ▲.
16.小军做了一个如图所示的风筝,其中EH=FH,ED=FD,小军说不用测量就知道DH是EF的垂直平分线.其中蕴含的道理是▲.
17.如图,△ABC中,点D、E分别是BC,AD的中点,且△ABC的面积为8,则阴影部分的面积是▲.
18.如图,在等边△ABC中.AC=10,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于一个点D,连接PD,如果PO=PD,那么AP的长是▲.
三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤.)
19.(本题满分9分,第1小题4分,第2小题5分)计算:
(1);
(2).
20.(本题满分7分)分解因式:
2l.(本题满分7分)解分式方程:
22.(本题满分7分)如图,点D在△ABC的AB边上,且∠ACD=∠A.
(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法):
(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).
23.(本题满分8分)先化简,再求值:,从-1,0,1三个数中选一个合适的数代入求值.
24.(本题满分8分)从①AB=DC;②BE=CE;③∠B=∠C;④∠BAD=∠CDA四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).
25.(本题满分10分)某市文化宫学习十九大有关优先发展教育的精神,举办了为某贫困山区小学捐赠书包活动.首次用2000元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元.
(1)求文化官第一批购进书包的单价是多少?
(2)商店两批书包每个的进价分别是68元和70元,这两批书包全部售给文化宫后,商店共盈利多少元?
26.(本题满分10分)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上,连接BE、CE.
(1)求证:BE=CE
(2)如图2,若BE的延长线交AC于点F,且BF ⊥AC,垂足为F,原题设其它条件不变.求证:∠CAD=∠CBF
(3)在(2)的条件下,若∠BAC=45,判断△CFE的形状,并说明理由.
一、选择题:(共12小题,每小题3分,共36分)
二、填空题(本题有6小题,每小题3分,共18分)
13. 23 14. 6 15. 5 16. 与线段两个端点距离相等的点在这条线段的垂直平分线线上
17. 2 18. 7
三、解答题(本题有8小题,共66分)
19.(1)解:原式=a6-4a6………(2分)
=-3a6……(4分)
(2)解:原式=1-a2+a2+2a+1 ……(7分)
=2a+2 ………(9分)
20.解:原式= ab(1- a2) ……(4分)
= ab (1+ a) (1-a) ……(7分)
21.解:方程两边乘以(x-2)得x-3+x-2=-3 ……(4分)
解得x -1 ……(6分)
检验:当x=1时,x-2≠0,∴x=1是原分式方程的解. ……(7分)
22.(1) ……(4分)
(2)DE ∥AC ……(7分)
23.解:原式=11
)2(1)1)(1(22-+-+∙-+-x x x x x x ……(2分) =1
1)2)(1(1-+--x x x …………(3
分) =)
2)(1(2)2)(1(1---+--x x x x x ………(4分) =21
-x …………(6分)
∵要使分母有意义,则x 取0 ∴2
1
20121-=-=-x ………………(8
分)
[]
24.解:选择的条件是:③∠B=∠C ④∠BAD=∠CDA (或①③,②③, ①④); …
(2分)
证明:在△BAD 和△CDA 中, ∵,
∴△BAD ≌△CDA (AAS ),…(6分)
∴∠BDA=∠CAD …(7分)
∴△AED 是等腰三角形 …(8分)
25.解(1) 设第一批购进书包的单价为x 元. … (1分)
依题意,得, …(4分)
整理,得20(x+4)=21x,
解得x=80. …(6分)
检验:当x=80时,x(x+4)≠0∴x=80是原分式方程的解.
答 第一批购进书包的单价为80元. ……(7分)
(2) )7084(846300)6880(801800-⨯+-⨯=300+1050=1350 …(9分) 答 商店共盈利1350元. …(10分)
26.证明:(1)∵AB=AC ,D 是BC 的中点
∴∠BAE=∠CAE …………(1分)
在△ABE 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠=AE
AE CAE
BAE AC
AB ∴△ABE ≌△ACE (SAS )………(2分)
∴BE=CE ……………(3分)
(2)∵AB=AC ,点D 是BC 的中点
∴AD ⊥BC
∴∠CAD+∠C=90° ……………(4分)
∵BF ⊥AC
∴∠CBF+∠C=90°
∴∠CAD=∠CBF ………(6分)
(3)∵∠BAC=45°,BF ⊥AF
∴△ABF 为等腰直角三角形
∴AF=BF …………(7分)
在△AEF 和△BCF 中,
⎪⎩⎪⎨⎧=∠=∠=∠B F C
A F E BF
AF CBF
EAF ∴△AEF ≌△BCF
(ASA ).……………(8分)
∴EF=CF ……………(9分)
∵∠CFE=90° ∴△CFE 为等腰直角三角形.………(10。