北师大版2017高考数学(理)总复习第10章第8节条件概率与独立事件、二项分布课件PPT
- 格式:ppt
- 大小:2.00 MB
- 文档页数:53
4 B.B.223 C.C.335 D.123.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为() A .0.960 B .0.864 C .0.720 D .0.576 4.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) A.18B.14C.25D.125.(2012·山西模拟)抛掷一枚硬币,出现正反的概率都是12,构造数列{a n },使得a n =îïíïì1 (第n 次抛掷时出现正面),-1 (第n 次抛掷时出现反面),记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为( ) A.116 B.18 C.14D.126.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) A.12B.13C.14D.257.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________. 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于条件概率与独立事件、二项分布1.(2012·广东汕头模拟)已知某射击运动员,已知某射击运动员,每次击中目标的概率都是每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( ) A .0.85B .0.819 2 C .0.8 D .0.75 2.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.A.33________.9.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的一粒,则这粒种子能成长为幼苗的概率概率为________.10.(2012·厦门质检)从装有大小相同的3个白球和3个红球的袋中做摸球试验,每次摸出一个球.如果摸出白球,则从袋外另取一个红球替换该白球放入袋中,则从袋外另取一个红球替换该白球放入袋中,继续做下一次摸球继续做下一次摸球试验;如果摸出红球,则结束摸球试验.试验;如果摸出红球,则结束摸球试验.(1)求一次摸球后结束试验的概率P 1和两次摸球后结束试验的概率P 2; (2)记结束试验时的摸球次数为X ,求X 的分布列.的分布列.11.某地区为下岗人员免费提供财会和计算机培训,某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,以提高下岗人员的再就业能力,以提高下岗人员的再就业能力,每名下每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X 为3人中参加过培训的人数,求X 的分布列.的分布列.12.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (1)求在1次游戏中,①摸出3个白球的概率;②获奖的概率;个白球的概率;②获奖的概率; (2)求在2次游戏中获奖次数X 的分布列.的分布列.2;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=34. 3.选B 可知K 、A 1、A 2三类元件正常工作相互独立.所以当A 1,A 2至少有一个能正常工作的概率为P =1-(1-0.8)2=0.96,所以系统能正常工作的概率为P K ·P =0.9×0.96=0.864. 4.选B P (A )=C 23+C 2C 25=410=25,P (A ∩B )=C 2C 25=1)=110410=14. 5.选C 依题意得知,“S 4=2”表示在连续四次抛掷中恰有三次出现正面,因此“S 4=2”的概率为C 34èæøö123·12=14. 6.选C 设“甲、乙二人相邻”为事件A ,“甲、丙二人相邻”为事件B ,则所求概率为P (B |A ),由于P (B |A )=P (AB )P (A ),而P (A )=2A 44A 55=25,AB 是表示事件“甲与乙、丙都相邻”,故P (AB )=2A 33A 5=110,于是P (B |A )=11025=14. 7.解析:设该队员每次罚球的命中率为p , 则1-p 2=1625,p 2=925.又0<p <1.所以p =35. 答案:358.解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128. 答案:0.128 9.解析:设种子发芽为事件A ,种子成长为幼苗为事件B .出芽后的幼苗成活率为P (B |A )=0.8,P (A )=0.9. 故P (AB )=0.9×0.8=0.72. 答案:0.72 10.解:(1)一次摸球结束试验的概率P 1=36=12;两次摸球结束试验的概率 P 2=36×46=13. 1.选B P =C 34×0.83×0.2+C 44×0.84=0.819 2. 2.选A 问题等价为两类:第一类,第一局甲赢,其问题等价为两类:第一类,第一局甲赢,其概率概率P 1=110. 由条件概率计算公式,得P (B |A )=P (A ∩B )P (A1,=1,=3×2×5=5,=3×2×1×6=1X 1 2 3 4 P1213536136X 0 1 2 3 P0.0010.0270.2430.729 =C 3C 2·C 2C 2=15. =C 3C 2·C 2C 2+C 3C 2C 2·C 2C 2=12,且=12+15=710. øö,710øö-7102=9100;C 12710×øö-710=2150;èæøö710=49100. X 0 1 2 P9100215049100(A B )(A )·(B )。
§12.5二项分布1.条件概率在已知B发生的条件下,事件A发生的概率叫作B发生时A发生的条件概率,用符号P(A|B)来表示,其公式为P(A|B)=错误!(P(B)>0).2.相互独立事件(1)一般地,对于两个事件A,B,如果有P(AB)=P(A)P(B),则称A、B相互独立.(2)如果A、B相互独立,则A与错误!、错误!与B、错误!与错误!也相互独立.(3)如果A1,A2,…,A n相互独立,则有:P(A1A2…A n)=P(A1)P(A2)…P(A n).3.二项分布进行n次试验,如果满足以下条件:(1)每次试验只有两个相互对立的结果:“成功”和“失败”;(2)每次试验“成功”的概率均为p,“失败”的概率均为1—p;(3)各次试验是相互独立的.用X表示这n次试验成功的次数,则P(X=k)=C错误!p(1—p)—(k=0,1,2,…,n)若一个随机变量X的分布列如上所述,称X服从参数为n,p的二项分布,简记为X~B(n,p).1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)条件概率一定不等于它的非条件概率.(×)(2)相互独立事件就是互斥事件.(×)(3)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.(×)(4)二项分布是一个概率分布,其公式相当于(a+b)n二项展开式的通项公式,其中a=p,b=1—p. (×)2.把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”为事件B,则P(B|A)等于()A.错误!B.错误!C.错误!D.错误!答案A解析P(B|A)=错误!=错误!=错误!.3.某一批花生种子,如果每粒发芽的概率都为错误!,那么播下4粒种子恰有2粒发芽的概率是()A.错误!B.错误!C.错误!D.错误!答案B解析独立重复试验B(4,错误!),P(k=2)=C错误!(错误!)2(错误!)2=错误!.4.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.答案0.128解析依题意可知,该选手的第二个问题必答错,第三、四个问题必答对,故该选手恰好回答了4个问题就晋级下一轮的概率P=1×0.2×0.8×0.8=0.128.5.如图所示的电路,有a,b,c三个开关,每个开关开或关的概率都是错误!,且是相互独立的,则灯泡甲亮的概率为______________.答案错误!解析理解事件之间的关系,设“a闭合”为事件A,“b闭合”为事件B,“c闭合”为事件C,则灯亮应为事件AC错误!,且A,C,错误!之间彼此独立,且P(A)=P(错误!)=P(C)=错误!.所以P(A错误!C)=P(A)P(错误!)P(C)=错误!.题型一条件概率例1在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再取到不合格品的概率为________.思维启迪直接利用条件概率公式进行计算或利用古典概型.答案错误!解析方法一设A={第一次取到不合格品},B={第二次取到不合格品},则P(AB)=错误!,所以P(B|A)=错误!=错误!=错误!.方法二第一次取到不合格品后还剩余99件产品,其中有4件不合格品,故第二次取到不合格品的概率为错误!.思维升华条件概率的求法:(1)利用定义,分别求P(A)和P(AB),得P(B|A)=错误!.这是通用的求条件概率的方法.(2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再在事件A发生的条件下求事件B包含的基本事件数,即n(AB),得P(B|A)=错误!.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P(B|A)等于()A.错误!B.错误!C.错误!D.错误!答案B解析P(A)=错误!=错误!,P(AB)=错误!=错误!,P(B|A)=错误!=错误!.题型二相互独立事件的概率例2(2012·重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为错误!,乙每次投篮投中的概率为错误!,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.思维启迪将所求事件分解为几个彼此互斥的事件之和,再利用互斥事件概率加法公式和相互独立事件同时发生的概率公式求解.解设A k、B k分别表示甲、乙在第k次投篮投中,则P(A k)=错误!,P(B k)=错误!(k=1,2,3).(1)记“乙获胜”为事件C,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P(C)=P(错误!B1)+P(错误!错误!错误!B2)+P(错误!错误!错误!错误!错误!B3)=P(错误!)P(B1)+P(错误!)P(错误!)P(错误!)P(B2)+P(错误!)P(错误!)P(错误!)P(错误!)P(错误!)P(B3)=错误!×错误!+错误!2错误!2+错误!3错误!3=错误!.(2)记“投篮结束时乙只投了2个球”为事件D,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P(D)=P(错误!错误!错误!B2)+P(错误!错误!错误!错误!A3)=P(错误!)P(错误!)P(错误!)P(B2)+P(错误!)P(错误!)P(错误!)P(错误!)·P(A3)=错误!2错误!2+错误!2错误!2×错误!=错误!.思维升华相互独立事件的概率通常和互斥事件的概率综合在一起考查,这类问题具有一个明显的特征,那就是在题目的条件中已经出现一些概率值,解题时先要判断事件的性质(是互斥还是相互独立),再选择相应的公式计算求解.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.8,计算:(1)两人都击中目标的概率;(2)其中恰有一人击中目标的概率;(3)至少有一人击中目标的概率.解记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B.“两人都击中目标”是事件AB;“恰有1人击中目标”是A错误!∪错误!B;“至少有1人击中目标”是AB∪A错误!∪错误!B.(1)显然,“两人各射击一次,都击中目标”就是事件AB,又由于事件A与B相互独立,∴P(AB)=P(A)·P(B)=0.8×0.8=0.64.(2)“两人各射击一次,恰好有一次击中目标”包括两种情况:一种是甲击中乙未击中(即A错误!),另一种是甲未击中乙击中(即错误!B).根据题意,这两种情况在各射击一次时不可能同时发生,即事件A错误!与错误!B是互斥的,所以所求概率为P=P(A错误!)+P(错误!B)=P(A)·P(错误!)+P(错误!)·P(B)=0.8×(1—0.8)+(1—0.8)×0.8=0.16+0.16=0.32.(3)“两人各射击一次,至少有一人击中目标”的概率为P=P(AB)+[P(A错误!)+P(错误!B)]=0.64+0.32=0.96.题型三二项分布例3乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(1)求甲以4比1获胜的概率;(2)求乙获胜且比赛局数多于5局的概率;(3)求比赛局数的分布列.思维启迪本题主要考查二项分布,解题关键是正确判断是不是服从二项分布及正确应用概率计算公式.解(1)由已知,得甲、乙两名运动员在每一局比赛中获胜的概率都是错误!.记“甲以4比1获胜”为事件A,则P(A)=C错误!(错误!)3(错误!)4—3·错误!=错误!.(2)记“乙获胜且比赛局数多于5局”为事件B.乙以4比2获胜的概率为P1=C错误!(错误!)3(错误!)5—3·错误!=错误!,乙以4比3获胜的概率为P2=C错误!(错误!)3(错误!)6—3·错误!=错误!,所以P(B)=P1+P2=错误!.(3)设比赛的局数为X,则X的可能取值为4,5,6,7.P(X=4)=2C错误!(错误!)4=错误!,P(X=5)=2C错误!(错误!)3(错误!)4—3·错误!=错误!,P(X=6)=2C错误!(错误!)3(错误!)5—3·错误!=错误!,P(X=7)=2C错误!(错误!)3(错误!)6—3·错误!=错误!.比赛局数的分布列为X4567P错误!错误!错误!错误!思维升华P n (k)=C错误!p k(1—p)n—k的三个条件:1在一次试验中某事件A发生的概率是一个常数p;2n次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;3该公式表示n次试验中事件A恰好发生了k次的概率.(2013·山东)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是错误!外,其余每局比赛甲队获胜的概率都是错误!.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X的分布列及数学期望.解(1)设“甲队以3∶0,3∶1,3∶2胜利”分别为事件A,B,C,则P(A)=错误!×错误!×错误!=错误!,P(B)=C错误!错误!2×错误!×错误!=错误!,P(C)=C错误!错误!2×错误!2×错误!=错误!.(2)X的可能的取值为0,1,2,3.则P(X=0)=P(A)+P(B)=错误!,P(X=1)=P(C)=错误!,P(X=2)=C错误!×错误!2×错误!2×错误!=错误!,P(X=3)=错误!3+C错误!错误!2×错误!×错误!=错误!.∴X的分布列为X0123P错误!错误!错误!错误!∴EX=0×错误!+1×错误!对二项分布理解不准致误典例:(12分)一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是错误!.(1)设X为这名学生在途中遇到红灯的次数,求X的分布列;(2)设Y为这名学生在首次停车前经过的路口数,求Y的分布列.易错分析由于这名学生在各个交通岗遇到红灯的事件相互独立,可以利用二项分布解决,二项分布模型的建立是易错点;另外,对“首次停车前经过的路口数Y”理解不当,将“没有遇上红灯的概率也当成错误!”.规范解答解(1)将通过每个交通岗看做一次试验,则遇到红灯的概率为错误!,且每次试验结果是相互独立的,故X~B错误!. [2分]所以X的分布列为P(X=k)=C错误!错误!k·错误!6—k,k=0,1,2,3,4,5,6.[5分](2)由于Y表示这名学生在首次停车时经过的路口数,显然Y是随机变量,其取值为0,1,2,3,4,5,6.其中:{Y=k}(k=0,1,2,3,4,5)表示前k个路口没有遇上红灯,但在第k+1个路口遇上红灯,故各概率应按独立事件同时发生计算.[7分]P(Y=k)=(错误!)k·错误!(k=0,1,2,3,4,5),而{Y=6}表示一路没有遇上红灯.故其概率为P(Y=6)=(错误!)6,[9分]因此Y的分布列为[12分]温馨提醒(1)二项分布是高中概率部分最重要的概率分布模型,是近几年高考非常注重的一个考点.二项分布概率模型的特点是“独立性”和“重复性”,事件的发生都是独立的、相互之间没有影响,事件又在相同的条件之下重复发生.(2)独立重复试验中的概率公式P n(k)=C错误!p k(1—p)n—k表示的是n次独立重复试验中事件A发生k次的概率,p与(1—p)的位置不能互换,否则该式子表示的意义就发生了改变,变为事件A有k次不发生的概率了.方法与技巧1.古典概型中,A发生的条件下B发生的条件概率公式为P(A|B)=错误!=错误!,其中,在实际应用中P(A|B)=错误!是一种重要的求条件概率的方法.2.相互独立事件与互斥事件的区别相互独立事件是指两个事件发生的概率互不影响,计算式为P(AB)=P(A)P(B).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A+B)=P(A)+P(B).3.二项分布概率概型中,事件A恰好发生k次可看做是C错误!个互斥事件的和,其中每一个事件都可看做是k个A事件与n—k个错误!事件同时发生,只是发生的次序不同,其发生的概率都是p k(1—p)n—k.因此n次独立重复试验中事件A恰好发生k次的概率为C错误!p k(1—p)n—k.失误与防范1.运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A、B相互独立时,公式才成立.2.二项分布概率概型中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意恰好与至多(少)的关系,灵活运用对立事件.A组专项基础训练(时间:40分钟)一、选择题1.已知A,B是两个相互独立事件,P(A),P(B)分别表示它们发生的概率,则1—P(A)P(B)是下列哪个事件的概率()A.事件A,B同时发生B.事件A,B至少有一个发生C.事件A,B至多有一个发生D.事件A,B都不发生答案C解析P(A)P(B)是指A,B同时发生的概率,1—P(A)·P(B)是A,B不同时发生的概率,即至多有一个发生的概率.2.设随机变量X~B(2,p),Y~B(4,p),若P(X≥1)=错误!,则P(Y≥2)的值为()A.错误!B.错误!C.错误!D.错误!答案B解析P(X≥1)=P(X=1)+P(X=2)=C错误!p(1—p)+C错误!p2=错误!,解得p=错误!.(0≤p≤1,故p=错误!舍去).故P(Y≥2)=1—P(Y=0)—P(Y=1)=1—C错误!×(错误!)4—C错误!×错误!×(错误!)3=错误!.3.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再赢两局才能获得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为()A.错误!B.错误!C.错误!D.错误!答案D解析甲队若要获得冠军,有两种情况,可以直接胜一局,获得冠军,概率为错误!,也可以乙队先胜一局,甲队再胜一局,概率为错误!×错误!=错误!,故甲队获得冠军的概率为错误!+错误!=错误!.4.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是错误!.质点P移动五次后位于点(2,3)的概率是()A.错误!5B.C错误!错误!5C.C错误!错误!3D.C错误!C错误!错误!5答案B5.两个实习生每人加工一个零件,加工为一等品的概率分别为错误!和错误!,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.错误!B.错误!C.错误!D.错误!答案B解析设事件A:甲实习生加工的零件为一等品;事件B:乙实习生加工的零件为一等品,则P(A)=错误!,P(B)=错误!,所以这两个零件中恰有一个一等品的概率为P(A错误!)+P(错误!B)=P(A)P(错误!)+P(错误!)P(B)=错误!×(1—错误!)+(1—错误!)×错误!=错误!.二、填空题6.明天上午李明要参加校运动会,为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率为0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________.答案0.98解析1—0.20×0.10=1—0.02=0.98.7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为错误!,则该队员每次罚球的命中率为________.答案错误!解析设该队员每次罚球的命中率为p(其中0<p<1),则依题意有1—p2=错误!,p2=错误!.又0<p<1,因此有p=错误!.8.一个病人服用某种新药后被治愈的概率为0.9,服用这种新药的有甲、乙、丙3位病人,且各人之间互不影响,有下列结论:13位病人都被治愈的概率为0.93;23人中的甲被治愈的概率为0.9;33人中恰有2人被治愈的概率是2×0.92×0.1;43人中恰好有2人未被治愈的概率是3×0.9×0.12;53人中恰好有2人被治愈,且甲被治愈的概率是0.92×0.1.其中正确结论的序号是________.(把正确的序号都填上)答案124三、解答题9.如图,一圆形靶分成A,B,C三部分,其面积之比为1∶1∶2.某同学向该靶投掷3枚飞镖,每次1枚.假设他每次投掷必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中投中A区域的概率;(2)设X表示该同学在3次投掷中投中A区域的次数,求X的分布列;(3)若该同学投中A,B,C三个区域分别可得3分,2分,1分,求他投掷3次恰好得4分的概率.解(1)设该同学在一次投掷中投中A区域的概率为P(A),依题意,P(A)=错误!.(2)依题意知,X~B(3,错误!),从而X的分布列为X0123P错误!错误!错误!错误!(3)设B i表示事件“第i i i次击中目标时,击中C 区域”,i=1,2,3.依题意知P=P(B1C2C3)+P(C1B2C3)+P(C1C2B3)=3×错误!×错误!×错误!=错误!.10.甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为错误!与p,且乙投球2次均未命中的概率为错误!.(1)求乙投球的命中率p;(2)求甲投球2次,至少命中1次的概率;(3)若甲、乙两人各投球2次,求共命中2次的概率.解(1)方法一设“甲投一次球命中”为事件A,“乙投一次球命中”为事件B.由题意得(1—P(B))2=(1—p)2=错误!,解得p=错误!或p=错误!(舍去),所以乙投球的命中率为错误!.方法二设“甲投一次球命中”为事件A,“乙投一次球命中”为事件B.由题意得:P(错误!)P(错误!)=错误!,于是P(错误!)=错误!或P(错误!)=—错误!(舍去).故p=1—P(错误!)=错误!.所以乙投球的命中率为错误!.(2)方法一由题设知,P(A)=错误!,P(错误!)=错误!.故甲投球2次,至少命中1次的概率为1—P(错误!·错误!)=错误!.方法二由题设知,P(A)=错误!,P(错误!)=错误!.故甲投球2次,至少命中1次的概率为C错误!P(A)P(错误!)+P(A)P(A)=错误!.(3)由题设和(1)知,P(A)=错误!,P(错误!)=错误!,P(B)=错误!,P(错误!)=错误!.甲、乙两人各投球2次,共命中2次有三种情况:甲、乙两人各中一次;甲中2次,乙2次均不中;甲2次均不中,乙中2次.概率分别为C错误!P(A)P(错误!)C错误!P(B)P(错误!)=错误!,P(A)P(A)P(错误!)P(错误!)=错误!,P(错误!)P(错误!)P(B)P(B)=错误!.所以甲、乙两人各投球2次,共命中2次的概率为错误!+错误!+错误!=错误!.B组专项能力提升(时间:30分钟)1.某种元件的使用寿命超过1年的概率为0.6,使用寿命超过2年的概率为0.3,则使用寿命超过1年的元件还能继续使用的概率为()A.0.3B.0.5C.0.6 D.1答案B解析设事件A为“该元件的使用寿命超过1年”,B为“该元件的使用寿命超过2年”,则P(A)=0.6,P(B)=0.3.因为B⊆A,所以P(AB)=P(B)=0.3,于是P(B|A)=错误!=错误!=0.5.2.如图,用K、A1、A2三类不同的元件连接成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作.已知K、A1、A2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为()A.0.960 B.0.864C.0.720 D.0.576答案B解析方法一由题意知K,A1,A2正常工作的概率分别为P(K)=0.9,P(A1)=0.8,P(A)=0.8,2∵K,A1,A2相互独立,∴A1,A2至少有一个正常工作的概率为P(错误!A2)+P(A1错误!2)+P(A1A2)=(1—0.8)×0.8+0.8×(1—0.8)+0.8×0.8=0.96.∴系统正常工作的概率为P(K)[P(错误!A2)+P(A1错误!2)+P(A1A2)]=0.9×0.96=0.864.方法二A1,A2至少有一个正常工作的概率为1—P(错误!1错误!2)=1—(1—0.8)(1—0.8)=0.96,∴系统正常工作的概率为P(K)[1—P(错误!1错误!2)]=0.9×0.96=0.864.3.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是________.答案0.665解析记A=“甲厂产品”,B=“合格产品”,则P(A)=0.7,P(B|A)=0.95.∴P(AB)=P(A)·P(B|A)=0.7×0.95=0.665.4.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是错误!,则小球落入A袋中的概率为________.答案错误!解析记“小球落入A袋中”为事件A,“小球落入B袋中”为事件B,则事件A的对立事件为B,若小球落入B袋中,则小球必须一直向左落下或一直向右落下,故P(B)=错误!3+错误!3=错误!,从而P(A)=1—P(B)=1—错误!=错误!.5.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是________.(写出所有正确结论的编号)1P(B)=错误!;2P(B|A1)=错误!;3事件B与事件A1相互独立;4A1,A2,A3是两两互斥的事件;5P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关.答案24解析P(B)=P(BA1)+P(BA2)+P(BA3)=错误!+错误!+错误!=错误!,故15错误;2P(B|A1)=错误!=错误!,正确;3事件B与A1的发生有关系,故错误;4A1,A2,A3不可能同时发生,是互斥事件,正确.6.(2013·辽宁)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(1)求张同学至少取到1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是错误!,答对每道乙类题的概率都是错误!,且各题答对与否相互独立.用X表示张同学答对题的个数,求X 的分布列和数学期望.解(1)设事件A=“张同学所取的3道题至少有1道乙类题”,则有错误!=“张同学所取的3道题都是甲类题”.因为P(错误!)=错误!=错误!,所以P(A)=1—P(错误!)=错误!.(2)X所有的可能取值为0,1,2,3.P(X=0)=C错误!·错误!0·错误!2·错误!=错误!;P(X=1)=C错误!·错误!1·错误!1·错误!+C错误!错误!0·错误!2·错误!=错误!;P(X=2)=C错误!·错误!2·错误!0·错误!+C错误!错误!1·错误!1·错误!=错误!;P(X=3)=C错误!·错误!2·错误!0·错误!=错误!.所以X的分布列为所以EX=0×错误!+1×。
第10章 第7节 1.两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A. B. C. D. 【解析】 记两个零件中恰好有一个一等品的事件为A,则P(A)=P(A1)+P(A2)=×+×=. 【答案】 B 2.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率p的取值范围是( ) A.[0.4,1] B.(0,0.4] C.(0,0.6] D.[0.6,1] 【解析】 设事件A发生的概率为p,则Cp(1-p)3≤Cp2(1-p)2,解得p≥0.4,故选A. 【答案】 A 3.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p1和p2.则( ) A.p1=p2 B.p1 p2 D.以上三种情况都有可能 【解析】 p1=1-10=1-10 =1-5, p2=1-5=1-5则p1 <p2. 【答案】 B 4.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为__________. 【解析】 由1-P2=,得P=.【答案】 5.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是. (1)求这支篮球队首次胜场前已经负了两场的概率; (2)求这支篮球队在6场比赛中恰好胜了3场的概率. 【解】 (1)P=2×=. 所以这支篮球队首次胜场前已负两场的概率为; (2)6场胜3场的情况有C种, P=C33=20××=. 所以这支篮球队在6场比赛中恰胜3场的概率为. 课时作业 【考点排查表】 难度及题号错题记录考查考点及角度基础中档稍难条件概率13,5相互独立事件26,712,13独立重复试验与二项分布48,10,911一、选择题 1.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是( ) A. B. C. D. 【解析】 在第一次取到白球的条件下,在第二次取球时,袋中有2个白球和2个黑球共4个球,所以取到白球的概率P==,故选C. 【答案】 C 2.一个电路如图所示,A、B、C、D、E、F为6个开关,其闭合的概率都是,且是相互独立的,则灯亮的概率是( ) A. B. C. D. 【解析】 设A与B中至少有一个不闭合的事件为T,E与F至少有一个不闭合的事件为R, 则P(T)=P(R)=1-×=, 所以灯亮的概率P=1-P(T)P(R)P()P()=. 【答案】 B 3.甲、乙两地都位于长江下游,根据天气预报的纪录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( ) A.0.6 B.0.7 C.0.8 D.0.66 【解析】 甲市为雨天记为事件A,乙市为雨天记为事件B,则P(A)=0.2,P(B)=0.18, P(AB)=0.12,P(B|A)===0.6. 【答案】 A 4.(2013·九江模拟)某人射击,一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为( ) A. B. C. D. 【解析】 P=C×0.62×0.4+0.63=. 【答案】 A 5.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是( ) P(B)=; P(B|A1)=; 事件B与事件A1相互独立; A1,A2,A3是两两互斥的事件; A. B. C. D. 【解析】 由题意知P(B)的值是由A1,A2,A3中某一个事件发生所决定的,故错误;P(B|A1)===,故正确;由互斥事件的定义知正确,故正确的结论的编号是. 【答案】 A 6.在一次反恐演习中,三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别是0.9,0.9,0.8,若至少有两枚导弹击中目标方可将其摧毁,则目标被摧毁的概率是( ) A.0.998 B.0.046 C.0.936 D.0.954 【解析】 法一:(直接求解) P=0.9×0.9×0.2+0.9×0.1×0.8+0.1×0.9×0.8+0.9×0.9×0.8=0.954. 法二:(排除法) P=1-(0.9×0.1×0.2+0.1×0.9×0.2+0.1×0.1×0.8+0.1×0.1×0.2)=0.954. 【答案】 D 二、填空题 7.有一批书共100本,其中文科书40本,理科书60本,按装潢可分精装、平装两种,精装书70本,某人从这100本书中任取一书,恰是文科书,放回后再任取1本,恰是精装书,这一事件的概率是__________. 【解析】 设“任取一书是文科书”的事件为A,“任取一书是精装书”的事件为B,则A、B是相互独立的事件,所求概率为P(AB). 据题意可知P(A)==,P(B)==, P(AB)=P(A)·P(B)=×=. 【答案】 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于__________. 【解析】 此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128. 【答案】 0.128 9.将一枚硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为__________. 【解析】 由题意知,正面可以出现6次,5次,4次,所求概率P=C6+C6+C6==. 【答案】 10.(2013·聊城模拟)某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率是,两次闭合都出现红灯的概率为.在第一次闭合后出现红灯的条件下第二次出现红灯的概率为____________. 【解析】 “第一次闭合后出现红灯”记为事件A,“第二次闭合后出现红灯”记为事件B,则P(A)=,P(AB)=. P (B|A)==. 【答案】 三、解答题 11.(2013·湖南高考)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示. 一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y10结算时间(分钟/人)11.522.53已知这100位顾客中的一次购物量超过8件的顾客占55%. (1)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望; (2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率. (注:将频率视为概率) 【解】 (1)由已知,得25+y+10=55,x+y=35 所以x=15,y=20. 该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得 p(X=1)==, p(X=1.5)==, p(X=2)==, p(x=2.5)==, p(X=3)==. X的分布为 X11.522.53PX的数学期望为 E(X)=1×+1.5×+2×+2.5×+3×=1.9 (2)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,Xi(i=1,2)为该顾客前面第i位顾客的结算时间,则 P(A)=P(X1=1且X2=1)+P(X1=1且X2=1.5)+P(X1=1.5且X2=1). 由于顾客的结算相互独立,且X1,X2的分布列都与X的分布列相同,所以 P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1) =×+×+×=. 故该顾客结算前的等候时间不超过2.5分钟的概率为. 12.某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中: (1)至少有1株成活的概率; (2)两种大树各成活1株的概率. 【解】 设Ak表示第k株甲种大树成活,k=1,2,Bl表示第l株乙种大树成活,l=1,2. 则A1,A2,B1,B2独立, 且P(A1)=P(A2)=,P(B1)=P(B2)=. (1)至少有1株成活的概率为 1-P(1·2·1·2) =1-P(1)·P(2)·P(1)·P(2) =1-()2()2=. (2)由独立重复试验中事件发生的概率公式知,所求概率为 P=C()()·C ()()=×==. 四、选做题 13.投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审. (1)求投到该杂志的1篇稿件被录用的概率; (2)求投到该杂志的4篇稿件中,至少有2篇被录用的概率. 【解】 (1)记A表示事件:稿件能通过两位初审专家的评审; B表示事件:稿件恰能通过一位初审专家的评审; C表示事件:稿件能通过复审专家的评审; D表示事件:稿件被录用. 则D=A+B·C, P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5, P(C)=0.3, P(D)=P(A+B·C) =P(A)+P(B·C) =P(A)+P(B)P(C) =0.25+0.5×0.3 =0.40. (2)记A0表示事件:4篇稿件中没有1篇被录用; A1表示事件:4篇稿件中恰有1篇被录用; A2表示事件:4篇稿件中至少有2篇被录用. 2=A0+A1. P(A0)=(1-0.4)4=0.129 6, P(A1)=4×0.4×(1-0.4)3=0.345 6, P(2)=P(A0+A1)=P(A0)+P(A1) =0.129 6+0.345 6 =0.475 2, P(A2)=1-P(2)=1-0.475 2=0.524 8.。
课时作业(六十八) n 次独立重复实验与二项散布一、选择题1.(2015·韶关模拟)一台机床有13的时间加工零件A ,其余时间加工零件B ,加工零件A 时,停机的概率为310,加工零件B 时,停机的概率是25,则这台机床停机的概率为( )B .730C .710D .110答案:A解析:加工零件A 停机的概率是13×310=110,加工零件B 停机的概率是⎝ ⎛⎭⎪⎫1-13×25=415,所以这台机床停机的概率是110+415=1130. 2.(2015·济南模拟)按照历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为( )B .811 C .25 D .89答案:D解析:设事件A 表示“该地域四月份下雨”,B 表示“四月份吹东风”,则P (A )=1130,P (B )=930,P (A ∩B )=830,从而在吹东风的条件下下雨的概率为P (A |B )=P A ∩BP B =830930=89.故应选D.3.(2015·济南模拟)位于直角坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,而且向左移动的概率为13,向右移动的概率为23,则质点P 移动五次后位于点(1,0)的概率是( )B .8243C .40243D .80243答案: D解析:在五次移动中,要达到(1,0)点必需知足向右移动3个单位,向左移动2个单位,每次移动彼此独立.则P =C 35⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫132=80243.故选D.4.(2015·福建厦门质检)若某人每次射击击中目标的概率均为35,这人持续射击三次,至少有两次击中目标的概率为( )B .54125C .36125D .27125答案:A解析:至少有两次击中目标包括仅有两次击中,其概率为C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35;或三次都击中,其概率为C 33⎝ ⎛⎭⎪⎫353,按照互斥事件的概率公式可得,所求概率为P =C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35+C 33⎝ ⎛⎭⎪⎫353=81125. 5.(2015·大连模拟)把一枚骰子持续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )A .1B .12C .13D .14答案:B解析:设事件A :第一次抛出的是偶数点,B :第二次抛出的是偶数点,则P (B |A )=P AB P A=12×1212=12.6.(2014·新课标全国Ⅱ)某地域空气质量监测资料表明,一天的空气质量为优良的概率是,持续两天为优良的概率是,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .B .C .D .答案:A解析:设一天空气质量优良为事件A ,持续两天的空气质量优良为事件AB , 由题意P (A )=,P (AB )=. 由条件概率,得P (B |A )=P ABP A=错误!=.二、填空题7.(2015·广州模拟)一射手对同一目标独立地射击四次,已知至少命中一次的概率为8081,则此射手每次射击命中的概率为________. 答案:23解析:由题意可知,一射手对同一目标独立地射击四次全都没有命中的概率为1-8081=181. 设此射手每次射击命中的概率为p ,则(1-p )4=181,所以p =23.8.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.答案:1927解析:∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59,解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927.9.(2015·淄博模拟)某学校一年级共有学生100名,其中男生60人,女生40人.来自北京的有20人,其中男生12人,若任选一人是女生,则该女生来自北京的概率是________.答案:15解析:设事件A =“任选一人是女生”,B =“任选一人来自北京”,依题意知,来自北京的女生有8人,这是一个条件概率,问题即计算P (B |A ).由于P (A )=40100,P (AB )=8100,则P (B |A )=P ABP A =810040100=15.10.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的进程中,将3次碰到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次碰到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为________.答案:34解析:记“小球落入A 袋中”为事件A ,“小球落入B 袋中”为事件B ,则事件A 的对立事件为B ,若小球落入B 袋中,则小球必需一直向左落下或一直向右落下,故P (B )=⎝ ⎛⎭⎪⎫123+⎝ ⎛⎭⎪⎫123=14,从而P (A )=1-P (B )=1-14=34.三、解答题11.(2015·日照检测)“光盘行动”提倡励行节约,反对铺张浪费,带动大家珍惜粮食,吃光盘子中的食物,取得从中央到民众的支持.为了解某地响应“光盘行动”的实际情况,某校几位同窗组成研究性学习小组,从某社区[25,55]岁的人群中随机抽取n 人进行一次调查,取得如下统计表:组数 分组 频数 频率“光盘族”占本组比例第1组 [25,30) 50 30% 第2组 [30,35) 100 30% 第3组 [35,40) 150 40% 第4组 [40,45) 20050% 第5组 [45,50) ab 65% 第6组[50,55]20060%(1)(2)从年龄段在[35,40)与[40,45)的“光盘族”中,采用分层抽样方式抽取8人参加节约粮食宣传活动,并从这8人当选取2人作为领队.①已知选取2人中1人来自[35,40)中的前提下,求另一人来自年龄段[40,45)中的概率; ②求2名领队的年龄之和的期望值(每一个年龄段以中间值计算). 解:(1)n =错误!=1 000,b =1-++++=, ∴a =1 000×=300, 样本中的“光盘族”人数为50×+100×+150×+200×+300×+200×=520, 样本中“光盘族”所占比例为5201 000=52%.(2)①记事件A 为“其中1人来自年龄段[35,40)”,事件B 为“另一人来自年龄段[40,45)”,所以概率为P (B |A )=P AB P A =C 13·C 15C 28C 23+C 13C 15C 28=56.②设2名领队的年龄之和为随机变量ξ,则ξ的取值为75,80,85. P (ξ=75)=C 23C 28=328,P (ξ=80)=C 13·C 15C 28=1528,P (ξ=85)=C 25C 28=514.∴ξ的散布列为ξ 75 80 85 P3281528514所以E (ξ)=75×328+80×28+85×14=.12.(2015·青岛一模)2013年6月“神舟”发射成功.这次发射进程共有四个值得关注的环节,即发射、实验、讲课、返回.据统计,由于时间关系,某班每位同窗收看这四个环节的直播的概率别离为34,13,12,23,而且各个环节的直播收看互不影响.(1)现有该班甲、乙、丙三名同窗,求这3名同窗至少有2名同窗收看发射直播的概率; (2)若用X 表示该班某一名同窗收看的环节数,求X 的散布列与期望.解:(1)设“这3名同窗至少有2名同窗收看发射直播”为事件A ,则P (A )=C 23⎝ ⎛⎭⎪⎫342×⎝ ⎛⎭⎪⎫1-34+C 33⎝ ⎛⎭⎪⎫343=2732. (2)P (X =0)=⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-23=136;P (X =1)=34×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-23+⎝⎛⎭⎪⎫1-34×13×⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-23+⎝⎛⎭⎪⎫1-34×⎝⎛⎭⎪⎫1-13×12×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-12×23=1372;P (X =2)=34×13×⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-23+34×⎝⎛⎭⎪⎫1-13×12×⎝⎛⎭⎪⎫1-23+⎝⎛⎭⎪⎫1-34×13×⎝⎛⎭⎪⎫1-12×23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-13×12×23+⎝ ⎛⎭⎪⎫1-34×13×12×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-12×23=718; P (X =3)=⎝⎛⎭⎪⎫1-34×13×12×23+34×⎝⎛⎭⎪⎫1-13×12×23+34×13×⎝⎛⎭⎪⎫1-12×23+34×13×12×⎝⎛⎭⎪⎫1-23=2372; P (X =4)=34×13×12×23=112.即X 的散布列为X 的期望E (X )=0×36+1×72+2×18+3×72+12=4.13.一个盒子中装有大量形状大小一样但质量不尽相同的小球,从中随机抽取50个作为样本,称出它们的质量(单位:克),质量的分组区间为(5,15],(15,25],(25,35],(35,45],由此取得样本的质量频率散布直方图,如图.(1)求a 的值;(2)按照样本数据,试估量盒子中小球质量的平均值;(注:设样本数据第i 组的频率为p i ,第i 组区间的中点值为x i (i =1,2,3,…,n ),则样本数据的平均值为x =x 1p 1+x 2p 2+x 3p 3+…+x n p n )(3)从盒子中随机抽取3个小球,其中质量在(5,15]内的小球个数为ξ,求ξ的散布列和数学期望.解:(1)由题意,得 ++a +×10=1, 解得a =.(2)50个样本小球质量的平均值为x =×10+×20+×30+×40=(克).由样本估量整体,可估量盒子中小球质量的平均值约为24.6克.(3)利用样本估量整体,该盒子中小球质量在(5,15]内的概率为,则ξ~B ⎝ ⎛⎭⎪⎫3,15. ξ的取值为0,1,2,3,P (ξ=0)=C 03⎝ ⎛⎭⎪⎫453=64125, P (ξ=1)=C 13⎝ ⎛⎭⎪⎫15·⎝ ⎛⎭⎪⎫452=48125, P (ξ=2)=C 23⎝ ⎛⎭⎪⎫152·⎝ ⎛⎭⎪⎫45=12125,P (ξ=3)=C 33⎝ ⎛⎭⎪⎫153=1125. ∴ξ的散布列为ξ 0 1 2 3 P6412548125121251125∴E (ξ)=0×64125+1×125+2×125+3×125=5.⎝ ⎛⎭⎪⎫或者E ξ=3×15=35。
条件概率与独立事件、二项分布、正态分布
考点剖析:
1.了解条件概率和两个事件相互独立的概念.
2.理解n 次独立重复试验的模型及二项分布.
3.能解决一些简单的实际问题.
命题方向:
1.独立重复试验与二项分布是高中数学的重要内容,也是高考命题的热点,多以解答题的形式呈现,试题难度较大,多为中高档题目.
2.高考对独立重复试验与二项分布的考查主要有以下几个命题角度:
(1)已知二项分布,求二项分布列;
(2)已知随机变量服从二项分布,求某种情况下的概率.
规律总结:
1个难点——对正态曲线的理解
正态曲线指的是一个函数的图象,其函数解析式是φμ,σ(x)=12πσ
·e -(x -μ)22σ2.正态曲线的性质告诉我们:
(1)该函数的值域为正实数集的子集;
(2)该函数图象关于直线x =μ对称,且以x 轴为渐近线;
(3)解析式中前面有一个系数12πσ
,后面是一个以e 为底数的指数函数的形式,幂指数为-(x -μ)2
2σ2,其中σ这个参数在解析式中的两个位置上出现,注意两者的一致性.
2个注意点——掌握离散型随机变量分布列的注意点
(1)分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为“事件”发生的概率;
(2)要会根据分布列的两个性质来检验求得的分布列的正误.
3种方法——求分布列的三种方法
(1)由统计数据得到离散型随机变量的分布列;
(2)由古典概型求出离散型随机变量的分布列;。
第8讲 n 次独立重复试验与二项分布[考纲解读] 1.了解条件概率与两个事件相互独立的概念.(重点)2.能够利用n 次独立试验的模型及二项分布解决一些简单的实际问题.(难点) [考向预测] 从近三年高考情况来看,本讲是高考中的一个热点.预测2021年将会考查:①条件概率的计算;②事件独立性的应用;③独立重复试验与二项分布的应用.题型为解答题,试题难度不会太大,属中档题型.1.条件概率及其性质(1)对于任何两个事件A 和B ,在事件A 发生的条件下,事件B 发生的概率叫做□01条件概率,用符号□02P (B |A )来表示,其公式为P (B |A )=□03P (AB )P (A )(P (A )>0).在古典概型中,假设用n (A )表示事件A 中基本事件的个数,那么P (B |A )=n (AB )n (A )(n (AB )表示AB 共同发生的基本事件的个数).(2)条件概率具有的性质 ①□040≤P (B |A )≤1; ②如果B 和C 是两个互斥事件, 那么P ((B ∪C )|A )=□05P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A ,B ,假设A 的发生与B 的发生互不影响,那么称□01A ,B 是相互独立事件.(2)假设A 与B 相互独立,那么P (B |A )=□02P (B ), P (AB )=P (B |A )P (A )=□03P (A )P (B ). (3)假设A 与B 相互独立,那么□04A 与B ,□05A 与B ,□06A 与B 也都相互独立.(4)假设P (AB )=P (A )P (B ),那么□07A 与B 相互独立. 3.独立重复试验与二项分布(1)独立重复试验在□01相同条件下重复做的n 次试验称为n 次独立重复试验.A i (i =1,2,…,n )表示第i 次试验结果,那么P (A 1A 2A 3…A n )=□02P (A 1)P (A 2)…P (A n ). (2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率是p ,此时称随机变量X 服从二项分布,记作□03X ~B (n ,p ),并称p 为□04成功概率.在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=□05C k n p k (1-p )n -k(k =0,1,2,…,n ).1.概念辨析(1)相互独立事件就是互斥事件.( )(2)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( )(3)二项分布是一个概率分布,其公式相当于(a +b )n 二项展开式的通项公式,其中a =p ,b =(1-p ).( )(4)二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布.( )答案 (1)× (2)× (3)× (4)√ 2.小题热身(1)甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P (A )=0.2,P (B )=0.18,P (AB )=0.12,那么P (A |B )和P (B |A )分别为( )A.13,25B.23,25C.23,35D.12,35答案 C解析 由,得P (A |B )=P (AB )P (B )=0.120.18=23, P (B |A )=P (AB )P (A )=0.120.2=35. (2)设随机变量ξ~B ⎝ ⎛⎭⎪⎫5,13,那么P (ξ=3)=( )A.10243 B.32243 C.40243 D.80243答案 C解析 因为ξ~B ⎝ ⎛⎭⎪⎫5,13,所以P (ξ=3)=C 35⎝ ⎛⎭⎪⎫133·⎝ ⎛⎭⎪⎫232=40243. (3)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,那么至少有一个公司不需要维护的概率为________.答案 0.88解析 P =1-0.4×0.3=0.88.(4)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是________.答案 49解析 所求概率P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-132=49.题型 一 条件概率1.从1,2,3,4,5中任取2个不同的数,事件A :“取到的2个数之和为偶数〞,事件B :“取到的2个数均为偶数〞,那么P (B |A )=( )A.18 B.14C.25 D.12答案 B解析解法一:事件A包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个.事件AB发生的结果只有(2,4)一种情形,即n(AB)=1.故由古典概型概率P(B|A)=n(AB)n(A)=14.应选B.解法二:P(A)=C23+C22C25=410,P(AB)=C22C25=110.由条件概率计算公式,得P(B|A)=P(AB)P(A)=110410=14.应选B.条件探究1假设将本例中的事件B改为“取到的2个数均为奇数〞,那么P(B|A)=________.答案3 4解析P(A)=C23+C22C25=25,P(B)=C23C25=310.又B⊆A,那么P(AB)=P(B)=3 10,所以P(B|A)=P(AB)P(A)=P(B)P(A)=34.条件探究2将本例中的条件改为:从1,2,3,4,5中不放回地依次取2个数,事件A为“第一次取到的是奇数〞,事件B为“第二次取到的是奇数〞,那么P(B|A)=________.答案1 2解析 从1,2,3,4,5中不放回地依次取2个数,有A 25种方法;其中第一次取到的是奇数,有A 13A 14种方法;第一次取到的是奇数且第二次取到的是奇数,有A 13A 12种方法.那么P (A )=A 13A 14A 25=35,P (AB )=A 13A 12A 25=310,所以P (B |A )=P (AB )P (A )=31035=12.2.如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内〞,B 表示事件“豆子落在扇形OHE (阴影部分)内〞,那么P (B |A )=________.答案 14解析 由题意可得,事件A 发生的概率P (A )=S 正方形EFGH S 圆O =2×2π×12=2π.事件AB 表示“豆子落在△EOH 内〞,那么P (AB )=S △EOH S 圆O=12×12π×12=12π, 故P (B |A )=P (AB )P (A )=12π2π=14.解决条件概率问题的步骤第一步,判断是否为条件概率,假设题目中出现“〞“在……前提下〞等字眼,一般为条件概率.题目中假设没有出现上述字眼,但事件的出现影响所求事件的概率时,也需注意是否为条件概率.假设为条件概率,那么进行第二步.第二步,计算概率,这里有两种思路:思路一缩减样本空间法计算条件概率,如求P (A |B ),可分别求出事件B ,AB 包含的基本事件的个数,再利用公式P (A |B )=n (AB )n (B )计算思路二直接利用公式计算条件概率,即先分别计算出P (AB ),P (B ),再利用公式P (A |B )=P (AB )P (B )计算提醒:要注意P (B |A )与P (A |B )的不同:前者是在A 发生的条件下B 发生的概率,后者是在B 发生的条件下A 发生的概率.1.(2019·某某模拟)甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传这四个项目,每人限报其中一项,记事件A 为“四名同学所报项目各不相同〞,事件B 为“只有甲同学一人报关怀老人项目〞,那么P (A |B )=( )A.14B.34C.29D.59答案 C解析 由题意,得P (B )=3344=27256,P (AB )=A 3344=3128,所以P (A |B )=P (AB )P (B )=29.2.(2019·武侯区校级模拟)如果{a n }不是等差数列,但假设∃k ∈N *,使得a k +a k +2=2a k +1,那么称{a n }为“局部等差〞数列.数列{x n }的项数为4,记事件A :集合{x 1,x 2,x 3,x 4}⊆{1,2,3,4,5},事件B :{x n }为“局部等差〞数列,那么条件概率P (B |A )=( )A.415B.730 C.15 D.16答案 C解析 由数列{x n }的项数为4,记事件A :集合{x 1,x 2,x 3,x 4}⊆{1,2,3,4,5},那么事件A 的基本事件共有A 45=120个,在满足事件A 的条件下,事件B :{x n }为“局部等差〞数列,共有以下24个基本事件:其中含1,2,3的局部等差数列分别为1,2,3,5;5,1,2,3;4,1,2,3,共3个,同理含3,2,1的局部等差数列也有3个,含3,4,5和含5,4,3与上述相同,含2,3,4的有5,2,3,4;2,3,4,1,共2个,同理含4,3,2的也有2个.含1,3,5的有1,3,5,2;2,1,3,5;4,1,3,5;1,3,5,4,共4个,同理含5,3,1的也有4个.所以P (B |A )=24120=15.题型 二 相互独立事件的概率1.(2019·某某二模)甲、乙、丙三人去参加某公司面试,他们被公司录取的概率分别为16,14,13,且三人录取结果相互之间没有影响,那么他们三人中至少有一人被录取的概率为( )A.3172B.712C.2572D.1572答案 B解析 由题意,得他们三人中至少有一人被录取的对立事件是三个人都没有被录取,∴他们三人中至少有一人被录取的概率为P =1-⎝ ⎛⎭⎪⎫1-16⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-13=712.2.(2019·全国卷Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P (X =2);(2)求事件“X =4且甲获胜〞的概率.解 (1)X =2就是某局双方10∶10平后,两人又打了2个球该局比赛结束,那么这2个球均由甲得分,或者均由乙得分.因此P (X =2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X =4且甲获胜,就是某局双方10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.求相互独立事件概率的步骤第一步,先用字母表示出事件,再分析题中涉及的事件,并把题中涉及的事件分为假设干个彼此互斥的事件的和;第二步,求出这些彼此互斥的事件的概率;第三步,根据互斥事件的概率计算公式求出结果.此外,也可以从对立事件入手计算概率.1.(2019·某某三模)某校在秋季运动会中,安排了篮球投篮比赛,现有20名同学参加篮球投篮比赛,每名同学投进的概率均为0.4;每名同学有2次投篮机会,且各同学投篮之间没有影响;现规定:投进2个得4分,投进1个得2分,1个未进得0分,那么其中1名同学得2分的概率为()A.0.5 B.0.48答案 B解析设“第一次投进球〞为事件A,“第二次投进球〞为事件B,那么得2分的概率为P=P(A B-)+P(A-B)=0.4×0.6+0.6×0.4=0.48.2.某社区举办《“环保我参与〞有奖问答比赛》活动.某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.甲家庭回答正确这道题的概率是34,甲、丙两个家庭都回答错误的概率是112,乙、丙两个家庭都回答正确的概率是14.假设各家庭回答是否正确互不影响.(1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.解(1)记“甲回答正确这道题〞“乙回答正确这道题〞“丙回答正确这道题〞分别为事件A,B,C,那么P(A)=3 4,且有⎩⎪⎨⎪⎧P (A )·P (C )=112,P (B )·P (C )=14,即⎩⎪⎨⎪⎧[1-P (A )]·[1-P (C )]=112,P (B )·P (C )=14,所以P (B )=38,P (C )=23.(2)有0个家庭回答正确的概率为P 0=P (A -B -C -)=P (A )·P (B )·P (C )=14×58×13=596, 有1个家庭回答正确的概率为P 1=P (A B -C -+A B C +A -B -C )=34×58×13+14×38×13+14×58×23=724, 所以不少于2个家庭回答正确这道题的概率为 P =1-P 0-P 1=1-596-724=2132.题型 三 独立重复试验与二项分布1.假设同时抛掷两枚骰子,当至少有5点或6点出现时,就说这次试验成功,那么在3次试验中至少有1次成功的概率是( )A.125729B.80243 C.665729 D.100243答案 C解析 一次试验中,至少有5点或6点出现的概率为1-⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-13=1-49=59,设X 为3次试验中成功的次数,所以X ~B ⎝ ⎛⎭⎪⎫3,59,故所求概率P (X ≥1)=1-P (X =0)=1-C 03×⎝ ⎛⎭⎪⎫590×⎝ ⎛⎭⎪⎫493=665729,应选C.2.为了弘扬国粹,提高民族自豪感,坐落于某实验中学内的艺术馆为学员们提供书法、国画、古琴、茶艺等教学服务,其中学习书法和国画的学员最多.为了研究喜欢书法和喜欢国画之间的联系,随机抽取了80名学员进行问卷调查,发现喜欢国画的人的比例为70%,喜欢书法的人的比例为50%.(1)(2)有人认为喜欢书法与喜欢国画有关,你同意这种看法吗?说明理由; (3)假定学员们都按照自己的喜好进行了系统学习.根据传统,国画上有题字和落款才算完整作品,那么既学书法又学国画的学员们创作的作品可以称为“书画兼优〞.为了配合实验中学七十年校庆,打算随机挑选5幅作品展览.设其中“书画兼优〞的作品数为X ,求X 的分布列.参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .参考数据:解 (1)由题意,得c +16=80×(1-50%),∴c =24. ∵a +c =80×70%,∴a =32.∵a +b =80×50%,∴b =8. ∴a =32,b =8,c =24.(2)我同意这种看法.理由如下: K 2=80×(32×16-24×8)240×40×56×24≈3.81.∵3.81>2.706,∴有90%以上的把握认为喜欢书法与喜欢国画有关, ∴我同意这种看法.(3)由(1)知一幅作品“书画兼优〞的概率为3280=25. X 的所有可能取值为0,1,2,3,4,5.P (X =0)=C 05⎝ ⎛⎭⎪⎫250⎝ ⎛⎭⎪⎫355=2433125, P (X =1)=C 15·25·⎝ ⎛⎭⎪⎫354=162625,P (X =2)=C 25⎝ ⎛⎭⎪⎫252⎝ ⎛⎭⎪⎫353=216625, P (X =3)=C 35⎝ ⎛⎭⎪⎫253⎝ ⎛⎭⎪⎫352=144625, P (X =4)=C 45⎝ ⎛⎭⎪⎫254·35=48625, P (X =5)=C 55⎝ ⎛⎭⎪⎫255⎝ ⎛⎭⎪⎫350=323125. ∴X 的分布列如下.P 2433125162625216625144625486253231251.独立重复试验的实质及应用独立重复试验的实质是相互独立事件的特例,应用独立重复试验公式可以简化求概率的过程.2.判断某概率模型是否服从二项分布P n(X=k)=C k n p k(1-p)n-k的三个条件(1)在一次试验中某事件A发生的概率是一个常数p.(2)n次试验不仅是在完全相同的情况下进行的重复试验,而且每次试验的结果是相互独立的.(3)该公式表示n次试验中事件A恰好发生了k次的概率.提醒:在实际应用中,往往出现数量“较大〞“很大〞“非常大〞等字眼,这说明试验可视为独立重复试验,进而判定是否服从二项分布.1.春节期间,某旅游景区推出掷圆圈套玩具鹅的游戏,吸引了一大批的游客参加,规那么是:每人花10元拿到5个圆圈,在离最近的玩具鹅的2米处掷圆圈5次,只要圆圈连续套住同一只鹅颈3次,就可以获得套住的那只玩具鹅.假设某游客每次掷圆圈套住鹅颈的概率为23,且每次掷圆圈的结果互不影响,那么该游客获得一只玩具鹅的概率为()A.481 B.881C.13 D.104243答案 D解析 设“第i 次套住鹅颈〞为事件A i (i =1,2,3,4,5),那么A -i 表示“第i 次未套住鹅颈〞,依题意可得该游客能获得一只玩具鹅的3种情形:A 1A 2A 3,A -1A 2A 3A 4,A -1A -2A 3A 4A 5,而P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫233=827,P (A -1A 2A 3A 4)=⎝ ⎛⎭⎪⎫233×13=881,P (A -1A -2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132=8243,故该游客获得一只玩具鹅的概率为827+881+8243=104243,应选D.2.医学上某种还没有完全攻克的疾病,治疗时需要通过药物控制其中的两项指标H 和V .现有A ,B ,C 三种不同配方的药剂,根据分析,A ,B ,C 三种药剂能控制H 指标的概率分别为0.5,0.6,0.75,能控制V 指标的概率分别为0.6,0.5,0.4,能否控制H 指标与能否控制V 指标之间相互没有影响.(1)求A ,B ,C 三种药剂中恰有一种能控制H 指标的概率;(2)某种药剂能使两项指标H 和V 都得到控制就说该药剂有治疗效果.求三种药剂中有治疗效果的药剂种数X 的分布列.解 (1)A ,B ,C 三种药剂中恰有一种能控制H 指标的概率为P =P (A B -C -)+P (A B C )+P (A -B -C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275.(2)∵A 有治疗效果的概率为P A =0.5×0.6=0.3, B 有治疗效果的概率为P B =0.6×0.5=0.3,C有治疗效果的概率为P C=0.75×0.4=0.3,∴A,B,C三种药剂有治疗效果的概率均为0.3,可看成3次独立重复试验,即X~B(3,0.3).∵X的可能取值为0,1,2,3,∴P(X=k)=C k3×0.3k×(1-0.3)3-k,即P(X=0) =C03×0.30×(1-0.3)3=0.343,P(X=1)=C13×0.3×(1-0.3)2=0.441,P(X=2)=C23×0.32×(1-0.3)=0.189,P(X=3)=C33×0.33=0.027.故X的分布列如下.X 012 3P 0.3430.4410.1890.027组基础关1.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,如果从两个口袋内各摸出一个球,那么56是()A.2个球不都是白球的概率B.2个球都不是白球的概率C.2个球都是白球的概率D.2个球恰好有一个球是白球的概率答案 A解析∵2个球不都是白球的对立事件是2个球都是白球,从甲口袋摸出白球和从乙口袋摸出白球两者是相互独立的,∴2个球都是白球的概率P =13×12=16,∴2个球不都是白球的概率是1-16=56.应选A.2.(2019·某某三市第一次联考)某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:2个元件的使用寿命在30天以上的概率为( )A.1316B.2764 C.2532 D.2732答案 D解析 由表可知元件使用寿命在30天以上的频率为150200=34,那么所求概率为C 23⎝ ⎛⎭⎪⎫342×14+⎝ ⎛⎭⎪⎫343=2732. 3.位于坐标原点的一个质点M 按下述规那么移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点M 移动五次后位于点(2,3)的概率是( )A.⎝ ⎛⎭⎪⎫125 B.C 25×⎝ ⎛⎭⎪⎫125C .C 35×⎝⎛⎭⎪⎫123D.C 25×C 35×⎝⎛⎭⎪⎫125 答案 B解析 如图,由题可知质点M 必须向右移动2次,向上移动3次才能位于点(2,3),问题相当于5次重复试验中向右恰好发生2次的概率.所求概率为P =C 25×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫123=C 25×⎝ ⎛⎭⎪⎫125.应选B.4.某居民小区有两个相互独立的安全防X 系统A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为18和p ,假设在任意时刻恰有一个系统不发生故障的概率为940,那么p 等于( )A.110B.215C.16D.15答案 B解析 由题意得,18(1-p )+78p =940, ∴p =215.5.(2019·某某调研)某学校10位同学组成的志愿者组织分别由李老师和X 老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和X 老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.那么甲同学收到李老师或X 老师所发活动通知信息的概率为( )A.25B.1225C.1625D.45 答案 C解析 设A 表示“甲同学收到李老师所发活动通知信息〞,B 表示“甲同学收到X 老师所发活动通知信息〞,由题意P (A )=410=25,P (B )=410=25,∴甲同学收到李老师或X 老师所发活动通知信息的概率为25+25-25×25=1625.应选C.6.投掷一枚图钉,设钉尖向上的概率为p ,连续掷一枚图钉3次,假设出现2次钉尖向上的概率小于出现3次钉尖向上的概率,那么p 的取值X 围为( )A.⎝ ⎛⎭⎪⎫12,34B.⎝ ⎛⎭⎪⎫34,1 C.⎝ ⎛⎭⎪⎫23,1 D.⎝ ⎛⎭⎪⎫13,1 答案 B解析 ∵投掷一枚图钉,钉尖向上的概率为p (0<p <1),连续掷一枚图钉3次,∴出现2次钉尖向上的概率为C 23p 2(1-p ),出现3次钉尖向上的概率为p 3.∵出现2次钉尖向上的概率小于出现3次钉尖向上的概率,∴C 23p 2(1-p )<p 3,即p 2(3-4p )<0,解得p >34,∴p 的取值X 围为⎝ ⎛⎭⎪⎫34,1.7.(2019·某某模拟)某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场〞的前提下,学生丙第一个出场的概率为( )A.313 B.413 C.14 D.15答案 A解析 设事件A 为“学生甲不是第一个出场,学生乙不是最后一个出场〞;事件B 为“学生丙第一个出场,〞那么P (A )=A 44+C 13C 13A 33A 55=78A 55,P (AB )=C 13A 33A 55=18A 55,那么P (B |A )=P (AB )P (A )=1878=313. 8.(2019·武昌区模拟)抛掷一枚质地均匀的骰子两次,记A ={两次的点数均为奇数},B ={两次的点数之和为4},那么P (B |A )=________.答案 29解析 根据题意,抛掷一枚质地均匀的骰子两次,有6×6=36种情况,记A ={两次的点数均为奇数},B ={两次的点数之和为4},事件A 包含3×3=9种情况,事件AB 有2种情况,那么P (A )=3×336=936,P (AB )=236,那么P (B |A )=P (AB )P (A )=29.9.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠,假设该电梯在底层有5位乘客,且每位乘客在这三层的每一层下电梯的概率为13,用ξ表示5位乘客在第20层下电梯的人数,那么P (ξ=4)=________.答案 10243解析 依题意,ξ~B ⎝ ⎛⎭⎪⎫5,13,故P (ξ=4)=C 45⎝ ⎛⎭⎪⎫134×⎝ ⎛⎭⎪⎫231=10243. 10.(2019·全国卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主〞.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,那么甲队以4∶1获胜的概率是________.答案 0.18解析 甲队以4∶1获胜,甲队在第5场(主场)获胜,前4场中有一场输. 假设在主场输一场,那么概率为2×0.6×0.4×0.5×0.5×0.6;假设在客场输一场,那么概率为2×0.6×0.6×0.5×0.5×0.6. ∴甲队以4∶1获胜的概率P =2×0.6×0.5×0.5×(0.6+0.4)×0.6=0.18.组 能力关1.(2019·某某市高三调研)甲袋中有1个黄球和1个红球,乙袋中有2个黄球和2个红球.现随机地从甲袋中取出1个球放入乙袋中,再从乙袋中随机取出1个球,那么从乙袋中取出的球是红球的概率为( )A.13B.12C.59D.29答案 B解析 分两类:①假设从甲袋中取出黄球,那么乙袋中有3个黄球和2个红球,从乙袋中取出的球是红球的概率为25;②假设从甲袋中取出红球,那么乙袋中有2个黄球和3个红球,从乙袋中取出的球是红球的概率为35;∴所求概率P =12×⎝ ⎛⎭⎪⎫25+35=12.应选B. 2.(2020·某某摸底)为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,假设他前一球投进那么后一球也投进的概率为34,假设他前一球投不进那么后一球投进的概率为14.假设他第1球投进的概率为34,那么他第2球投进的概率为( )A.34 B.58 C.716 D.916答案 B解析 设该运动员第2球投进的概率为p 2,第1球投进的概率为p 1=34,∴p 2=34p 1+14(1-p 1)=12p 1+14=12×34+14=58.应选B.3.(2019·某某一模)某超市在中秋节期间举行有奖销售活动,凡消费金额满200元的顾客均获得一次抽奖的机会,中奖一次即可获得5元红包,没有中奖不得红包.现有4名顾客均获得一次抽奖机会,且每名顾客每次中奖的概率均为0.4,记X 为4名顾客获得的红包金额总和,那么P (10≤X ≤15)=________.答案 312625解析 中奖一次即可获得5元红包,没有中奖不得红包.现有4名顾客均获得一次抽奖机会,且每名顾客每次中奖的概率均为0.4,记X 为4名顾客获得的红包金额总和,那么P (10≤X ≤15)=C 24×0.42×0.62+C 34×0.43×0.6=312625.4.为研究家用轿车在高速公路上的车速情况,交通部门随机选取100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100 km/h 的有40人,不超过100 km/h 的有15人;在45名女性驾驶员中,平均车速超过100 km/h 的有20人,不超过100 km/h 的有25人.(1)在被调查的驾驶员中,从平均车速不超过100 km/h 的人中随机抽取2人,求这2人恰好有1名男性驾驶员和1名女性驾驶员的概率;(2)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取3辆,记这3辆车平均车速超过100 km/h 且为男性驾驶员的车辆为X ,求X 的分布列.解 (1)平均车速不超过100 km/h 的驾驶员有40人,从中随机抽取2人的方法总数为C 240,记“这2人恰好有1名男性驾驶员和1名女性驾驶员〞为事件A ,那么事件A 所包含的基本事件数为C 115C 125,所以所求的概率P (A )=C 115C 125C 240=15×2520×39=2552.(2)根据样本估计总体的思想,从总体中任取1辆车,平均车速超过100 km/h 且为男性驾驶员的概率为40100=25, 故X ~B ⎝ ⎛⎭⎪⎫3,25.所以P (X =0)=C 03⎝ ⎛⎭⎪⎫250⎝ ⎛⎭⎪⎫353=27125, P (X =1)=C 13⎝ ⎛⎭⎪⎫25⎝ ⎛⎭⎪⎫352=54125, P (X =2)=C 23⎝ ⎛⎭⎪⎫252⎝ ⎛⎭⎪⎫35=36125, P (X =3)=C 33⎝ ⎛⎭⎪⎫253⎝ ⎛⎭⎪⎫350=8125. 所以X 的分布列如下.X 0 1 2 3 P2712554125361258125组 素养关1.(2019·某某六校教育研究会第二次联考)为调查人们在购物时的支付习惯,某超市对随机抽取的600名顾客的支付方式进行了统计,统计数据如表所示,支付方式 微信 支付宝 购物卡 现金 人数200150150100率近似代替概率.(1)求三人中使用微信支付的人数多于现金支付的人数的概率. (2)记X 为三人中使用支付宝支付的人数,求X 的分布列.解 (1)由表格得顾客使用微信、支付宝、购物卡和现金支付的概率分别为13,14,14,16.设Y 为三人中使用微信支付的人数,Z 为使用现金支付的人数, 事件A 为“三人中使用微信支付的人数多于现金支付的人数〞,那么P (A )=P (Y =3)+P (Y =2)+P (Y =1,且Z =0)=⎝ ⎛⎭⎪⎫133+C 23⎝ ⎛⎭⎪⎫132×23+C 13⎝ ⎛⎭⎪⎫13×⎝ ⎛⎭⎪⎫122=127+29+14=55108. (2)由题意可知X ~B ⎝ ⎛⎭⎪⎫3,14,故所求分布列如下. X 0 1 2 3 P276427649641642.(2019·某某一模)某市市民用水拟实行阶梯水价,每人月用水量不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费,从该市随机调查了10000位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列.(1)求a ,b ,c 的值及居民月用水量在2~2.5内的频数;(2)根据此次调查,为使80%以上居民月用水价格为4元/立方米,应将w 至少定为多少?(w取整数)(3)假设将频率视为概率,现从该市随机调查3名居民的月用水量,将月用水量不超过2.5立方米的人数记为X,求其分布列.解(1)∵前四组频数成等差数列,∴所对应的频率组距也成等差数列,设a=0.2+d,b=0.2+2d,c=0.2+3d,∴0.5×(0.2+0.2+d+0.2+2d+0.2+3d+0.2+d+0.1+0.1+0.1)=1,解得d=0.1,∴a=0.3,b=0.4,c=0.5.居民月用水量在2~2.5内的频率为0.5×0.5=0.25.居民月用水量在2~2.5内的频数为0.25×10000=2500.(2)由题图及(1)可知,居民月用水量小于2的频率为(0.2+0.3+0.4)×0.5=0.45,小于3的频率为0.45+(0.5+0.3)×0.5=0.85,∴为使80%以上居民月用水价格为4元/立方米,应将w至少定为3.(3)将频率视为概率,设A(单位:立方米)代表居民月用水量,可知P(A≤2.5)=0.7,由题意,X~B(3,0.7),P(X=0)=C03×0.33=0.027,P(X=1)=C13×0.32×0.7=0.189,P(X=2)=C23×0.3×0.72=0.441,P(X=3)=C33×0.73=0.343.∴X的分布列如下.。