数学九下《第26章二次函数》单元测试(三)
- 格式:doc
- 大小:295.00 KB
- 文档页数:6
2022-2023学年华东师大版九年级下册数学《第26章二次函数》单元测试卷一.选择题(共10小题,满分30分)1.下列是二次函数的是()A.y=2﹣x2B.y=x﹣22C.D.y=2x﹣12.一次函数y=ax+b与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.3.抛物线y=﹣x2﹣2x一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.从地面竖直向上抛出一小球,小球的高度h(米)与运动时间t(秒)之间的解析式是h =﹣5t2+30t(0≤t≤6),则小球到达最高高度时,运动的时间是()A.1秒B.2秒C.3秒D.4秒5.如图是二次函数y=ax2+bx+c(a≠0)的图像,则下列结论正确的有()①abc>0;②2a+b=0;③b2<4ac;④4a+2b+c>0;⑤a+b≥am2+bm(m为任意实数)A.2个B.3个C.4个D.5个6.把函数y=(x﹣2)2+3的图象所在坐标系的坐标轴向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣3)2+3D.y=(x﹣1)2+3 7.小英在用“描点法”探究二次函数性质时,画出了以下表格,不幸的是,部分数据已经遗忘(如表所示),小英只记得遗忘的三个数中(如M,R,A所示),有两个数相同.根据以上信息,小英探究的二次函数解析式可能是()x…﹣10123…y…M R﹣4﹣3A…A.y=x2﹣3x﹣2B.C.y=2x2﹣5x﹣1D.8.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.若关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根的积是()A.0B.﹣8C.﹣15D.﹣249.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,有下列4个结论:①abc>0;②b2﹣4ac>0;③关于x的方程ax2+bx+c=0的两个根是x1=﹣2,x2=3;④关于x的不等式ax2+bx+c>0的解集是x>﹣2.其中正确的结论有()个.A.1B.2C.3D.410.对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y =﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为()A.﹣3<n≤﹣1或1<n≤B.﹣3<n<﹣1或1≤n≤C.n≤﹣1或1<n≤D.﹣3<n<﹣1或n≥1二.填空题(共10小题,满分30分)11.根据下表判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的取值范围是x0.40.50.60.7ax2+bx+c﹣0.64﹣0.250.160.5912.如果函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,那么m的值为.13.在一块底边长为20厘米的等腰直角三角形铁皮上截一块矩形铁皮,如果矩形的一边与等腰三角形的底边重合且长度为x厘米,矩形另两个顶点分别在等腰直角三角形的两腰上,设矩形面积为y平方厘米,那么y关于x的函数解析式是.(不必写定义域)14.二次函数y=﹣x2+4x+a图象上的最高点的横坐标为.15.若点A(3,y1),B(﹣5,y2),C(7,y3)为二次函数y=(x+2)2﹣9的图象上的三点,则y1,y2,y3的大小关系是.16.将二次函数y=x2﹣2x+3化成顶点式为.17.一辆宽为2m的货车要通过跨度为8m,拱高为4m的截面为抛物线的单行隧道(从正中间通过),抛物线满足关系式.为保证安全,车顶离隧道至少要有0.5m的距离,则货车的限高应为m.18.如图所示的抛物线y=x2﹣bx+b2﹣9的图象,那么b的值是.19.二次函数的顶点坐标是.20.已知抛物线y=ax2+bx+3的图象与x轴相交于点A和点B(1,0),与y轴交于点C,连接AC,有一动点D在线段AC上运动,过点D作x轴的垂线,交抛物线于点E,交x 轴于点F,AB=4,设点D的横坐标为m.(1)连接AE,CE则△ACE的最大面积为;(2)当m=﹣2时,在平面内存在点Q,使以B,C,E,Q为顶点的四边形为平行四边形,请写出点Q的坐标.三.解答题(共7小题,满分60分)21.已知函数y=(m﹣1)+4x﹣5是二次函数.求m的值.22.已知二次函数y=x2﹣4x+3.(1)求二次函数y=x2﹣4x+3图象的顶点坐标;(2)在平面直角坐标系xOy中,画出二次函数y=x2﹣4x+3的图象.23.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.24.在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A (﹣5,﹣4),B(1,﹣1)均在直线l上.(1)求出直线l的解析式;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣9,求m的值;(3)若抛物线C与线段AB有两个不同的交点,求a的取值范围.25.某商场经调研得出某种商品每天的利润y(元)与销售单价x(元)之间满足关系:y =ax2+bx﹣75,其图象如图所示.(1)求a与b的值;(2)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(3)销售单价定在多少时,该种商品每天的销售利润为21元?结合图象,直接写出销售单价定在什么范围时,该种商品每天的销售利润不低于21元?26.已知:由函数y=x2﹣2x﹣2的图象知道,当x=0时,y<0,当x=﹣1时,y>0,所以方程x2﹣2x﹣2=0有一个根在﹣1和0之间.(1)参考上面的方法,求方程x2﹣2x﹣2=0的另一个根在哪两个连续整数之间;(2)若方程x2﹣2x+c=0有一个根在0和1之间,求c的取值范围.27.记函数y=x2﹣2x(x≤2)的图象为G1,函数的图象记为G2,图象G1和G2记为图象G.(1)若点(3,m)在图象G上,求m的值.(2)已知直线l与x轴平行,且与图象G有三个交点,从左至右依次为点A,点B,点C,若AB=1,求点C坐标.(3)若当﹣1≤x≤n时,﹣1≤y≤3,求n的取值范围.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:A、y=2﹣x2是二次函数,故此选项符合题意;B、y=x﹣22是一次函数,故此选项不符合题意;C、不是二次函数,故此选项不符合题意;D、y=2x﹣1是一次函数,故此选项不符合题意;故选:A.2.解:A、由一次函数的图象可知,a<0,由二次函数的图象可知,a>0,两结论矛盾,不符合题意;B、由一次函数的图象可知,a<0,b<0,由二次函数的图象可知,a<0,b>0,两结论矛盾,不符合题意;C、由一次函数的图象可知,a<0,b>0,由二次函数的图象可知,a<0,b<0,两结论矛盾,不符合题意;D、由一次函数的图象可知,a>0,b<0,由二次函数的图象可知,a>0,b<0,两结论一致,符合题意.故选:D.3.解:∵a=﹣1,抛物线开口向下,对称轴为x=,与y轴交于(0,),∴抛物线经过一、三、四象限,不经过第二象限.故选:B.4.解:h=30t﹣5t2=﹣5(t﹣3)2+45,∵﹣5<0,0≤t≤6,∴当t=3时,h有最大值,最大值为45,∴小球运动3秒时,小球达到最高高度,故选:C.5.解:由图象可知,抛物线开口向下,∴a<0,∵对称轴为,∴2a=﹣b,∴b>0且2a+b=0,②正确;∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,③错误;∵2a+b=0,∴4a+2b+c=2(2a+b)+c=c>0,④正确;∵当x=1时,函数取最大值,为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥am2+bm(m为任意实数),⑤正确;综上所述,正确的有3个,故选:B.6.解:二次函数y=(x﹣2)2+3的图象的顶点坐标为(2,3),∴向右平移1个单位长度后的函数图象的顶点坐标为(3,3),∴所得的图象解析式为y=(x﹣3)2+3.故选:C.7.解:A、y=x2﹣3x﹣2的对称轴为直线,B、的对称轴为直线,C、y=2x2﹣5x﹣1的对称轴为直线,D、的对称轴为直线,若M与R相同,则抛物线的对称轴为直线,只有B选项符合,将点(1,﹣4),(2,﹣3)代入解析式,均符合;若M与A相同,则抛物线的对称轴为直线x=1,没有选项符合;若R与A相同,则抛物线的对称轴为直线,选项A、D符合,但将点(1,﹣4),(2,﹣3)代入解析式,却不符合;∴M与R相同,B选项符合,故选:B.8.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3,∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴抛物线y=ax2+bx+c与直线y=﹣n的交点的横坐标在﹣5与﹣3之间和1与3之间,∴关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是﹣4和2,∴两个整数根的积是﹣4×2=﹣8.故选:B.9.解:∵抛物线开口向下,交y轴的正半轴,∴a<0,c>0,∵﹣=,∴b=﹣a>0,∴abc<0,所以①错误;∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,所以②正确;∵抛物线y=ax2+bx+c经过点(﹣2,0),而抛物线的对称轴为直线x=,∴点(﹣2,0)关于直线x=的对称点(3,0)在抛物线上,∴关于x的一元二次方程ax2+bx+c=0的两根是x1=﹣2,x2=3,所以③正确.由图象可知当﹣2<x<3时,y>0,∴不等式ax2+bx+c>0的解集是﹣2<x<3,所以④错误;故选:B.10.解:如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2﹣4x﹣n与y轴交点纵坐标为1,∴﹣n=1,解得:n=﹣1.∴当﹣3<n≤﹣1时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=﹣x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2﹣4x﹣n经过点M(﹣,1),∴+2﹣n=1,解得:n=.∴1<n≤时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是﹣3<n≤﹣1或1<n≤,故选:A.二.填空题(共10小题,满分30分)11.解:∵函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根,x轴上的点的纵坐标为0,由表中数据可知:y=0在y=﹣0.25与y=0.16之间,∴对应的x的值在0.5与0.6之间即0.5<x<0.6.故答案为0.5<x<0.6.12.解:∵函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,∴|m﹣1|=2,且m﹣3≠0,解得:m=﹣1.故答案为:﹣1.13.解:∵△ABC是等腰直角三角形,四边形EFGD是矩形,∴△AFE和△DGB都是等腰直角三角形,∴ED=GF=x厘米,AF=BG=(20﹣x)厘米,∴EF=(20﹣x)厘米,∴矩形EFGD的面积y=x•(20﹣x)=﹣x2+10x,∴y关于x的函数关系式是y=﹣x2+10x.故答案为:y=﹣x2+10x.14.解:∵二次函数y=﹣x2+4x+a=﹣(x﹣2)2+4+a,∴二次函数图象上的最高点的横坐标为:﹣2.故答案为:﹣2.15.解:∵y=(x+2)2﹣9,∴图象的开口向上,对称轴是直线x=﹣2,∴B(﹣5,y2)关于直线x=﹣2的对称点是(1,y2),∵1<3<7,∴y2<y1<y3,故答案为:y2<y1<y3.16.解:y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2.故答案为:y=(x﹣1)2+2.17.解:∵车的宽度为2米,车从正中通过,∴x=1时,y=﹣×12+4=,∴货车安全行驶装货的最大高度为﹣0.5=3.25(米),即货车的限高为:3.25;18.解:由图可知,抛物线经过原点(0,0),所以,02﹣b×0+b2﹣9=0,解得b=±3,∵抛物线的对称轴在y轴的右边,∴﹣>0,∴b>0,∴b=3.故答案为:3.19.解:二次函数y =﹣(x ﹣1)2+2的顶点坐标是(1,2),故答案为:(1,2).20.解:(1)∵点B (1,0),AB =4,则点A (﹣3,0),由题意得:,解得:,即抛物线的表达式为:y =﹣x 2﹣2x +3;设直线AC 的表达式为:y =mx +n ,则,解得:,故直线AC 的表达式为:y =x +3;设点D (m ,m +3),则点E (m ,﹣m 2﹣2m +3),则△ACE 的面积=S △EDA +S △EDC =DE ×AO =3×(﹣m 2﹣2m +3﹣m ﹣3)=﹣(m 2+3m )=﹣(m +)2+≤, ∴△ACE 的最大面积为, 故答案为:;(2)当m =﹣2时,﹣m 2﹣2m +3=3,即点E (﹣2,3),设点Q (s ,t ),当BC 是对角线时,由中点坐标公式得:,解得:, 当BE 是对角线时,由中点坐标公式得:,解得:, 当BQ 是对角线时,由中点坐标公式得:,解得:, 即点Q 的坐标为(﹣3,0)或(﹣1,0)或)(﹣3,6),故答案为:(﹣3,0)或(﹣1,0)或)(﹣3,6).三.解答题(共7小题,满分60分)21.解:由题意:,解得m =﹣1,∴m=﹣1时,函数y=(m﹣1)+4x﹣5是二次函数.22.解:(1)y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点为:(2,1);(2)解:该函数过点(0,3),(1,0),(2,﹣1),(3,0),(4,3)这五个点,用五点作图画出图象如下:23.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.24.解:(1)把点A(﹣5,﹣4),B(1,﹣1)代入y=kx+b中,得,解得,∴直线l的解析式为y=x﹣;(2)根据题意可得,y=﹣x2+2x﹣1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值﹣9,∴当y=﹣9时,有﹣x2+2x﹣1=﹣9,∴x=﹣2或x=4,①在x=1左侧,y随x的增大而增大,∴x=m+2=﹣2时,y有最大值﹣4,∴m=﹣4;②在对称轴x=1右侧,y随x最大而减小,∴x=m=4时,y有最大值﹣9;综上所述:m=﹣4或m=4;(3))①a<0时,x=1时,y≤﹣1,即a+1≤﹣1,∴a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即9a﹣7≥﹣3,∴a≥,直线AB的解析式为y=x﹣;抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,Δ=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2.25.解:(1)y=ax2+bx﹣75图象过点(5,0)、(7,16),∴,解得:;(2)∵y=﹣x2+20x﹣75=﹣(x﹣10)2+25,=25.∴当x=10时,y最大答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元;(3)根据题意,当y=21时,得:﹣x2+20x﹣75=21,解得:x1=8,x2=12,∴x=8或x=12,即销售单价定在8元或12元时,该种商品每天的销售利润为21元;故销售单价在8≤x≤12时,销售利润不低于21元.26.解:(1)利用函数y=x2﹣2x﹣2的图象可知,当x=2时,y<0,当x=3时,y>0,所以方程的另一个根在2和3之间;(2)函数y=x2﹣2x+c的图象的对称轴为直线x=1,由题意,得,解得0<c<1.27.解:(1)∵点(3,m)在图象G上,函数y=x2﹣2x(x≤2)的图象为G1,函数y=﹣x2+2(x>0)的图象记为G2,图象G1和G2记为图象G.∴点(3,m)在图象G2上,将点(3,m)代入y=﹣x2+2得,m=﹣×32+2=﹣,∴m的值﹣;(2)如图,∵直线l与x轴平行且与图象G有三个交点,从左至右依次为点A,点B,点C,由图象得﹣1≤y≤0,设A(a,a2﹣2a),∵y=x2﹣2x的对称轴为直线x=1,顶点为(1,﹣1),∴点B(2﹣a,a2﹣2a),∵AB=1,∴2﹣a﹣a=1,解得a=,∴点C的纵坐标为a2﹣2a=﹣,将y=﹣代入y=﹣x2+2得﹣=﹣x2+2,解得x=±(负值不合题意,舍去),∴点C坐标为(,﹣);(3)∵y=x2﹣2x(x≤2)的对称轴为直线x=1,顶点为(1,﹣1),函数y=﹣x2+2(x>0)的顶点为(0,2),∴当y=3时,3=x2﹣2x,解得x=﹣1或3(舍去),当y=﹣1时,﹣1=﹣x2+2,解得x=或﹣(舍去),∵当﹣1≤x≤n时,﹣1≤y≤3,结合图象得1≤n≤.。
华东师大版九年级数学下册第26章 二次函数 单元测试题(时间:100分钟 满分:100分)一、选择题(每小题4分,共32分)1.二次函数y =(x -2)2+7的顶点坐标是(B)A.(-2,7)B.(2,7)C.(-2,-7)D.(2,-7)2.下列各点不在抛物线y =-x 2+4x -1上的是(B)A.(-2,-13)B.(-1,-4)C.(-1,-6)D.(2,3)3.二次函数y =x 2+bx +c 的图象上有两点(3,4)和(-5,4),则此拋物线的对称轴是直线(A)A.x =-1B.x =1C.x =2D.x =34.顶点为(-5,0),且开口方向、形状与函数y =-13x 2的图象相同的抛物线是(C) A.y =13(x -5)2 B.y =-13x 2-5 C.y =-13(x +5)2 D.y =13(x +5)2 5.已知二次函数y =a(x -1)2+2,当x <1时,y 随x 的增大而增大,则a 的取值范围是(B)A.a >0B.a <0C.a≥0D.a≤06.对于函数y =-2(x -m)2-1的图象,下列说法中不正确的是(D)A.开口方向向下B.对称轴是直线x =mC.最大值是-1D.与y 轴不相交7.若二次函数y =x 2+2x +kb +1的图象与x 轴有两个交点,则一次函数y =kx +b 的大致图象可能是(A)8.如图,一段抛物线:y =-x(x -2)(0≤x≤2)记为C 1,它与x 轴交于两点O ,A 1.将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…,如此进行下去,得到C n .若点P(2 019,m)在抛物线C n 上,则m 为(A)A.-1B.1C.2D.3二、填空题(每小题5分,共25分)9.二次函数y =x 2-4x +2的最小值为-2.10.请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的函数表达式:y =x 2+1(答案不唯一).11.已知抛物线y =ax 2+bx +c(a >0)过A(-2,0),O(0,0),B(-3,y 1),C(3,y 2)四点,则y 1与y 2的大小关系是y 1<y 2.12.如图,隧道的截面由抛物线和长方形构成.长方形的长为12 m ,宽为5 m ,抛物线的最高点C 离路面AA 1的距离为8 m ,过AA 1的中点O 建立如图所示的平面直角坐标系,则该抛物线的函数表达式为y =-112x 2+8.13.在平面直角坐标系xOy 中,若抛物线y =ax 2上的两点A ,B 满足OA =OB ,且tan∠OAB=12,则称线段AB 为该抛物线的通径.那么抛物线y =12x 2的通径长为2.三、解答题(共43分)14.(9分)已知抛物线y =-2x 2-4x +1.(1)求这个抛物线的对称轴和顶点坐标;(2)将这个抛物线平移,使顶点移到点P(2,0)的位置,写出所得新抛物线的表达式和平移的过程.解:(1)y =-2x 2-4x +1=-2(x 2+2x +1)+2+1=-2(x +1)2+3,∴对称轴是直线x =-1,顶点坐标为(-1,3).(2)∵新顶点坐标为P(2,0),∴新抛物线的表达式为y=-2(x-2)2.∴平移过程为向右平移3个单位长度,向下平移3个单位长度.15.(10分)已知抛物线y=mx2-2mx-3.(1)若抛物线的顶点的纵坐标是-2,求此时m的值;(2)已知当m≠0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,求出这两个定点的坐标. 解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,抛物线的顶点的纵坐标是-2,∴-m-3=-2,解得m=-1,即m的值是-1.(2)∵当m≠0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,当m=1时,y=x2-2x-3;当m=2时,y=2x2-4x-3,∴x2-2x-3=2x2-4x-3.∴x2-2x=0.∴x1=0,x2=2.∴这两个定点为(0,-3)与(2,-3).16.(12分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m.(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384 m2,求x的值;(3)求菜园的最大面积.解:(1)根据题意知,y =10 000-200x 2×150=-23x +1003. (2)根据题意,得(-23x +1003)x =384, 解得x =18或x =32.∵墙的长度为24 m ,∴x=18.(3)设菜园的面积是S ,则S =(-23x +1003)x =-23x 2+1003x =-23(x -25)2+1 2503. ∵-23<0,∴当x <25时,S 随x 的增大而增大. ∵x≤24,∴当x =24时,S 取得最大值,最大值为416.答:菜园的最大面积为416 m 2.17.(12分)如图,抛物线y =ax 2+bx -3a 经过A(-1,0),C(0,-3)两点,与x 轴交于另一点B.(1)求此抛物线的表达式;(2)已知点D(m ,-m -1)在第四象限的抛物线上,求点D 关于直线BC 对称的点D′的坐标;(3)在(2)的条件下,连结BD.问在x 轴上是否存在点P ,使∠PCB=∠CBD?若存在,请求出P 点的坐标;若不存在,请说明理由.解:(1)将A(-1,0),C(0,-3)代入抛物线y =ax 2+bx -3a 中,得⎩⎪⎨⎪⎧a -b -3a =0,-3a =-3.解得⎩⎪⎨⎪⎧a =1,b =-2. ∴y=x 2-2x -3.(2)将点D(m ,-m -1)代入y =x 2-2x -3中,得 m 2-2m -3=-m -1.解得m =2或-1.∵点D(m ,-m -1)在第四象限,∴D(2,-3).∵B(3,0),C(0,-3),∴∠BCD=∠BCO=45°,CD′=CD =2,OD′=3-2=1. ∴点D 关于直线BC 对称的点D′的坐标为(0,-1).(3)存在.满足条件的点P 有两个.①过点C 作CP∥BD,交x 轴于点P ,则∠PCB=∠CBD. ∵直线BD 的表达式为y =3x -9,直线CP 过点C , ∴直线CP 的表达式为y =3x -3.∴点P 的坐标为(1,0);②连结BD′,过点C 作CP′∥BD′,交x 轴于点P′, 则∠P′CB=∠D′BC.根据对称性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD.∵直线BD′的表达式为y =13x -1,直线CP′过点C ,∴直线CP′的表达式为y =13x -3. ∴点P′的坐标为(9,0).综上所述,满足条件的点P 的坐标为(1,0)或(9,0).。
九年级下册数学单元测试卷-第26章二次函数-华师大版(含答案)一、单选题(共15题,共计45分)1、已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>0B.c<0C.b 2-4ac<0D.a+b+c>02、如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个3、二次函数y=x2的图像向右平移2个单位,得到新的函数图像的表达式是()A.y=x 2﹣2B.y=(x﹣2)2C.y=x 2+2D.y=(x+2)24、如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为()A.2B.4C.8D.165、若将抛物线y= 先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是()A. B. C. D.6、宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为元时,宾馆当天的利润为10890元.则有()A. B.C. D.7、已知二次函数y=mx2-3x++2m-m2的图象过原点,则m的值为 ( )A.0或2B.0C.2D.18、已知抛物线(a,b,c为常数,)经过点,其对称轴在y轴右侧.有下列结论:①;②方程的一个根为1,另一个根为;③.其中,正确结论的个数为()A.0B.1C.2D.39、下列二次函数中,其顶点坐标是(3,-2)的是()A. B. C. D.10、已知二次函数的图象如图所示,现有下列结论:①;②;③;④.则其中结论正确的是()A.①③B.③④C.②③D.①④11、二次函数y=-x2+bx+c的图象如图所示,下列几个结论:①对称轴为直线x=2;②当y≤0时,x < 0或x > 4;③函数解析式为y=-x2+4x;④当x≤0时,y随x的增大而增大.其中正确的结论有( )A.①②③④B.①②③C.②③④D.①③④12、下列关于抛物线y=-x2+2的说法正确的是()A.抛物线开口向上B.顶点坐标为(-1,2)C.在对称轴的右侧,y 随x的增大而增大D.在对称轴的左侧,y随x的增大而增大13、已知函数是二次函数,则m的值为()A.-2B.±2C.D.14、已知二次函数,当时,该函数取最大值8.设该函数图象与x 轴的一个交点的横坐标为,若,则a的取值范围是()A. B. C. D.15、如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论,其中不正确的结论是()A.abc=0B.a+b+c>0C.3a=bD.4ac﹣b 2<0二、填空题(共10题,共计30分)16、写出一个图象的顶点在原点,开口向下的二次函数的表达式________.17、若抛物线y=﹣﹣kx+k+ 与x轴只有一个交点,则k的值________.18、请写出一个开口向上,且其图象经过原点的抛物线的解析式为________.19、把抛物线y=x2﹣2x向下平移2个单位长度,再向右平移1个单位长度,则平移后的抛物线相应的函数表达式为________.20、设抛物线l:的顶点为D,与y轴的交点是C,我们称以C为顶点,且过点D的抛物线为抛物线l的“伴随抛物线”,请写出抛物线的伴随抛物线的解析式________.21、若函数y=x2﹣6x+m的图象与x轴只有一个公共点,则m=________.22、在平面直角坐标系中,抛物线y=x2+bx+5的对称轴为直线x=1.若关于x的一元二次方程(t为实数)在-1<x<4的范围内有实数根,则t的取值范围为________.23、抛物线y=x2+8x﹣4与直线x=﹣4的交点坐标是________.24、如图,在平面直角坐标系中,点C是y轴正半轴上的一个动点,抛物线y=ax2-6ax+5a(a是常数,且a>0)过点C,与x轴交于点A、B,点A在点B的左边.连接AC,以AC为边作等边三角形ACD,点D与点O在直线AC两侧,连接BD,则BD的最小值是________.25、二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①abc<0 ;② 4a +c<2b ;③m(am+b)+b>a(m≠-1);④方程ax2+bx+c-3=0的两根为x1, x2(x1<x2),则x2<1,x1>-3 ,其中正确结论的是________.三、解答题(共5题,共计25分)26、已知抛物线y=ax2+bx-3(a≠0)经过点(-1,0),(3,0),求a,b的值27、小李按市场价格30元/kg收购了一批海鲜1000kg存放在冷库里,据预测,海鲜的市场价格将每天每kg上涨1元.冷冻存放这批海鲜每天需要支出各种费用合计310元,而且这些海鲜在冷库中最多存放160天,同时平均每天有3kg的海鲜变质.(1)设x天后每kg该海鲜的市场价格为y元,试写出y与x之间的函数关系式;(2)若存放x天后,将这批海鲜一次性出售.设这批海鲜的销售总额为P元,试写出P与x之间的函数关系式;(3)小李将这批海鲜存放多少天后出售可获得最大利润,最大利润是多少元?(利润W=销售总额﹣收购成本﹣各种费用)28、以直线x=1为对称轴的抛物线y=-x2+bx+c与x轴交于A、B两点,其中点A的坐标为(3,0).(1)求点B的坐标;(2)设点M(x1, y1)、N(x2, y2)在抛物线线上,且x1<x2<1,试比较y1、y2的大小.29、如图,平面直角坐标系中,抛物线y=x2﹣2x与x轴交于O、B两点,顶点为P,连接OP、BP,直线y=x﹣4与y轴交于点C,与x轴交于点D.(Ⅰ)直接写出点B坐标;判断△OBP的形状;(Ⅱ)将抛物线沿对称轴平移m个单位长度,平移的过程中交y轴于点A,分别连接CP、DP;(i)若抛物线向下平移m个单位长度,当S△PCD= S△POC时,求平移后的抛物线的顶点坐标;(ii)在平移过程中,试探究S△PCD和S△POD之间的数量关系,直接写出它们之间的数量关系及对应的m的取值范围.30、如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B,C重合),过点P作PQ⊥EP,交CD于点Q,求在点P运动的过程中,BP多长时,CQ有最大值,并求出最大值.参考答案一、单选题(共15题,共计45分)1、D2、B3、B4、B5、B6、C7、C8、C9、C10、B11、D12、D14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、28、29、30、。
华师大版九年级数学下册第26章二次函数单元检测试卷一、单选题(共10题;共30分)1.将二次函数y=x2−4x−1化为y= x−ℎ2+k的形式,结果为( )A. y=x+22+5B. y=x+22−5C. y=x−22+5D. y=x−22−52.把抛物线y=x2向右平移1个单位,再向上平移3个单位,得到抛物线的解析式为()A. y=(x−1)2+3B. y=(x+1)2−3C. y=(x−1)2−3D. y=(x+1)2+33.函数y=(x+1)2-2的最小值是()A. 1B. -1C. 2D. -24.如图,抛物线y=ax2+bx+c(a>0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是()A. -1<P<0B. -2<P<0C. -4<P<-2D. -4<P<05.抛物线y=-(x+2)2-3的顶点坐标是()A. (-2,3)B. (2,3)C. (-2,-3)D. (2,-3)6.把抛物线y=ax2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b+c的值为()A. 9B. 12C. -14D. 107.在下列函数关系式中,y是x的二次函数的是()A. x y=6B. xy=−6C. y+x2=6D. y=−6x8.下列关系中,是二次函数关系的是()A. 当距离S一定时,汽车行驶的时间t与速度v之间的关系。
B. 在弹性限度时,弹簧的长度y与所挂物体的质量x之间的关系。
C. 圆的面积S与圆的半径r之间的关系。
D. 正方形的周长C与边长a之间的关系。
9.抛物线y=ax2+bx+c的图角如图,则下列结论:①abc>0;②a+b+c=2;③a>1;④b<1.2其中正确的结论是()A. ①②B. ②③C. ②④D. ③④10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共30分)11.二次函数y=x2+4x+5中,当x=________时,y有最小值.12.若将二次函数y=x2-2x+3配方为y=(x-h)2 +k的形式,则y=________.13.已知抛物线y=2x2−bx+3的对称轴是直线x=1,则b的值为________.14.将函数y=−x2所在的坐标系先向左平移2个单位再向下平移3个单位,则函数在新坐标系中的函数关系式是________.15.把抛物线y=x2向右平移3个单位,再向下平移1个单位,则得到抛物线________.16.如图.已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(﹣2,4),B(8,2),根据图象能使y1>y2成立的x取值范围是________.x2+ 17.张力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离x(m)的关系式为h=﹣14846x+2,则大力同学投掷标枪的成绩是________m.4818.已知点A(−3,m)和点B(1,m)是抛物线y=2x2+bx+3图象上的两点,则b=________.19.二次函数y=ax+bx+c的图像如图所示,则不等式ax+bx+c>0的解集是________ .20.二次函数y=ax2+bx+c(a≠0)的部分图像如图所示,图像过点(−1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)若点A(−3,y1)、点B(−12,y2)、点C(72,y3)在该函数图像上,则y1<y3<y2;(4)若方程a(x+1)(x−5)=−3的两根为x1和x2,且x1<x2,则x1<−1<5<x2.其中正确结论的序号是________.三、解答题(共8题;共60分)21.如图,在平面直角坐标系中,点A,B,C的坐标分别为(0,2),(3,2),(2,3).(1)请在图中画出△ABC向下平移3个单位的像△A′B′C′;(2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式.22.如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.23.已知抛物线y=x2+(m+4)x-2(m+6)(m是常数,m≠-8)与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C.(1)此抛物线的解析式;(2)求点A、B、C的坐标.24.向上抛掷一个小球,小球在运行过程中,离地面的距离为y(m),运行时间为x(s),y与x之间存在的关x2+3x+2.问:小球能达到的最大高度是多少?系为y=-1225.(1)已知y=(m2+m)x m2−2m−1+(m﹣3)x+m2是x的二次函数,求出它的解析式.(2)用配方法求二次函数y=﹣x2+5x﹣7的顶点坐标并求出函数的最大值或最小值.26.永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?27.如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB 于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?x2+bx+c经过A、28.如图,直线y=x−4与x轴、y轴分别交于A、B两点,抛物线y=13B两点,与x轴的另一个交点为C,连接BC.(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45∘时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由.答案解析部分一、单选题1.【答案】D【考点】二次函数的三种形式【解析】【分析】y=x2−4x−1=x−22−5.故选D.2.【答案】D【考点】二次函数图象的几何变换【解析】【解答】抛物线y=x2先向右平移1个单位所得抛物线的解析式为y=(x−1)2,抛物线y=(x−1)2再向上平移3个单位所得抛物线的解析式为y=(x−1)2+3,故答案为:D.【分析】根据函数图象平移的法则即可得到结果.3.【答案】D【考点】二次函数的最值【解析】【分析】此函数的最小值,在x=-1时,y=-2,此时取最小值。
《二次函数》同步检测一、选择题(每题3分,共39分)1.二次函数y=x 2+2x -7的函数值是8,那么对应的x 的值是( D )A .3B .5C .-3和5D .3和-52、(2010三亚市月考).抛物线y=12x 2向左平移8个单位,再向下平移9个单位后,所得抛物线的表达式是( A )A. y=12(x+8)2-9 B. y=12(x-8)2+9 C. y=12(x-8)2-9 D. y=12(x+8)2+9 3、(2010年厦门湖里模拟)抛物线y =322+-x x 与坐标轴交点为 ( B )A .二个交点B .一个交点C .无交点D .三个交点 4、若二次函数y=x 2-x 与y=-x 2+k 的图象的顶点重合,则下列结论不正确的是( D )A .这两个函数图象有相同的对称轴B .这两个函数图象的开口方向相反C .方程-x 2+k=0没有实数根D .二次函数y=-x 2+k 的最大值为12 5、(2010年厦门湖里模拟)如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则 的值为 ( A )A. 0B. -1C. 1D. 26、(2010年杭州月考)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论:①0<abc ②当1x =时,函数有最大值。
③当13x x =-=或时,函数y 的值都等于0. ④024<++c b a 其中正确结论的个数是( C )A.1B.2C.3D.47、已知二次函数,2c bx ax y ++=且0,0>+-<c b a a ,则一定有( A )A .042>-ac bB .042=-ac bC .042<-ac bD .042≤-ac b 8、小敏在某次投篮中,球的运动路线是抛物线的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是( B ).A .3.5mB .4mC .4.5mD .4.6m9、(2010年西湖区月考)关于二次函数y =ax 2+bx+c 的图象有下列命题:①当c=0时,函数的图象经过原点;②当c >0时且函数的图象开口向下时,ax 2+bx+c=0必有两个不等实根;③函数图象最高点的纵坐标是ab ac 442-;④当b=0时,函数的图象关于y 轴对称.其中正确的个数是( C )A.1个 B 、2个 C 、3个 D. 4个10、(2009烟台市)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )11、(2009年鄂州)已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c ,2a+b ,2a -b 中,其值大于0的个数为( ) A .2 B 3 C 、4 D 、512、(2009年兰州)在同一直角坐标系中,函数y mx m =+和函数xxxx222y mx x =-++(m 是常数,且0m ≠)的图象可能..是13、(2009年黄石市)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( ) A .①② B . ①③④ C .①②③⑤ D .①②③④⑤二、填空题(每题3分,共30分)1、(2010三亚市月考)Y=-2(x-1)2 +5 的图象开口向 下 ,顶点坐标为 (1,5) ,当x >1时,y 值随着x 值的增大而 减小 。
第26章《二次函数》检测题(全卷共五个大题,满分150分,考试时间120分钟)抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2a b ac a b --一、 选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷中相应的位置上.1.由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3-=xC .其最小值为1D .当3<x 时,y 随x 的增大而增大2、k 为任何实数,则抛物线y =2(x +k)2-k 的顶点在( )上A 、直线y=x 上,B 、直线y= -xC 、x 轴D 、y 轴3、0=+q p ,抛物线q px x y ++=2必过点( )A 、(-1,1)B 、(1,-1)C 、(-1,-1)D 、(1,1) 4、已知点(3,1y ),(4,2y ), (5,3y )在函数y=2x 2+8x+7的图象上,则y 1,y 2,y 3的大小关系是( )A 、y 1>y 2>y 3B 、y 2> y 1> y 3C 、y 2>y 3> y 1D 、y 3> y 2> y 15.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--6、抛物线234y x x =--+与坐标轴的交点个数是( )A . 0B .1C . 2D . 37、若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是( )A .ab x -= B .x =1 C .x =2 D .x =3 8.二次函数c bx ax y ++=2的图象如右上图所示,则abc ,ac b 42-,b a +2,cb a ++这四个式子中,值为正数的有( )A . 4个B .3个C .2个D .1个 9、如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c <0的解集是( )A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>5 10.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.3个B.2个C.1个D.0个卷相应位置的横线上.11:抛物线422-+=xxy的对称轴是________,顶点坐标是_________;12.已知二次函数2(0)y ax bx c a=++≠的顶点坐标(1, 3.2)--及部分图象(如图1所示),由图象可知关于x的一元二次方程20ax bx c++=的两个根分别是11.3x=和2x=。
华东师大版数学九年级下册第26章二次函数单元测试题一、选择题1.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )A.y=(x+1)2+4 B.y=(x+1)2+2C.y=(x-1)2+4 D.y=(x-1)2+22.把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后的抛物线所对应的函数表达式为( )A.y=-(x+1)2+3 B.y=-(x+1)2-3C.y=-(x-1)2+3 D.y=-(x-1)2-33. 二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …-5 -4 -3 -2 -1 0 …y … 4 0 -2 -2 0 4 …下列说法正确的是()A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是x=-5 24.若抛物线y=2x2+3上有三点A(1,y1),B(5,y2),C(-2,y3),则y1,y2,y3的大小关系为( )A.y2<y1<y3 B.y2<y3<y1 C.y1<y3<y2 D.y3<y2<y15.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是( )A.-1<x<5 B.x<-1且x>5 C.x<-1或x>5 D.x>56.将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价( )A.5元 B.10元 C.15元 D.20元7.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为( )A.-3 B.3 C.-9 D.08.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=-1,下列结论:①abc<0;②2a+b=0;③a-b+c>0;④4a-2b+c<0.其中正确的是( )A.①② B.只有① C.③④ D.①④9. 如图,坐标平面上,二次函数y=-x2+4x-k的图形与x轴交于A,B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1∶4,则k值为何?()A.1 B. 12 C.43 D.4510.如图,正方形ABCD的边长为3 cm,动点P从B点出发以3 cm/s的速度沿着边BC-CD-DA运动,到达A点停止运动;另一动点Q同时从B点出发以1 cm/s的速度沿着边BA向A点运动,到达A点停止运动,设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )二、填空题11.已知函数y=(m-1)xm2+1+4x-3是二次函数,则该二次函数图象的顶点是______________.12.用一根长为12 cm的细铁丝围成一个矩形,则围成的矩形中,面积最大为_________.13.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是___________.14.某学习小组为了探究函数y=x2-|x|的图象和性质,根据以往学习函数的经验,列x…-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 …y… 2 0.75 0 -0.25 0 -0.25 0 m 2 …15.如图,二次函数y=23x2-13x的图象经过△AOB的三个顶点,其中A(-1,m),B(n,n),直线AB与y轴交于点C,则△AOB的面积是____.16.如图,隧道的截面是抛物线,且抛物线的表达式为y=-18x2+3.5,一辆车高 2.5m,宽4 m,该车____通过该隧道.(填“能”或“不能”)17.某校的围墙上端由一段相同的凹曲拱形栅栏组成,如图.其拱形图形为抛物线的一部分,栅栏AB之间,按相同的间距0.2 m用5根立柱加固,拱高OC为0.6 m,则一段栅栏所需立柱的总长度是______.(精确到0.1 m)18. 抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(-1,0)和(m,0),且1<m<2,当x<-1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(-3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m-1)+b=0;⑤若c≤-1,则b2-4ac≤4a.其中结论错误的是________.(只填写序号)三、解答题19.已知抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)求△ABC的面积.20.抛物线y=x2-2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2-2x+c沿y轴向下平移后,所得新抛物线与x轴交于A,B两点,如果AB=2,求新抛物线的表达式.21.如图,A(-1,0),B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx-3的图象上.(1)求m的值和二次函数的表达式;(2)求二次函数图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(3)请直接写出当y1>y2时,自变量x的取值范围.22. 某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利960元,则每千克应降价多少元?23.已知锐角△ABC中,边BC长为12,高AD长为8.如图,矩形EFGH的边GH在BC 边上,其余两个顶点E,F分别在AB,AC边上,EF交AD于点K.(1)求EFAK的值;(2)设EH=x,矩形EFGH的面积为S.求S与x的函数表达式,并求S的最大值.24.有一座抛物线形拱桥,正常水位时桥下面的宽度为20 m,拱顶距离水面4 m.(1)在如图的直角坐标系中,求出该抛物线所对应的二次函数表达式;(2)在正常水位的基础上,当水位上升h(m)时桥下水面的宽度为d(m),试求d与h之间的函数关系式;(3)设正常水位时桥下的水深为 2 m,为保证过往船只顺利航行,桥下水面宽度不得小于18 m.问:水深超过多少时,就会影响过往船只在桥下顺利航行?25. 已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的表达式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.答案:一、1---10 DADCC ABDDC二、11. (1,-1)12. 9cm213. k≤414. 0.7515. 216. 能17. 2.3m18. ③⑤点拨:易得①的结论正确;∵抛物线过点(-1,0)和(m,0),且1<m<2,∴0<-b2a<1 2,∴12+b2a=a+b2a>0,∴a+b>0,所以②的结论正确;∵点A(-3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(-1,0),(m,0),∴a-b+c=0,am2+bm+c=0,∴am2-a+bm+b=0,a(m+1)(m-1)+b(m+1)=0,∴a(m-1)+b=0,所以④的结论正确;∵4ac-b24a<c,而c≤-1,∴4ac-b24a<-1,∴b2-4ac>4a,所以⑤的结论错误三、19. 解:(1)y=x2-5x+6 (2)∵抛物线的表达式y=x2-5x+6,∴A(2,0),B(3,0),C(0,6),∴S△ABC =12×1×6=320. 解:(1)把(2,1)代入y=x2-2x+c得4-4+c=1,解得c=1,所以抛物线表达式为y=x2-2x+1,顶点坐标为(1,0) (2)y=x2-2x+1=(x-1)2,抛物线的对称轴为直线x=1,而新抛物线与x轴交于A,B两点,AB=2,所以A(0,0),B(2,0),所以新抛物线的表达式为y=x(x-2),即y=x2-2x21. 解:(1)m=-1,y2=x2-2x-3 (2)C(1,-4),当x≤1时,y随x 的增大而减小;当x>1时,y随x的增大而增大(3)-1<x<222. 解:(1)根据题意得y=(200+20x)(6-x)=-20x2-80x+1200 (2)令y=-20x2-80x+1200中y=960,则有960=-20x2-80x+1200,即x2+4x-12=0,解得x=-6(舍去)或x=2.答:若要平均每天盈利960元,则每千克应降价2元23. 解:(1)EFAK=BCAD=32(2)由(1)知EF8-x=32,∴EF=12-32x,∴S=EH·EF=12x-32x2=-32(x-4)2+24,当x=4时,Smax=2424. 解:(1)设抛物线所对应的表达式为y=ax2,把(-10,-4)代入得y=-125x2(2)由(1)得y=-125x2,将(d2,-4+h)代入得-4+h=-125(d2)2,求得d=104-h (3)当x=9时,y=-125×92=-8125,∴4+2-8125=6925,即当水深超过6925m时,就会影响船只在桥下顺利航行25. 解:(1)∵m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,∴m=-1,n =-3,∵抛物线y =x 2+bx +c 的图象经过点A(m ,0),B(0,n).∴⎩⎨⎧1-b +c =0,c =-3,∴⎩⎨⎧b =-2,c =-3,∴抛物线表达式为y =x 2-2x -3 (2)令y =0,则x 2-2x -3=0,∴x 1=-1,x 2=3,∴C(3,0),∵y =x 2-2x -3=(x -1)2-4,∴顶点坐标D(1,-4),过点D 作DE ⊥y 轴,∵OB =OC =3,∴BE =DE =1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC =∠DBE =45°,∴∠CBD =90°,∴△BCD 是直角三角形(3)如图,∵B(0,-3),C(3,0),∴直线BC 表达式为y =x -3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P(t ,t -3),M(t ,t 2-2t -3),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ =2,QF =1,当点P 在点M 上方时,即0<t <3时,PM =t -3-(t 2-2t -3)=-t 2+3t ,∴S =12PM ·QF =12(-t 2+3t)=-12t 2+32t ;当点P 在点M 下方时,即t <0或t >3时,PM =t 2-2t -3-(t -3),∴S =12PM ·QF =12(t 2-3t)=12t 2-32t。
二次函数班级:_____ 姓名:_________ (时间是:120分钟 满分是120分) 得分: 一、精心选一选,相信自己的判断!〔本大题一一共12个小题,每一小题3分〕1. 以下各式中,是二次函数的有〔 〕①2235y x xz =-+②2325y x x =-+③2123y x x =+-④()()223326y x x x =---⑤2y ax bx c =++⑥()22134y m x x =++-⑦2243y m x x =+- A. 1个B.2个C.3个 D. 4个2. 如图,函数2y ax =和y ax b =-+在同一坐标系中的图象可能为〔 〕3. 以下抛物线中,开口向上且开口最小的抛物线为〔 〕 第7题图A.21y x =+ B.23234y x x =-+ C.22y x = D.2347y x x =--+4. 二次函数277y kx x =--的图象与x 轴没有交点,那么k 的取值范围为〔 〕A.74k >-B. 704k k ≥-≠且C.74k <-D.74k k >-≠且5. 二次函数图象22y x =向上平移1个单位,再向右平移3个单位,所得抛物线的关系式为〔 〕A.()2231y x =++ B.()2231y x =-+ C.()2231y x =+- D. ()22+31y x =-6. 二次函数()2215y x =--的图象的开口方向,对称轴和顶点坐标为〔 〕A. 开口向上,对称轴为直线1x =-,顶点()15--,B. 开口向上,对称轴为直线1x =,顶点()15,C. 开口向下,对称轴为直线1x =,顶点()15-,D. 开口向上,对称轴为直线1x =,顶点()15-,7. 如图是二次函数2y ax bx c =++的图象,点(),P a b ac +是坐标平面内的点,那么点P 在〔 〕A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 二次函数2y x bx c =-++图象的最高点是()1,3--,那么,b c 的值是〔 〕 A.2,4b c == B. 2,4b c ==- C. 2,4b c =-= D. 2,4b c =-=-9. 假如二次函数2y ax bx c =++中,::2:3:4a b c =,且这个函数的最小值为234,那么这个二次函数为〔 〕A. 2234y x x =++ B.2468y x x =++ C. 2432y x x =++ D.2864y x x =++10. 抛物线的顶点坐标为P 〔1,3〕,且开口向下,那么函数y 随自变量x 的增大而减小的x 的取值范围为〔 〕A. X>3B. X<3C. X>1D.X<111、二次函数215y x x =-+-,当自变量x 取m 时,对应的函数值大于0,当自变量x 分别取m-1,m+1时对应的函数值1y 、2y ,那么必使1y ,2y 满足 ( ) A.1y >0,2y >0 B.1y <0,2y <0 C.1y <0,2y >0 D.1y >0,2y <012、如图,二次函数2y ax bx c =++的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫ ⎪⎝⎭,以下结论:①0ac <;②0a b +=;③244ac b a -=;④0a b c ++<.其中正确的个数是〔 〕A.1B.2C. 3D. 4二、细心填一填,试试自己的身手!〔本大题一一共6个小题,每一小题3分,满分是18分〕 13、将抛物线24yx =+的图象向上平移1个单位,那么平移后的抛物线的解析式为 .14、将二次函数245y x x =-+化为2()y x h k =-+的形式,那么y = .15、抛物线223y x x =--的顶点坐标是 . 16、抛物线21y x x =--与x 轴的一个交点为(0)m ,,那么代数式22008m m -+的值是 .17.抛物线y =-x +bx +c 的局部图象如以下图所示,假设y >0,那么x 的取值范围是 .18、抛物线2y ax bx c=++上局部点的横坐标x ,纵坐标y的对应值如下表:x …-2 -1 0 1 2 …y …0 4 6 6 4 …从上表可知,以下说法中正确的选项是.〔填写上序号〕①抛物线与x轴的一个交点为〔3,0〕;②函数2y ax bx c=++的最大值为6;③抛物线的对称轴是12x=;④在对称轴左侧,y随x增大而增大.三、用心做一做,显显自己的才能!〔本大题一一共6小题,满分是66分,解容许写出文字说明,证明过程或者演算步骤。
华师大版九年级下册数学第26章二次函数含答案一、单选题(共15题,共计45分)1、已知二次函数y=3(x﹣1)2+k的图象上有三点A(,y1),B(2,y 2),C(﹣,y3),则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y12、已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b2﹣4ac=0;③a>2;④ax2+bx+c=﹣2的根为x1=x2=﹣1;⑤若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1>y2.其中正确的个数是()A.2B.3C.4D.53、已知二次函数y=ax2+bx+c(a≠0)的图像如图,则下列结论正确的是()A.abc<0B.b 2-4ac<0C.a-b+c<0D.2a+b=04、二次函数y=x2+1的图象大致是( )A. B. C.D.5、将抛物线y=x2﹣2向左平移1个单位后再向上平移1个单位所得抛物线的表达式为()A.y=(x﹣1)2﹣1B.y=(x+1)2﹣1C.y=(x+1)2+1 D.y=(x﹣1)2+16、二次函数有()A.最大值B.最小值C.最大值D.最小值7、抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc<0;②a+b+c>0;③5a-c=0;④当x<或x>6时,y1>y2,其中正确的个数有()A.1B.2C.3D.48、已知二次函数的与的部分对应值如表:-1 0 2 3 45 0 -4 -3 0下列结论:抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④抛物线与轴的两个交点间的距离是;⑤若是抛物线上两点,则,其中正确的个数是()A.2B.3C.4D.59、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a>0,b>0;②c<0,△<0;③c-4b>0;④4a-2b+c=16a+4b+c.其中正确结论的个数是()A.1B.2C.3D.410、设a、b为常数,且b>0,抛物线y=ax2+bx+a2﹣5a﹣6为下列图形之一,则a的值为()A.6或﹣1B.﹣6或 1C.6D.﹣111、二次函数y=ax2+bx+c的图象如图所示,则下列结论:①b2﹣4ac<0;②a﹣b+c>0;③abc>0;④b=2a中,正确的结论的个数是()A.1个B.2个C.3个D.4个12、抛物线y=2x2+4x﹣3的顶点坐标是()A.(1,﹣5)B.(﹣1,﹣5)C. (﹣1,﹣4)D.(﹣2,﹣7)13、将函数的图象向右平移2个单位.再向下平移4个单位.所得图象的对称轴是()A. B. C. D.14、抛物线y=(x-2)2-1的顶点坐标是()A.(-2,1)B.(-2,-1)C.(2,1)D.(2,-1)15、如图,半圆O的直径AB=4,与半圆O内切的小圆O,与AB切于点M,设1的半径为y,AM=x,则y关于x的函数关系式是()⊙O1A. y=x2+xB. y=-x2+xC. y=-x2-xD. y=x 2-x二、填空题(共10题,共计30分)16、已知二次函数y=ax2﹣2ax+c,当﹣3<x<﹣2时,y>0;当3<x<4时,y<0.则a与c满足的关系式是________.17、二次函数的最大值是________.18、已知抛物线y=ax(x+4),经过点A(5,9)和点B(m,9),那么m=________19、已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(-1,-3.2)及部分图象=1.3和(如图),由图象可知关于x的方程ax2+bx+c的两个根分别是x1=________。
九年数学下第26章《二次函数》单元测试卷4及答案(时间90分钟, 满分100)一、精心选一选(每题4分,共16分)1.抛物线y=21x 2的图像向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为( )A .y=21x 2+2x -2 B. y=21x 2+2x+1C. y=21x 2-2x -1 D .y=21x 2-2x+12.已知二次函数y=ax 2+bx+c 的图像如右图所示,则一次函数y=ax+bc 的图像不经过( ) A .第一象限 B.第二象限 C.第三象限 D.第四象限3.直线y=ax+b 与抛物线y=ax 2+bx+c 中,a 、b 异号 ,b c<0, 那么它们在同一坐标系中的图像大致为( )4、略。
二、耐心填一填(每题4分,共40分) 5.函数y=(m+3)42-+m mx ,当m= 时,它的图像是抛物线.6.抛物线y=21(x -3)2-1开口向 ,顶点坐标是 ,对称轴是 .7.已知以x 为自变量的二次函数y=(m -2)x 2+m 2-m -2的图像经过原点,则m= ,当x 时y随x 增大而减小.8.函数y=2x 2-7x+3顶点坐标为 .9.抛物线y=x 2+bx+c ,经过A (-1,0)、B (3,0)两点,则这条抛物线的解析式为 ,它的对称轴为 .10.抛物线y=x 2+bx+c 的顶点为(2,3),则b= ,c= .11.如果抛物线y=ax 2+bx+c 的对称轴是x=—2,且开口方向,形状与抛物线y=—23x 2相同,且过原点,那么a= ,b= ,c= .12.直线y=-3x+2与抛物线y=x 2-x+3的交点有 个,交点坐标为13.抛物线的顶点是C(2,3),它与x 轴交于A 、B 两点,它们的横坐标是方程x 2-4x+3=0的两个根,14.抛物线y=x 2+bx+4与x 轴只有一个交点则b= ;当x 时y>0.三、细心解一解(第20题9分,其余每题7分,共44分)15.如图二次函数y=ax 2+bx+c 的图像经过A 、B 、C 三点, (1)观察图像,求出抛物线解析式; (2)求此抛物线的顶点坐标和对称轴(3)观察图像,当x 取何值时,y<0?y=0?y>0?16.函数y=ax 2+bx+c(其中a 、b 、c 为常数,a≠0),图像如图所示,x=31为该函数图像的对称轴,根据17.某市近年来经济发展速度很快,根据统计:该市国内生产总值1990年为8.6亿元人民币,1995年为10.4亿元人民币,2000年为12.9亿元人民币.经论证:上述数据适合一个二次函数关系,请你根据这个函数关系,预测2005年该市国内生产总值将达到多少?18.已知二次函数y=(m 2-2)x 2-4mx+n 的图像关于直线x=2对称,且它的最高点在直线y=21x+1上. (1)求此二次函数的解析式;(2)若此抛物线的开口方向不变,顶点在直线y=21x+1上移动到点M 时,图像与x 轴交于A 、B 两点,且S △ABM =8,求此时的二次函数的解析式.19.如图(1)是棱长为a 的小正方体,图(2),图(3)由这样的小正方体摆放而成,按照这样的方法继续摆放,自上而下,分别叫做第一层、第二层、第三层、… 、第n 层,第n 层的小正方体的个数记为s ,解答下列问题:(1)按照要求填表:(2)写出当n=10时,S= ;(3)根据上表中的数据,把S 作为纵坐标,n 作为横坐标,在平面直角坐标系中,描出相应的各点; (4)请你猜一猜上述各点会在某一个函数图像上吗?如果在某一函数的图像上,求出该函数的解析式.20.在平面直角坐标系中,给定以下五点A(-2,0),B(1,0),C(4,0),D(-2,29),E(0,6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y 轴的直线为对称轴.我们约定:把经过三点A 、E 、B 的抛物线表示为抛物线AEB (如图所示)(1)问符合条件的抛物线还有哪几条?不求解析式请用约定的方法表示出来;(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求抛物线及直线的解析式:如果不存在,请说明理由.参考答案1.B. 2.B. 3.C. 4.A.5.2. 6.上,(3,-1),直线x=3. 7.-1,>0. 8. (47,825). 9.y=x 2-2x -3,对称轴x=1. 10.b=-4,c=7. 11.-23,-6,0 12.1,(-1,5). 13.2,3. 14.±4,≠±4.15.(1)y=x 2-2x -3; (2)顶点坐标(1,-4),对称轴是直线x=1;(3)当x<-1或x>4时y>0:当x=-1或x=4时y=0:当-1<x<4时y<0.16.(1)顶点在第四象限; (2)与x 轴有两个交点; (3)与y 轴交于负半轴; (4)-1<c ,0;(5)当x<31时,y 随x 的增大而减小;(6)当x>31时,y 随x 的增大而增大; (7)a>0; (8)抛物线开口向上等.17.依题意,可以把三组数据看成三个点:A (0,8.6),B (5,10.4),C (10,12.9),设解析式为y=ax 2+bx+c.把A ,B ,C 三点坐标代入一般式,可得二次函数解析式为y=0.014x 2+0.29x+8.6,令x=15,代入二次函数,得y=16.1.所以2005年该市生产总值将达到16.1亿元人民币. 18.(1)y=-x 2+4x -2 ; (2)y=-x 2+12x -32. 19.(1)(2)S=55; (3)描点(略);(4)经观察所描各点,它们在一条抛物线上.S=21n 2+21n. 20.(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC ;②抛物线CBE ;③抛物线DEB ;④抛物线DEC ;⑤抛物线DBC.(2)在(1)中存在的抛物线DBC ,它与直线AE 不相交.抛物线解析式为y=41x 2-45x+1; 直线解析式为y=-3x -6.。
九年级数学 二次函数 单元试卷(一)时间90分钟 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( ) A .(2,1) B .(-2,1) C .(2,-1) D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( ) A .x=-1 B .x=1 C .y=-1 D .y=15.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题) (第10题)3.05m yx y o二、填空题(本大题共4小题,每小题3分,共12分)11.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积为y cm 2,则y 关于x 的函数为 。
九年级数学《二次函数》单元测试题(一) 一.填空题:(每空2分共30分)1.二次函数y=-x2+6x+3的图象顶点为_______ __对称轴为_______ __.2.抛物线y=x2-3x-4与x轴的交点坐标是______ __.3.由y=2x2和y=2x2+4x-5的顶点坐标和二次项系数能够得出y=2x2+4x-5的图象可由y=2x2的图象向__________平移________个单位,再向_______平移______个单位得到.4、已知抛物线y=ax2+bx+c的图象如下,则:a+b+c_______0,a-b+c__________0.2a+b________05.一个二次函数的图象顶点坐标为(2,1),形状与抛物线y=-2x2相同,这个函数解析式为______ _ _____.6.二次函数y=2x2-x ,当x____ ___时y随x增大而增大,当x ____ _____时,y随x 增大而减小.7.抛物线y=ax2+bx+c的顶点在y轴上,则a.b.c中一定有__ _=0.8.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过象限.二.解答题:(70分)9.(12分)根据以下条件求关于x的二次函数的解析式(1)当x=3时,y最小值=-1,且图象过(0,7).(2)与x轴交点的横坐标分别是x1=-3,x2=1时,且与y轴交点为(0,-2).10.(18分)某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费每提升2元,则减少10张床位租出,为了投资少而获利大,每床每晚应收费多少元?11.(20分)二次函数y=ax2+bx+c的图象过点(1,0)(0,3),对称轴x=-1.①求函数解析式;②若图象与x轴交于A.B(A在B左)与y轴交于C,顶点D,求四边形ABCD的面积.12.(20分)如图抛物线与直线都经过坐标轴的正半轴上A(4,0),B两点,该抛物线的对称轴x=—1,与x轴交于点C,且∠ABC=90°,求:(1)直线AB的解析式;(2)抛物线的解析式。
二次函数 测试题一、选择题(每小题3分,共30分)1. 下列函数不属于二次函数的是 ( )A.y=(x -1)(x+2)B.y=21(x+1)2 C. y=1-3x 2D. y=2(x+3)2-2x 22.给出下列四个函数:x y 2-=,12-=x y ,32+-=x y (x >0),其中y 随x •的增大而减小的函数有 ( )A .3个B .2个C .1个D .0个 3. 把二次函数2114y x x =+-化为()k h x a y ++=2的形式是 ( ) A .21(1)24y x =++ B .21(2)24y x =+-C .21(2)24y x =-+D .21(2)24y x =--4. 下列说法错误的是 ( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大 B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点 5.二次函数227y x x =-+,当y=8时,对应的x 的值是 ( )A.3B.5C.-3或 5D.3和-56.二次函数24y x x =-的对称轴是 ( )A .2x =-B .4x =C .2x =D .4x =-7.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的解析式是 ( )A. 2(1)2y x =-+ B. 2(1)2y x =++ C. 21y x =+ D. 23y x =+8. 若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是( ) A .m =l B .m >l C .m ≥l D .m ≤l9.如图,两条抛物线12121+-=x y 、12122--=x y 与分别经过点(-2,0),(2,0)且平行于y 轴的两条平行线圈成的阴影部分的面积为 ( ) A .6 B.8 C.10 D.1210.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0; ④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确的个数为( )A .1 B.2 C.3 D.4二、填空题(每小题4分,共32分)11.已知抛物线 82++=kx x y 过点(2,-8),则=k . 12.抛物线21(4)52y x =-+的顶点坐标是 . 13.已知一圆的周长为x cm ,该圆的面积为y cm 2,则y 与x 函数关系式是 . 14.二次函数y =-x 2+6x -5,当x 时, 0<y ,且y 随x 的增大而减小. 15.二次函数2y ax bx c =++的部分对应值如下表:当x =2时,对应的函数值y =.16.如图是二次函数2)1(2++=x a y 图像的一部分,该图在y 轴右侧与x 轴交点的坐标是17.二次函数y =2x 2+bx +2的图象如图所示,则b = .18.如图,Rt△OAB 的顶点A (-2,4)在抛物线2y ax =上,将Rt△OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为 .三、解答题(共58分)19.(8分)函数2ax y =(a ≠0)的图象与直线2--=x y 交于点A (2,m ),求a 和m 的值.20.(8分)已知函数3522+--=x x y 。
制卷人:打自企;成别使;而都那。
审核人:众闪壹;春壹阑;各厅……日期:2022年二月八日。
一、填空:(30分)1.二次函数的图象经过三个定点〔2,0〕,〔3,0〕,〔•0,-•1〕,那么它的解析式为________,该图象的顶点坐标为__________.2.当k=________时,直线x+2y+k+1=0和2x+y+2k=0的交点在抛物线y=-x2上.3.二次函数y=x2-2〔k+1〕x+k2+2的x轴交点的横坐标分别为x1,x2,且〔x1+1〕〔x2+1〕=8,那么k的值是__________.4.假如y与x2成正比例,并且它的图象上一点P的横坐标a和纵坐标b分别是方程x2-x-6=0的两根,那么这个函数的解析式为_________.5.抛物线y=x2-4x+11的对称轴是直线________,顶点坐标为________.6.假如抛物线y=-23x2+〔m+2〕x+27m的对称轴为直线x=32,那么m的值是_________.7.把函数y=5x2+10mx+n的图象向左平移2个单位,向上平移3个单位,•所得图象的函数解析式为y=5x2+30x+44,那么m=_______,n=_______.8.二次函数y=ax2+bx+c中的a、b、c满足条件________时,•它的图象经过坐标系中的四个象限.9.开口向下的抛物线y=a〔x+1〕〔x-4〕与x轴交于A、B两点,与y•轴交于点C.•假设∠ACB=90°,那么a的值是________.10.如图,二次函数y=x2-ax+a-5的图象交x轴于点A和B,交y轴于点C,当线段AB•的长度最短时,点C的坐标为________.(20分)11.在同一直角坐标系内,二次函数y1=ax2+bx+c与y2=cx2+bx+a的图象大致为〔〕12.在同一直角坐标系内,函数y=ax2+bx与y=bx〔b≠0〕的图象大致为〔〕13.给出以下四个函数:y=-2x,y=2x-1,y=3x〔x>0〕,y=-x2+3〔x>0〕,其中y随x•的增大而减小的函数有〔〕A.3个 B.2个 C.1个 D.0个14.当m取任何实数时,抛物线y=-2〔x-m〕2-m的顶点所在的直线为〔〕 A.x轴 B.y轴 C.y=x D.y=-x15.当m取任何实数时,抛物线y=-2〔x+m〕2-m2的顶点所在的曲线为〔〕A.y=x2 B.y=-x2 C.y=x2〔x>0〕 D.y=-x2〔x>0〕16.抛物线y=ax2+bx+c〔a≠0〕与抛物线y=x2-4x+3关于x轴对称,那么a、b、c•的值分别是〔〕A.-1,4,-3 B.-1,-4,-3 C.-1,4,3 D.-1,-4,317.抛物线y=ax2+bx+c〔a≠0〕与抛物线y=x2-4x+3关于y轴对称,那么函数y=ax2+bx+c 的解析式为〔〕A.y=x2+4x+3 B.y=x2-4x-3 C.y=x2+4x-3 D.y=-x2-4x+318.从一张矩形纸片ABCD的较短边AD上找一点E,过这点剪下两个半圆,它们的直径分别是AE、DE,要使剪下的两个半圆的面积和最小,点E应选在〔〕A.边AD的中点外 B.边AD的13处 C.边AD的14处 D.边AD的15处19.对某条道路的长度进展n次测量,得到n个结果x1,x2,…,x n,假如用x作为这条道路长度的近似值,当x=p时,〔x-x1〕2+〔x-x2〕2+…+〔x-x n〕2最小,那么p的值是〔〕A.1n〔x1+x2+…+x n〕 B.1n〔x1-x2-…-x n〕C.1nn+〔x1+x2+…+x n〕 D.1nn+〔x1+x2+…+x n〕20.函数y=-〔x-1〕2-〔x-3〕2-〔x-5〕2-〔x-7〕2,当x=p时,函数y获得最大值,那么p•的值是〔〕A.4 B.8 C.10 D.16三、解答题:(90分)1.如图,△OAB是边长为2的等边三角形,直线x=t•截这个三角形所得位于直线左方的图形面积为y.〔1〕写出以自变量为t的函数y的解析式;〔2〕画出〔1〕中函数y的图象.2.如图,AB是半径为R的圆的直径,C为直径AB上的一点,•过点C•剪下两个正方形ADCE和BFCG,它们的对角线分别是AC、CB.要使剪下的两个正方形的面积和最小,•点C应选在何处?3.一个二次函数的图象过点A〔-1,10〕,B〔1,4〕,C〔2,7〕,点D和B•关于抛物线的对称轴对称,问是否存在与抛物线只有一个公一共点D的直线?假如存在,求出符合条件的直线;如不存在,请说明理由.4.如图,在直角坐标系xOy中,A、B是x轴上的两点,以AB为直径的圆交y轴于C,设过A、B、C三点的抛物线的解析式为y=x2-mx+n,方程x2-mx+n=0的两根倒数和为-2.〔1〕求n的值;〔2〕求此抛物线的解析式;〔3〕设平行于x轴的直线交此抛物线于E、F两点,问是否存在此线段EF•为直径的圆恰好与x轴相切,假设存在,求出此圆的半径;假设不存在,说明理由.5.某电厂规定,该厂家属区的每户居民假如一个月的用电量不超过x度,•那么这个月这户居民只交10元用电费.假如超过x度,这个月除了要交10元用电费外,超过局部按每度元交费.〔1〕该厂某户居民1月份用电90度,超过了x度的规定,试用x的代数式表示超过局部应交的电费〔元〕;〔2〕下表是这户居民2月、3月的用电情况和交费情况,请根据表中的数据,•求出电厂规定的这个HYx度.6.如图〔1〕,平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A•点坐标为〔10,0〕,C点坐标为〔0,6〕.D是BC边上的动点〔与点B、C不重合〕,现将△COD沿OD翻折,得到△FOD;再在AB边上选取适当的点E,使△BDE沿DE翻折,得到△GDE,并使直线DG,DF重合.〔1〕如图②,假设翻折后点F落在OA边上,求直线DE的函数关系式;〔2〕设D〔a,6〕,E〔10,b〕,求b关于a的函数关系式,并求b的最小值;〔3〕一般地,请你猜测直线DE 与抛物线y=-124x 2+6的公一共点的个数,•在图②的情形中通过计算验证你的猜测;假如直线DE 与抛物线y=-124x 2+6始终有公一共点,请在图①中作出这样的公一共点.附加题: (10分)当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x 2-2mx+m 2+3m-2. ① 得y=〔x-m 〕2+3m-2 ②抛物线的顶点坐标为〔m ,3m-2〕,即32x my m =⎧⎨=-⎩当m 的值变化时,x ,y 的值也随之变化,•因此y 值也随x 值的变化而变化.将③代入④,得y=3x-2 ⑤可见不管m 取任何实数抛物线顶点的纵坐标y 和横坐标x 都满足关系式y=3x-2,即抛物线①的顶点总在直线y=3x-2上.在上述过程中,由①到②所用的数学方法是__________;由③、④到⑤所用的数学方法是________.请解答:求出抛物线y=x2-4mx+4m2-2m•的顶点的纵坐标y和横坐标x之间的关系式.答案: 一、填空:1.y=-16x2+56x-1 〔52,124〕2.13±63 3.14.y=-29x 2和y=34x 2 5.x=2 〔2,7〕 6.0 7.1 1 8.a 、c 异号,b 为任何实数 9.-10.〔0,-3〕〔设A 〔x 1,0〕,B 〔x 2,0〕. 〔x 1-x 2〕2=〔x 1+x 2〕2-4x 1x 2=a 2-4a+20=〔a-2〕2+16.当a=2时,•线段AB 的长度最短为4,此时y=x 2-2x-3,点C 的坐标为〔0,-3〕 二、选择题:11.D 12.D 13.A 14.D 15.B 16.A 17.A 18.A 19.A 20.A 三、解答题:1.〔1〕y=223(01)23(2)3(2)2t t t t ⎧≤≤⎪⎪⎨⎪--+≤≤⎪⎩〔2〕如第1题图.2.设AC 长为x ,BC 长为2R-x ,S 正方形ADCE =12x 2,S 正方形BFCG =12〔2R-x 〕2.两个正方形面积之和为y=12x 2+12〔2R-x 〕2=x 2-2Rx+2R 2=〔x-R 〕2+R 2, 当x=R 时,两个正方形面积之和有最小值R 2, 此时点C 应选在AB•的中点处,即圆心.3.过点A 、B 、C 的抛物线的解析式为y=2x 2-3x+5,其对称轴为直线x=34. 因D 和B 关于直线x=34对称,所以D 点坐标为〔12,4〕. 与抛物线只有一个公一共点D 的直线有两条:〔1〕平行于y 轴,即直线x=12. 〔2〕不平行于y 轴,设直线为y=kx+b ,因为过D 点,所以4=12k+b . 即k=8-2b ,〔8-2b 〕x+b=2x 2-3x+5.2x 2+〔2b-11〕x+5-b=0.方程有两个相等的实数根,△=〔2b-11〕2-8〔5-b 〕=0, 解得b=92,k=-1.所以y=-x+92.符合条件的直线为y=-x+92和x=12. 4.〔1〕设A 〔x 1,0〕,B 〔x 2,0〕,那么OA=-x 1,OB=x 2. 因为AB 是直径,OC⊥AB,所以CO 2=OA·OB,•即n 2=-x 1x 2. 又x 1x 2=n ,所以n 2=-n ,n=-1,n=0〔舍去〕.〔2〕11x +21x =1212x x x x +=-2,又x 1+x 2=m ,x 1x 2=-1,1m -=-2,m=2, 所求的抛物线的解析式为y=x 2-2x-1.〔3〕由〔2〕得抛物线的对称轴为x=1.设满足条件的圆的半径为│a │, 那么点F•的坐标为〔1+│a │,a 〕,点F 在抛物线上,a=〔1+│a │〕2-2〔1+│a │〕-1,即a 2-a-2=0,a 1=2,a 2=-1,所求的圆的半径为1或者2,故存在以EF 为直径的圆,恰好与x 轴相切.5.〔1〕100x 〔90-x 〕元 〔2〕表格中的数据告诉我们,这户居民2月份用电超标,3•月份用电不超标, 可见45≤x<80,列出方程10+100x 〔80-x 〕=25,即x 2-80x+150=0,解得x 1=30,x 2=50. 因45≤x<80,所以x=30,电厂规定的HY 是30度.6.〔1〕解:根据题意,可知D 〔6,6〕,E 〔10,2〕,直线DE 的函数关系式为y=-x+12. 〔2〕解:根据题意,可知∠CDO=∠ODF ,∠BDE=∠GDE .∠CDO+∠ODF+∠BDE+∠GDE=180°,•∠CDO+∠BDE=90°,∠COD+∠CDO=90°,∠COD=∠BDE .又∠COD=∠DBE=90°,△COD ≌△BDE .CE CO BE BD=. 根据题意,可知BE=6-b ,BD=10-a ,6610a b a =--,b+16a 2-53a+6=16〔a-5〕2+116. 当a=5时,b 最小值=116. 〔3〕猜测:直线DE 与抛物线y=-124x 2+6只有1个公一共点. 证明:由〔1〕可知,DE 所在直线为y=-124x+12. 代入抛物线y=-x 2+6,消去y ,得-124x 2+6=-x+12.化简,得x 2-24x+144=0,△=0. 直线DE 与抛物线y=-124x 2+6只有1个公一共点. 作法一:延长OF 交DE 于点H ,作法二:在DB 上取点M ,使DM=CD ,过M 作MH ⊥BC ,交DE 于点H .配方法; 消元法; y=-4x.制卷人:打自企;成别使;而都那。
华师大新版九年级下学期《第26章二次函数》单元测试卷一.选择题(共15小题)1.下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1C.y=2x2﹣2(x2+1)D.y=2.若y=(a2+a)是二次函数,那么()A.a=﹣1或a=3B.a≠﹣1且a≠0C.a=﹣1D.a=33.方程x2+2x+1=的正数根的个数为()A.0B.1C.2D.34.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.5.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c 的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0)(2)顶点是(1,﹣2)(3)在x轴上截得的线段的长度是2(4)c=3a正确的个数()A.4个B.3个C.2个D.1个6.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A.当m=﹣3时,函数图象的顶点坐标是()B.当m>0时,函数图象截x轴所得的线段长度大于C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x时,y随x的增大而减小7.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个8.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.9.已知点(﹣1,y1)、(﹣2,y2)、(2,y3)都在二次函数y=﹣3x2﹣6x+12的图象上,则y1、y2、y3的大小关系为()A.y1>y3>y2B.y3>y2>y1C.y3>y1>y2D.y1>y2>y310.已知二次函数y=﹣x2+x+2,当自变量x取m时对应的值大于0,当自变量x 分别取m﹣3、m+3时对应的函数值为y1、y2,则y1、y2必须满足()A.y1>0、y2>0B.y1<0、y2<0C.y1<0、y2>0D.y1>0、y2<0 11.抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位B.向左平移2个单位C.向右平移1个单位D.向右平移2个单位12.解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14A.y=x2+8x+14B.y=x2﹣8x+14C.y=x2+4x+3D.y=x2﹣4x+3 13.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或14.已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为()A.﹣2B.0C.2D.2.515.如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣B.﹣C.﹣1D.﹣2二.填空题(共15小题)16.当m=时,函数y=(m﹣4)x+3x是关于x的二次函数.17.如图,⊙O的半径为2,C1是函数y=2x2的图象,C2是函数y=﹣2x2的图象,则图中阴影部分的面积为.18.如图,抛物线y=ax2+1与y轴交于点A,过点A与x轴平行的直线交抛物线y=4x2于点B、C,则线段BC的长为.19.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有.20.已知A(﹣4,y1),B (﹣3,y2)两点都在二次函数y=﹣2(x+2)2的图象上,则y1,y2的大小关系为.21.将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是.22.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.23.若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为.24.把二次函数y=x2+6x+4配方成y=a(x﹣h)2+k的形式,得y=,它的顶点坐标是.25.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:则关于x的一元二次方程ax2+bx+c=﹣2的根是.26.已知y=x2+mx﹣6,当1≤m≤3时,y<0恒成立,那么实数x的取值范围是.27.若二次函数y=ax2+bx+c的图象如图所示,则不等式a(x﹣2)2+b(x﹣2)+c <0的解集为.28.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.29.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行m才能停下来.30.二次函数y=﹣x2+2x+3的图象与x轴交于A、B两点,P为它的顶点,则S△=.PAB三.解答题(共10小题)31.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?32.已知二次函数y=﹣x2+4x.(1)写出二次函数y=﹣x2+4x图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);(3)根据图象,写出当y<0时,x的取值范围.33.已知函数图象如图所示,根据图象可得:(1)抛物线顶点坐标;(2)对称轴为;(3)当x=时,y有最大值是;(4)当时,y随着x得增大而增大.(5)当时,y>0.34.已知抛物线y=ax2+bx+c,如图所示,直线x=﹣1是其对称轴,(1)确定a,b,c,△=b2﹣4ac的符号;(2)求证:a﹣b+c>0;(3)当x取何值时,y>0,当x取何值时y<0.35.已知点A(,3)在抛物线y=﹣x的图象上,设点A关于抛物线对称轴对称的点为B.(1)求点B的坐标;(2)求∠AOB度数.36.在平面直角坐标系xOy中,抛物线y=﹣x+2与y轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称.(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为4.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.37.某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.38.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.39.已知二次函数的解析式是y=x2﹣2x﹣3(1)用配方法将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;(2)在直角坐标系中,用五点法画出它的图象;(3)当x为何值时,函数值y<0.40.已知P(﹣3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.华师大新版九年级下学期《第26章二次函数》单元测试卷参考答案与试题解析一.选择题(共15小题)1.下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1C.y=2x2﹣2(x2+1)D.y=【分析】整理成一般形式后,利用二次函数的定义即可解答.【解答】解:A、y=x2+x,是二次函数;B、y=,不是二次函数;C、y=﹣2,不是二次函数;D、不是整式,不是二次函数;故选:A.【点评】本题考查二次函数的定义.2.若y=(a2+a)是二次函数,那么()A.a=﹣1或a=3B.a≠﹣1且a≠0C.a=﹣1D.a=3【分析】根据二次函数定义,自变量的最高指数是二,且系数不为0,列出方程与不等式即可解答.【解答】解:根据题意,得:a2﹣2a﹣1=2解得a=3或﹣1又因为a2+a≠0即a≠0或a≠﹣1所以a=3.故选:D.【点评】解题关键是掌握二次函数的定义.3.方程x2+2x+1=的正数根的个数为()A.0B.1C.2D.3【分析】求方程x2+2x+1=的解,可以理解为:二次函数y=x2+2x+1与反比例函数y=的图象交点的横坐标.【解答】解:二次函数y=x2+2x+1=(x+1)2的图象过点(0,1),且在第一、二象限内,反比例函数y=的图象在第一、三象限,∴这两个函数只在第一象限有一个交点.即方程x2+2x+1=的正数根的个数为1.故选:B.【点评】本题利用了二次函数的图象与反比例函数图象来确定方程的交点的个数.4.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.【点评】本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.5.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c 的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0)(2)顶点是(1,﹣2)(3)在x轴上截得的线段的长度是2(4)c=3a正确的个数()A.4个B.3个C.2个D.1个【分析】分别利用二次函数的对称性以及二次函数图象上点的坐标性质进而得出答案.【解答】解:(1)因为图象过点(1,0),且对称轴是直线x=2,另一个对称点为(3,0),正确;(2)顶点的横坐标应为对称轴,本题的顶点坐标与已知对称轴矛盾,错误;(3)抛物线与x轴两交点为(1,0),(3,0),故在x轴上截得的线段长是2,正确;(4)图象过点(1,0),且对称轴是直线x=﹣=2时,则b=﹣4a,即a﹣4a+c=0,即可得出c=3a,正确.正确个数为3.故选:B.【点评】本题主要考查了二次函数的性质,解答本题的关键是掌握二次函数图象的对称性,此题难度不大.6.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A.当m=﹣3时,函数图象的顶点坐标是()B.当m>0时,函数图象截x轴所得的线段长度大于C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x时,y随x的增大而减小【分析】A、把m=﹣3代入[2m,1﹣m,﹣1﹣m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.【解答】解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣)2+,顶点坐标是(,);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣﹣,|x2﹣x1|=+>,所以当m>0时,函数图象截x轴所得的线段长度大于,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m ≠0时,函数图象经过x轴上一个定点此结论正确.D、当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m)是一个开口向下的抛物线,其对称轴是:直线x=,在对称轴的右边y随x的增大而减小.因为当m<0时,=﹣>,即对称轴在x=右边,因此函数在x=右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选:D.【点评】此题考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.7.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个【分析】①由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;②由抛物线与x轴有两个交点判断即可;③分别比较当x=﹣2时、x=1时,y的取值,然后解不等式组可得6a+3c<0,即2a+c<0;又因为a<0,所以3a+c<0.故错误;④将x=1代入抛物线解析式得到a+b+c<0,再将x=﹣1代入抛物线解析式得到a﹣b+c>0,两个不等式相乘,根据两数相乘异号得负的取符号法则及平方差公式变形后,得到(a+c)2<b2,【解答】解:①由开口向下,可得a<0,又由抛物线与y轴交于正半轴,可得c >0,然后由对称轴在y轴左侧,得到b与a同号,则可得b<0,abc>0,故①错误;②由抛物线与x轴有两个交点,可得b2﹣4ac>0,故②正确;③当x=﹣3,y<0时,即9a﹣3b+c<0 (1)当x=1时,y<0,即a+b+c<0 (2)(1)+(2)×3得:12a+4c<0,即4(3a+c)<0又∵a<0,∴3a+c<0.故③错误;④∵x=1时,y=a+b+c<0,x=﹣1时,y=a﹣b+c>0,∴(a+b+c)(a﹣b+c)<0,即[(a+c)+b][(a+c)﹣b]=(a+c)2﹣b2<0,∴(a+c)2<b2,故④正确.综上所述,正确的结论有2个.故选:B.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.8.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵a<0,∴抛物线的开口方向向下,故第三个选项错误;∵c<0,∴抛物线与y轴的交点为在y轴的负半轴上,故第一个选项错误;∵a<0、b>0,对称轴为x=>0,∴对称轴在y轴右侧,故第四个选项错误.故选:B.【点评】考查二次函数y=ax2+bx+c系数符号的确定.9.已知点(﹣1,y1)、(﹣2,y2)、(2,y3)都在二次函数y=﹣3x2﹣6x+12的图象上,则y1、y2、y3的大小关系为()A.y1>y3>y2B.y3>y2>y1C.y3>y1>y2D.y1>y2>y3【分析】二次函数抛物线向下,且对称轴为x=﹣1.根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:∵二次函数y=﹣3x2﹣6x+12=﹣3(x+1)2+15,∴该二次函数的抛物线开口向下,且对称轴为:x=﹣1.∵点(﹣1,y1)、(﹣2,y2)、(2,y3)都在二次函数y=﹣3x2﹣6x+12的图象上,而三点横坐标离对称轴x=﹣1的距离按由近到远为:(﹣1,y1)、(﹣2,y2)、(2,y3),∴y1>y2>y3.故选:D.【点评】考查二次函数图象上点的坐标特征.10.已知二次函数y=﹣x2+x+2,当自变量x取m时对应的值大于0,当自变量x 分别取m﹣3、m+3时对应的函数值为y1、y2,则y1、y2必须满足()A.y1>0、y2>0B.y1<0、y2<0C.y1<0、y2>0D.y1>0、y2<0【分析】根据函数的解析式求得函数与x轴的交点坐标,利用自变量x取m时对应的值大于0,确定m﹣1、m+1的位置,进而确定函数值为y1、y2.【解答】解:令﹣x2+x+2=0,解得(x+1)(﹣x+2)=0,x1=﹣1,x2=2.∵当自变量x取m时对应的值大于0,∴﹣1<m<2,∴m﹣3<﹣1;m+3>2;结合图象可知y1<0、y2<0,故选:B.【点评】此题考查了二次函数的性质,不等式的性质,解一元二次方程.有需要一定分析能力,需要通过解一元二次方程得到二次函数图象与x轴的交点,再结合图象确定m﹣3、m+3的范围从而得到y1、y2的取值范围,需要具备较强的分析能力11.抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位B.向左平移2个单位C.向右平移1个单位D.向右平移2个单位【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【解答】解:原抛物线的顶点为(0,1),新抛物线的顶点为(﹣2,1),∴是抛物线y=x2+1向左平移2个单位得到,故选:B.【点评】考查二次函数图象平移的性质.12.解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14A.y=x2+8x+14B.y=x2﹣8x+14C.y=x2+4x+3D.y=x2﹣4x+3【分析】先由对称计算出C点的坐标,再根据平移规律求出新抛物线的解析式即可解题.【解答】解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.13.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或【分析】根据对称轴的位置,分三种情况讨论求解即可.【解答】解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.【点评】本题考查了二次函数的最值问题,难点在于分情况讨论.14.已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为()A.﹣2B.0C.2D.2.5【分析】首先求出k的取值范围,进而利用二次函数增减性得出k=时,代数式2k2﹣8k+6的最小值求出即可.【解答】解:∵m,n,k为非负实数,且m﹣k+1=2k+n=1,∴m,n,k最小为0,当n=0时,k最大为:,∴0≤k,∵2k2﹣8k+6=2(k﹣2)2﹣2,∴a=2>0,∴k≤2时,代数式2k2﹣8k+6的值随k的增大而减小,∴k=时,代数式2k2﹣8k+6的最小值为:2×()2﹣8×+6=2.5.故选:D.【点评】此题主要考查了二次函数的最值求法以及二次函数增减性等知识,根据二次函数增减性得出k=时,代数式2k2﹣8k+6的最小值是解题关键.15.如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣B.﹣C.﹣1D.﹣2【分析】设A(x1,0),B(x2,0),C(0,t),由题意可得t=2;在直角三角形ABC中,利用射影定理求得OC2=OA•OB,即4=|x1x2|=﹣x1x2;然后根据根与系数的关系即可求得a的值.【解答】解:设A(x1,0)(x1<0),B(x2,0)(x2>0),C(0,t),∵二次函数y=ax2+bx+2的图象过点C(0,t),∴t=2;∵AC⊥BC,∴OC2=OA•OB,即4=|x1x2|=﹣x1x2,根据韦达定理知x1x2=,∴a=﹣.故选:A.【点评】本题主要考查了抛物线与x轴的交点.注意二次函数y=ax2+bx+2与关于x的方程ax2+bx+2=0间的转换关系.二.填空题(共15小题)16.当m=1时,函数y=(m﹣4)x+3x是关于x的二次函数.【分析】根据二次函数的定义即可得.【解答】解:∵函数y=(m﹣4)x+3x是关于x的二次函数,∴m2﹣5m+6=2且m﹣4≠0,解得:m=1,故答案为:1.【点评】本题主要考查二次函数的定义,掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数是关键.17.如图,⊙O的半径为2,C1是函数y=2x2的图象,C2是函数y=﹣2x2的图象,则图中阴影部分的面积为2π.【分析】根据二次函数的对称性得出图中阴影部分的面积为半圆面积,进而求出即可.【解答】解:如图所示:图中阴影部分的面积为半圆面积,∵⊙O的半径为2,∴图中阴影部分的面积为:π×22=2π.故答案为:2π.【点评】此题主要考查了二次函数对称性以及圆的面积公式,正确转化阴影部分面积是解题关键.18.如图,抛物线y=ax2+1与y轴交于点A,过点A与x轴平行的直线交抛物线y=4x2于点B、C,则线段BC的长为1.【分析】先由y轴上点的横坐标为0求出A点坐标为(0,1),再将y=1代入y=4x2,求出x的值,得出B、C两点的坐标,进而求出BC的长度.【解答】解:∵抛物线y=ax2+1与y轴交于点A,∴A点坐标为(0,1).当y=1时,4x2=1,解得x=±,∴B点坐标为(﹣,1),C点坐标为(,1),∴BC=﹣(﹣)=1,故答案为:1.【点评】本题考查了二次函数的性质,两函数交点坐标的求法以及平行于x轴上的两点之间的距离的知识,解答本题的关键是求出点A的坐标,此题难度不大.19.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有①④⑤.【分析】根据图象的开口可确定a,结合对称轴可确定b,根据图象与y轴的交点位置可确定c,根据图象与x轴的交点个数可确定△;根据当x=﹣2时,y <0;抛物线与x轴的另一个交点的坐标是(3,0),即可得出结论.【解答】解:①∵开口向下∴a<0∵与y轴交于正半轴∴c>0∵对称轴在y轴右侧∴b>0∴abc<0,故①正确;∵二次函数的对称轴是直线x=1,即二次函数的顶点的横坐标为x=﹣=1,∴2a+b=0,故②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③错误;∵b=﹣2a,∴可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y<0;即4a﹣(﹣4a)+c=8a+c<0,故④正确;∵二次函数的图象和x轴的一个交点是(﹣1,0),对称轴是直线x=1,∴另一个交点的坐标是(3,0),∴设y=ax2+bx+c=a(x﹣3)(x+1)=ax2﹣2ax﹣3a,即a=a,b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,故⑤正确;故答案为:①④⑤.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.20.已知A(﹣4,y1),B (﹣3,y2)两点都在二次函数y=﹣2(x+2)2的图象上,则y1,y2的大小关系为y1<y2.【分析】分别计算出自变量为﹣4,﹣3时的函数值,然后比较函数值得大小即可.【解答】解:把A(﹣4,y1),B(﹣3,y2)分别代入y=﹣2(x+2)2得y1=﹣2(x+2)2=﹣8,y2=﹣2(x+2)2=﹣2,所以y1<y2.故答案为y1<y2.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.21.将抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是y=﹣x2﹣4x﹣4.【分析】直接根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,抛物线y=﹣x2向左平移2个单位后,得到的抛物线的解析式是y=﹣(x+2)2,即y=﹣x2﹣4x﹣4.故答案为:y=﹣x2﹣4x﹣4.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.22.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是18cm2.【分析】设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,由四边形EFGH的面积=正方形ABCD的面积﹣4个△AEH的面积,即可得出S四边形EFGH关于t的函数关系式,配方后即可得出结论.【解答】解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,根据题意得:S=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2四边形EFGH(t﹣3)2+18,∴当t=3时,四边形EFGH的面积取最小值,最小值为18.故答案为:3;18【点评】本题考查了二次函数的最值、三角形以及正方形的面积,通过分割图形求面积法找出S关于t的函数关系式是解题的关键.四边形EFGH23.若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为±6.【分析】抛物线y=ax2+bx+c的顶点坐标为(,),因为抛物线y=x2﹣bx+9的顶点在x轴上,所以顶点的纵坐标为零,列方程求解.【解答】解:∵抛物线y=x2﹣bx+9的顶点在x轴上,∴顶点的纵坐标为零,即y===0,解得b=±6.【点评】此题考查了学生的综合应用能力,解题的关键是掌握顶点的表示方法和x轴上的点的特点.24.把二次函数y=x2+6x+4配方成y=a(x﹣h)2+k的形式,得y=(x+3)2﹣5,它的顶点坐标是(﹣3,﹣5).【分析】直接利用配方法求出二次函数顶点坐标即可.【解答】解:y=x2+6x+4=(x2+6x+9)﹣9+4=(x+3)2﹣5,它的顶点坐标是:(﹣3,﹣5).故答案为:(x+3)2﹣5,(﹣3,﹣5).【点评】此题主要考查了配方法求二次函数的顶点坐标,正确进行配方得出是解题关键.25.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:则关于x的一元二次方程ax2+bx+c=﹣2的根是x1=﹣4,x2=0.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性求出y 值等于﹣2的自变量x的值即可.【解答】解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣2,∵x=﹣4时,y=﹣2,∴x=0时,y=﹣2,∴方程ax2+bx+c=﹣2的解是x1=﹣4,x2=0.故答案为:x1=﹣4,x2=0.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.26.已知y=x2+mx﹣6,当1≤m≤3时,y<0恒成立,那么实数x的取值范围是﹣3<x<.【分析】根据1≤m≤3,得出两个不等式:当m=3时,x2+3x﹣6<0;当m=1时,x2+x﹣6=0;根据y<0,分别解不等式x2+3x﹣6<0,x2+x﹣6<0,可求实数x 的取值范围.【解答】解:∵1≤m≤3,y<0,∴当m=3时,x2+3x﹣6<0,由y=x2+3x﹣6<0,得<x<;当m=1时,x2+x﹣6<0,由y=x2+x﹣6<0,得﹣3<x<2.∴实数x的取值范围为:﹣3<x<.故本题答案为:﹣3<x<.【点评】本题考查了用二次函数的方法求自变量x的取值范围.关键是分类列不等式,分别解不等式.27.若二次函数y=ax2+bx+c的图象如图所示,则不等式a(x﹣2)2+b(x﹣2)+c <0的解集为x<3或x>5.【分析】直接利用函数图象即可得出结论.【解答】解:∵由函数图象可知,当x<1或x>3时,函数图象在x轴的下方,∴函数y=a(x﹣2)2+b(x﹣2)+c的图象与x轴的交点为3,5,∴不等式a(x﹣2)2+b(x﹣2)+c<0<0的解集为x<3或x>5.故答案为:x<3或x>5.【点评】本题考查的是二次函数与不等式组,能根据题意利用数形结合求出不等式的解集是解答此题的关键.28.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是y=10(x+1)2.【分析】根据题意列出关系式即可.【解答】解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)2【点评】此题考查了根据实际问题列二次函数关系式,弄清题意是解本题的关键.29.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行20 m才能停下来.【分析】由题意得,此题实际是求从开始刹车到停止所走的路程,即S的最大值.把抛物线解析式化成顶点式后,即可解答.【解答】解:依题意:该函数关系式化简为S=﹣5(t﹣2)2+20,当t=2时,汽车停下来,滑行了20m.故惯性汽车要滑行20米.【点评】本题涉及二次函数的实际应用,难度中等.30.二次函数y=﹣x2+2x+3的图象与x轴交于A、B两点,P为它的顶点,则S△PAB= 8.【分析】根据函数解析式,可以分别求出与x轴的两个交点,以及顶点坐标,利用三角形面积公式即可解答.【解答】解:将二次函数y=﹣x2+2x+3化为y=﹣(x﹣3)(x+1),已知二次函数与x轴交于A、B两点,故x1=3,x2=﹣1.将一般式化为顶点式为y=﹣(x﹣1)2+4,得出顶点坐标P为(1,4)=×4×4=8.故S△PAB【点评】本题考查的是二次函数的顶点式以及交点式的函数式以及三角形面积的。
第26章二次函数检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题2分,共24分)1.(2019·兰州中考)下列函数解析式中,一定为二次函数的是( ) A.y =3x -1 B.y =a +bx +c C.s =2-2t +1D.y =2.二次函数)0(2≠++=a c bx ax y 的图象如图所示,则下列结论中正确的是( )A.c >-1B.b >0C.02≠+b aD.b c a 39>+ 3.(2019•成都中考)将二次函数223y x x =-+化为2()y x h k =-+的形式,结果为( )A.2(1)4y x =++B.2(1)2y x =++C.2(1)4y x =-+ D.2(1)2y x =-+4.抛物线21=+44y x x --的对称轴是直线( )A.=2x -B.=2xC.=4x -D.=4x5.已知二次函数()20y ax bx c a =++≠的图象如图所示,则下列结论中,正确的是( ) A.0,0ab c >> B.0,0ab c >< C.0,0ab c <> D.0,0ab c <<6.二次函数()20y ax bx c a =++≠的图象如图所示,则点,c b a ⎛⎫⎪⎝⎭在第( )象限.A. 一B. 二C. 三D. 四7.如图所示,已知二次函数()20y ax bx c a =++≠的图象的顶点P 的横坐标是4,图象交x 轴于点(),0A m 和点B ,且>4m ,则AB 的长是( )第5题图第6题图A.4m+ B.m C.28m- D.82m-第7题图第8题图8.(2019·安徽中考)如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y =ax2+(b1)x+c的图象可能为()A. B. C. D.9.已知抛物线和直线l在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线=1x-,()()111222,,,P x y P x y是抛物线上的点,()333,P x y是直线l上的点,且3121,x x x<-<<则123,,y y y的大小关系是( )A.123y y y<< B.231y y y<<C.312y y y<< D.213y y y<<10.把抛物线2241y x x=-++的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )A.()2=21+6y x-- B.()2=216y x---C.()2=2+1+6y x- D.()2=2+16y x--11.(2019·山东潍坊中考)已知二次函数y =+bx+c+2的图象如图所示,顶点为(-1,0),下列结论:①abc<0;②-4ac=0;③a>2;④4a-2b+c>0.其中正确结论的个数是()A.1B.2C. 3D.4第9题图第11题图第12题图12.(2019•四川资阳中考)如图,抛物线()20y ax bx c a =++≠过点(1,0)和点(0,-2),且顶点在第三象限,设P a b c =-+,则P 的取值范围是( ) A.40P -<< B.42P --<< C.20P -<< D.10P -<<二、填空题(每小题4分,共24分)13.(2019•长沙中考)抛物线23(2)5y x =-+的顶点坐标是 . 14.(2019•辽宁营口中考)二次函数2y x bx c =-++的图象如图所示,则一次函数y bx c =+的图象不经过第 象限.15.已知二次函数2=++y ax bx c 的图象交x 轴于,A B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________. 16.(2019•杭州中考)设抛物线2(0)y ax bx c a =++≠过(0,2)A ,(4,3)B ,C 三点,其中点C 在直线2x=上,且点C 到抛物线对称轴的距离等于1,则抛物线的函数解析式为 .17.已知抛物线22y x x b =++经过点1,4a ⎛⎫- ⎪⎝⎭和()1,a y -,则1y 的值是_________.18.(2019·四川资阳中考)已知抛物线p :y =ax 2+bx +c 的顶点为C ,与x 轴相交于A ,B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C′,我们称以A 为顶点且过点C ′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y =x 2+2x +1和y =2x +2,则这条抛物线的解析式为______________.三、解答题(共72分)19.(8分)若二次函数图象的对称轴是直线3=2x ,且图象过点(04)A -,和(40)B ,. (1)求此二次函数图象上点A 关于对称轴3=2x 对称的点A '的坐标; (2)求此二次函数的解析式.20.(8分)在直角坐标平面内,点O 为坐标原点,二次函数()()254y x k x k =+--+的图象交x 轴于点12(0),(0)A x B x ,,,且()()12118x x ++=-. (1)求二次函数的解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y轴的交点为第14题图C ,顶点为P ,求△POC 的面积.21.(8分)已知:如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于,A B 两点,其中A点坐标为(10)-,,点(05)C ,,另抛物线经过点(18),,M 为它的顶点. (1)求抛物线的解析式; (2)求△MCB 的面积MCB S △.22.(8分)(2019•北京中考)在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点A (0, -2),B (3, 4). (1)求抛物线的表达式及对称轴.(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A , B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.23. (8分)(2019•安徽中考)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数; (2)已知关于x 的二次函数2212421y x mx m =-++和225y ax bx =++,其中1y 的图象经过点(1,1)A ,若12y y +与1y 为“同簇二次函数”,求函数2y 的表达式,并求出当03x ≤≤时,2y 的最大值.24.(10分)(2019•河北中考)如图,2×2网格(每个小正方形的边长为1)中有A ,B ,C ,D ,E ,F ,G ,H ,O 九个格点,抛物线l 的解析式为y =(-1)n x²+bx +c (n 为整数). (1)n 为奇数,且l 经过点H (0,1)和C (2,1),求b ,c 的值,并直接写出哪个格点是该抛物线的顶点;(2)n 为偶数,且l 经过点A (1,0)和B(2,0),通过计算说明点F (0,2)和H (0,1)是否在该抛物线上;第21题图(3)若l 经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.25.(10分)如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20 m ,如果水位上升3 m 时,水面CD 的宽是10 m . (1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280 km (桥长忽略不计). 货车正以每小时40 km 的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25 m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?26.(12分)某机械租赁公司有同一型号的机械设备40套. 经过一段时间的经营发现:当 每套机械设备的月租金为270元时,恰好全部租出. 在此基础上,当每套设备的月租金提高10元时,这种设备就少租出一套,且未租出的一套设备每月需要支出费用(维护费、管理费等)20元,设每套设备的月租金为x (元),租赁公司出租该型号设备的月收益 (收益=租金收入-支出费用)为y (元).(1)用含x 的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用. (2)求y 与x 之间的二次函数关系式.(3)当月租金分别为300元和350元时,租赁公司的月收益分别是多少元?此时应该 租出多少套机械设备?请你简要说明理由.(4)请把(2)中所求的二次函数配方成22424b ac b y x a a -⎛⎫=++ ⎪⎝⎭的形式,并据此说明:当x 为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?第26章二次函数检测题参考答案1.C 解析:选项A 是一次函数;选项B 当a =0,b ≠0时是一次函数,当a ≠0时是二次函数,所以选项B 不一定是二次函数;选项C 一定是二次函数;选项D 不是二次函数.第25题图2.D 解析:因为抛物线与轴的交点在点(0,-1)的下方,所以c <-1,因此选项A 错误;观察抛物线发现a >0,02b a->,所以b <0,因此选项B 错误;因为抛物线的对称轴是直线x =1,所以12b a -=,即2b a =-,则20a b +=,所以选项C 错误.故选D.3.D 解析:()22223211312y x x x x x =-+=-+-+=-+.4.B 解析:抛物线21=+44y x x --,直接利用公式,得其对称轴为直线x =2.5.C 解析:因为抛物线开口方向向下,所以<0a . 由于抛物线对称轴在y 轴右侧,所以>02ba-.又因为<0a ,所以0,0b ab ><. 由于抛物线与y 轴交点坐标为()0,c 点,由图象知,该点在x 轴上方,所以>0c . 6.D 解析:因为抛物线开口方向向下,所以<0a . 由于抛物线对称轴在y 轴右侧,所以>02ba-. 又因为<0a ,所以0b >.由于抛物线与y 轴交点坐标为()0,c 点,由图象知,该点在x 轴上方,所以>0c ,所以<0ca .所以点,c b a ⎛⎫⎪⎝⎭在第四象限.7.C 解析:因为二次函数()2+0y ax bx c a =+≠图象顶点P 的 横坐标是4,所以抛物线的对称轴为直线4x =,对称轴与x 轴交于点D , 所以,A B 两点关于对称轴对称.因为点()0A m ,,且>4m ,所以()224=28AB AD m m ==--. 8.A 解析:一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象有两个交点,且都在第一象限,可知一元二次方程ax 2+bx +c =x ,即ax 2+(b -1)x +c =0有两个不等的正实数根,所以函数y =ax 2+(b -1)x +c 的图象与x 轴正半轴有两个不同的交点,故选项A 符合题意.9.D 解析:因为抛物线的对称轴为直线=1x -,且121x x -<<,当>1x -时,由图象知,y 随x 的增大而减小,所以21<y y .又因为31x <-,此时点()333,P x y 在二次函数图象上方,所以213y y y <<. 10.C 解析:原二次函数变形为,将其图象向左平移2个单位,函数解析式变为,再向上平移3个单位,函数解析式变为,所以答案选C.11.B 解析:∵ 函数图象开口向上,∴ a >0.又∵ 顶点为(-1,0),∴ - = -1,∴ b =2a >0.由图象与y 轴的交点坐标可知:c +2>2,∴ c >0,∴ abc >0,故①错误. ∵ 抛物线顶点在x 轴上,∴-4a (c +2)=0,故②错误.∵ 顶点为(-1,0),∴ a -b +c +2=0.∵ b =2a ,∴ a =c +2. ∵ c >0,∴ a >2,故③正确.由抛物线的对称性可知x =-2与x =0时函数值相等,∴ 4a -2b +c +2>2, ∴ 4a -2b +c >0,故④正确.13. (2,5) 解析:抛物线()2y a x h k =-+的顶点坐标是(h ,k ).14.四 解析:根据图象得0,0,0a b c <>>,故一次函数y bx c =+的图象不经过第四象限.15.21y x =-(答案不唯一) 解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及ABC △是直角三角形,可知答案不唯一,如21y x =-. 16.211284y x x =-+或213284y x x =-++ 解析:由题意知抛物线的对称轴为直线1x =或3x =.(1)当对称轴为直线1x =时,2b a =-,抛物线经过点(0,2)A ,(4,3)B ,∴{2,3168,c a a c ==-+解得1,82.a c ==⎧⎪⎨⎪⎩∴ 211284y x x =-+. (2)当对称轴为直线3x =时,6b a =-,抛物线经过点(0,2)A ,(4,3)B ,∴{2,31624,c a a c ==-+解得1,82.a c =-=⎧⎪⎨⎪⎩∴ 213284y x x =-++.∴ 抛物线的函数解析式为211284y x x =-+或213284y x x =-++.17.34 解析:将点1,4a ⎛⎫- ⎪⎝⎭的坐标代入得2214a a b ++=-,所以221+=04a a b ++,即22102a b ⎛⎫++= ⎪⎝⎭,解得1,02a b =-=.所以当x a =-时,134y =.18.223y x x =-- 解析:由题意知,两条抛物线的开口方向相同,开口大小相等,所以抛物线p 中的a =1.因为122++=x x y 的顶点坐标为(-1,0),所以点A 的坐标为 (-1,0).将点(-1,0)的坐标代入c bx x y ++=2,得1-b +c =0,所以c =b -1.根据点C ′与点C 的横坐标都等于2b-,可求得点C ′的纵坐标为-b +2,点C 的纵坐标为442b c -.因为点C 与点C ′关于x 轴对称,所以442b c -+(-b +2)=0,又因为c =b 1,所以解得b =±2(b =2,不合题意舍去).当b =-2时,c =-3,所以抛物线p 的解析式为223y x x =--. 19.解:(1)(34)A '-,.(2)设二次函数解析式为()20y ax bx c a =++≠,由题设知3=,2216+4+=0,=4,b a a bc c ⎧-⎪⎪⎨⎪-⎪⎩∴ 1,3,4,a b c =⎧⎪=-⎨⎪=-⎩∴ 二次函数的解析式为234y x x =--. 20.解:(1)由题意知12,x x 是方程()2(5)40x k x k +--+=的两根,∴ ()()1212+=5,=+4.x x k x x k ⎧--⎪⎨-⎪⎩又∵ ()()12118x x ++=-, ∴ ()121290x x x x +++=.∴ ()()4590k k -+--+=.∴5k =. ∴ 二次函数的解析式为29y x =-.(2) ∵ 平移后的函数解析式为()229y x =--,且当0x =时,5y =-, ∴ (05),(29)C P --,,.∴ 15252POC S =⨯⨯=△. 21.解:(1)依题意,得0,5,8,a b c c a b c -+=⎧⎪=⎨⎪++=⎩解得1,4,5,a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为245y x x =-++. (2)令0y =,得()()12510,5,1x x x x -+===-, ∴ (50)B ,.由()22 45=2+9y x x x =-++--,得(29)M ,.作ME y ⊥轴于点E ,则MCB ECM COB EOBM S S S S =--梯形△△△, 可得MCB S △=15. 22. 解:(1)∵ 22yx mx n =++经过点A (0,-2),B (3,4),代入得2,1834,n m n =-++=⎧⎨⎩∴ 4,2.m n =-=-⎧⎨⎩ ∴ 抛物线的表达式为224 2.yx x =--222242221214y x x x x x =--=--=--()(),∴ 其对称轴为直线x =1. (2)由题意可知C (-3,-4), 二次函数2242yx x =--的最小值为-4.由图象可以看出D 点纵坐标最小值即为-4, 最大值即BC 与对称轴交点的纵坐标. 设直线BC 的解析式为y =kx +b ,根据题意得34,34,k b k b +=-+=-⎧⎨⎩解得0,4,3b k ==⎧⎪⎨⎪⎩∴ 直线BC 的解析式为4.3y x =当x =1时,4.3y =第22题答图∴ 点D 纵坐标t 的取值范围是44.3t -≤≤23. 解:(1)本题是开放题,答案不唯一,符合题意即可,如221y x =,22y x =.(2)∵ 函数1y 的图象经过点(1,1)A ,则224211m m -++=,解得1m =.∴ 221243211()y x x x =-+=-+.方法一:∵ 12y y +与1y 为“同簇二次函数”,∴ 可设212(1)1(0)y y k x k +=-+>,则2221(1)1(2)(1)y k x y k x =-+-=--.由题意可知函数2y 的图象经过点(0,5),则2(2)15k -⨯=,∴ 25k -=.∴2225(1)5105y x x x =-=-+.当03x ≤≤时,根据2y 的函数图象可知,2y 的最大值2=5(31)20⨯-=.方法二:∵ 12y y +与1y 为“同簇二次函数”,则212(+2)(4)8(+20)y y a x b x a +=+-+>,∴412(2)b a --=+,化简得2b a =-.又232(2)(4)14(2)a b a +--=+,将2b a =- 代入,解得5a =,10b =-.∴ 225105y x x =-+. 当03x ≤≤时,根据2y 的函数图象可知,2y 的最大值2=53103520⨯-⨯+=.24. 解:(1)n 为奇数,则y =-x 2+bx +c .∵ 点H (0,1)和C (2,1)在抛物线上,∴21,221,c b c =⎧⎨-++=⎩2,1.b c =⎧⎨=⎩解得∴ y =-x 2+2x +1.故格点E 是该抛物线的顶点. (2)n 为偶数,则y =x 2+bx +c .∵ 点A (1,0)和B (2,0)在抛物线上,∴ 221++0,220,b c b c ⎧=⎪⎨++=⎪⎩3,2.b c =-⎧⎨=⎩解得∴ y =x 2-3x +2.当x =0时,y =2≠1,故点F (0,2)在该抛物线上,而点H (0,1)不在该抛物线上.(3)所有满足条件的抛物线共有8条.如图①所示,当n 为奇数时,由(1)中的抛物线平移又得3条抛物线;如图②所示,当n 为偶数时,由(2)中的抛物线平移又得3条抛物线.第24题答图∴ 抛物线的解析式为225x y -=. (2)水位由CD 处涨到点O 的时间为()10.254h ÷=,货车按原来速度行驶的路程为401404200280⨯+⨯=<, ∴ 货车按原来速度行驶不能安全通过此桥.设货车的速度提高到km /h x ,当2801404=⨯+x 时,60=x .∴ 要使货车安全通过此桥,货车的速度应超过60km /h . 26.解:(1)未租出的设备为10270-x 套,所有未租出设备的支出费用为)5402(-x 元. (2)2270140(2540)655401010x y x x x x -⎛⎫=---=-++ ⎪⎝⎭. ∴ 540651012++-=x x y . (3)当月租金为300元时,租赁公司的月收益为11 040元,此时租出的设备为37套; 当月租金为350元时,租赁公司的月收益为11 040元,此时租出的设备为32套.因为出租37套和32套设备获得同样的收益,如果考虑减少设备的磨损,应选择出租32套;如果考虑市场占有率,应选择出租37套.(4)221165540(325)11102.51010y x x x =-++=--+ . ∴ 当325=x 时,y 有最大值11 102.5. 但是,当月租金为325元时,租出设备套数为34.5,而34.5不是整数,故租出设备应为34套或35套. 即当月租金为330元(租出34套)或月租金为320元(租出35套)时,租赁公司的月收益最大,最大月收益均为11 100元.。
第二十六章《二次函数》单元检测试题一、选择题(每题3分,共24分)1,抛物线y=(x-2)2+3的对称轴是( )A .直线x=-3B .直线x=3C .直线x=-2D .直线x=2 2,在同一坐标系中,抛物线y=4x 2,y=14x 2,y=-14x 2的共同特点是( ) A .关于y 轴对称,开口向上 B .关于y 轴对称,y 随x 的增大而增大 C .关于y 轴对称,y 随x 的增大而减小 D .关于y 轴对称,顶点是原点 3,把抛物线y=3x 2先向上平移2个单位,再向右平移3个单位,所得抛物线的函数表达式为( )A .y=3(x+3)2-2B .y=3(x+3)2+2C .y=3(x-3)2-2D .y=3(x -3)2+2 4,把抛物线c bx x y ++=2的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( )A ,3=b ,7=cB ,9-=b ,15-=cC ,3=b ,3=cD ,9-=b ,21=c 5,已知函数y=ax 2+bx+c 的图像如图1所示,则下列关系成立且能最精确表述的是( ) A .012b a <-< B .022b a <-< C .122b a <-< D .12ba-=6,函数y=ax 2+bx+c 的图像如图2所示,那么关于x 的方程ax 2+bx+c-3=0的根的情况是( )A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根7,当k 取任意实数时,抛物线22)(54k k x y +-=的顶点所在曲线是 ( )A .2x y =B .2x y -=C .)0(2>=x x yD .)0(2>-=x x y 8,已知四点A(1,2),B(.,0),C(-2,20),D(-1,12)则下列说法正确的是( )A .存在一个二次函数652+-=x x y ,它的图象同时经过这四个点B .存在一个二次函数y=x 2+2,它的图象同时经过这四个点C .存在一个二次函数y=-x 2-5 x +6,它的图象同时经过这四个点D .不存在二次函数,使得它的图象同时经过这四个点 二、填空题(每题3分,共24分)9,二次函数y=-4x 2+2x+12的对称轴是直线__________.x 图1 03x y图210,已知点P(5,25)在抛物线y=ax 2上,则当x=1时,y 的值为__________. 11,函数y=x 2+2x -8与x 轴的交点坐标是_________.12,用配方法将二次函数216212+-=x x y 化成k h x a y +-=2)(的形式,那么y=_____________.13,将y=3x 2向左平移3个单位,再向下平移2个单位后,所得图像的函数表达式是_____.14,现出二次函数y=x 2+4x 与y=-12(x -3)2+2的不同点___(至少写出5个).15,已知二次函数y kx k x =+--2211()与x 轴交点的横坐标为x x x x 1212、()<,则对于下列结论:①当x =-2时,y =1;②当x x >2时,y >0;③方程kx k x 22110+--=()有两个不相等的实数根x x 12、;④x x 1211<->-,;⑤x x k k21214-=+,其中所有正确的结论是________(只需填写序号)16,小王利用计算机设计了一个计算程序,输入和输出的数据如下表:若输入的数据是y 与x 的函数表达式为___.三、解答题(共52分)17,利用二次函数的图像求下列一元二次方程的近似根. (1)x 2-2x-1=0; (2)x 2+5=4x .18,汽车行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停止,我们称这段距离为“刹车距离”,刹车距离是分析交通事故的一个重要因素.在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米, 但小于12米.查有关资料知:甲车的刹车距离S 甲 (米)与车速x(千米/时)之间有下列关系:S 甲=0.1x+0.01x 2;乙车的刹车距离S 乙 (米)与车速x(千米/时)的关系如图3所示.请你从两车的速度方面分析相碰的原因.图3/时)19,某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA ,O 恰好在水面中心,安装在柱子顶端A 处的喷头向外喷水, 水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一平面上,抛物线的形状如图4(1)和(2)所示,建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系式是y=-x 2+2x+54,请回答下列问题.(1)柱子OA 的高度为多少米?(2)喷出的水流距水平面的最大高度是多少? (3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外.20,已知抛物线y=12x 2- x +k 与x 轴有两个交点.(1)求k 的取值范围;(2)设抛物线与x 轴交于A 、B 两点,且点A 在点B 的左侧,点D 是抛物线的顶点,如果△ABD 是等腰直角三角形,求抛物线的解析式; (3)在(2)的条件下,抛物线与y 轴交于点C ,点E 在y 轴的正半轴上,且以A 、O 、E 为顶点的三角形和以B 、O 、C 为顶点的三角形相似,求点E 的坐标. 21,某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润S (万元)与销售时间t (月)之间的关系(即前t 个月的利润总和S 与t 之间的关系). 根据图象提供的信息,解答下列问题: (1)由已知图象上的三点坐标,求累积利润S (万元)与时间t (月)之间的函数关系式; (2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?)(1)图422,如图6,已知抛物线21(0)2y x mx n n =++≠与直线y=x 交于A 、B 两点,与y 轴交于点C ,OA =OB ,BC ∥x 轴. (1)求抛物线的解析式.(2)设D 、E 是线段AB 上异于A 、B 的两个动点(点E 在点D 的上方),DE过D 、E 两点分别作y 轴的平行线,交抛物线于F 、G ,若设D 点的横坐标为x ,四边形DEGF 的面积为y ,求x 与y 之间的关系式,写出自变量x 的取值范围,并回答x 为何值时,y 有最大值.参考答案:一、1,D ;2,D ;3,D ;4,C ;5,C ;6,C ;7,A ;8,A .二、9,x=-12;10,1;11,(2,0)、(-4,0);12,y=-12(x -6)2+3;13,y=3x 2+18x+25;14,①开口方向不同;②开口大小不同;③前者经过原点,后者不经过原点;④对称轴不同;⑤顶点不同;⑥与x 轴的交点不同;⑦图象经过的象限不同;⑧二次项系数不同;⑨前者有最小值,后者有最大值;⑩解析式的右端,前者是二次二项式,后者是二次三项式.等等;15,①③④;16,y=x 2+1.三、17,(1)x 1≈2.4,x 2≈-0.4;(2)无实数根;18,解方程0.01x 2+0.1x=12,得x 1=30,x 2=-40(舍去),故甲车的速度是30千米/时,未超过限速,由图像知:S 乙=14x ,由110124x << 得40<x<48.故乙车超速,原因在乙车超速行驶;19,(1)当x=0时,y=54,故OA 的高度为1.25米. (2)∵y=-x 2+2x+54=-(x-1)2+2.25,∴顶点是(1,2.25),图6故喷出的水流距水面的最大高度是2.25米. (3)解方程-x 2+2x+54=0,得121522x x =-=,.∴B 点坐标为502⎛⎫⎪⎝⎭,. ∴OB=52.故不计其他因素,水池的半径至少要 2.5米, 才能使喷出的水流不至于落在水池外;20,(1)根据题意得:△=k 21->0,∴k <12,∴k 的取值范围是k <12; (2)设A (x 1,0)、B (x 2,0),则x 1+ x 2=2,x 1x 2=2k .∴AB =12x x -,由y =12x 2-x +k =12(x -1)2+k -12得顶点D (1,k -12),当△ABD 是等腰直角三角形时得;12k -=12,解得k 1=-32,k 2=12,∵k <12,∴k =12舍去,∴所求抛物线的解析式是y =12x 2-x -32;(3)设E (0,y ),则y >0,令y =0得12x 2-x -32=0,∴x 1=-1,x 2=3,∴A (-1,0)、B (3,0),令x =0得:y =-32,∴C(0,-32),(i )当△AOE ∽△BOC 时得:AO OE BO OC =,∴1332y=,解得y =12,∴E 1(0,12); (ii )当△AOE ∽△COB 时得: AO OE OC BO=,∴1332y=,解得y =2,∴E 2(0,2),∴当△AOE 和△BOC 相似时,E 1(0,12)或E 2(0,2);21,(1)设S 与t 的函数关系式为S=at 2+bt+c ,由题意得 1.5422255 2.5a b c a b c a b c ++=-⎧⎪++=-⎨⎪++=⎩(或 1.54220a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩),解得1220a b c ⎧=⎪⎪⎨=-⎪⎪=⎩ ∴S=2122t t -;(2)把S=30代入S=2122t t -,得30=2122t t -,解得t 1=10,t 2=-6(舍),答:截止到10月末公司累积利润可达到30万元; (3)把t=7代入,得S=212172710.522⨯-⨯== ,把t=8代入,得S=21828162⨯-⨯=,16-10.5=5.5, 答:第8个月公司获利润5.5万元.;22,(1)∵抛物线212y x mx n =++与y 轴交于点C ,∴C(0,n)∵BC ∥x 轴 ∴B 点的纵坐标为n ,∵B 、A 在y=x 上,且OA=OB ∴B(n ,n),A(-n ,-n),∴221212n mn n n n mn n n ⎧++=⎪⎪⎨⎪-+=-⎪⎩ 解得n=0(舍去),n=-2;m=1,∴所求解析式为:2122y x x =+-; (2)作DH ⊥EG 于H ,∵D 、E 在直线y=x 上,∴∠EDH =45°,∴DH=EH ,∵∴DH=EH=1,∵D(x ,x ) ∴E(x+1,x+1),∴F 的纵坐标:2122x x +-,G 的纵坐标:21(1)(1)22x x +++-,∴DF=x -(2122x x +-)=2-212x ,EG=(x+1)- [21(1)(1)22x x +++-]=2-21(1)2x +,∴22111[22(1)]1222y x x =-+-+⨯,2132y x x =--+,213()324y x =-++,∴x 的取值范围是-2<x<1 当x=-12时,y 最大值=334.。