浙江省2017届中考数学第一轮复习4.5二次函数及其图像练习浙教版
- 格式:docx
- 大小:171.00 KB
- 文档页数:3
中考数学一轮复习《二次函数》综合复习练习题(含答案)一、单选题1.二次函数223y x x =-+的一次项系数是( ) A .1B .2C .2-D .32.抛物线22(9)3y x =+-的顶点坐标是( ) A .(9,3)-B .(9,3)--C .(9,3)D .(9,3)-3.如图,一抛物线型拱桥,当拱顶到水面的距离为2m 时,水面宽度为4m .那么水位下降1m 时,水面的宽度为( )A 6mB .26mC .)64mD .()264m4.二次函数()225y x =+-的图象的顶点坐标是( ) A .2,5B .()2,5C .()2,5--D .()2,5-5.在平面直角坐标系xOy 中,点123(1)(2)(4)y y y -,,,,,在抛物线22y ax ax c =-+上,当0a >时,下列说法一定正确的是( ) A .若120y y <,则30y > B .若230y y >,则10y < C .若130y y <,则20y >D .若1230y y y =,则20y =6.抛物线221y x x =-+的顶点坐标是( ) A .(1,0)B .(-1,0)C .(1,2)D .(-1,2)7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .()2323y x =++B .()2323y x =-+C .()2332y x =++D .()2332y x =-+8.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A 的坐标为16(0)9,,则实心球飞行的水平距离OB 的长度为( )A .7mB .7.5mC .8mD .8.5m9.关于抛物线2(1)y x =-,下列说法错误的是( ) A .开口向上B .当1x >时,y 随x 的增大而减小C .对称轴是直线1x =D .顶点()1,010.一次函数y x a =+与二次函数2y ax a =-在同一平面直角坐标系中的图象可能是( )A .B .C .D .11.如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD 为14的奖杯,杯体轴截面ABC 是抛物线2459y x =+的一部分,则杯口的口径AC 为( )A .7B .8C .9D .1012.下表中列出的是一个二次函致的自变量x 与函数y 的几组对应值:下列各选项中,正确的是( ) x … 2- 0 1 3 …y … 6- 4 6 4 …A .函数的图象开口向上B .函数的图象与x 轴无交点C .函数的最大值大于6D .当12x -≤≤时,对应函数y 的取值范围是36y ≤≤二、填空题13.已知函数221y mx mx =++在32x -上有最大值4,则常数m 的值为 __.14.二次函数2y ax bx c =++的图象如图所示.当0y >时,自变量x 的取值范围是 _____.15.某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙长20米),另外三边用篱笆围成如图所示,所用的篱笆长为32米.请问当垂直于墙的一边的长为____米时,花圃的面积有最大值,最大值是____.16.如图是抛物线型拱桥,当拱顶高距离水面2m 时,水面宽4m ,如果水面上升1.5m ,则水面宽度为________.17.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是___________米.18.在平面直角坐标系中,抛物线2yx 的图象如图所示,已知A 点坐标()1,1,过点A 作1AA x ∥轴交抛物线于点1A ,过点1A 作12A A OA ∥交抛物线于点2A ,过点2A 作23A A x ∥轴交抛物线于点3A ,过点3A 作34A A OA ∥交抛物线于点4A ,…,依次进行下去,则点2022A 的坐标为______.19.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,如果水面下降0.5m ,那么水面宽度增加________m .20.如图,某单位的围墙由一段段形状相同的抛物线形栅栏组成,为了牢固,每段栅栏间隔0.2米设置一根立柱(即AB 间间隔0.2米的7根立柱)进行加固,若立柱EF 的长为0.28米,则拱高OC 为_____米三、解答题21.已知关于x 的方程2(23)0mx m x m +-+=有两个不相等的实数根,求m 的取值范围.22.已知关于x 的一元二次方程x 2+x −m =0.(1)设方程的两根分别是x 1,x 2,若满足x 1+x 2=x 1•x 2,求m 的值. (2)二次函数y =x 2+x −m 的部分图象如图所示,求m 的值.23.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售。
专题复习·函数的图像与性质(1)班级 姓名 学号一.选择题1.一次函数y =2x +1的图象经过( )A 、第二、三、四象限B 、第一、三、四象限C 、第一、二、四象限D 、第一、二、三象限2.下列各点中,在函数2y x=图象上的点是( ) A .(2,4) B .(-1,2) C .(-2,-1) D .(21-,1-)3.如果已知一次函数y =kx +b 的图象不经过第三象限,也不经过原点,那么k 、b 的取值范围是( )A k >0且b >0B k >0且b <0C k <0且b >0D k <0且b <04.直线y x =与抛物线2y x 2=-的两个交点的坐标分别是( )A (2,2),(1,1)B (2,2),(-1,-1)C (-2,-2)(1,1)D (-2,-2)(-1,1)5.如图,直线l 1和l 2的交点坐标为( )A.(4,-2)B. (2,-4)C. (-4,2)D. (3,-1)6.一家电信公司给顾客提供两种上网收费方式:方式A 以每分0.1元的价格按上网所用时间计算;方式B 除收月基费20元外.再以每分0.05元的价格按上网所用时间计费。
若上网所用时问为x 分.计费为y 元,如图.是在同一直角坐标系中.分别描述两种计费方式的函救的图象,有下列结论:② 图象乙描述的是方式B ;③ 当上网所用时间为500分时,选择方式B 省钱.其中,正确结论的个数是( )A. 3B. 2C. 1D. 07.二次函数2y x 2x 1=-+与x 轴的交点个数是( )A .0B .1C .2D .38.下列函数中,当x >0时,y 值随x 值增大而减小的是( )A 、2y x =B 、y x 1=-C 、3y x 4=错误!未找到引用源。
D 、1y x=错误!未找到引用源。
9.在函数y k xk =>()0的图象上有三点Ax y 111(),、A x y A x y 222333()(),、,,已知x x x 1230<<<,则下列各式中,正确的是( ) A . y y 130<< B . y y 310<< C . y y y 213<< D . y y y 312<< 10.已知二次函数2y ax bx c(a 0)=++≠的图象如图所示,有下列5个结论: ① abc 0>;② b a c <+;③ 4a 2b c 0++>;④ 2c 3b <;⑤ a b m(am b)+>+,(m 1≠的实数)其中正确的结论有( )A . 2个B . 3个C . 4个D . 5个二.填空题 11.反比例函数的图象经过点(-2,3),则此反比例函数的关系式是 .12.如果正比例函数的图像经过点(2,1),那么这个函数的解析式是 .13.在平面直角坐标系内,从反比例函数()k y=k 0x>的图象上的一点分别作x 、y 轴的垂线段,与x 、y 轴所围成的矩形面积是12,那么该函数解析式是 。
浙江省2017届中考数学第一轮复习4.3 一次函数的应用练习(无答案)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2017届中考数学第一轮复习4.3 一次函数的应用练习(无答案)浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2017届中考数学第一轮复习4.3 一次函数的应用练习(无答案)浙教版的全部内容。
一次函数的应用【牛刀小试】:1.为了加强公民的节约用水的意识,某市制定了如下节约用水的收费标准:每户每月的用水不超过10吨时,水价为1.2元,超过10吨时,超过部分按每吨1.8元收费.该市某户居民5月份用水x吨(x〉10),应交水费y元,则y关于x的关系式是_______.2.弹簧的长度与所挂物体的质量的关系是一次函数,如图所示,则不挂物体时弹簧的长度是。
3.蜡烛在空气中燃烧的速度与时间成正比,如果一支原长15cm的蜡烛4分钟后,其长度变为13cm,请写出剩余长度y(cm)与燃烧时间x(分钟)的关系式为_________.(不写x的范围)4。
如上右图所示,表示的是某航空公司托运行李的费用y(元)与托运行李的质量x(千克)的关系,由图中可知行李的质量只要不超过_________千克,就可以免费托运.【考点梳理】一次函数y kx b=+的性质k>0⇔直线上升⇔y随x的增大而;k<0⇔直线下降⇔y随x的增大而 .【典例分析】例1某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0。
5元,超计划部分每吨按0。
8元收费.⑴写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①当用水量小于或等于3000吨时;②当用水量大于3000吨时 .⑵某月该单位用水3200吨,水费是元;若用水2800吨,水费元。
18. 二次函数的应用➢ 知识过关1.二次函数)0(2≠++=a c bx ax y 图像与系数a 、b 、c 的关系(1) 如果抛物线)0(2≠++=a c bx ax y 与x 轴有两个交点,则一元二次方程02=++c bx ax 有两个_____实数根.(2) 如果抛物线)0(2≠++=a c bx ax y 与x 轴只有1个交点,则一元二次方程02=++c bx ax 有两个_____实数根.(3) 如果抛物线)0(2≠++=a c bx ax y 与x 轴无交点,则一元二次方程02=++c bx ax 没有实数根.3. 二次函数与一次交点一次函数)0(≠+=k n kx y 的图像L 与二次函数)0(2≠++=a c bx ax y 的图像G 的交点,由方程nkx y cbx ax y +=++=2{的解的个数确定 (1)方程组有两组不同的解⇔L 与G 有______交点; (2)方程组只有一组解⇔L 与G 只有______交点; (3)方程组无解⇔L 与G_______交点. 4. 二次函数的实际应用建立二次函数模型—求出二次函数解析式—结合函数解析式—解答问题.➢ 考点分类考点1 二次函数图像与系数的关系例1二次函数的图像如图所示,现有下列结论:①042>-ac b ;①a>0;①b>0;①c>0; ①039<++c b a ,则其中结论正确的有( ) A.2个 B.3个 C.4个 D.5个考点2二次函数的实际应用例2某文具店购进一批纪念册,线本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系;当销售单价为22元时,销量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元? (3)设该文具店每周销售这种纪念册所获昨的利润为w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?考点3二次函数的综合应用例3如图所示,直线与抛物线相交于点A 和点B ,点P 是线段AB 上异于A 、B 的动点,过点P 作PC①x 轴于点C ,交抛物线于点D. (1)求抛物线的解析式;(2)是否存在这样的P 点,使线段PD 的长有最大值,若存在,求出这个最大值;若不存在,说明理由;(3)当①PAD 为直角三角形时,求点P 的坐标.➢真题演练1.二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A.B.C.D.2.函数y=|ax2+bx+c|(a>0,b2﹣4ac>0)的图象是由函数y=ax2+bx+c(a>0,b2﹣4ac >0)的图象x轴上方部分不变,下方部分沿x轴向上翻折而成,如图所示,则下列结论正确的是()①2a+b=0;②c=3;③abc>0;④将图象向上平移1个单位后与直线y=5有3个交点.A.①②B.①③C.②③④D.①③④3.如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是()A.4个B.3个C.2个D.1个4.如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b>0;③b2>a+c+4ac;④a>c>b,正确结论的个数为()A.1个B.2个C.3个D.4个5.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c<0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是()A.1B.2C.3D.46.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=−12,且与x轴的一个交点坐标为(﹣2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x 的一元二次方程ax2+bx+c﹣1=0有两个相等的实数根.其中正确结论的序号是()A.①③B.②④C.③④D.②③7.如图,若二次函数y=ax2+bx+c(a≠0)的图象的对称轴为直线x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则下列结论:①abc>0;②二次函数的最大值为a+b+c;③a﹣b+c<0;④b2﹣4ac<0;⑤当y>0时,﹣1<x<3.⑥3a+c=0;其中正确的结论有.8.公园草坪上,自动浇水喷头喷出的水线呈一条抛物线,水线上水珠的离地高度y(米)关于水珠与喷头的水平距离x(米)的函数解折武是y=−13x2+43x(0≤x≤4).那么水珠的最大离地高度是米.9.东方商厦将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销量就增加1个,为了获取最大利润,则应降价元.10.中国跳水队被称为“梦之队”,跳水运动员在进行跳水训练时,身体(看成一点)在空中的运动路线是如图所示的抛物线.已知跳板AB长为1米,距水面的高OA为3米,C 为入水点,训练时跳水曲线在离起跳点B水平距离1米时达到距水面最大高度k米,分别以OC、OA所在直线为横轴和纵轴,点O为坐标原点建立平面直角坐标系.若跳水运动员在入水时点C与点O的距离在3.5米至4米(含3.5米和4米)才能达到训练要求,则k的取值范围是.11.随着我国经济、科技的进一步发展,我国的农业生产的机械化程度越来越高,过去的包产到户就不太适合机械化的种植,现在很多地区就出现了一种新的生产模式,很多农民把自己的承包地转租给种粮大户或者新型农村合作社,出现了大农田,这些农民则成为合作社里的工人,这样更有利于机械化种植.某地某种粮大户,去年种植优质水稻200亩,平均每亩收益480元.计划今年多承包一些土地,已知每增加一亩,每亩平均收益比去年每亩平均收益减少2元.(1)该大户今年应承租多少亩土地,才能使今年总收益达到96600元?(2)该大户今年应承租多少亩土地,可以使今年总收益最大,最大收益是多少?12.在新农村建设过程中,渣濑湾村采用“花”元素打造了一座花都村庄.如图,一农户用长为25m 的篱笆,一面利用墙,围成有两个小门且中间隔有一道篱笆的长方形花圃.已知小门宽为1m ,设花圃的宽AB 为x (m ),面积为S (m 2). (1)求S 关于x 的函数表达式.(2)如果要围成面积为54m 2的花圃,AB 的长为多少米?(3)若墙的最大长度为10m ,则能围成的花圃的最大面积为多少?并求此时AB 的长.➢ 课后练习1.已知抛物线y =ax 2+bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图象如图所示,有下列结论:①abc >0; ②2c ﹣3b <0; ③5a +b +2c =0;④若B (43,y 1)、C (13,y 2)、D (−13,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .42.已知抛物线y =12x 2﹣bx +c ,当x =1时,y <0;当x =2时,y <0.下列判断:①b 2>2c ;②若c >1,则b >32;③已知点A (m 1,n 1),B (m 2,n 2)在抛物线y =12x 2﹣bx +c 上,当m 1<m 2<b 时,n 1>n 2;④若方程12x 2﹣bx +c =0的两实数根为x 1,x 2,则x 1+x 2>3.其中正确的有( )个. A .1 B .2 C .3 D .43.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1,①b 2﹣4ac >0②4a +c <0③当﹣3≤x ≤1时,y ≥0④若B(−52,y 1),C(−12,y 2)为函数图象上的两点,则y 1>y 2,以上结论中正确的有( )A .1个B .2个C .3个D .4个4.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点A (3,0),与y 轴的交点B 在(0,3)与(0,4)之间(不包括这两点),对称轴为直线x =1.下列结论:①abc <0;②43a +3b +c >0;③−43<a <−1;④若x 1,x 2(x 1<x 2)是方程ax 2+bx +c =m (m <0)的两个根,则有x 1<﹣1<3<x 2.其中正确结论的个数是( )A .1个B .2个C .3个D .4个5.如图,抛物线y =ax 2+bx +c (a >0)与x 轴交于A (﹣3,0)、B 两点,与y 轴交于点C ,点(m ﹣5,n )与点(3﹣m ,n )也在该抛物线上.下列结论:①点B 的坐标为(1,0);②方程ax 2+bx +c ﹣2=0有两个不相等的实数根;③54a +c <0;④当x =﹣t 2﹣2时,y ≥c .正确的有( )A .1个B .2个C .3个D .4个6.如图,抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且抛物线经过点(1,0),下面给出了四个结论:①abc>0;②a﹣2b+4c>0;③5a+c<b;④a﹣b=13c.其中结论正确的个数是()A.1个B.2个C.3个D.4个7.如图,物体从点A抛出,物体的高度y(m)与飞行时间t(s)近似满足函数关系式y=−1 5(t﹣3)2+5.(1)OA=m.(2)在飞行过程中,若物体在某一个高度时总对应两个不同的时间,则t的取值范围是.8.某种型号的小型无人机着陆后滑行的距离S(米)关于滑行的时间t(秒)的函数解析式是S=﹣0.25t2+8t,无人机着陆后滑行秒才能停下来.9.图1是一个斜坡的横截面,tanα=12,斜坡顶端B与地面的距离为3米,为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A,喷头A喷出的水柱在空中走过的曲线可以看作抛物线的一部分,设喷出水柱的竖直高度为y(单位:米)(水柱的竖直高度是指水柱与地面的距离),水柱与喷头A的水平距离为x(单位:米),图2记录了y与x 的相关数据,则y与x的函数关系式为.10.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2,则小球飞出s时,达到最大高度.11.开学季,福山振华量贩超市从厂家购进A、B两种型号的书包,两次购进书包的情况如表:进货批次A型书包(个)B型书包(个)总费用(元)一1002008000二20030013000(1)求A、B两种型号的书包进价各是多少元?(2)在销售过程中,A型书包因为物美价廉而更受消费者喜欢.为了增大B型书包的销售量,超市决定对B型书包进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型书包降价多少元时,每天售出B型书包的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种书包,如果每销售出一个A型书包可获利9元,售出一个B型书包可获利6元,超市决定每售出一个A型书包就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的书包在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?➢冲击A+已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求ADAB+AC的值.。
2017中考数学一轮复习模拟测试卷5姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题4分,共48分)1。
计算:(﹣)×2=( )A.﹣1 B.1ﻩ C.4 D.﹣42。
下列变形中正确的是( )A.(a+b)(﹣a﹣b)=a2﹣b2B.x2﹣6x﹣9=(x﹣3)2C.x4﹣16=(x2+4)(x2﹣4)D.(﹣2m+5n)2=4m2﹣20mn+25n23。
用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是( )A. B.ﻩ C.ﻩ D.4。
如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点,若AB=5cm,BC=3cm,则△PBC的周长等于( )A. 4cm B. 6cm C. 8cm D. 10cm5.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是( )A.m>1ﻩ B. m=1ﻩ C. m<1D.m≤1 6.函数y=错误!中自变量x的取值范围是( )A.x>4B.x≥4 C.x≤4D.x≠47.如图,∠AOB=90°,∠B=30°,△A′OB′可以看作是由△AOB绕点O顺时针旋转α角度得到的.若点A′在AB上,则旋转角α的大小可以是( )A .30° ﻩ B.45° C.60° ﻩD .90°8。
有一个边长为50cm 的正方形洞口,要用一个圆盖去盖住这个洞口,那么圆盖的直径至少应为( )A .50cmB .25cm ﻩ C.50cm ﻩD.50cm9。
如图,AB∥CD,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB 、AC 于E、F 两点;再分别以E 、F 为圆心,大于EF 长为半径作圆弧,两条圆弧交于点G,作射线AG交CD 于点H .若∠C=140°,则∠AHC 的大小是( )A.20°ﻩ B .25° ﻩ C.30°D.40°10。
2017年浙江中考数学真题分类汇编二次函数(解析版)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年浙江中考数学真题分类汇编二次函数(解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年浙江中考数学真题分类汇编二次函数(解析版)(word版可编辑修改)的全部内容。
2017年浙江中考真题分类汇编(数学):专题06 二次函数一、单选题(共6题;共12分)1、(2017•宁波)抛物线(m是常数)的顶点在 ( )A、第一象限B、第二象限C、第三象限D、第四象限2、(2017·金华)对于二次函数y=−(x−1)2+2的图象与性质,下列说法正确的是( )A、对称轴是直线x=1,最小值是2B、对称轴是直线x=1,最大值是2C、对称轴是直线x=−1,最小值是2D、对称轴是直线x=−1,最大值是23、(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,( )A、若m>1,则(m﹣1)a+b>0B、若m>1,则(m﹣1)a+b<0C、若m<1,则(m﹣1)a+b>0D、若m<1,则(m﹣1)a+b<04、(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1)。
一张透明纸上画有一个点和一条抛物线,平移透明纸,这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A、y=x2+8x+14B、y=x2-8x+14C、y=x2+4x+3D、y=x2-4x+35、(2017·嘉兴)下列关于函数的四个命题:①当时,有最小值10;②为任意实数,时的函数值大于时的函数值;③若,且是整数,当时,的整数值有个;④若函数图象过点和,其中,,则.其中真命题的序号是( )A、①B、②C、③D、④6、(2017·丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )A、向左平移1个单位B、向右平移3个单位C、向上平移3个单位D、向下平移1个单位二、填空题(共1题;共2分)三、解答题(共12题;共156分)8、(2017•绍兴)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室长比(1)中的长多2m就行了。
第12讲 二次函数【例1】 1.抛物线y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+b 与反比例函数y=在同一平面直角坐标系内的图象大致为( )A .B .C .D .2.已知x=2m+n+2和x=m+2n 时,多项式x 2+4x+6的值相等,且m ﹣n+2≠0,则当x=3(m+n+1)时,多项式x 2+4x+6的值等于 .3.已知二次函数y=ax 2﹣2ax+1(a <0)图象上三点A (﹣1,y 1),B (2,y 2)C (4,y 3),则y 1、y 2、y 3的大小关系为( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 1<y 3<y 2D .y 3<y 1<y 2方法总结 1.将抛物线解析式写成y =a(x -h)2+k 的形式,则顶点坐标为(h ,k),对称轴为直线x =h ,也可应用对称轴公式x =-,顶点坐标(-,)来求对称轴及顶点坐标.2.比较两个二次函数值大小的方法: (1)直接代入自变量求值法;(2)当自变量在对称轴两侧时,看两个数到对称轴的距离及函数值的增减性判断; (3)当自变量在对称轴同侧时,根据函数值的增减性判断.举一反三 1.已知点A (a ﹣2b ,2﹣4ab )在抛物线y=x 2+4x+10上,则点A 关于抛物线对称轴的对称点坐标为( ) A .(﹣3,7)B .(﹣1,7)C .(﹣4,10)D .(0,10)2.已知关于x 的函数y=(2m ﹣1)x 2+3x+m 图象与坐标轴只有2个公共点,则m= .3.设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .312y y y >>B .312y y y >>C .321y y y >>D .213y y y >> 考点二、二次函数系数的符号及其之间的关系【例2】 二次函数y=ax 2+bx+c 的图象如图所示,给出下列结论:①2a +b >0;②b>a >c ;③若﹣1<m <n <1,则m+n <﹣;④3|a|+|c|<2|b|. 其中正确的结论是 (写出你认为正确的所有结论序号).方法总结 根据二次函数的图象确定有关代数式的符号,是二次函数中的一类典型的数形结合问题,具有较强的推理性.解题时应注意a 决定抛物线的开口方向,c 决定抛物线与y 轴的交点,抛物线的对称轴由a ,b 共同决定,b 2-4ac 决定抛物线与x 轴的交点情况.当x =1时,决定a +b +c 的符号,当x =-1时,决定a -b +c 的符号.在此基础上,还可推出其他代数式的符号.运用数形结合的思想更直观、更简捷.举一反三 1.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论: ①b 2﹣4ac >0; ②4a+c >2b ; ③(a+c )2>b 2; ④x (ax+b )≤a ﹣b . 其中正确结论的是 .(请把正确结论的序号都填在横线上)2.一次函数y=ax+b (a ≠0)、二次函数y=ax 2+bx 和反比例函数y=(k ≠0)在同一直角坐标系中的图象如图所示,A 点的坐标为(﹣2,0),则下列结论中,正确的是( )A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0考点三、二次函数图象的平移【例3】二次函数y=-2x2+4x+1的图象怎样平移得到y=-2x2的图象( )A.向左平移1个单位,再向上平移3个单位B.向右平移1个单位,再向上平移3个单位C.向左平移1个单位,再向下平移3个单位D.向右平移1个单位,再向下平移3个单位方法总结二次函数图象的平移实际上就是顶点位置的变换,因此先将二次函数解析式转化为顶点式确定其顶点坐标,然后按照“左加右减、上加下减”的规律进行操作.举一反三将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数解析式是( )A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2考点四、确定二次函数的解析式【例4】如图,四边形ABCD是菱形,点D的坐标是(0,3),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A,B两点.(1)求A,B,C三点的坐标;(2)求经过A,B,C三点的抛物线的解析式.方法总结用待定系数法求二次函数解析式,需根据已知条件,灵活选择解析式:若已知图象上三个点的坐标,可设一般式;若已知二次函数图象与x轴两个交点的横坐标,可设交点式;若已知抛物线顶点坐标或对称轴与最大(或小)值,可设顶点式.举一反三已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为.考点五、二次函数的实际应用【例5】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.方法总结运用二次函数的性质解决生活和实际生产中的最大值和最小值问题是最常见的题目类型,解决这类问题的方法是:1.列出二次函数的关系式,列关系式时,要根据自变量的实际意义,确定自变量的取值范围.2.在自变量取值范围内,运用公式法或配方法求出二次函数的最大值和最小值.举一反三大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?考点六、二次函数的面积问题【例6】如图,对称轴为x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.方法总结对于此类二次函数题型考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题,解题的关键是运用方程思想与数形结合思想.其次就是应用到二次函数常见的水平宽铅垂高.举一反三如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣),点M是抛物线C2:y=mx2﹣2mx﹣3m (m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.考点七、二次函数的综合应用【例7】如图抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,顶点为D,连接AC、CD、AD.(1)求该二次函数的解析式;(2)求△ACD的面积;(3)若点Q在抛物线的对称轴上,抛物线上是否存在点P,使得以A、B、Q、P四点为顶点的四边形为平行四边形?若存在,求出满足条件的点P的坐标;若不存在,请说明理由.方法总结此类题型主要考查二次函数与其他知识点的综合应用,利用待定系数法求函数解析式,利用勾股定理、勾股定理的逆定理求三角形的形状;利用平行四边形的性质:对角线互相平分,对边相等是求出题中P 点的关键.所以对于考查二次函数与三角形、四边形、圆、相似等相关知识的结合性题目时一定要把握好它们的性质及其常考定理与推理的综合应用.举一反三 在平面直角坐标系中,已知抛物线经过A (﹣4,0),B (0,﹣4),C (2,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S . 求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线y=﹣x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.一、选择题1.已知抛物线()3y k x 1x k ⎛⎫=+ ⎪⎝⎭-与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是( )A .2B .3C .4D .5 2.已知下列命题:①对于不为零的实数c ,关于x 的方程1+=+c xcx 的根是c ; ②在反比例函数xy 2=中,如果函数值y <1时,那么自变量x >2; ③二次函数 2222-+-=m mx x y 的顶点在x 轴下方;④函数y= kx 2+(3k+2)x+1,对于任意负实数k ,当x<m 时,y 随x 的增大而增大,则m 的最大整数值为2-.其中真命题为( )A .①③B .③C .②④D .③④3.(2013杭州,10)给出下列命题及函数x y =,2x y =和xy 1=的图象 ①如果21a a a>>,那么10<<a ; ②如果aa a 12>>,那么1>a ;③如果a a a>>21,那么01<<-a ;④如果a aa >>12时,那么1-<a 。
2017届中考数学一轮专题复习第12讲二次函数知识梳理及自主测试浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017届中考数学一轮专题复习第12讲二次函数知识梳理及自主测试浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017届中考数学一轮专题复习第12讲二次函数知识梳理及自主测试浙教版的全部内容。
第12讲 二次函数考纲要求命题趋势1.理解二次函数的有关概念.2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质.3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题.4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题.5.会用二次函数的图象求一元二次方程的近似解。
二次函数是中考的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.中考命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查。
一、二次函数的概念一般地,形如y =ax 2+bx+c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数. 二次函数的三种种形式: (1)一般形式:y =ax 2+bx+c;(2)顶点式:y =a (x -h)2+k (a ≠0),其中二次函数的顶点坐标是(h,k). (3)交点式:y =a (x -x 1)(x -x 2) 二、二次函数的图象及性质二次函数y =ax 2+bx +c(a ,b ,c 为常数,a ≠0)图象(a >0)(a <0)开口方向 开口向上 开口向下 对称轴 直线x =-错误!直线x =-错误!顶点坐标错误!错误!增减性当x <-错误!时,y随x 的增大而减小;当x >-错误!时,y 随x 的增大而增大 当x <-错误!时,y随x 的增大而增大;当x >-错误!时,y 随x 的增大而减小 最值当x =-错误!时,y有最小值4ac -b24a当x =-错误!时,y 有最大值错误!2四、二次函数图象的平移抛物线y =ax 2与y =a(x -h )2,y =ax 2+k ,y =a (x -h )2+k 中|a |相同,则图象的开口方向和大小都相同,只是位置不同.它们之间的平移关系如下:五、二次函数关系式的确定1.一般式:y =ax 2+bx +c(a ≠0).若已知条件是图象上三个点的坐标,则设一般式y =ax 2+bx +c (a ≠0),将已知条件代入,求出a ,b ,c 的值.2.交点式:y =a (x -x 1)(x -x 2)(a ≠0).若已知二次函数图象与x 轴的两个交点的坐标,则设交点式:y =a(x -x 1)(x -x 2)(a ≠0),将第三点的坐标或其他已知条件代入,求出待定系数a ,最后将关系式化为一般式.3.顶点式:y =a (x -h)2+k (a ≠0).若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y =a (x -h )2+k (a ≠0),将已知条件代入,求出待定系数化为一般式. 六、二次函数与一元二次方程的关系1.二次函数y =ax 2+b x +c (a ≠0),当y =0时,就变成了ax 2+bx +c =0(a ≠0). 2.ax 2+bx +c =0(a ≠0)的解是抛物线与x 轴交点的横坐标.3.当Δ=b 2-4ac >0时,抛物线与x 轴有两个不同的交点;当Δ=b 2-4ac =0时,抛物线与x 轴有一个交点;当Δ=b 2-4ac <0时,抛物线与x 轴没有交点.4.设抛物线y =ax 2+bx +c 与x 轴两交点坐标分别为A(x 1,0),B(x 2,0),则x 1+x 2=a b,x 1·x 2=ac。
二次函数及其图象一、选择题1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.当﹣1<x<3时,y>0C.c<0 D.当x≥1时,y随x的增大而增大2.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=33.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<34.已知二次函数y=a(x+1)2﹣b(a≠0)有最小值1,则a,b的大小关系为()A.a>b B.a<b C.a=b D.不能确定5.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s (cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.二、填空题6.二次函数y=x2+1的图象的顶点坐标是.7.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).8.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.9.若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n= .10.已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的序号有.三、解答题(共40分)11.当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.12.已知二次函数y=a(x﹣m)2﹣a(x﹣m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点.(2)设该函数的图象的顶点为C,与x轴交于A,B两点,与y轴交于D点.①当△ABC的面积为1时,求a的值.②当△ABC的面积与△ABD的面积相等时,求m的值.13.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?14.)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.二次函数及其图象参考答案与试题解析一、选择题1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.当﹣1<x<3时,y>0C.c<0 D.当x≥1时,y随x的增大而增大【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:A、抛物线的开口方向向下,则a<0.故A选项错误;B、根据图示知,抛物线的对称轴为x=1,抛物线与x轴的一交点的横坐标是﹣1,则抛物线与x轴的另一交点的横坐标是3,所以当﹣1<x<3时,y>0.故B选项正确;C、根据图示知,该抛物线与y轴交于正半轴,则c>0.故C选项错误;D、根据图示知,当x≥1时,y随x的增大而减小,故D选项错误.故选:B.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.2.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3【考点】抛物线与x轴的交点.【分析】关于x的一元二次方程x2﹣3x+m=0的两实数根就是二次函数y=x2﹣3x+m(m为常数)的图象与x轴的两个交点的横坐标.【解答】解:∵二次函数的解析式是y=x2﹣3x+m(m为常数),∴该抛物线的对称轴是:x=.又∵二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),∴关于x的一元二次方程x2﹣3x+m=0的两实数根分别是:x1=1,x2=2.故选B.【点评】本题考查了抛物线与x轴的交点.解答该题时,也可以利用代入法求得m的值,然后来求关于x的一元二次方程x2﹣3x+m=0的两实数根.3.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3【考点】二次函数图象上点的坐标特征.【专题】压轴题.【分析】先判断出抛物线开口方向上,进而求出对称轴即可求解.【解答】解:∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a﹣5b+c>9a+3b+c,∴<1,∴﹣>﹣1,∴x0>﹣1∴x0的取值范围是x0>﹣1.故选:B.【点评】本题考查了二次函数图象上点坐标特征,主要利用了二次函数的增减性与对称性,根据顶点的纵坐标最小确定出抛物线开口方向上是解题的关键.4.已知二次函数y=a(x+1)2﹣b(a≠0)有最小值1,则a,b的大小关系为()A.a>b B.a<b C.a=b D.不能确定【考点】二次函数的最值.【专题】压轴题;探究型.【分析】根据函数有最小值判断出a的符号,进而由最小值求出b,比较a、b可得出结论.【解答】解:∵二次函数y=a(x+1)2﹣b(a≠0)有最小值,∴抛物线开口方向向上,即a>0;又最小值为1,即﹣b=1,∴b=﹣1,∴a>b.故选A.【点评】本题考查的是二次函数的最值,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.5.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s (cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.【解答】解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选:B.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二、填空题6.二次函数y=x2+1的图象的顶点坐标是(0,1).【考点】二次函数的性质.【分析】根据顶点式解析式写出顶点坐标即可.【解答】解:二次函数y=x2+1的图象的顶点坐标是(0,1).故答案为:(0,1).【点评】本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.7.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).【考点】二次函数图象上点的坐标特征.【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.8.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.【考点】二次函数的性质.【专题】压轴题.【分析】根据∠AOB=45°求出直线OA 的解析式,然后与抛物线解析式联立求出有一个公共点时的k 值,即为一个交点时的最大值,再求出抛物线经过点B 时的k 的值,即为一个交点时的最小值,然后写出k 的取值范围即可.【解答】解:由图可知,∠AOB=45°,∴直线OA 的解析式为y=x ,联立消掉y 得,x 2﹣2x+2k=0,△=b 2﹣4ac=(﹣2)2﹣4×1×2k=0,即k=时,抛物线与OA 有一个交点,此交点的横坐标为1,∵点B 的坐标为(2,0),∴OA=2,∴点A 的坐标为(,), ∴交点在线段AO 上;当抛物线经过点B (2,0)时,×4+k=0,解得k=﹣2,∴要使抛物线y=x 2+k 与扇形OAB 的边界总有两个公共点,实数k 的取值范围是﹣2<k <.故答案为:﹣2<k <. 【点评】本题考查了二次函数的性质,主要利用了联立两函数解析式确定交点个数的方法,根据图形求出有一个交点时的最大值与最小值是解题的关键.9.若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n= 9 .【考点】抛物线与x轴的交点.【分析】首先,由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=﹣时,y=0.且b2﹣4c=0,即b2=4c;其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,则A(﹣﹣3,n),B(﹣+3,n);最后,根据二次函数图象上点的坐标特征知n=(﹣﹣3)2+b(﹣﹣3)+c=﹣b2+c+9,所以把b2=4c代入即可求得n的值.【解答】解:∵抛物线y=x2+bx+c与x轴只有一个交点,∴当x=﹣时,y=0.且b2﹣4c=0,即b2=4c.又∵点A(m,n),B(m+6,n),∴点A、B关于直线x=﹣对称,∴A(﹣﹣3,n),B(﹣+3,n)将A点坐标代入抛物线解析式,得:n=(﹣﹣3)2+b(﹣﹣3)+c=﹣b2+c+9∵b2=4c,∴n=﹣×4c+c+9=9.故答案是:9.【点评】本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10.已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的序号有①③④.【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图象可知:a<0,b>0,c>0,abc<0,故此选项正确;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故此选项错误.故①③④正确.故答案为:①③④.【点评】此题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.三、解答题(共40分)11.当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.【考点】二次函数的最值.【专题】分类讨论.【分析】当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k表示不同类型的函数,需要分类讨论,最终确定函数的最值.【解答】解:k可取值﹣1,1,2(1)当k=1时,函数为y=﹣4x+4,是一次函数(直线),无最值;(2)当k=2时,函数为y=x2﹣4x+3,为二次函数.此函数开口向上,只有最小值而无最大值;(3)当k=﹣1时,函数为y=﹣2x2﹣4x+6,为二次函数.此函数开口向下,有最大值.因为y=﹣2x2﹣4x+6=﹣2(x+1)2+8,则当x=﹣1时,函数有最大值为8.【点评】本题考查了二次函数的最值.需要根据k的不同取值进行分类讨论,这是容易失分的地方.12.已知二次函数y=a(x﹣m)2﹣a(x﹣m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点.(2)设该函数的图象的顶点为C,与x轴交于A,B两点,与y轴交于D点.①当△ABC的面积为1时,求a的值.②当△ABC的面积与△ABD的面积相等时,求m的值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)把(x﹣m)看作一个整体,令y=0,利用根的判别式进行判断即可;(2)①令y=0,利用因式分解法解方程求出点A、B的坐标,然后求出AB,再把抛物线转化为顶点式形式求出顶点坐标,再利用三角形的面积公式列式进行计算即可得解;②令x=0求出点D的坐标,然后利用三角形的面积列式计算即可得解.【解答】(1)证明:令y=0,a(x﹣m)2﹣a(x﹣m)=0,△=(﹣a)2﹣4a×0=a2,∵a≠0,∴a2>0,∴不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)解:①y=0,则a(x﹣m)2﹣a(x﹣m)=a(x﹣m)(x﹣m﹣1)=0,解得x1=m,x2=m+1,∴AB=(m+1)﹣m=1,y=a(x﹣m)2﹣a(x﹣m)=a(x﹣m﹣)2﹣,△ABC的面积=×1×|﹣|=1,解得a=±8;②x=0时,y=a(0﹣m)2﹣a(0﹣m)=am2+am,所以,点D的坐标为(0,am2+am),△ABD的面积=×1×|am2+am|,∵△ABC的面积与△ABD的面积相等,∴×1×|am2+am|=×1×|﹣|,整理得,m2+m﹣=0或m2+m+=0,解得m=或m=﹣.【点评】本题是对二次函数的综合考查,主要利用了根的判别式,三角形的面积,把(x﹣m)看作一个整体求解更加简便.13.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?【考点】二次函数的应用.【分析】(1)把x=20代入y=﹣10x+500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由总利润=销售量•每件纯赚利润,得w=(x﹣10)(﹣10x+500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣10x2+600x﹣5000=3000,求出x的值,结合图象求出利润的范围,然后设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.【解答】解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,300×(12﹣10)=300×2=600元,即政府这个月为他承担的总差价为600元.(2)由题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000∵a=﹣10<0,∴当x=30时,w有最大值4000元.即当销售单价定为30元时,每月可获得最大利润4000元.(3)由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40.∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x≤40时,4000>w≥3000.又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.∵k=﹣20<0.∴p随x的增大而减小,∴当x=25时,p有最小值500元.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.【点评】本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.14.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)利用待定系数法求二次函数解析式、一次函数解析式;(2)根据两点之间线段最短作N点关于直线x=3的对称点N′,当M(3,m)在直线DN′上时,MN+MD 的值最小;(3)需要分类讨论:①当点E在线段AC上时,点F在点E上方,则F(x,x+3)和②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1),然后利用二次函数图象上点的坐标特征可以求得点E的坐标;(4)方法一:过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,如图1.设Q(x,x+1),则P(x,﹣x2+2x+3).根据两点间的距离公式可以求得线段PQ=﹣x2+x+2;最后由图示以及三角形的面积公式知S△APC=﹣(x﹣)2+,所以由二次函数的最值的求法可知△APC的面积的最大值;方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图2.设Q(x,x+1),则P(x,﹣x2+2x+3).根据图示以及三角形的面积公式知S△APC=S△APH+S直角梯形PHGC﹣S△AGC=﹣(x﹣)2+,所以由二次函数的最值的求法可知△APC的面积的最大值;【解答】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3又设直线为y=kx+n过点A(﹣1,0)及C(2,3)得,解得故直线AC为y=x+1;(2)如图1,作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),故直线DN′的函数关系式为y=﹣x+,当M(3,m)在直线DN′上时,MN+MD的值最小,则m=﹣×=;(3)由(1)、(2)得D(1,4),B(1,2),∵点E在直线AC上,设E(x,x+1),①如图2,当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去)∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1)由F在抛物线上∴x﹣1=﹣x2+2x+3解得x=或x=∴E(,)或(,)综上,满足条件的点E的坐标为(0,1)、(,)或(,);(4)方法一:如图3,过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,设Q(x,x+1),则P(x,﹣x2+2x+3)∴PQ=(﹣x2+2x+3)﹣(x+1)=﹣x2+x+2又∵S△APC=S△APQ+S△CPQ=PQ•AG=(﹣x2+x+2)×3=﹣(x﹣)2+∴面积的最大值为.方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图3,设Q(x,x+1),则P(x,﹣x2+2x+3)又∵S△APC=S△APH+S直角梯形PHGC﹣S△AGC=(x+1)(﹣x2+2x+3)+(﹣x2+2x+3+3)(2﹣x)﹣×3×3=﹣x2+x+3=﹣(x﹣)2+∴△APC的面积的最大值为.【点评】本题考查了二次函数综合题.解答(3)题时,要对点E所在的位置进行分类讨论,以防漏解.。
1一次函数【牛刀小试】1.若正比例函数kxy=(k≠0)经过点(1-,2),则该正比例函数的解析式为=y___________.2.如图,一次函数y ax b=+的图象经过A、B两点,则关于x的不等式0ax b+<的解集是.3. 一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的解析式可以是 .(任写出一个符合题意即可)4.一次函数21y x=-的图象大致是()5.如果点M在直线1y x=-上,则M点的坐标可以是()A.(-1,0) B.(0,1) C.(1,0) D.(1,-1)【考点梳理】1.正比例函数的一般形式是_______.一次函数的一般形式是________________.2. 一次函数y kx b=+的图象是经过和两点的 .3. 求一次函数的解析式的方法是,其基本步骤是:⑴;⑵;⑶;⑷ .4. 一次函数y kx b=+的图象与性质【典例分析】例1 已知一次函数物图象经过A(-2,-3),B(1,3)两点.k>0b>0 k>0 b<0 k<0 b>02ab +⑴ 求这个一次函数的解析式.⑵ 试判断点P(-1,1)是否在这个一次函数的图象上. ⑶ 求此函数与x 轴、y 轴围成的三角形的面积.例2 某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图所示. ⑴ 第20天的总用水量为多少米3?⑵ 当x ≥20时,求y 与x 之间的函数关系式. ⑶ 种植时间为多少天时,总用水量达到7000米3?【真题演练】1.直线y =2x +b 经过点(1,3),则b = _________.2. 已知直线y =2x +8与x 轴和y 轴的交点的坐标分别是_______、_______;与两条坐标轴围成的三角形的面积是__________. 3. 如果直线y ax b =+经过第一、二、三象限,那么ab ____0. ( 填“>”、“<”、“=”)4.如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 . 5. 下列各点中,在函数27y x =-的图象上的是( )A .(2,3)B .(3,1)C .(0,-7)D .(-1,9) 6. 直线3y kx =+与x 轴的交点是(1,0),则k 的值是( )A.3B.2C.-2D.-3 7.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论:①0k <;②0a >;③当3x <天)3时,12y y <中,正确的个数是( ) A .0B .1C .2D .38. 一次函数(1)5y m x =++中,y 的值随x 的增小而减小,则m 的取值范围是( ) A .1m >- B . 1m <- C .1m =- D .1m <9. 某地区的电力资源丰富,并且得到了较好的开发.该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量x (度)与相应电费y (元)之间的函数图像如图所示.⑴ 填空,月用电量为100度时,应交电费 元; ⑵ 当x ≥100时,求y 与x 之间的函数关系式; ⑶ 月用电量为260度时,应交电费多少元?10. 如图,在边长为2的正方形ABCD 的一边BC 上,一点P 从B 点运动到C 点,设BP =x ,四边形AP CD 的面积为y.⑴ 写出y 与x 之间的函数关系式及x 的取值范围; ⑵ 说明是否存在点P ,使四边形APCD 的面积为1.5?。
函数的图像与性质(2)班级 姓名 学号一.选择题1.在平面直角坐标系中,反比例函数 ()=0k y k <x图像的两支分别在( ) A.第一、三象限 B.第二、四象限 C.第一、二象限 D.第三、四象限2.下列函数中,当x >0时,y 随x 的增大而增大的函教是( ) 。
A.y=2x -B. y=2x+2-C. 2y=x -D. 2y=2x - 3.抛物线y =-(x +2)2-3的顶点坐标是( )A (2,-3);B (-2,3);C (2,3);D (-2,-3) .4.用某种金属材料制成的高度为h 的圆柱形物体甲如右图放在桌面上,它对桌面的压强为1000帕,将物体甲锻造成高度为21h 的圆柱形的物体乙(重量保持不变),则乙对桌面的压强为( ) A .500帕 B .1000帕 C .2000帕 D .250帕5.下列函数中,y 随x 的增大而减小的是( )A .1y x =-B .2y x =C .3y x=-(0x >) D .4y x =(0x <) 6.已知,如图为二次函数2y ax bx c =++的图象,则一次函数y ax bc =+的图象不经过( )A 第一象限B 第二象限C 第三象限D 第四象限7.下列函数中,y 随x 增大而增大的是( ) A.3y x =- B. y x 5=-+ C. 1y x 2= D. 21y x (x 0)2=< 8.已知二次函数 2=y ax bx c ++,且a <0,a b c -+>0,则一定有( )A.24b ac ->0B.24b ac -=0C. 24b ac -<0D. 24b ac -c≤09.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①240b ac ->;②0abc >;③80a c +>;④930a b c ++<.其中,正确结论的个数是( )A .1 B. 2 C. 3 D. 410.在平面直角坐标系中,已知点A (4-,0),B (2,0),若点C 在一次函数1=22y x -+ 的图象上,且△ABC 为直角三角形,则满足条件的点C 有( )A .1个B .2个C .3个D .4个 二.填空题11.反比例函数k y x=的图象经过点(-2,1),则k 的值为 . 12.如图,正比例函数图象经过点A ,该函数解析式是 .第12题图 第13题图13.一次函数b kx y +=(k 为常数且0≠k )的图象如图所示,则使0>y 成立的x 的取值范围为 .14.直线y x =-,直线2y x =+与x 轴围成图形的周长是 (结果保留根号).15.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x 本,付款金额为y 元,请填写下表:三.解答题16.二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值。
中考数学一轮复习《二次函数的图像与性质》练习题(含答案)课时1二次函数图象与性质、抛物线与系数a、b、c的关系(建议答题时间:20分钟)1. (2017长沙)抛物线y=2(x-3)2+4的顶点坐标是()A. (3,4)B. (-3,4)C. (3,-4)D. (2,4)2. (2017金华)对于二次函数y=-(x-1)2+2的图象与性质,下列说法正确的是()A. 对称轴是直线x=1,最小值是2B. 对称轴是直线x=1,最大值是2C. 对称轴是直线x=-1,最小值是2D. 对称轴是直线x=-1,最大值是23. (2017连云港)已知抛物线y=ax2(a>0)过A(-2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A. y1>0>y2B. y2>0>y1C. y1>y2>0D. y2>y1>04. (人教九上41页第6题改编)对于二次函数y=-3x2-12x-3,下面说法错误的是()A. 抛物线的对称轴是x=-2B. x=-2时,函数存在最大值9C. 当x>-2时,y随x增大而减小D. 抛物线与x轴没有交点5. (2017眉山)若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2-ax()A. 有最大值a4B. 有最大值-a4C. 有最小值a4D. 有最小值-a46. (2017广州)a≠0,函数y=ax与y=-ax2+a在同一直角坐标系中的大致图象可能是()7. (2017重庆巴蜀月考)已知二次函数y=a2x+bx+c(a≠0)的图象如图所示,对称轴为直线x=1,下列结论中正确的是()A. abc>0B. b=2aC. a+c>D. 4a+2b+c>0第7题图第9题图第11题图8. (2017乐山)已知二次函数y=x2-2mx(m为常数),当-1≤x≤2时,函数值y的最小值为-2,则m的值是()A. 32B. 2 C.32或 2 D. -32或 29. (2017日照)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a-b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A. ①②③B. ③④⑤C. ①②④D. ①④⑤10. (2017广州)当x=________时,二次函数y=x2-2x+6有最小值________.11. (2017兰州)如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则点Q的坐标为________.课时2 抛物线的平移、解析式的确定、与方程(不等式)的关系(建议答题时间:20分钟)1. (2017重庆南开模拟)将二次函数y =(x -1)2+2的图象向左平移2个单位,再向下平移3个单位,则新的二次函数解析式为( )A . y =(x -3)2-1B . y =(x +1)2+5C . y =(x +1)2-1D . y =(x -3)2+52. (2017徐州)若函数y =x 2-2x +b 的图象与坐标轴有三个交点,则b 的取值范围是( )A . b <1且b ≠0B . b >1C . 0<b <1D . b <13. (2017苏州)二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( )A . x 1=0,x 2=4B . x 1=-2,x 2=6C . x 1=32,x 2=52D . x 1=-4,x 2=04. (2017绵阳)将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是( )A . b >8B . b >-8C . b ≥8D . b ≥-85. (2017天津)已知抛物线y =x 2-4x +3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M ,平移该抛物线,使点M 平移后的对应点M ′落在x 轴上,点B 平移后的对应点B ′落在y 轴上,则平移后的抛物线解析式为( )A . y =x 2+2x +1B . y =x 2+2x -1C . y =x 2-2x +1D . y =x 2-2x -16. (2017随州)对于二次函数y =x 2-2mx -3,下列结论错误的是( )A . 它的图象与x 轴有两个交点B . 方程x 2-2mx =3的两根之积为-3C . 它的图象的对称轴在y 轴的右侧D . x <m 时,y 随x 的增大而减小7. (2018原创)在-2,-1,0,1,2五个数字中,任取一个作为a ,使不等式组⎩⎨⎧x +a ≥01-x >x +2无解,且函数y =ax 2+(a +2)x +12a +1的图象与x 轴只有一个交点,那么a 的值为( )A . 0B . 0或-2C . 2或-2D . 0,2或-28. (2017青岛)若抛物线y =x 2-6x +m 与x 轴没有交点,则m 的取值范围是________.9. 注重开放探究(2017上海)已知一个二次函数的图像开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是________.(只需写一个)10. (2017武汉)已知关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是________.11. (2017鄂州)已知正方形ABCD 中A (1,1)、B (1,2)、C (2,2)、D (2,1),有一抛物线y =(x +1)2向下平移m 个单位(m >0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是________.12. (2017杭州)在平面直角坐标系中,设二次函数y 1=(x +a )(x -a -1),其中a ≠0.(1)若函数y 1的图象经过点(1,-2),求函数y 1的表达式;(2)若一次函数y 2=ax +b 的图象与y 1的图象经过x 轴上同一点,探究实数a ,b 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )在函数y 1的图象上.若m <n ,求x 0的取值范围.答案第1课时 二次函数图象与性质,抛物线与系数a 、b 、c 的关系1. A2. B3. C 【解析】画出抛物线y =ax 2(a >0)的草图如解图,根据图象可知,y 1>0,y 2>0,且y 1>y 2.第3题解图4. D 【解析】由y =-3x 2-12x -3=-3(x +2)2+9,可知对称轴是x =-2,选项A 正确;抛物线的开口向下,顶点坐标是(-2,9),当x =-2时,y 存在最大值9,选项B 正确;开口向下,当x >-2时,图象处于对称轴的右边,y 随x 增大而减小,选项C 正确;当y =0时,一元二次方程-3x 2-12x -3=0有实数解,所以抛物线与x 轴有交点,选项D 错误.5. B 【解析】∵一次函数y =(a +1)x +a 的图象过第一、三、四象限,∴⎩⎨⎧a +1>0a <0,解得-1<a <0,∵二次函数y =ax 2-ax =a (x -12)2-a 4,又∵-1<a <0,∴二次函数y =ax 2-ax 有最大值,且最大值为-a 4.6. D 【解析】如果a >0,则反比例函数y =a x 图象在第一、三象限,二次函数y=-ax 2+a 图象开口向下,排除A ;二次函数图象与y 轴交点(0,a )在y 轴正半轴,排除B ;如果a <0,则反比例函数y =a x图象在第二、四象限,二次函数y =-ax 2+a 图象开口向上,排除C ;故选D .7. D 【解析】观察函数图象,抛物线开口向下,则a <0.对称轴在y 轴右边,则a 、b 异号,∴b >0.抛物线与y 轴的交点在x 轴上方,则c >0,∴abc <0,选项A 错误;由抛物线的对称轴x =-b 2a =1,∴b =-2a ,选项B 错误;当x =-1时,y =a -b +c <0,∴a +c <b ,选项C 错误;根据对称性可知,当x =2时,y=4a +2b +c >0,选项D 正确.8. D 【解析】因为二次函数的对称轴为x =m ,所以对称轴不确定,因此需要讨论研究x 的范围与对称轴的位置关系,①当m ≥2时,此时-1≤x ≤2落在对称轴的左边,当x =2时y 取得最小值-2,即-2=22-2m ×2,解得m =32<2(舍);②当-1<m <2时,此时在对称轴x =m 处取得最小值-2,即-2=m 2-2m ·m ,解得m =-2或m =2,又-1<m <2,故m =2;③当m ≤-1时,此时-1≤x ≤2落在对称轴的右边,当x =-1时y 取得最小值-2,即-2=(-1)2-2m ×(-1),解得m =-32,综上所述,m =-32或 2.9. C 【解析】∵抛物线与x 轴交于(4,0),对称轴为x =2,∴抛物线与x 轴的另一个交点为(0,0).故①正确;∵抛物线经过原点,∴c =0.∵抛物线的对称轴为x =2,即-b 2a =2,∴4a +b =0,∴4a +b +c =0,故②正确;当x =-1时,抛物线的函数图象在x 轴上方,∴a (-1)2+(-1)b +c >0,即a -b +c >0,故③错误;∵c =0,4a +b =0,∴抛物线的解析式为y =-b 4x 2+bx =-b 4(x -2)2+b ,∴抛物线的顶点坐标为(2,b ),故④正确;由图象可知,抛物线开口向上,对称轴为x =2,当x <2时,y 随x 的增大而减小.故⑤错误.综上所述,①②④正确.10. 1,5 11.(-2,0)第2课时 抛物线的平移、解析式的确定、与方程(不等式)的关系1. C2. A3. A 【解析】∵二次函数y =ax 2+1的图象经过点(-2,0),∴代入得a (-2)2+1=0,解得a =-14,∴所求方程为-14(x -2)2+1=0,解方程得x 1=0,x 2=4.4. D 【解析】将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的函数为y =(x -3)2-1,与一次函数联立得⎩⎨⎧y =(x -3)2-1y =2x +b ,整理得x 2-8x +8-b =0,∵两个函数图象有公共点,∴方程x 2-8x +8-b =0有解,则(-8)2-4(8-b )≥0,解得b ≥-8.5. A 【解析】∵抛物线与x 轴交于A 、B 两点,∴令y =0,即x 2-4x +3=0,解得,x 1=1,x 2=3,∴A (1,0),B (3,0),∵y =x 2-4x +3=(x -2)2-1,∴M (2,-1).∵要使平移后的抛物线的顶点在x 轴上,需将图象向上平移1个单位,要使点B 平移后的对应点落在y 轴上,需向左平移3个单位,∴M ′(-1,0),则平移后二次函数的解析式为y =(x +1)2,即y =x 2+2x +1.6. C 【解析】∵Δ=(-2m )2-4×1×(-3)=4m 2+12>0,∴图象与x 轴有两个交点,A 正确;令y =0得:x 2-2mx -3=0,方程的解即抛物线与x 轴交点的横坐标,由A 知图象与x 轴有两个交点,故方程有两个根,再根据一元二次方程根与系数的关系可得两根之积为c a =-31=-3,B 正确;根据抛物线对称轴公式可得对称轴为x =-b 2a =--2m 2=m ,∵m 的值不能确定,故对称轴是否在y 轴的右侧不能确定,C 错误;∵a =1>0,抛物线开口向上,∴对称轴的左侧的函数值y 随x 的增大而减小,由C 知抛物线对称轴为x =m ,∴当x <m 时,y 随x 的增大而减小,D 正确,故选C .7. B 【解析】解不等式x +a ≥0得x ≥-a ,解不等式1-x >x +2得x <-12,因为不等式组无解,故-a ≥-12,解得a ≤12;当a ≠0时,b 2-4ac =(a +2)2-4a (12a +1)=0,解得a =2或-2,当a =0时,函数是一次函数,图象与x 轴有一个交点,所以当a =0,2或-2时,图象与x 轴只有一个交点,但a ≤12,∴a =0或-2.8. m >9 9. y =x 2-1(答案不唯一)10. 13<a <12或3<a <-2 【解析】令y =0,即ax 2+(a 2-1)x -a =0,(ax -1)(x+a )=0,∴关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的交点为(1a ,0)和(-a ,0),即m =1a 或m =-a ,又∵2<m <3,则13<a <12或-3<a <-2.11. 2≤m ≤8 【解析】∵将抛物线y =(x +1)2向下平移m 个单位,得到抛物线y =(x +1)2-m ,由平移后抛物线与正方形ABCD 的边有交点,则当点B 在抛物线上时,m 取最小值,此时(1+1)2-m =2,解得m =2,当点D 在抛物线上时,m 取最大值,此时(2+1)2-m =1,解得m =8,综上所述,m 的取值范围是2≤m ≤8.12. 解:(1)由题意知(1+a )(1-a -1)=-2,即a (a +1)=2,∵y 1=x 2-x -a (a +1),∴y1=x2-x-2;(2)由题意知,函数y1的图象与x轴交于点(-a,0)和(a+1,0),当y2的图象过点(-a,0)时,得-a2+b=0;当y2的图象过点(a+1,0)时,得a2+a+b=0;(3)由题意知,函数y1的图象的对称轴为直线x=12,所以点Q(1,n)与点(0,n)关于直线x=12对称.因为函数y1的图象开口向上,所以当m<n时,0<x0<1.。
y
x
二次函数及其图像
【牛刀小试】
1.将抛物线2
3y x =-向上平移一个单位后,得到的抛物线解析式是 . 2.如图1所示的抛物线是二次函数
2231y ax x a =-+-的图象,那么a 的值是 .
3.二次函数2
(1)2y x =-+的最小值是( )
A.-2
B.2
C.-1
D.1 4.二次函数22(1)3y x =-+的图象的顶点坐标是( )
A.(1,3)
B.(-1,3)
C.(1,-3)
D.(-1,-3) 5. 二次函数y ax bx c =++2
的图象如图所示,则下列结论正确的是( ) A. a b c ><>000,,
B. a b c <<>000,,
C. a b c <><000,,
D. a b c <>>000,,
【考点梳理】
1. 二次函数2
()y a x h k =-+的图像和性质 2.
a >0
的增大而
2. 二次函数c bx ax y ++=2
用配方法可化成()k h x a y +-=2
的形式,其中
D
B
A
h=,k= .
3. 二次函数2
()
y a x h k
=-+的图像和2
ax
y=图像的关系.
4. 二次函数c
bx
ax
y+
+
=2中c
b
a,
,的符号的确定.
【典例分析】
例1 已知二次函数24
y x x
=+,
(1) 用配方法把该函数化为2
()
y a x h k
=++
(其中a、h、k都是常数且a≠0)形式,并画
出这个函数的图像,根据图象指出函数的对称
轴和顶点坐标.
(2) 求函数的图象与x轴的交点坐标.
例2 如图,直线m
x
y+
=和抛物线c
bx
x
y+
+
=2都经过点A(1,0),B(3,2).
⑴求m的值和抛物线的解析式;
⑵求不等式m
x
c
bx
x+
>
+
+
2的解集.
(直接写出答案)
【真题演练】
1. 抛物线()22-
=x
y的顶点坐标是 .
2. 请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线
的解析式 .
3.已知二次函数22
y x x m
=-++的部分图象如右图所示,则关于x的一元二次方程220
x x m
-++=的解为.
4. 函数2
y ax
=与(0,0)
y ax b a b
=+>>在同一坐标系中的大致图象是()
5. 已知函数y=x2-2x-2的图象如图1所示,根据其中提供的信息,可求得使
y≥1成立的x的取值范围是()
A .-1≤x≤3
B .-3≤x≤1
C .x ≥-3
D .x ≤-1或x ≥3
6. 二次函数c bx ax y ++=2
(0≠a )的图象如图所示,则下列结论: ①a >0; ②c >0; ③ b 2
-4a c >0,其中正确的个数是( ) A. 0个 B. 1个 C. 2个 D. 3个
(第5题) (第6题)
7. 已知二次函数2
43y ax x =-+的图象经过点(-1,8).
(1)求此二次函数的解析式;
(2)根据(1)填写下表.在直角坐标系中描点,并画出函数的图象;
(3)根据图象回答:当函数值y<0时,x 的取值范围是什么?。