八年级竞赛数学培优 正方形 含解析
- 格式:doc
- 大小:3.14 MB
- 文档页数:7
2022-2023学年初二数学第二学期培优专题13 一次函数与正方形【例题讲解】如图,已知一次函数y=﹣34x+6的图象与坐标轴交于A、B两点,点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F,以EF为边作正方形EFMN,当点M落在坐标轴上时,求E点坐标.【解答】解:①如图3中,当点M在y轴上时,作FP⊥OB于P,FQ⊥OM于Q.∵四边形EFMN是正方形,∴FE=FM,∠EFM=∠PFQ,∴∠EFP=∠MFQ,∵∠FPE=∠FQM=90°,∴△FPE≌△FQM,∴FP=FQ,四边形OPFQ是正方形,设边长为x.∵∠AEO=∠BEF,∠AOE=∠PFE=90°,∴∠FAQ=∠FBP,∵∠AQF=∠BPF=90°,∴△AQF≌△BPF,∴AQ=BP,∴6+x=8﹣x∴x=1,∴F(1,﹣1),∴直线AF的解析式为y=﹣7x+6,∴E(67,0);②如图4中,当点M在x轴上时,易知OA=OE=6,可得E(6,0).综上所述,满足条件的点E坐标为(67,0)或(6,0).【综合演练】1.如图,在平面直角坐标系中,正方形ABCD的边长为3,点A的坐标为(1,1).若直线y=x+b与正方形有两个公共点,则b的取值范围是______.2.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B 在第一象限,若点B在直线y=kx+3上,则k的值为___.3.如图所示,在平面直角坐标系中,已知一次函数112y x=+的图象与x轴,y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD.(1)求正方形ABCD的面积;(2)求点C和点D的坐标;(3)在x轴上是否存在点M,使△MDB的周长最小?若存在,请求出点M的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,一次函数12125y x=-+的图象交x轴、y轴于A、B两点,以AB为边在直线右侧作正方形ABCD,连接BD,过点C作CF⊥x轴于点F,交BD于点E,连接AE.(1)求线段AB的长;(2)求证:AD平分∠EAF;(3)求△AEF的周长.5.如图,已知一次函数y=﹣12x+b的图象过点A(0,3),点p是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON上分别截取:PC=13MP,MB=13OM,OE=13ON,ND=13 NP.(1)b=;(2)求证:四边形BCDE是平行四边形;(3)在直线y=﹣12x+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,请求出所有符合的点P的坐标;若不存在,请说明理由.6.在平面直角坐标系中,直线y=2x+4与两坐标轴分别交于A,B两点.(1)若一次函数y=﹣12x+m与直线AB的交点在第二象限,求m的取值范围;(2)若M是y轴上一点,N是x轴上一点,直线AB上是否存在两点P,Q,使得以M,N,P,Q四点为顶点的四边形是正方形.若存在,求出M,N两点的坐标,若不存在,请说明理由.7.y=kx+b的图象经过点(﹣2,2)、(3,7)且与坐标轴相交于点、B两点.(1)求一次函数的解析式.(2)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,BQOP的值是否会发生变化?若不变,请求出其值;若变化,请说明理由.(3)在(2)的条件下,在平面内有一点H,当以H、N、B、P为顶点的四边形为菱形时,直接写出点H 的坐标.8.如图,在平而直角坐标系中.直线l :()2100y x k =-+≠经过点()3,4C ,与x 轴,y 轴分别交于点A ,B ,点D 的坐标为(8,4),连接OD ,交直线l 于点M ,连按OC ,CD ,AD .(1)填空:点A 的坐标为_________;点M 的坐标为______;(2)求证:四边形OADC 是菱形;(3)直线AP :5y x =-+与y 轴交于点P .①连接MP ,则MP 的长为_______;②已知点E 在直线AP 上,在平面直角坐标系中是否存在一点F ,使以O ,A ,E ,F 为顶点的四边形是正方形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.9.直线2y kx =+(0)k <与x 轴、y 轴分别交于,A B 两点,以AB 为边向外作正方形ABCD ,对角线,AC BD 交于点E ,则过,O E 两点的直线的解析式是__________.10.如图,四边形OABC 和四边形ODEF 都是正方形,点F ,O ,A 在一条直线上,点D 在OC 边上,以FA 为x 轴,OC 为y 轴建立平面直角坐标系xOy ,直线132y x =+经过点B ,E .(1)求正方形OABC 和正方形ODEF 的边长;(2)若点P 是BE 的中点,试证明:点C ,P ,A 三点在同一条直线上.11.在平面直角坐标系xOy 中,点A (0,4),B (3,0),以AB 为边在第一象限内作正方形ABCD ,直线l :y =k (x +3).(1)点D 的坐标是 ;(2)当直线l 经过D 点时,求k 的值;(3)该直线l 一定经过一个定点,其坐标是 ;(4)当直线l 与正方形的四边有两个交点时,求k 的取值范围.12.在平面直角坐标系xOy 中,对于点P 与图形W 给出如下定义:如果存在以点P 为端点的一条射线与图形W 有且只有2个公共点,那么称点P 是图形W 的“相关点”.已知点(),2A m ,()2,0B m -,()2,0C m +.(1)当0m =时,①在点()11,0P -,()21,1P,()34,0P ,()43,1P -中,是折线BA AC -的“相关点”的是______; ②点M 是直线24y x =+上一点,如果点M 是折线BA AC -的“相关点”,求点M 的横坐标M x 的取值范围;(2)正方形DEFG 的各边都平行于坐标轴,对角线的交点N 的坐标是()24,0m -.如果正方形的边长是2,正方形DEFG 上的任意一点都是折线BA AC -的“相关点”,请直接写出m 的取值范围.13.如图,在平面直角坐标系中,直线y =﹣2x +8与x 轴交于点A ,与y 轴交于点B ,过点B 的另一条直线交x 轴负半轴于点C ,且OC =6.(1)求直线BC 的解析式;(2)如图1,若M 为线段BC 上一点,且满足S △AMB =S △AOB ,请求出点M 的坐标;(3)如图2,设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 左侧作正方形FGQP ,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求点G 的坐标.答案与解析【例题讲解】如图,已知一次函数y=﹣34x+6的图象与坐标轴交于A、B两点,点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F,以EF为边作正方形EFMN,当点M落在坐标轴上时,求E点坐标.【解答】解:①如图3中,当点M在y轴上时,作FP⊥OB于P,FQ⊥OM 于Q.∵四边形EFMN是正方形,∴FE=FM,∠EFM=∠PFQ,∴∠EFP=∠MFQ,∵∠FPE=∠FQM=90°,∴△FPE≌△FQM,∴FP=FQ,四边形OPFQ是正方形,设边长为x.∵∠AEO=∠BEF,∠AOE=∠PFE=90°,∴∠FAQ=∠FBP,∵∠AQF=∠BPF=90°,∴△AQF≌△BPF,∴AQ=BP,∴6+x=8﹣x∴x=1,∴F(1,﹣1),∴直线AF的解析式为y=﹣7x+6,∴E(67,0);②如图4中,当点M在x轴上时,易知OA=OE=6,可得E(6,0).综上所述,满足条件的点E坐标为(67,0)或(6,0).【综合演练】1.如图,在平面直角坐标系中,正方形ABCD的边长为3,点A的坐标为(1,1).若直线y=x+b与正方形有两个公共点,则b的取值范围是_________.【答案】-3<b<3【分析】当直线y=x+b过D,B时,求得b,即可得到结论.【解答】解:∵正方形ABCD的边长为3,点A的坐标为(1,1),∴D(1,4),B(4,1)当直线y=x+b经过点D时,4=1+b,此时b=3,当直线y=x+b经过点B时,1=4+b,此时b=-3.∴直线y=x+b与正方形有两个公共点,则b的取值范围是-3<b<3.故答案是:-3<b<3.【点评】此题考查了一次函数图象上点的坐标特征,正方形的性质,关键是掌握待定系数法正确求出函数的解析式.2.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B 在第一象限,若点B在直线y=kx+3上,则k的值为___.【答案】﹣2【分析】根据正方形的对称性得到点B坐标,代入直线解析式即可求出k.【解答】解:∵正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),∴点B坐标为(1,1),∵点B在直线y=kx+3上,∴1=k+3,解得k=﹣2.故答案为:﹣2【点评】本题考查了正方形的对称性,一次函数的性质,熟知相关知识点,求出点B的坐标是解题关键.3.如图所示,在平面直角坐标系中,已知一次函数112y x =+的图象与x 轴,y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD .(1)求正方形ABCD 的面积;(2)求点C 和点D 的坐标;(3)在x 轴上是否存在点M ,使△MDB 的周长最小?若存在,请求出点M 的坐标;若不存在,请说明理由. 【答案】(1)5(2)C (-1,3),D (-3,2)(3)()1,0M -,理由见解答【分析】(1)由一次函数112y x =+,可求出A 和B 点坐标,即得出OA 和OB 的长,再根据勾股定理求出AB 的长,最后由正方形面积公式计算即可;(2)作CE y ⊥轴,DF x ⊥轴.根据正方形的性质结合所作辅助线易证(AAS)BCE DAF ABO ≌≌,即得出2BE DF OA ===,1CE AF OB ===,从而可求出3OE =,3OF =,即得出C 、D 两点坐标; (3)找出点B 关于x 轴的对称点B ',连接B D ',与x 轴交于点M ,根据轴对称的性质可知此时BMD 周长最小.由B (0,1),得出B '(0,-1),利用待定系数法可求出直线B D '的解析式为=1y x --,从而可求出M 点坐标.(1)对于直线112y x =+,令0x =,得到1y =;令0y =,得到2x =-, ∴A (-2,0),B (0,1),∴在Rt AOB △中,2OA =,1OB =,∴根据勾股定理得:22215AB =+=,∴正方形ABCD 面积为5;(2)如图,作CE y ⊥轴,DF x ⊥轴,∴90CEB AFD AOB ∠=∠=∠=︒.∵四边形ABCD 是正方形,∴BC AB AD ==,90DAB ABC ∠=∠=︒, ∴90DAF BAO ∠+∠=︒,90ABO CBE ∠+∠=︒, ∵90DAF ADF ∠∠=+︒,90BAO ABO ∠+∠=︒, ∴BAO ADF CBE ∠=∠=∠,∴(AAS)BCE DAF ABO ≌≌,∴2BE DF OA ===,1CE AF OB ===,∴213OE OB BE =+=+=,213OF OA AF =+=+=, ∴C (-1,3),D (-3,2);(3)如图,找出点B 关于x 轴的对称点B ',连接B D ',与x 轴交于点M ,则此时BMD 周长最小. ∵B (0,1),∴B '(0,-1)设直线B D '的解析式为(0)y kx b k =+≠,把B '与D 坐标代入得:132b k b =-⎧⎨-+=⎩, 解得:11k b =-⎧⎨=-⎩, ∴直线B D '的解析式为=1y x --.对于=1y x --,令0y =,得到=1x -,∴M (-1,0).【点评】本题考查正方形的性质,勾股定理,坐标与图形,三角形全等的判定和性质,一次函数的应用以及轴对称变换等知识.正确的作出辅助线并利用数形结合的思想是解题关键.4.如图,在平面直角坐标系中,一次函数12125y x=-+的图象交x轴、y轴于A、B两点,以AB为边在直线右侧作正方形ABCD,连接BD,过点C作CF⊥x轴于点F,交BD于点E,连接AE.(1)求线段AB的长;(2)求证:AD平分∠EAF;(3)求△AEF的周长.【答案】(1)AB=13;(2)见解析;(3)△AEF周长为24.【分析】(1)根据一次函数解析式,令x、y分别为0,即可求出A、B两点坐标,再利用勾股定理即可算出AB的长;(2)证明△CDE和△ADE中,可得∠DCE=∠DAE,根据三角形内角和和对顶角的性质可得∠DCM=∠MAF,等量代换得∠MAF=∠EAM;(3)过点C作y轴垂线交y轴于点N,构造三角形全等即可推出点C的坐标;将AE+EF转换为CF即可求出△AEF的周长.【解答】解:(1)∵一次函数y=﹣125x+12的图象交x轴、y轴与A、B两点,∴当x=0,则y=12,故B(0,12),当y =0,则x =5,故A (5,0),即OA =5,OB =12,∴AB =22OA OB +=22512+=13,故AB =13;(2)∵四边形ABCD 是正方形,∴CD =AD ,∵BD 是正方形的对角线,∴∠CDE =∠ADE ,在△CDE 和△ADE 中,CD AD CDE ADE DE DE =⎧⎪∠=∠⎨⎪=⎩,∴△CDE ≌△ADE (SAS ),∴∠DCE =∠DAE ,设FC 与AD 交点为M ,∵∠EMD =∠AMF (对顶角相等),∠DCM +∠EMD =∠MAF +∠AMF ,∴∠DCM =∠MAF ,∴∠MAF =∠EAM ,∴AD 平分∠EAF ;(3)过点C 作y 轴垂线交y 轴于点N ,如图所示:∵∠CBN +∠NCB =∠CBN +ABO =90°,∴∠NCB =∠ABO ,在△CNB 和△BOA 中,90NCB OBA CNB BOA CB BA ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△CNB ≌△BOA (AAS ),∴BN =AO =5,CN =BO =12,又∵CF ⊥x 轴,∴CF =BO +BN =12+5=17,∴C 的坐标为(12,17);∵△CDE ≌△ADE ,∴AE =CE ,∴AE +EF =CF =17,AF =OF -AO =12-5=7,∴C △AEF =AE +EF +AF =CF +AF =17+7=24.【点评】本题考查一次函数图象与坐标轴的交点,勾股定理,正方形的性质,全等三角形的判定与性质,对顶角的性质,以及三角形内角和的应用,正确作出辅助线,构造全等三角形是解题关键.5.如图,已知一次函数y=﹣12x+b 的图象过点A (0,3),点p 是该直线上的一个动点,过点P 分别作PM 垂直x 轴于点M ,PN 垂直y 轴于点N ,在四边形PMON 上分别截取:PC=13MP ,MB=13OM ,OE=13ON ,ND=13NP . (1)b= ;(2)求证:四边形BCDE 是平行四边形;(3)在直线y=﹣12x+b 上是否存在这样的点P ,使四边形BCDE 为正方形?若存在,请求出所有符合的点P 的坐标;若不存在,请说明理由.【答案】(1)3;(2)证明见解析;(3)在直线y=﹣12x+b 上存在这样的点P ,使四边形BCDE 为(3)设P 点坐标(x ,y ),当△OBE ≌△MCB 时,四边形BCDE 为正方形,OE=BM ,当点P 在第一象限时,即13y=13x ,x=y . P 点在直线上,132y x y x⎧=+⎪⎨⎪=⎩, 解得22x y =⎧⎨=⎩, 当点P 在第二象限时,﹣x=y132y x y x⎧=+⎪⎨⎪=-⎩, 解得66x y =-⎧⎨=⎩在直线y=﹣12x+b 上存在这样的点P ,使四边形BCDE 为正方形,P 点坐标是(2,2)或(﹣6,6). 点评:本题考查了一次函数的综合题,利用了全等三角形的判定与性质,平行四边形的判定与性质,正方形的性质,注意数形结合.6.在平面直角坐标系中,直线y =2x+4与两坐标轴分别交于A ,B 两点.(1)若一次函数y =﹣12x+m 与直线AB 的交点在第二象限,求m 的取值范围;(2)若M 是y 轴上一点,N 是x 轴上一点,直线AB 上是否存在两点P ,Q ,使得以M ,N ,P ,Q 四点为顶点的四边形是正方形.若存在,求出M ,N 两点的坐标,若不存在,请说明理由.【答案】(1)m <4;(2)M (0,87),N (﹣47,0)或M (0,﹣83),N (43,0)或M (0,﹣4),N (﹣163,0); 【分析】(1)根据题意联立一次函数解析式与直线AB 的解析式,据此进一步用m 表示出x ,最后根据第二象限的点的坐标特征加以分析即可;(2)首先求出A 、B 两点坐标,然后根据题意分图1、图2、图3共三种情况结合相似三角形性质进一步分析求解即可.【解答】(1)联立24y x =+与12y x m =-+,得:1242x x m +=-+, ∴()245x m =-, ∵交点位于第二象限,∴()2405m -<, ∴4m <;(2)当0x =时,244y x =+=,∴A (0,4),当0y =时,024x =+,即:2x =-,∴B (2-,0),∴OA =4,OB =2.如图1,过点Q 作QH ⊥x 轴于H ,∵MN ∥AB ,∴△NMO~△BAO ,∴12ON OB OM OA ==, 设ON =a ,则OM =2a ,∵∠MNQ =90°,∴∠QNH+∠MNO =∠MNO+∠NMO =90°,∴∠QNH =∠NMO ,在△QNH 和△NMO 中,∵∠QNH =∠NMO ,∠QHN=∠NOM ,QN=MN ,∴△QNH ≅△NMO (AAS ),∴QH=ON=a,HN=OM=2a,易得:△BQH~△BAO,∴12 BH OBQH OA==,∴BH=12a,∵OB=BH+HN+ON,∴2=122a a a++,解得47a=,∴M(0,87),N(47-,0);如图2,过点P作PH⊥x轴于H,易证△PNH~△BAO,∴12 PH OBOH OA==,设PH=b,则NH=2b,同理证得△PNH≅△NMO,∴PH=ON=b,HN=OM=2b,∴OH=HN−OH=b,易得:△BPH~△BAO,∴12 BH OBPH OA==,∴BH=12 b,∵OB=BH+OH,∴2=12b+b,解得b=43,∴M(0,83-),N(43,0);如图3,过点P作PH⊥x轴于H,PE⊥y轴于E,QF⊥y轴于F,易得:△PAE~△BAO,∴12 PE OBAE OA==,设PE=c,则AE=2c,同理证得△PNH≅△PME,∴PH=PE=OE=c,则AE=2c,∵OA=AE+OE,∴4=2c+c,解得c=43,∵△MQF≅△PME,∴MF=PE=OE,EM=FQ,∴EM=OF=FQ,设EM=OF=FQ=m,则Q(﹣m,﹣m),代入y=2x+4中,得﹣m=﹣2m+4,解得m=4,∴NO=NH+OH=163,∴N(163-,0),∵OF=m=4,∴M(0,﹣4).综上所述M(0,87),N(47-,0)或M(0,83-),N(43,0)或M(0,﹣4),N(163-,0).【点评】本题主要考查了一次函数与相似三角形的判定及性质的综合运用,熟练掌握相关方法是解题关键. 7.y=kx+b的图象经过点(﹣2,2)、(3,7)且与坐标轴相交于点、B两点.(1)求一次函数的解析式.(2)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,BQOP的值是否会发生变化?若不变,请求出其值;若变化,请说明理由.(3)在(2)的条件下,在平面内有一点H,当以H、N、B、P为顶点的四边形为菱形时,直接写出点H的坐标.【答案】(1)y=x+4;(2)BQOP的值不变,理由见解析;(3)点H的坐标为(42243,22)----或(0,0)或(628,22)-.【分析】(1)利用待定系数法转化为解方程组解决问题.(2)如图1中,结论:BQOP的值不变.连接BM,设PB交OM于G.想办法证明∠PBM=90°,利用直角三角形斜边中线的性质以及等腰直角三角形的性质即可解决问题.(3)分三种情形:如图2﹣1中,当四边形PBNH是菱形时,如图2﹣2中,当点P与A重合时.得到四边形PNMO是正方形(是菱形),此时H与原点O重合.如图2﹣3中,当四边形PBNH是菱形时,分别求解即可解决问题.【解答】解:(1)∵y=kx+b的图象经过点(﹣2,2)、(3,7),∴22 37k bk b-+=⎧⎨+=⎩,解得14kb=⎧⎨=⎩,∴一次函数的解析式为y=x+4.(2)如图1中,结论:BQOP的值不变.理由:连接BM,设PB交OM于G.∵直线y=x+4与坐标轴相交于点、B两点,∴A(﹣4,0),B(0,4),∴OA=OB=4,∵四边形POMN是正方形,∴∠POM=∠AOB=90°,OM=OP,∴∠AOP=∠BOM,∵OA=OB,∴△AOP≌△BOM(SAS),∴∠OPG=∠GMB,∵∠OGP=∠BGM,∴∠GBM=∠GOP=90°,∴QM=QP,∴QB=QP=QM,∵△POQ是等腰直角三角形,∴OP=2QP,∴22 BQ PQOP OP==.(3)如图2﹣1中,当四边形PBNH是菱形时,∵BH 垂直平分线段PN ,BH 垂直平分线段OM ,∴BM =OB =4,∴M (﹣22,4+22),∴P (﹣4﹣22,﹣22),∴BN =BP =()()2242242243++-=,∴PH =BN =43,∵QB =QN =OQ ,∴∠NBO =90°,∴BN ∥OA ∥PH ,∴H (﹣4﹣2243-,﹣22).如图2﹣2中,当点P 与A 重合时,得到四边形PNMO 是正方形(是菱形),此时H 与原点O 重合,H (0,0).如图2﹣3中,当四边形PBNH 是菱形时,设PH 交OB 于J ,在JO 上取一点F ,使得PJ =JF .∵BP =BN ,∴∠BPN =∠BNP =22.5°,∵∠OPN =90°,∠P AO =45°,∴∠APO =67.5°,∴∠AOP =67.5°,∴∠POJ =22.5°,∵∠PFJ =∠FPO +∠POF =45°,∴∠FPO =∠POF =22.5°,∴PF =OF ,设PJ =BJ =JF =x ,则PB =BN =PF =OF =2x ,∴2x +2x =4,∴x =4﹣22,∴BN =PH =42﹣4,P (22﹣4,22),∴H (62﹣8,22),综上所述,满足条件的点H 的坐标为(﹣4﹣22﹣43,﹣22)或(0,0)或(62﹣8,22).【点评】本题考查的是一次函数与几何的综合,难度系数较大,第三问比较容易忽略的点在于当点P 与A 重合时.得到四边形PNMO 是正方形,此时是特殊的菱形.8.如图,在平而直角坐标系中.直线l :()2100y x k =-+≠经过点()3,4C ,与x 轴,y 轴分别交于点A ,B ,点D 的坐标为(8,4),连接OD ,交直线l 于点M ,连按OC ,CD ,AD .(1)填空:点A 的坐标为_________;点M 的坐标为______;(2)求证:四边形OADC 是菱形;(3)直线AP :5y x =-+与y 轴交于点P .①连接MP ,则MP 的长为_______;②已知点E 在直线AP 上,在平面直角坐标系中是否存在一点F ,使以O ,A ,E ,F 为顶点的四边形是正方形?若存在,请直接写出点F 的坐标;若不存在,请说明理由. 【答案】(1)(5,0),(4,2)(2)见解析(3)①5;②存在,点F 的坐标为(5,5)或(52,-52).【分析】(1)利用一次函数图象上点的坐标特征,可得出点A 的坐标,又点D 的坐标,利用待定系数法可求出直线OD 的解析式,再联立两函数解析式,可求出交点M 的坐标;(2)过点C 作CQ ⊥x 轴于点Q ,利用勾股定理可得出OC =5,又点C ,D 的坐标可得出CD =5,CD ∥x 轴,结合点A 的坐标,可得出CD =OA ,进而可得出四边形OADC 为平行四边形,再结合OC =OA ,即可证出四边形OADC 是菱形;(3)①过点M 作MN ⊥y 轴于点N ,利用一次函数图象上点的坐标特征,可求出点P 的坐标,结合点M 的坐标可得出MN ,PN 的长,再利用勾股定理,即可求出MP 的长;②存在,分OA 为边及OA 为对角线两种情况考虑,(i )当OA 为边时,点E 与点P 重合,利用正方形的性质可求出点F 的坐标;(ii )当OA 为对角线时,点E 在线段AP 的中点,结合点A ,P 的坐标可得出点E 的坐标,再利用正方形的性质,即可求出点F 的坐标.(1)解:当y=0时,-2x+10=0,解得:x=5,∴点A的坐标为(5,0);设直线OD的解析式为y=kx(k≠0),将D(8,4)代入y=kx,得:4=8k,解得:k=12,∴直线OD的解析式为y=12x.联立两函数解析式得:21012y xy x=-+⎧⎪⎨=⎪⎩,解得:42xy=⎧⎨=⎩,∴点M的坐标为(4,2),故答案为:(5,0);(4,2);(2)证明:过点C作CQ⊥x轴于点Q,如图1所示.∵点C的坐标为(3,4),∴OQ=3,CQ=4,∴OC= 222234OQ CQ+=+=5.∵点C的坐标为(3,4),点D的坐标为(8,4),∴CD=5,CD∥x轴,即CD∥OA.∵点A的坐标为(5,0),∴OA=5=CD,∴四边形OADC为平行四边形,又∵OA=OC=5,∴四边形OADC是菱形;(3)解:①过点M作MN⊥y轴于点N,如图2所示.当x=0时,y=-1×0+5=5,∴点P的坐标为(0,5).∵点M的坐标为(4,2),∴MN=4,ON=2,∴PN=5-2=3,∴MP=2222+=+=5.34PN MN故答案为:5;②存在,分两种情况考虑,如图3所示.(i )当OA 为边时,∵OA =OP =5,∠AOP =90°,∴点E 与点P 重合,∴点F 的坐标为(5,5);(ii )当OA 为对角线时,∵OA =OP =5,∠AOP =90°,∴△AOP 为等腰直角三角形,又∵四边形AEOF 为正方形,∴点E 为线段AP 的中点,∴点E 的坐标为(52,52), ∴点F 的坐标为(0+5-52,0+0-52),即(52,-52). ∴在平面直角坐标系中存在一点F ,使以O ,A ,E ,F 为顶点的四边形是正方形,点F 的坐标为(5,5)或(52,-52). 【点评】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式、勾股定理、平行四边形的判定、菱形的判定以及正方形的性质,解题的关键是:(1)利用待定系数法,求出直线OD 的解析式;(2)利用邻边相等的平行四边形为菱形,证出四边形OADC 是菱形;(3)①利用勾股定理,求出MP 的长;②分OA 为边及OA 为对角线两种情况,求出点F 的坐标.9.直线2y kx =+(0)k <与x 轴、y 轴分别交于,A B 两点,以AB 为边向外作正方形ABCD ,对角线,AC BD 交于点E ,则过,O E 两点的直线的解析式是__________.【答案】y x=【分析】分别过点E作EF⊥x轴于F,过点E作EG⊥y轴于点G,再证明△BEG≌△AEF,得出EG=EF,从而可得出结论.【解答】解:过点E作EF⊥x轴于F,过点E作EG⊥y轴于点G,∵四边形ABCD为正方形,∴BE=AE,且∠AEB=90°,∴∠BEG+∠AEG=∠AEG+∠AEF,∴∠BEG=∠AEF,又∠BGE=∠AFE=90°,∴△BEG≌△AEF(ASA),∴EF=EG.所以设过OE两点的直线的函数解析式为y=kx(k≠0),点E的坐标为(a,a),代入可得a=ak,解得k=1,∴过,O E两点的直线的解析式是为y=x.故答案为:y=x.【点评】本题主要考查解析式的求法,正方形的性质以及全等三角形的判定与性质,正确构造全等三角形是解题的关键.10.如图,四边形OABC和四边形ODEF都是正方形,点F,O,A在一条直线上,点D在OC边上,以FA为x轴,OC为y轴建立平面直角坐标系xOy,直线132y x=+经过点B,E.(1)求正方形OABC和正方形ODEF的边长;(2)若点P是BE的中点,试证明:点C,P,A三点在同一条直线上.【答案】(1)6和2;(2)见解答【分析】(1)设B(a,a),A(-b,b),代入132y x=+,即可求解;(2)先写出P(2,4),A(6,0),C(0,6),从而求出直线AC的解析式,把P的坐标代入AC的解析式,即可得到答案.【解答】解:(1)设正方形OABC和正方形ODEF的边长分别为:a,b,∴B(a,a),A(-b,b),∵直线132y x=+经过点B,E,∴132132a ab b⎧+=⎪⎪⎨⎪-+=⎪⎩,解得:62ab=⎧⎨=⎩,∴正方形OABC和正方形ODEF的边长分别为:6和2;(2)∵B(6,6),A(-2,2),点P是BE的中点,∴P(2,4),∵A(6,0),C(0,6),设AC的解析式为:y=kx+b,∴606k bb+=⎧⎨=⎩,解得:16kb=-⎧⎨=⎩,∴AC的解析式为:y=-x+6,∵x=2时,y=-2+6=4,∴P点在直线AC上,即点C,P,A三点在同一条直线上.【点评】本题主要考查一次函数的性质和图像以及正方形的性质,掌握待定系数法,是解题的关键.11.在平面直角坐标系xOy中,点A(0,4),B(3,0),以AB为边在第一象限内作正方形ABCD,直线l:y=k(x+3).(1)点D的坐标是;(2)当直线l经过D点时,求k的值;(3)该直线l一定经过一个定点,其坐标是;(4)当直线l与正方形的四边有两个交点时,求k的取值范围.【答案】(1)(4,7);(2) k=1;(3)(-3,0);(4)4 0k3 <<【分析】(1)过D点作DE⊥y轴,证△AED≌△BOA,根据全等求出DE=AO=4,AE=OB=3,即可得出D 的坐标;(2)把D的坐标代入解析式即可求出k的值;(3)y=k(x+3)是经过(-3,0)的直线系,故经过定点(-3,0);(4)把A的坐标代入求出k的值,即可得出答案.【解答】解:(1)如图,过D点作DE⊥y轴,则∠AED=∠1+∠2=90°.在正方形ABCD中,∠DAB=90°,AD=AB.∴∠1+∠3=90°,12.在平面直角坐标系xOy 中,对于点P 与图形W 给出如下定义:如果存在以点P 为端点的一条射线与图形W 有且只有2个公共点,那么称点P 是图形W 的“相关点”.已知点(),2A m ,()2,0B m -,()2,0C m +.(1)当0m =时,①在点()11,0P -,()21,1P,()34,0P ,()43,1P -中,是折线BA AC -的“相关点”的是______; ②点M 是直线24y x =+上一点,如果点M 是折线BA AC -的“相关点”,求点M 的横坐标M x 的取值范围;(2)正方形DEFG 的各边都平行于坐标轴,对角线的交点N 的坐标是()24,0m -.如果正方形的边长是2,正方形DEFG 上的任意一点都是折线BA AC -的“相关点”,请直接写出m 的取值范围.最大值,进而即可求解;(2)根据题意求得直线AB 的解析式为2y x m =-+,直线AC 的解析式为2y x m =-++,正方形DEFG 上的任意一点都不在BA AC -所围成的锐角之内以及边上(除线段AB ,AC 外),当正方形有一点在AB 或AC 上时,根据点N 的坐标以及正方形的性质求得点F 的坐标,分别代入直线,AB AC 的解析式即可求得点F 的坐标,结合函数图像即可求解.(1)当0m =时,()()()0,2,2,0,2,0A B C -,①如图,在平面直角坐标系中描出点()()()0,2,2,0,2,0A B C -,()11,0P -,()21,1P,()34,0P ,()43,1P -连接,AB AC ,由图像可知,23,P P 为折线BA AC -的“相关点”;②如图,点M 是直线24y x =+上一点,根据定义可知:点M 为折线BA AC -的“相关点”当M 与点()2,0B -重合时,此时M x 取得最小值,为2-,当M 在直线AC 上时,M x 取得最大值,设直线AC 解析式为y kx b =+()()0,2,2,0A C则202k b b +=⎧⎨=⎩解得12k b =-⎧⎨=⎩∴直线AC 解析式为2y x =-+联立224y x y x =-+⎧⎨=+⎩ 解得2383x y ⎧=-⎪⎪⎨⎪=⎪⎩即M x 的最大值为23- 223M x ∴-≤<- (2)点(),2A m ,()2,0B m -,()2,0C m +.设直线AB 的解析式为y cx d =+,AC 解析式为y ex f =+,则()220mc d m c d +=⎧⎨-+=⎩,()220me f m e f +=⎧⎨++=⎩, 解得12c d m =⎧⎨=-+⎩,12e f m =-⎧⎨=+⎩∴直线AB 的解析式为2y x m =-+,直线AC 的解析式为2y x m =-++,当正方形DEFG 上的任意一点都是折线BA AC -的“相关点”;∴正方形DEFG 上的任意一点都不在BA AC -所围成的锐角之内以及边上(除线段AB ,AC 外), 当正方形有一点在AB 或AC 上时,如图,当点F 在AB 上时,()24,0N m -,正方形的边长为2,则()23,1F m --, 代入直线AB 解析式,可得()1232m m -=--+,解得0m =;当点F 在AC 上时,()24,0N m -,正方形的边长为2,则()25,1F m --,代入直线AC 解析式,可得()1252m m -=--++,解得8m =,结合图像可知,当正方形DEFG 上的任意一点都是折线BA AC -的“相关点”,0m <或8m >.【点评】本题考查了新定义问题,待定系数法求一次函数解析式,正方形的性质,坐标与图形,两直线交点问题,理解新定义是解题的关键.13.如图,在平面直角坐标系中,直线y =﹣2x +8与x 轴交于点A ,与y 轴交于点B ,过点B 的另一条直线交x 轴负半轴于点C ,且OC =6.(1)求直线BC 的解析式;(2)如图1,若M 为线段BC 上一点,且满足S △AMB =S △AOB ,请求出点M 的坐标;(3)如图2,设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 左侧作正方形FGQP ,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求点G 的坐标.【答案】(1)483y x =+ (2)122455M ⎛⎫- ⎪⎝⎭, (3)4607G ⎛⎫ ⎪⎝⎭,或()02G -,【点评】本题考查了用待定系数法求解析式、正方形的性质、一次函数的图像与解析式等知识,涉及到了分类讨论的思想方法,解题关键是能正确进行面积转化以及通过作辅助线构造全等三角形对图中的线段进行数量关系上的转化.。
浙教版数学八年级下册5.3正方形培优练习一、选择题1.如图,四边形ABCD是平行四边形,下列说法不正确的是( )A.当AC=BD时,四边形ABCD是矩形B.当AB=BC时,四边形ABCD是菱形C.当AC平分∠BAD时,四边形ABCD是菱形D.当∠DAB= 90°时,四边形ABCD是正方形2.如图,在正方形ABCD中,E是AC 上的一点,且AB=AE,则∠EBC的度数为( )A.37.5°B.30°C.22.5°D.12.5°3.如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于( )A.1B.12C.13D.144.如图,由两个直角三角形和三个正方形组成的图形,其中阴影部分面积是( )A.16B.25C.144D.1695.如图,在正方形ABCD中,E为CD边上一点,将△AED沿着AE翻折得到△AEF,点D的对应点F恰好落在对角线AC上,连接BF.若EF=2,则BF2=( )A.42+4B.6+42C.12D.8+426.将四个全等的三角形按如图所示的方式围成一个正方形ABCD,记△AED的面积为S1,四边形EFCG的面积为S2.若EG∥CF,EG=3,S1S2=16,则图中阴影部分的面积为( )A.23B.94C.32D.92二、填空题7.如图,在菱形ABCD中,对角线AC,BD相交于点O,不添加任何辅助线,请添加一个条件: ,使得四边形ABCD 是正方形.8.如图,A(0,2),D(1,0),以AD为边作正方形ABCD,则点B的坐标为 .9.勾股定理被合为“几何明珠”,在数学的发展历程中占有举足轻重的地位.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵夹弦图”(如图①所示).图②由弦图变化得到,它是由八个全等的直角三角形拼接而成的.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=129,则S2的值是 .10.如图,在Rt△ABC中,∠BAC=90°,以BC为边向上作正方形BCDE,以AC为边作正方形ACFG,点D落在GF上,连接AE,EG.若AB=9,BC+GD=9,则△AEG的面积为 .2三、解答题11.如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.12.如图,AD是△ABC的一条角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.(1)求证:四边形AEDF是菱形;(2)若∠B=35°,当∠C=▲度时,四边形AEDF为正方形并证明.13.如图,点E为正方形ABCD内一点,∠BEC=90°,将△BEC绕点B逆时针方向旋转90°得到△BFA (点E的对应点为点F),延长CE交AF于点G。
2022-2023学年初二数学第二学期培优专题16 正方形折叠问题【例题讲解】如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1) 求证:∠EDG=45°.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.(3) 当BE︰EC= 时,DE=DG.试题解析:(1)证明:如图:∵四边形ABCD是正方形,∴DC=DA.∠A=∠B=∠C=∠ADC = 90°.∵△DEC沿DE折叠得到△DEF,∴∠DFE=∠C,DC=DF,∠1=∠2,∴∠DFG=∠A,DA=DF,又∵DG=DG,∴△DGA≌△DGF,∴∠3=∠4,∴∠EDG=∠3+∠2=(∠ADF+∠FDC)= 45°.(2)①证明:∵△DEC沿DE折叠得到△DEF,E为BC的中点∴CE=EF=BE,∠DEF=∠DEC.∴∠5=∠6,∵∠FEC=∠5+∠6,∴∠DEF+∠DEC=∠5+∠6∴2∠5=2∠DEC,即∠5=∠DEC ∴BF∥DE.②解:设AG=x,则GF=x,BG=6-x,由正方形边长为6,得CE=EF=BE=3,∴GE=EF+GF=3+x.在Rt△GBE中,根据勾股定理得:解得x=2,即线段AG的长为2..【综合演练】1.如图.已知正方形ABCD的边长为12,BE=EC,将正方形的边CD沿DE折叠到DF,延长EF 交AB于G,连接DG.现有如下3个结论;①AG+EC=GE;②∠GDE=45°;③△BGE的周长是24.其中正确的个数为()A.0 B.1 C.2 D.32.如图,正方形ABCD的边长为3,将正方形ABCD沿直线EF翻折,则图中折成的4个阴影三角形的周长之和是()A.8 B.9 C.12 D.以上都不正确3.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE,若AB的长为2,则FM的长为()A.2 B.3C.6D.14.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm5.如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,则HBC ∠的度数为______.6.如图,在正方形ABCD 中,E 为BC 上一点,将△ABE 沿AE 折叠至AB E '∆处,B E '与AC 交于点F ,若∠EFC =67°,则∠CAE 的度数为____.7.如图,正方形纸片ABCD 的边长为10cm ,点P 在边BC 上,BP =4cm ,折叠纸片使点A 落在点P 上,折痕为MN .则AM 的长是______.8.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE 、BF ,将BCF ∆ 沿BF 对折,得到BPF ∆,延长FP 交BA 的延长线于点Q .给出下列结论:①AE BF =;②AE BF ⊥;③BQF ∆是等边三角形;④若正方形ABCD 的边长为3,则线段AQ 的长为34其中,正确的结论有_____.(把你认为正确的结论的序号都填上)9.如图,将一边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使5DE =,折痕为PQ ,则PQ 的长__________.10.如图,在边长为1的正方形ABCD 中,E 为边BC 上任意一点(不与点B 、C 重合),AE 、BD 交于点P ,过点P 且垂直于AE 的一条直线MN 分别交AB 、CD 于点M 、N .连接AN ,将△APN 沿着AN 翻折,点P 落在点P '处.AD 的中点为F ,则P′F 的最小值为 ____.11.如图,正方形ABCD 中,6AB =,点E 在CD 上,且3CD DE =,将ADE 沿AE 对折至AFE △,延长EF 交BC 于点G ,连接AG 、CF .()1求证:ABG ≌AFG ;()2求BG 的长;()3求FGC △的面积.12.如图,正方形ABCD 中,CD =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF交边BC于点G,连接AG、CF.(1)求证:①△ABG≌△AFG;②求GC的长;(2)求△FGC的面积.13.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC (或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:____;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)14.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把DEC沿DE折叠得到DEF,延长EF交AB于点G,连接DG.(1)EDG=∠____________;(2)如图2,若正方形边长为6,点E为BC的中点,连接BF,①求线段AG的长;②求BEF△的面积;=,则BE=________(用含a的式子表示).(3)当DE DG=时,若令CE a15.知识再现:已知,如图,四边形ABCD 是正方形,点M 、N 分别在边BC 、CD 上,连接AM 、AN 、MN ,∠MAN =45°,延长CB 至G 使BG =DN ,连接AG ,根据三角形全等的知识,我们可以证明MN =BM+DN .知识探究:(1)在如图中,作AH ⊥MN ,垂足为点H ,猜想AH 与AB 有什么数量关系?并证明; 知识应用:(2)如图,已知∠BAC =45°,AD ⊥BC 于点D ,且BD =2,AD =6,则CD 的长为 ; 知识拓展:(3)如图,四边形ABCD 是正方形,E 是边BC 的中点,F 为边CD 上一点,∠FEC =2∠BAE ,AB=24,求DF 的长.16.如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH .(1)求证:∠APB=∠BPH ;(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论;17.如图,已知正方形ABCD 的边长为5,点E 为CD 边上一点(不与点C ,D 重合),将ADE 沿AE 所在直线折叠得到AFE △,延长EF 交边BC 于点G ,连接AG 、CF ,可得45EAG ∠=︒.(1)判断BG 与FG 是否相等,并说明理由;(2)若AG CF ∥,求DE 的长;(3)若FC FG =,请直接写出CEF CEG S S △△的值. 18.如图将边长为4的正方形纸片ABCD 折叠,使B 点落在CD 边上一点E ,压平后得到折痕MN ,当12CE CD =.(1)求NE 的长;(2)连AN 、AE ,NG ⊥AE ,垂足为G ,求GN 的长; (3)直接写出AM 的长度.19.综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动.(1)迁移探究:①如图1,当点M 在EF 上时,EMB ∠=___________°,MBQ ∠=___________°.②改变点P 在AD 上的位置(点P 不与点A ,D 重合),如图2,判断MBQ ∠与CBQ ∠的数量关系,并说明理由.③已知正方形纸片ABCD 的边长为8,当1FQ =时,直接写出AP 的长.(2)拓展应用:正方形ABCD的边长为8,点P在边AD上,将ABP沿直线BP翻折,使得点A落在正方形内的点M处,连接DM并延长交正方形ABCD一边于点G.当BG DP时,则DP的长为___________.答案与解析【例题讲解】如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1) 求证:∠EDG=45°.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.(3) 当BE︰EC= 时,DE=DG.试题解析:(1)证明:如图:∵四边形ABCD是正方形,∴DC=DA.∠A=∠B=∠C=∠ADC = 90°.∵△DEC沿DE折叠得到△DEF,∴∠DFE=∠C,DC=DF,∠1=∠2,∴∠DFG=∠A,DA=DF,又∵DG=DG,∴△DGA≌△DGF,∴∠3=∠4,∴∠EDG=∠3+∠2=(∠ADF+∠FDC)= 45°.(2)①证明:∵△DEC沿DE折叠得到△DEF,E为BC的中点∴CE=EF=BE,∠DEF=∠DEC.∴∠5=∠6,∵∠FEC=∠5+∠6,∴∠DEF+∠DEC=∠5+∠6∴2∠5=2∠DEC,即∠5=∠DEC ∴BF∥DE.②解:设AG=x,则GF=x,BG=6-x,由正方形边长为6,得CE=EF=BE=3,∴GE=EF+GF=3+x.在Rt△GBE中,根据勾股定理得:解得x=2,即线段AG的长为2..【综合演练】1.如图.已知正方形ABCD的边长为12,BE=EC,将正方形的边CD沿DE折叠到DF,延长EF 交AB于G,连接DG.现有如下3个结论;①AG+EC=GE;②∠GDE=45°;③△BGE的周长是24.其中正确的个数为()A .0B .1C .2D .3 【答案】D【分析】由正方形的性质和折叠的性质可得,DF =DC =DA ,∠DFG =∠A ,进而Rt △ADG ≌Rt △FDG ,根据全等三角形的性质以及折叠的性质,可得到EB =EG ,由此可得△BGE 的周长.【解答】解:由折叠可知:CE =FE ,DF =DC =DA ,∠DFE =∠C =90°,∴∠DFG =∠A =90°,在Rt △ADG 和Rt △FDG 中, DG DG DF DA=⎧⎨=⎩, ∴Rt △ADG ≌Rt △FDG (HL ),∴AG =FG ,∴AG +EC =GF +EF =GE ,故①正确,∵Rt △ADG ≌Rt △FDG ,∴∠ADG =∠FDG ,由折叠可知,∠CDE =∠FDE ,∴∠GDE =∠GDF +∠EDF =1452ADC ∠=︒, 故②正确,∵正方形的边长为12,∴BE =EC =EF =6,设AG =FG =x ,则EG =x +6,BG =12-x ,由勾股定理可得:222EG BE BG =+,即()()2226612x x +=+-,解得:x =4,∴AG =GF =4,BG =8,EG =10,∴△BGE 的周长=BE +EG +GB =6+10+8=24,故③正确,故选:D .【点评】本题主要考查折叠变换,正方形的性质,全等三角形的性质与判定,勾股定理,能够熟练应用勾股定理是解决本题的关键.形的周长之和是()A.8 B.9 C.12 D.以上都不正确【答案】C【分析】由图形翻折变换的性质可知AD=A’D’,A’H=AH,D’G=DG,由阴影部分的周长=A’D’+A’H+BH+BC+CG+D’G即可得出结论.【解答】解:由翻折变换的性质可知AD=A’D’,A’H=AH,D’G=DG,阴影部分的周长=A’D’+(A’H+BH)+BC+(CG+D’G)=AD+AB+BC+CD=3×4=12.故选C.【点评】本题考查的是翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE,若AB的长为2,则FM的长为()A.2 B3C6D.1【答案】B【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM的值.【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=2222--,BF BM=21=3故选B.【点评】本题主要考查了翻折变换的性质,正方形的性质,勾股定理,适时利用勾股定理是解答此类问题的关键.4.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm【答案】A【解答】解:由题意可知∠DFE=∠CDF=∠C=90°,DC=DF,∴四边形ECDF是正方形,∴DC=EC=BC-BE,∵四边形ABCD是矩形,∴BC=AD=10,∴DC=10-6=4(cm)故选:A5.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN ∠的度数为______.上的对应点为H,则HBC【答案】15°【分析】由翻折的性质AH=AB,MN垂直平分AD,于是得到DH=AH=AB=AD,故此△ADH为等边三角形,由△ADH为等边三角形可知∠HAB=30°,在△ABH中可求得∠ABH=75°,故此可求得∠HBC=15°.【解答】解:∵MN垂直平分AD,∴DH=AH.由翻折的性质可知:AH=AB.∵正方形ABCD中,∴AH=AD=DH.∴△ADH是一个等边三角形.∴∠DAH=60°.∴∠HAB=30°.∵AB=AH,×(180°−30°)=75°.∴∠ABH=12∴∠HBC=∠ABC−∠ABH=90°−75°=15°.故答案是:15°.【点评】本题主要考查的是翻折的性质、线段垂直平分线的性质、等边三角形的性质和判定、等腰三角形的性质,正方形的性质,证得△ADH是一个等边三角形是解题的关键.6.如图,在正方形ABCD中,E为BC上一点,将△ABE沿AE折叠至AB E'∆处,B E'与AC交于点F,若∠EFC=67°,则∠CAE的度数为____.【答案】11°【分析】利用三角形外角的性质先求出∠BEF,进而得到∠BEA,再求出∠BAE,最后用∠BAC-∠BAE即可得到答案.【解答】解:由正方形性质知:∠ACE=45°,∵∠EFC=67°,∴在△FEC中,∠BEF=∠EFC+∠ACE=67°+45°=112°,∠BEF=56°,由折叠的性质可知:∠BEA=12∴∠BAE=90°-∠BEA=90°-56°=34°,∴∠EAC=45°-34°=11°.故答案为:11°.【点评】本题考查了正方形的性质和折叠的性质以及三角形的外角定理,熟练掌握性质是解题关键.上,折痕为MN.则AM的长是______.【答案】295cm . 【分析】由翻折的性质可知MA=PM ,设MA=PM=xcm ,则BM=(10-x )cm ,最后在Rt △PBM 中由勾股定理可求得AM 的长.【解答】由翻折的性质可知:MA=PM ,设MA=PM=xcm ,则BM=(10-x )cm .在Rt △PBM 中由勾股定理得:PM 2=PB 2+MB 2,即x 2=42+(10-x )2.解得:x=295cm . AD 的长为295cm . 故答案为295cm . 【点评】本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x 的方程是解题的关键.8.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE 、BF ,将BCF ∆ 沿BF 对折,得到BPF ∆,延长FP 交BA 的延长线于点Q .给出下列结论:①AE BF =;②AE BF ⊥;③BQF ∆是等边三角形;④若正方形ABCD 的边长为3,则线段AQ 的长为34其中,正确的结论有_____.(把你认为正确的结论的序号都填上)【答案】①②④【分析】首先证明△ABE ≌△BCF ,再利用角的关系求得∠BGE=90°,即可得到①AE=BF ;②AE ⊥BF ;△BCF 沿BF 对折,得到△BPF ,利用角的关系求出QF=QB ,再证明∠FBQ≠60°,即可判断③错误,设AQ=x ,利用勾股定理构建方程即可解决问题.【解答】解:∵E ,F 分别是正方形ABCD 边BC ,CD 的中点,∴CF=BE ,在△ABE 和△BCF 中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴Rt △ABE ≌Rt △BCF (SAS ),∴∠BAE=∠CBF ,AE=BF ,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE ⊥BF ,故②正确;根据题意得,FP=FC ,∠PFB=∠BFC ,∠FPB=90°∵CD ∥AB ,∴∠CFB=∠ABF ,∴∠ABF=∠PFB ,∴QF=QB ,∵tan ∠FBC=12CF BC =, ∴∠FBC≠30°,∴∠FBQ≠60°,∴△BQF 一定不是等边三角形,故③错误,设AQ=x ,则FQ=BQ=3+x ,QP=x+3-32=x+32, 在Rt △BPQ 中,∵BQ 2=PB 2+QP 2,∴(x+3)2=32+(x+32)2, ∴x=34, ∴AQ=34,故④正确. 故答案为①②④.【点评】本题考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.DE=,折痕为PQ,9.如图,将一边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使5则PQ的长__________.【答案】13【分析】先过点P作PM⊥BC于点M,利用三角形全等的判定得到△PQM≌△AED,从而求出PQ=AE.【解答】过点P作PM⊥BC于点M,由折叠得到PQ⊥AE,∴∠DAE+∠APQ=90°,又∠DAE+∠AED=90°,∴∠AED=∠APQ,∵AD∥BC,∴∠APQ=∠PQM,则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD∴△PQM≌△AED∴PQ=AE=22+=13.512故答案是:13.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.交于点P,过点P且垂直于AE的一条直线MN分别交AB、CD于点M、N.连接AN,将△APN沿着AN翻折,点P落在点P'处.AD的中点为F,则P′F的最小值为____.【答案】2 4【分析】判断△ADG是等腰三角形,点P'在等腰直角三角形ADG的边GD上,当FP GD'⊥时,P F'的值最小,求解即可.【解答】解:如图,若点E点B重合,则点P与B点重合,MN与BC重合,△ABC沿AC折叠,则点P'与点D重合,若点E点C重合,则点P为正方形对角线交点,△ADP为等腰直角三角形,沿AD折叠,点P'落在点G处,则△ADG是等腰直角三角形,则点P'在DG上运动,∵AD=2,点F是AD的中点,∴1122 DF AD==根据垂线段最短可知,当FP GD'⊥时,P F'的值最小,此时FP D'∆是等腰直角三角形,∴2224FDFP'==;故答案为:2 4【点评】此题主要考查了正方形的性质,折叠的性质,勾股定理等知识,灵活运用“垂线段最短”是解答此题的关键.11.如图,正方形ABCD 中,6AB =,点E 在CD 上,且3CD DE =,将ADE 沿AE 对折至AFE △,延长EF 交BC 于点G ,连接AG 、CF .()1求证:ABG ≌AFG ; ()2求BG 的长;()3求FGC △的面积. 【答案】(1)详见解析;(2)3;(3)185. 【分析】()1根据翻折变换的性质和正方形的性质可证Rt ABG △≌Rt AFG ;()2在直角ECG 中,根据勾股定理即可得出结论; ()3结合()1和()2求出CEG 的面积,最后用同高的两三角形的面积的比等于底的比,即可得出结论.【解答】()1AFE 是由ADE 折叠得到,AF AD ∴=,90AFE AFG D ∠=∠=∠=︒,又四边形ABCD 是正方形,AB AD ∴=,B D ∠=∠,AB AF ∴=,90B AFG ∠=∠=︒,在Rt ABG △和Rt AFG 中,AG AG AB AF=⎧⎨=⎩ Rt ABG ∴≌()Rt AFG HL ,()2正方形ABCD 中,6AB =,3CD DE =,123EF DE CD ===∴, 设BG FG x ==,则6CG x =-.在直角ECG 中,根据勾股定理,得222(6)4(2)x x -+=+,解得3x =.3BG ∴=;()3由()2知,2EF =,3BG =,由()1知,Rt ABG △≌Rt AFG ,3FG BG ∴==,5EG EF FG ∴=+=,由()2知,6-3CG x ==,4CE CD DE =-=,1134622CEG SCG CE ∴=⋅=⨯⨯=, 31855FGC CEG S S ∴==. 【点评】此题属于四边形的综合题.考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理等知识.注意折叠中的对应关系,注意掌握方程思想的应用是解此题的关键.12.如图,正方形ABCD 中,CD =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF .(1)求证:①△ABG ≌△AFG ; ②求GC 的长;(2)求△FGC 的面积.【答案】(1)①证明详见解析;②3;(2)185. 【分析】(1)①利用翻折变换对应边关系得出AB =AF ,∠B =∠AFG =90°,利用HL 定理得出△ABG ≌△AFG 即可;②利用勾股定理得出GE 2=CG 2+CE 2,进而求出BG 即可;(2)首先过C 作CM ⊥GF 于M ,由勾股定理以及由面积法得,CM =2.4,进而得出答案.【解答】(1)①在正方形ABCD 中,AD =AB =BC =CD ,∠D =∠B =∠BCD =90°,∵将△ADE 沿AE 对折至△AFE ,∴AD =AF ,DE =EF ,∠D =∠AFE =90°,∴AB =AF ,∠B =∠AFG =90°,又∵AG =AG ,在Rt △ABG 和Rt △AFG 中,∵AG AG AB AF =⎧⎨=⎩, ∴△ABG ≌△AFG (HL );②∵CD=3DE∴DE=2,CE=4,设BG=x,则CG=6﹣x,GE=x+2∵GE2=CG2+CE2∴(x+2)2=(6﹣x)2+42,解得x=3∴BG=3,又∵AB=6,∴BG= GC=3;(2)过C作CM⊥GF于M,∵BG=GF=3,∴CG=3,EC=6﹣2=4,∴GE=5,CM•GE=GC•EC,∴CM×5=3×4,∴CM=2.4,GF·CM=3.6.∴S△FGC=12(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:____;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)【答案】(1)AH =AB ;(2)成立,理由见解析;(3)6【分析】(1)先证明ABM ADN ∆≅∆,可得AM AN =,BAM DAN ∠=∠,再证明ABM AHM ∆≅∆即可;(2)延长CB 至E ,使BE DN =,证明AEM ANM ∆≅∆,能得到AH AB =;(3)分别沿AM 、AN 翻折AMH ∆和ANH ∆,得到ABM ∆和AND ∆,然后分别延长BM 和DN 交于点C ,得正方形ABCE ,设AH x =,则2MC x =-,3NC x =-,在Rt MCN △中,由勾股定理,解得x .【解答】解:(1)如图①,AH AB =.理由如下:四边形ABCD 是正方形,90B BAD D ∴∠=∠=∠=︒,AB AD =,在ABM ∆和ADN ∆中,AB AD B D BM DN =⎧⎪∠=∠⎨⎪=⎩, ()ABM ADN SAS ∴∆≅∆,AM AN ∴=,BAM DAN ∠=∠,AMN ∴∆是等腰三角形,又AH MN ⊥,90AHM ∴∠=︒,HAM HAN ∠=∠,45MAN ∠=︒,14522.52HAM ∴∠=⨯︒=︒,45BAM DAN ∠+∠=︒, 22.5BAM HAM ∴∠=︒=∠,在ABM ∆和AHM ∆中,90BAM HAM B AHM AM AM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ABM AHM AAS ∴∆≅∆,AH AB ∴=;故答案为:AH AB =;(2)数量关系成立.如图②,延长CB 至E ,使BE DN =.∵四边形ABCD 是正方形,AB AD ∴=,90D ABE ∠=∠=︒,在Rt AEB 和Rt AND 中,AB AD ABE ADN BE DN =⎧⎪∠=∠⎨⎪=⎩, ∴Rt AEB ≌Rt AND (SAS ),AE AN ∴=,EAB NAD ∠=∠,45DAN BAM ∠+∠=︒,45EAB BAM ∴∠+∠=︒,90EAN ∴∠=︒,45EAM NAM ∴∠=∠=︒,在AEM ∆和ANM ∆中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩, ()AEM ANM SAS ∴∆≅∆.AEM ANM S S ∆∆∴=,EM MN =,AB 、AH 是AEM ∆和ANM ∆对应边上的高,AB AH ∴=.(3)如图③分别沿AM 、AN 翻折AMH ∆和ANH ∆,得到ABM ∆和AND ∆,2BM ∴=,3DN =,90B D BAD ∠=∠=∠=︒.分别延长BM 和DN 交于点C ,得正方形ABCD ,由(2)可知,AH AB BC CD AD ====.设AH x =,则2MC x =-,3NC x =-,在Rt MCN △中,由勾股定理,得222MN MC NC =+,2225(2)(3)x x ∴=-+-,解得16x =,21x =-.(不符合题意,舍去),6AH ∴=.【点评】本题是四边形综合题,考查了正方形的性质、全等三角形的判定与性质、翻折变换的性质以及勾股定理等知识;正确作出辅助线,熟练掌握翻折变换的性质,构造全等三角形是解题的关键. 14.如图1,在正方形ABCD 中,点E 为BC 上一点,连接DE ,把DEC 沿DE 折叠得到DEF ,延长EF 交AB 于点G ,连接DG .(1)EDG =∠____________;(2)如图2,若正方形边长为6,点E 为BC 的中点,连接BF ,①求线段AG 的长;②求BEF △的面积;(3)当DE DG =时,若令CE a =,则BE =________(用含a 的式子表示).【答案】(1)45︒;(2)①线段AG 的长为2;②185;(3)2a . 【分析】(1)根据正方形的性质可得DC=DA .∠A=∠B=∠C=∠ADC=90°,根据翻折前后两个图形能够完全重合可得∠DFE=∠C ,DC=DF ,∠1=∠2,再求出∠DFG=∠A ,DA=DF ,然后利用“HL”证明Rt △DGA 和Rt △DGF 全等,根据全等三角形对应角相等可得∠3=∠4,然后求出∠2+∠3=45°,从而得解;(2)①根据折叠的性质和线段中点的定义可得CE=EF=BE=3,DC=DF=AB=BC=6,利用“HL”证明Rt △DGA 和Rt △DGF 全等,可得AG=GF ,设AG=x ,表示出GF 、BG ,再利用勾股定理列出方程求解即可;②根据勾股定理求出EG=5,求出GBE 1S =BE BG=62⋅⋅ ,再根据△GBE 和△BEF 等高求解即可; (3)根据等腰三角形三线合一的性质可得F 是EG 的中点,再利用“HL”证明Rt △ADG 和Rt △CDE 全等,根据全等三角形对应边相等可得AG=CE=a ,可得AG=CE=EF=GF=a ,再求出BG=BE ,然后根据勾股定理列出方程即可求解.【解答】解:(1)如图1,∵四边形ABCD 是正方形,∴DC=DA .∠A=∠B=∠C=∠ADC=90°,∵△DEC 沿DE 折叠得到△DEF ,∴∠DFE=∠C ,DC=DF ,∠1=∠2,∴∠DFG=∠A=90°,DA=DF ,在Rt △DGA 和Rt △DGF 中,DG=DG DA=DF ⎧⎨⎩, ∴Rt △DGA ≌Rt △DGF (HL ),∴∠3=∠4,∴∠EDG=∠3+∠2=12∠ADF+12∠FDC ,=12(∠ADF+∠FDC ), =12×90°,=45°;(2)①解:∵将DEC 沿DE 折叠得到DEF ,E 为BC 的中点,∴CE EF BE ==,CD DF =,∵四边形ABCD 是正方形,∴6AB BC CD AD ====,∴6DF AD ==.在Rt ADG 和Rt FDG △中, AD DF DG DG=⎧⎨=⎩, ∴Rt Rt ADG FDG △≌△(HL),∴AG GF =,∵E 为BC 中点,∴1632CE EF BE ===⨯=.设AG x =,则GF x =,6BG x =-,∴3GE EF GF x =+=+,在Rt GBE △中,根据勾股定理得:222GB BE GE +=,即()()222633x x -+=+, 解得2x =,即线段AG 的长为2;②在Rt GBE △中,3BE =,4BG =,根据勾股定理得:225EG GB BE =+=.∵12GBE S =BE•BG 13462=⨯⨯=. ∵△BEF 和△BEG 等高,∴318655FBE S =⨯=△; (3)∵DE=DG ,∠DFE=∠C=90°,∴点F 是EG 的中点,即GF=EF ,在Rt △ADG 和Rt △CDE 中,DG=DE AD=CD ⎧⎨⎩, ∴Rt △ADG ≌Rt △CDE (HL ),∴AG=CE ,∴AB-AG=BC-CE ,AG=CE=EF=GF=a ,即BG=BE ,∴△BEG 是等腰直角三角形,∴222BE +BG =GE 即()222BE =2a解得BE=2a .故答案为(1)45︒;(2)①线段AG 的长为2;②185;(3)2a . 【点评】本题是四边形综合题,主要考查正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,翻折变换的性质,熟记各性质是解题的关键.AN 、MN ,∠MAN =45°,延长CB 至G 使BG =DN ,连接AG ,根据三角形全等的知识,我们可以证明MN =BM+DN .知识探究:(1)在如图中,作AH ⊥MN ,垂足为点H ,猜想AH 与AB 有什么数量关系?并证明; 知识应用:(2)如图,已知∠BAC =45°,AD ⊥BC 于点D ,且BD =2,AD =6,则CD 的长为 ; 知识拓展:(3)如图,四边形ABCD 是正方形,E 是边BC 的中点,F 为边CD 上一点,∠FEC =2∠BAE ,AB=24,求DF 的长.【答案】(1)AB =AH , 证明见解析;(2)3;(3)8 .【分析】(1)先证△ABG ≌△ADN ,再证△GAM ≌△NAM ,根据GM 和NM 是对应边,得到AB =AH (全等三角形对应边上的高相等);(2)作△ABD 关于直线AB 的对称△ABE ,作△ACD 关于直线AC 的对称△ACF ,延长EB 、FC 交于点G ,则四边形AEGF 是矩形,又AE =AD =AF ,所以四边形AEGF 是正方形,设设CD =x ,则BG =6−2=4;CG =6− x ;BC =2+ x ,在Rt △BGC 中,()2224(62,)x x +-=+得x =3,所以CD 的长为3. (3)过点A 作AM EF ⊥交EF 于点M ,证明△ABE ≌△AME ,得到12,BE ME ==,AB AM AD ==再证明Rt ADF ≌Rt AMF ,设DF =x ,得到EF =12+ x ;FC =24− x ;EC =12,在Rt △EFC中,()2221(221)42,x x +-=+ 解方程即可.【解答】(1)AB =AH ,证明:如图1图1∵四边形ABCD 是正方形,∴90ABC D ∠=∠=︒,∴18090ABG ABC ∠=︒-∠=︒,又∵AB =AD ,∵在△ABG 和△ADN 中,AB AD ABG ADN BG DN =⎧⎪∠=∠⎨⎪=⎩, ∴△ABG ≌△ADN (SAS),∴BAG DAN AG AN ∠=∠=,,∵90BAD ∠=︒,45MAN ∠=︒,∴9045DAN BAM MAN ∠+∠=︒-∠=︒,∴45BAG BAM ∠+∠=︒,即45GAM ∠=︒,∵在△GAM 和△NAM 中,AG AN GAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩, ∴△GAM ≌△NAM (SAS),又∵GM 和NM 是对应边,∴AB =AH (全等三角形对应边上的高相等);(2)作△ABD 关于直线AB 的对称△ABE ,作△ACD 关于直线AC 的对称△ACF ,图2∵AD 是△ABC 的高,∴90ADB ADC ∠=∠=︒,∴90E F ∠=∠=︒,又∵45BAC ∠=︒,∴90EAF ∠=︒,延长EB 、FC 交于点G ,则四边形AEGF 是矩形,又∵AE =AD =AF∴四边形AEGF 是正方形,由(1)、(2)知:EB =DB =2,AE =AF=AD=EG =6,设CD =x ,∴BG =6−2=4;CG =6− x ;BC =2+ x ,在Rt △BGC 中,()2224(62,)x x +-=+解得3,x =故CD 的长为3.(3)如图3,过点A 作AM EF ⊥交EF 于点M ,901,21,AEB FEC ∠=-∠∠=∠︒180901,AEM AEB FEC ∠=-∠∠=︒-∠︒-,AEB AEM ∴∠=∠在△ABE 和△AME 中,90ABE AME AEB AEFAE AE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△AME (AAS), 1112,22BE ME BC AB ∴==== ,AB AM AD == 在Rt ADF 和Rt AMF 中,,AD AM AF AF =⎧⎨=⎩ Rt ADF ≌Rt AMF ,,MF DF ∴=设DF =x ,∴EF =12+ x ,FC =24− x ,EC =12,在Rt △EFC 中,()22212(24)12x x +-=+,解得8x =,故DF 的长为8.【点评】考查正方形的判定与性质, 全等三角形的判定与性质, 勾股定理, 翻折变换(折叠问题),作出辅助线是解题的关键.16.如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH .(1)求证:∠APB=∠BPH ;(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论;【答案】(1)证明详见解析;(2)△PDH 的周长不发生变化,理由详见解析.【分析】(1)根据翻折变换的性质得出∠PBC=∠BPH ,进而利用平行线的性质得出∠APB=∠PBC 即可得出答案;(2)首先证明△ABP ≌△QBP ,进而得出△BCH ≌△BQH ,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8.【解答】(1)∵将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,折痕为EF ,∴四边形EBCF 与四边形EPGF 关于EF 对称,∴∠BPH =∠PBC (轴对称性质),∵四边形ABCD 为正方形,∴AD ∥BC ,∴∠APB =∠PBC ,∴∠APB =∠BPH ;(2)△PDH 的周长不发生变化,为定值8,如图,过BQ ⊥PH ,垂足为Q ,由(1)知∠APB =∠BPH ,∴在△ABP 与△QBP 中,90APB BPH A BQP BP BP ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴()ABP QBP AAS ≌,∴AP QP AB QB ==,,又∵AB =BC ,∴BC =BQ ,又∵90C BQH ︒∠=∠=,在Rt △BCH 与Rt △BQH 中,BH BH BQ BQ=⎧⎨=⎩, ∴Rt △BCH ≌Rt △BQH (HL ),∴CH =QH ,∴△PDH 的周长为:DP +PH +DH = DP +AP +CH +DH =AD +CD =8,∴当点P 在边AD 上移动时,△PDH 的周长不发生变化.【点评】此题主要考查了翻折变换的性质以及全等三角形的判定与性质,此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.17.如图,已知正方形ABCD 的边长为5,点E 为CD 边上一点(不与点C ,D 重合),将ADE 沿AE 所在直线折叠得到AFE △,延长EF 交边BC 于点G ,连接AG 、CF ,可得45EAG ∠=︒.(1)判断BG 与FG 是否相等,并说明理由;(2)若AG CF ∥,求DE 的长;(3)若FC FG =,请直接写出CEF CEGS S △△的值. 【答案】(1)BG FG =,理由见解析(2)DE 的长是53(3)12【分析】(1)先由ABCD 是正方形,再根据Rt ABG Rt AFG ≌△△可求得BG FG =;(2)由AG CF ∥,得到Rt ABG Rt AFG ≌△△,由勾股定理可得222CG CE EG +=,且5522EG FE DE =+=+,可求得53DE =; (3)由FC FG =,得FGC FCG ∠=∠,又可证明FEC FCE ∠=∠,则FC FE =,FE FG =,可求得CEF CEGS S △△的值是12. 【解答】(1)BG FG =,理由如下:∵四边形ABCD 是正方形,∴AB AD =,90B D BCD ∠=∠=∠=︒,由折叠得AF AD =,FE DE =,90AFE D ∠=∠=︒,∴AB AF =,18090AFG AFE ∠=︒-∠=︒,在Rt ABG △和Rt AFG 中,AG AG AB AF =⎧⎨=⎩, ∴Rt ABG Rt AFG ≌△△,∴BG FG =.(2)如图1,∵AG CF ∥,∴GCF AGB ∠=∠,GFC AGF ∠=∠,∵Rt ABG Rt AFG ≌△△,∴AGB AGF ∠=∠,∴GCF GFC ∠=∠,∴CG FG =,∴BG CG FG ==,∵5BC DC ==,∴1522BG CG FG BC ====,5CE DE =-, ∵222CG CE EG +=,且5522EG FE DE =+=+, ∴()22255522DE DE ⎛⎫⎛⎫+-=+ ⎪ ⎪⎝⎭⎝⎭, ∴53DE =, ∴DE 的长是53. (3)如图2,∵FC FG =,∴FGC FCG ∠=∠,∴90FEC FGC ∠+∠=︒,90FCE FCG ∠+∠=︒,∴FEC FCE ∠=∠,FC FE =,FE FG =,∴12CEF CGF CEG S S S ==△△△, ∴12CEF CEG S S =△△, ∴CEF CEGS S △△的值是12. 【点评】此题考查正方形的性质、轴对称的性质、全等三角形的判定与性质、勾股定理的应用等知识,此题综合性强、难度较大.18.如图将边长为4的正方形纸片ABCD 折叠,使B 点落在CD 边上一点E ,压平后得到折痕MN ,当12CE CD =.(1)求NE 的长;(2)连AN 、AE ,NG ⊥AE ,垂足为G ,求GN 的长;(3)直接写出AM 的长度.【答案】(1)NE =2.5;(2)NG =11510; (3)AM =0.5.【分析】(1)由折叠性质可得EN =BN ,由题意可得CE =DE ,在Rt △CEN 中,利用勾股定理求解即可;(2)利用正方形面积减去△ABN ,△ADE 和△CEN 的面积可得△AEN 的面积,利用勾股定理可得由折叠性质可得:AM =FM ,AB =EF ,∠BAM =∠EFM ,∴△ABM ≌△FEM (SAS ),∴BM =EM ,设AM =x ,则DM =4-x ,在Rt △ABM 中,由勾股定理可得:BM 2=AB 2+AM 2,即BM 2=42+x 2, 在Rt △DEM 中,由勾股定理可得:EM 2=DM 2+DE 2,即EM 2=(4-x )2+22,∵BM =EM ,∴BM 2=EM 2,∴42+x 2=(4-x )2+22,解得:x =0.5,∴AM =0.5.【点评】本题考查折叠的性质,正方形的性质,勾股定理等知识点,解题的关键是明确折叠的性质:折叠是一种对称变换,属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.19.综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动.(1)迁移探究:①如图1,当点M 在EF 上时,EMB ∠=___________°,MBQ ∠=___________°.②改变点P 在AD 上的位置(点P 不与点A ,D 重合),如图2,判断MBQ ∠与CBQ ∠的数量关系,并说明理由.③已知正方形纸片ABCD 的边长为8,当1FQ =时,直接写出AP 的长.(2)拓展应用:正方形ABCD 的边长为8,点P 在边AD 上,将ABP 沿直线BP 翻折,使得点A 落在正方形内的点M 处,连接DM 并延长交正方形ABCD 一边于点G .当BG DP =时,则DP 的长为___________. 90,利用锐角三角函数可求得30,进而可得30,再由Rt BMQ Rt BCQ ≌可求得15;②同样根据正方形的性质和折叠性质,以及定理证明Rt BMQ Rt BCQ ≌得到MBQ ∠③根据题意,可分点Q 在线段DF 上两种情况,利用正方形的性质和折叠性质分别求解即可;)可分两种情况:当点G 在BGDP 是平行四边形,再根据折叠性质得到4PM AP ==;当点G 在于N ,证明ABP ADG ≌,进而可推2MP AP AG x ===,由勾股定理可求得90,90C =∠, 90,30,则60∠,30,Rt BMQ 和Rt BCQ 中,BM =()Rt BMQ Rt BCQ HL ≌,1152MBQ CBQ CBM =∠=∠, 故答案为:30,15;MBQ CBQ =∠,理由:∵四边形ABCD 是正方形,90,由折叠性质得:BM AB =,A PMB ∠=∠,∴BM BC =,90BMQ C ∠=∠=,又=BQ BQ ,∴()Rt BMQ Rt BCQ HL ≌,∴MBQ CBQ ∠=∠;③由折叠性质得:AP PM =,由Rt BMQ Rt BCQ ≌得MQ CQ =,当点Q 在线段CF 上时,如图,则415DQ DF FQ =+=+=,3CQ =,∴3PQ PM MQ AP CQ AP =+=+=+,又8PD AP =-,90D ,∴由勾股定理得()()222385AP AP +=-+,解得:4011AP =; 当点Q 在线段DF 上时,如图则413DQ DF FQ =-=-=,5CQ =,∴5PQ PM MQ AP CQ AP =+=+=+,又8PD AP =-,90D ,∴由勾股定理得()()222583AP AP +=-+,解得:2413AP =, 故AP 的长为4011或2413; (2)解:当点G 在BC 上时,如图,∵四边形ABCD 是正方形,∴AD BC ∥,AB AD =,又BG DP =,∴四边形BGDP 时平行四边形,∴BP DG ∥,∴APB PDM ∠=∠,BPM PMD ∠=∠,由折叠性质得:AP PM =,APB BPM ∠=∠,∴PDM PMD ∠=∠,∴142DP PM AP AD ====; 当点G 在AB 上时,如图,过M 作MN AD ⊥于N ,则90MNA ∠=︒,∵AB AD =,BG DP =,∴AG AP =,在Rt ABP 和Rt ADG 中,90AB AD BAP DAG AP AG =⎧⎪∠=∠=⎨⎪=⎩∴()Rt ABP Rt ADG SAS ≌,∴ABP ADG ∠=∠,由折叠性质得:AP MP =,AM BP ⊥,∴90DAM BAM ABP ∠=︒-∠=∠,AG PM =,∴DAM ADG ∠=∠,∴AM DM =,又MN AD ⊥,∴142DN AN AD ===,Rt PMN中,+=PN AP AN 解得:84x=-3==PN x=+DP DN PN。
武汉重点中学八年级数学下学期正方形专题培优训练1。
已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.B.C.D.2.如图,边长为a的正方形ABCD绕点A逆时针旋转30°得到正方形A′B′C′D′,图中阴影部分的面积为()A.a2B.a2C.(1﹣)a2D.(1﹣)a23.正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,且G 为BC的三等分点,R为EF中点,正方形BEFG的边长为4,则△DEK的面积为()A.10 B.12 C.14 D.16 4.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,A n分别是正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积和为()A.cm2B.cm2C.cm2D.cm25.如图所示,两个正方形的边长分别为a和b,如果a+b=10,ab=20,那么阴影部分的面积是.6.已知,如图,在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于点E、F,若AE=4,CF=3,则四边形OEBF的面积为.7。
如图,分别以△ABC的三边为边在BC的同侧作三个等边三角形,即△ABD,△BCE,△ACF.请回答下列问题:(1)说明四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,四边形ADEF是菱形?(4)当△ABC满足什么条件时,四边形ADEF是正方形?(5)当△ABC满足什么条件时,以A,D,E,F为顶点的四边形不存在?(第(2)(3)(4)(5)题不必说明理由)8。
在平面直角坐标系xOy中,OEFG为正方形,点F的坐标为(1,1).将一个最短边长大于的直角三角形纸片的直角顶点放在对角线FO上.(1)如图,当三角形纸片的直角顶点与点F重合,一条直角边落在直线FO上时,这个三角形纸片与正方形OEFG重叠部分(即阴影部分)的面积为;(2)若三角形纸片的直角顶点不与点O,F重合,且两条直角边与正方形相邻两边相交,当这个三角形纸片与正方形OEFG重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不写求解过程),并画出此时的图形.9。
名师第十六讲完美的正方形有一组邻边相等并且有一个角是直角的平行四边形是正方形,换句话说:正方形是各边都相等的矩形,正方形是各角都相等的菱形,正方形既是矩形又是菱形,它具有矩形和菱形的一切性质.矩形、菱形,正方形都是特殊的四边形,它们的概念交错,关系复杂,性质有许多相似之处,一些判定和性质定理又是可逆的,所以在学习中注重概念的理解,着眼于概念间的区别与联系.连正方形的对角线,能得到特殊三角形、全等三角形,由于正方形常常与直角三角形联系在一起,所以在解有关正方形问题时要用到直角三角形性质,具有代数风格,体现数形结合思想.熟悉以下基本图形,基本结论:例题求解【例1】如图,若四边形ABCD是正方形,△CDE是等边三角形,则∠EAB的度数为.(北京市竞赛题)思路点拨图中还有等腰三角形,利用等腰三角形性质计算.注可以证明,在所有用长相等的四边形中,正方形的面积最大.我们熟悉的“七巧板”,那是把一块正方形板切分成三角形、正方形、平行四边形的7块,用它可以拼出许多巧妙的图形,“七巧板”是我国古代人民智慧的结晶.【例2】如图,在正方形ABCD中,O是对角线AC、BD的交点,过O作OC⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为( )A.7 B.5 C.4 D.3(江苏省泰州市中考题)思路点拨 AE、CF、EF不在同一个三角形中,运用全等三角形寻找相等的线段,使分散的条件集中到同一个三角形中.【例3】如图,正方形ABCD中,E、F是AB、BC边上两点,且EF=AC+FC,DG⊥EF于G,求证:DC=DA.(重庆市竞赛题)思路点拨构造AE+FC的线段是解本例的关键.【例4】已知正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM且交∠CBZ的平分线于N(如图甲).(1)求证:MD=MN(2)若将上述条件中的“M是AB中点”改为“M是AB上的任意一点”,其余条件不变(如图乙),则结论“MD=MN”还成立吗?如果成立,请证明:如果不成立,请说明理由.(上海市闽行区中考题)思路点拨对于图甲,取AD中点F,通过构造全等三角形证明MD=MN;这种证法能否迁移到图乙情景中去?从而作出正确的判断.注探索是学习的生命线,深入探究、学会探索是时代提出的新要求.数学解题中的探索活动可从以下几个方面进行:(1)在题设条件不变情况下,发现挖掘更多的结论;(2)通过强化或弱化来改变条件,考查结论是否改变或寻求新的结论;(3)构造逆命题.对于例3,请读者思考,在不改变题设条件的前提下,(1)∠EDF等于多少度?(2)怎样证明明逆命题?例4改变点的位置,赋以运动,从特殊到一般,(1)的结果为(2)的猜想提供了借鉴的依据,又为猜想设置了障碍,前面的证明思路是后面的证明模式.【例5】操作:将一把三角尺放在边长为l的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.探究:设A,P两点间的距离为x(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由(图1、图2、图3的形状大小相同,图1供操作、实验用,图2、图3备用).思路点拨本例是探究式的操作型试题,第(1)问需抓住滑动中∠BPQ是直角这一不变量,画出滑动中一般情形的图形,通过观察提出猜想,再给予论证,第(3)问需要在操作中观察出使△PCQ是等腰三角形的两种情形.注数学学习是一个生动活泼的过程,动手实践,自主探索是学习数学的重要形式,它说明了存在的事实是怎样被发现和被发现的现象又是怎样获得证实的,解这类问题,需边操作,边观察、边思考,综合运用相关知识方法探究结论.学力训练1.如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=3,则PP′= .河南省中考题)2.如图,正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF,若∠BEC=60°,则∠EFD的度数为. (苏州市中考题)3.如图,∠POQ=90°,边长为2㎝的正方形ABCD 的顶点B 在OP 上,C 在OQ 上,且∠OBC=30°,则A 、D 到OP 的距离分别为 . (南京市中考题)4.如图,正方形ABCD 中,CE ⊥MN ,若∠MCE =35°,则∠ANM 的度数是 .5.如图,E 是边长为l 的正方形ABCD 的对角线BD 上一点,且BE=BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ+PR 的值为( ) (河北省中考题)A .22 B .21 C .23 D .326.如图,在四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD 于E ,8 ABCD S 四边形,则BC 的长为( )A .2B .3C .3D .22 (武汉市选拔赛试题)7.如图,在正方形ABCD 中,C 为CD 上的一点,延长月C 至F ,使CF=CE ,连结DF ,BE 与DF 相交于G ,则下面结论错误的是( )A .BE=DFB .BG ⊥DFC .∠F+∠CEB=90°D .∠FDC+∠ABG =90°(山东省临沂市中考题)8.如图,已知正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,Rt△CEF的面积为200,则BE的值是( )A.15 B.12 C .11 D.109.(1)如图甲,若点P为正方形ABCD边AB上一点,以PA为一边作正方形AEFP,连BE、DP,并延长DP 交BE于点H,求证:DH⊥BF;(2)如图乙,若点P为正方形ABCD内任一点,其余条件不变,(1)的结论是否成立?若成立,请给出证明;若不成立,请说明理由.(泰州市中考题)10.如图,P为正方形ABCD的对角线BD上任一点,PF⊥CD,PE⊥BC,C、F分别为垂足,探索AP与EF的关系.11.如图,正方形ABCD中,AB=3,点E,F分别在BC、CD上,且∠BAE=30°,∠DAF=15°,求△AEF的面积.( “希望杯”邀请赛试题)12.如图,已知E、F分别是正方形ABCD的边BC、CD上的点,AE、AF分别与对角线BD相交于M、N,若∠EAF=50°,则∠CME+∠CNF= .13.如图,在Rt △ABC 中,∠C =90°,AC=3,以AB 为一边向三角形外作正方形ABEF ,正方形的中心为O ,OC=24,则BC 边的长为 .( “希望杯”邀请赛试题)14.如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为7㎝2和11㎝2,则△CDE 的面积等于 cm 2.(武汉市选拔赛试题)15.如图,将边长为12cm 的正方形ABCD 折叠,使得A 点落在边CD 上的E 点,然后压平得折痕FG ,若GF 的长为13cm ,则线段CE 的长为 . (北京市竞赛题)16.将一个正方形分割成n 个小正方形(n>1),则n 不可能取( )A .4B .5C .8D .9(江苏省竞赛题)17.如图,正方形ABCD 中,P 、Q 分别是BC 、CD 上的点,若∠PAQ=45°,∠BAP=20°,则∠AQP=( )A .65°B . 60°C .35°D .70°18.如图,ABCD 是边长为1的正方形,EFGH 是内接于ABCD 的正方形,AE=a ,AF=b ,若S EFGH =32,则a b 等于( )A .22B .32C .23D .33 ( “希望杯”邀请赛试题) 19.如图,BF 平行于正方形ADCD 的对角线AC ,点E 在BF 上,且AE=AC ,CF ∥AC ,则∠BCF 等于( )A .150°B .135°C . 105°D .120°20.图甲中,正方形ABDE、CDFI、EFGH的面积分别为17,10,13,图乙中,DPQR为矩形,对照图乙,计算图甲中六边形ABCIGH的面积.(江苏省竞赛题)21.如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.22.如图,有4个动点P、Q、E、F分别从正方形ABCD的4个顶点出发,沿着AB、BC、CD、DA以同样的速度向B、C、D、A各点移动.(1)判定四边形PQEF的形状;(2)PE是否总是经过某一定点,井说明理由;(3)四边形PQEF的顶点位于何处时,其面积最小、最大?各是多少?23.如图a,D为线段AE上任一点,分别以AD、DE为边作正方形ABCD和正方形DEFG,连结BF、AG、CE、BG、BE、BG、BE分别交AD,DC于P、Q两点.(1)①找出图中三对相等的线段(正方形边长相等除外);②找出图中三对相等的钝角;③找出图中一对面积相等的钝角三角形,这两个三角形全等吗?(2)如图b,当正方形ABCD和正方形DEFG都变为菱形,且∠GDE=∠ADC时,(1)中的结论哪些成立,哪些不成立?请对不成立的情况说明理由.(3)如图“当正方形ABCD和正方形DEFG都变为矩形,且DA>DC,DE>DG,△ABD∽△EFD时,(1)中的结论哪些不成立,哪些成立?.如果成立,请证明.(郴州市中考题)24.如图,正方形ABCD被两条与边平行的线段EF、GH分割成4个小矩形,P是EF与GH的交点,若矩形PFCH的面积恰是矩形AGPE面积的2倍,试确定∠HAF的大小,并证明你的结论.(北京市竞赛题)。
2022-2023学年初二数学第二学期培优专题09 正方形中的最值问题【例题讲解】P 为正方形ABCD 对角线BD 上一动点,若2AB =,则AP BP CP ++的最小值为_______ 【解答】如解图,将ABP 绕点A 顺时针旋转60︒得到AEF △,∵,60AP AF PAF =∠=︒, ∴PAF △是等边三角形,∴PA PF AF ==,EF PB =,∴PA PB PC EF PF PC ++=++, ∴当E 、F 、P 、C 共线时,PA PB PC ++最小,作EM DA ⊥交DA 的延长线于M ,ME 的延长线交CB 的延长线于N ,则四边形ABNM 是矩形,在Rt AME 中,∵90,30,2M MAE AE ∠=︒∠=︒=,∴1,3ME AM BN ===,∵2MN AB ==,∴1EN =,∴2222221(32)843(6)262(2)EC EN NC =+=++=+=+⋅⋅+2(62)62=+=+.∴PA PB PC ++的最小值为62+.【综合演练】1.如图,正方形ABCD 的边长为4,点M 在DC 上,且DM =1,N 是AC 上一动点,则DN +MN 的最小值为( )A .4B .42C .25D .52.如图,P 为正方形ABCD 内一动点,4PA AB ==,M 为PB 的中点,则CM 的最小值为( )A .125B .135C .22D .252-3.如图,在边长为4的正方形ABCD 中,点E 、F 分别是边BC 、CD 上的动点,且BE =CF ,连接BF 、DE ,则BF +DE 的最小值为()A .12B .20C .48D .804.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点P 是BC 上任意一点,PE BD ⊥于点E ,PF AC ⊥于点F ,若22AC =,则EF 的长的最小值为( )A .2B .1C .2D .225.如图,已知正方形ABCD 的边长为8,点E 是正方形内部一点,连接BE ,CE ,且∠ABE =∠BCE ,点P 是AB 边上一动点,连接 PD ,PE ,则PD+PE 长度的最小值为( )A .82B .410C .854D .41346.如图,正方形ABCD 与矩形EFGH 在直线l 的同侧,边AD ,EH 在直线l 上,且5cm AD =,4cm EH =,3cm EF =.保持正方形ABCD 不动,将矩形EFGH 沿直线l 左右移动,连接BF ,CG ,则BF CG +的最小值为______cm.7.如图,正方形ABCD中,AB=42,点E为对角线AC上的动点,以DE为边作正方形DEFG,点H是CD上一点,且DH=35 CD.(1)连接CG,则∠DCG=____________.(2)连接GH,GH的最小值为____________.8.如图,AC是边长为2的正方形ABCD的对角线,P为BC边上一动点,E,F为AB,AC的中点.当PE PF的值最小时,CP的值为______.9.如图,点P为线段AB上的一个动点,AB=6,以P A、PB为边向同侧作正方形APDC、正方形PBEF,两正方形的对角线的交点分别记为O1、O2,连接O1O2,则O1O2的最小值为_____.10.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD =_____°.11.如图,正方形ABCD 中,2AB =,动点E 从点A 出发向点D 运动,同时动点F 从点D 出发向点C 运动,点E 、F 运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段AF 、BE 相交于点P ,M 是线段BC 上任意一点,则MD MP +的最小值为___.12.在正方形ABCD 中,4AB =,点E 、F 分别为AD CD 、上一点,且AE CF =,连接BF CE 、,则BF CE +的最小值是________________.13.如图,正方形ABCD 的边长是8,点E 、F 分别是边AB 、BC 上的点,且1AE CF ==,若点P 是对角线AC 上一个动点,则EP PF +的最小值是______.14.如图,在正方形ABCD 中,22AB =AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且3BM =,P 为对角线BD 上一点,则PM PN -的最大值为_____________.15.如图,正方形ABCD 边长为4,P 是正方形内一动点,且:1:3PAB PCD S S =△△,则PC PD +的最小值是______.16.如图,正方形ABCD 中,3AB =,点E 为对角线AC 上的动点,以DE 为边作正方形DEFG ,点H 是CD 上一点,且23DH CD =,连接GH ,则GH 的最小值为______.17.如图,正方形ABCD ,边长为7,点E 在边BC 上,2BE =,点F 是AB 边上一动点,连接EF ,以EF 为边向右作等边EFG ,连接CG ,线段CG 的最小值是___________.18.如图,AC 是边长为2的正方形ABCD 的对角线,P 为BC 边上一动点,E ,F 为AB ,AC 的中点.当PE +PF 的值最小时,CP 的值为________.19.如图,已知正方形ABCD 的边长为4,点E 是AB 边上一动点,连接ED ,将ED 绕点E 顺时针旋转90︒到EF ,连接,DF CF ,则DF CF +的最小值是_____.20.如图,矩形ABCD 中,AB =4,AD =23,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是_____.21.如图,在正方形ABCD 中,AB =4,AC 与BD 相交于点O ,M 是AO 的中点,P ,Q 为对角线BD 上的两点,若PQ =2,则PM +CQ 的最小值为 ___.22.如图,正方形ABCD 的边长为4,∠DAC 的平分线交DC 于点E .若点P 、Q 分别是AD 和AE 上的动点,则DQ +PQ 的最小值是________.答案与解析【例题讲解】P 为正方形ABCD 对角线BD 上一动点,若2AB =,则AP BP CP ++的最小值为_______ 【解答】如解图,将ABP 绕点A 顺时针旋转60︒得到AEF △,∵,60AP AF PAF =∠=︒, ∴PAF △是等边三角形,∴PA PF AF ==,EF PB =,∴PA PB PC EF PF PC ++=++, ∴当E 、F 、P 、C 共线时,PA PB PC ++最小,作EM DA ⊥交DA 的延长线于M ,ME 的延长线交CB 的延长线于N ,则四边形ABNM 是矩形,在Rt AME 中,∵90,30,2M MAE AE ∠=︒∠=︒=,∴1,3ME AM BN ===,∵2MN AB ==,∴1EN =,∴2222221(32)843(6)262(2)EC EN NC =+=++=+=+⋅⋅+2(62)62=+=+.∴PA PB PC ++的最小值为62+.【综合演练】1.如图,正方形ABCD 的边长为4,点M 在DC 上,且DM =1,N 是AC 上一动点,则DN +MN 的最小值为( )A .4B .42C .25D .5 【答案】D【分析】由正方形的对称性可知点B 与D 关于直线AC 对称,连接BM 交AC 于N′,N′即为所求在Rt △BCM 中利用勾股定理即可求出BM 的长即可.【解答】∵四边形ABCD 是正方形,∴点B 与D 关于直线AC 对称,∴DN =BN ,连接BD ,BM 交AC 于N′,连接DN′,∴当B 、N 、M 共线时,DN +MN 有最小值,则BM 的长即为DN +MN 的最小值,∴AC 是线段BD 的垂直平分线,又∵CD =4,DM =1∴CM =CD -DM =4-1=3,在Rt △BCM 中,BM =2222345CM BC +=+=故DN +MN 的最小值是5.故选:D .【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出D 关于直线AC 的对称点,由轴对称及正方形的性质判断出D 的对称点是点B 是解答此题的关键.2.如图,P 为正方形ABCD 内一动点,4PA AB ==,M 为PB 的中点,则CM 的最小值为( )A .125B .135C .22D .252-【答案】D【分析】取AB 的中点N ,连接MN ,根据三角形中位线的性质可求出MN 的长度,然后根据三角形三边关系即可求出CM 的最小值.【解答】解:因为4PA AB ==,M 为PB 的中点,取AB 的中点N ,连接MN ,CN ,易得25CN =,所以122MN PA ==. 在点P 的运动过程中,MN 的值不变,因为CM MN CN +≥,当C ,M ,N 三点在同一条直线上时,CM 最小,此时252CM CN MN =-=-.故选:D【点评】此题考查了三角形中位线的性质和三角形三边的关系,解题的关键是由题意作出辅助线.3.如图,在边长为4的正方形ABCD 中,点E 、F 分别是边BC 、CD 上的动点,且BE =CF ,连接BF 、DE ,则BF +DE 的最小值为()A.12B.20C.48D.80【答案】D【分析】连接AE,利用△ABE≌△BCF转化线段BF得到BF+DE=AE+DE,则通过作A点关于BC对称点H,连接DH交BC于E点,利用勾股定理求出DH长即可.【解答】解:解:连接AE,如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.又BE=CF,∴△ABE≌△BCF(SAS).∴AE=BF.所以BF+DE最小值等于AE+DE最小值.作点A关于BC的对称点H点,如图2,连接BH,则A、B、H三点共线,连接DH,DH与BC的交点即为所求的E点.根据对称性可知AE=HE,所以AE+DE=DH.在Rt△ADH中,DH2=AH2+AD2=82+42=80∴DH=45∴BF+DE最小值为45故选:D.【点评】本题主要考查了正方形的性质、全等三角形的判定和性质、最短距离问题,一般求两条线段最短距离问题,都转化为一条线段.⊥4.如图,正方形ABCD的对角线AC,BD相交于点O,点P是BC上任意一点,PE BD⊥于点E,PF AC 于点F,若22AC=,则EF的长的最小值为()A.2 B.1 C2D.22【答案】B【分析】如图,连接OP、EF,根据已知条件和正方形的性质可以得到当EF最小就是OP最小,然后利用垂线段最短即可求解.【解答】解:如图,连接OP、EF,∵正方形ABCD的对角线AC,BD相交于点O,点P是BC上任意一点,PE⊥BD于点E,PF⊥AC于点F,∴四边形OEPF为矩形,∴EF=OP,∴EF最小时OP最小,当OP⊥BC于P的时候OP最小,而当OP⊥BC时,P为BC的中点,BC,∴OP=12∵AC=22,则BC=2,∴OP=1,∴EF的长的最小值为1.故选:B.【点评】本题主要考查了正方形的性质,同时也利用了垂线段最短解决问题.5.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE长度的最小值为()A.82B.410C.854-D.4134-【答案】D【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO 交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,2222=+=+==(勾股定理),OF FG OG812208413∴4134EF=-,∴PD+PE的长度最小值为4134-,故选D.【点评】本题考查了轴对称-最短路线问题,正方形的性质,勾股定理的综合运用.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题6.如图,正方形ABCD 与矩形EFGH 在直线l 的同侧,边AD ,EH 在直线l 上,且5cm AD =,4cm EH =,3cm EF =.保持正方形ABCD 不动,将矩形EFGH 沿直线l 左右移动,连接BF ,CG ,则BF CG +的最小值为______cm .【答案】17【分析】作点C 关于FG 的对称点P ,连接GP ,以FG ,PG 为邻边作平行四边形PGFQ ,则BF CG BF QF +=+,当B ,F ,Q 三点共线时,BF CG +的最小值为BQ 的长,过点Q 作QN AB ⊥于N ,依据勾股定理即可得到Rt BNQ ∆中,224117BQ =+=,即可得出BF CG +的最小值为17.【解答】解:如图所示,作点C 关于FG 的对称点P ,连接GP ,以FG ,PG 为邻边作平行四边形PGFQ ,则FQ PG CG ==,4FG QP ==,BF CG BF QF ∴+=+,∴当B ,F ,Q 三点共线时,BF CG +的最小值为BQ 的长,过点Q 作QN AB ⊥于N ,由题可得2(53)4BN =-=,541NQ =-=,Rt BNQ∴△中,224117BQ=+=,BF CG∴+的最小值为17,故答案为:17.【点评】本题主要考查了正方形、矩形的性质以及最短距离问题,解决问题的关键是构造平行四边形;凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.7.如图,正方形ABCD中,AB=42,点E为对角线AC上的动点,以DE为边作正方形DEFG,点H是CD上一点,且DH=35 CD.(1)连接CG,则∠DCG=____________.(2)连接GH,GH的最小值为____________.【答案】45°8 5【分析】(1)利用正方形的性质证明△ADE≌△CDG,即可求解;(2)由∠DCG=45°,得到点G的运动轨迹是射线CG,根据垂线段最短,即可解答.【解答】解:(1)解:∵四边形ABCD是正方形,四边形DECG是正方形,∴DA=DC,DE=DG,∠ADC=∠EDG=90°,∠DAC=45°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴∠DCC=∠DAE=45°,故答案为:45°;(2)∵∠DCG=45°,∴点G的运动轨迹是射线CG,根据垂线段最短可知,当GH⊥CG时,GH的值最小,∵DH=35CD,∵42 CD AB==∴CH =CD ﹣DH =25 CD =825, ∴GH 最小值=CH •sin 45°=8228525⨯= . 故答案为:85. 【点评】本题主要考查了正方形的性质,全等三角形的判定和性质,点到直线垂线段最短,证得三角形全等和得到点G 的运动轨迹是射线CG ,是解题的关键.8.如图,AC 是边长为2的正方形ABCD 的对角线,P 为BC 边上一动点,E ,F 为AB ,AC 的中点.当PE PF +的值最小时,CP 的值为______.【答案】32【分析】延长AB ,作E 关于BC 的对称点Q ,连接FQ ,交BC 于点P ,此时PE PF + 值最小,再利用三角形的中位线性质即可求解.【解答】解:延长AB ,作E 关于BC 的对称点Q ,连接FQ ,交BC 于点P ,此时PE PF + 值最小.正方形ABCD 边长为2,2AB BC ∴==,222AC AB ==.E ,F 为AB ,AC 的中点,//EF BC ∴,112EF BC ==. B 为EQ 中点, BP ∴为EFQ △的中位线,1122BP EF ∴==.2BC =,13222CP BC BP ∴=-=-=. 故答案为:32. 【点评】本题考查了两点间线段最短(将军饮马)的应用以及三角形中位线定理得运用,作出对称点进行求解是解题的关键.9.如图,点P 为线段AB 上的一个动点,AB =6,以P A 、PB 为边向同侧作正方形APDC 、正方形PBEF ,两正方形的对角线的交点分别记为O 1、O 2,连接O 1O 2,则O 1O 2的最小值为_____.【答案】3【分析】作O 1M ⊥AP 于M ,O 2N ⊥PB 于N ,O 1Q ⊥O 2N 于Q ,如图,利用正方形的性质得△AO 1P 和△PO 2B都是等腰直角三角形,则AM =PM ,PN =BN ,所以MN =12AB =3,再证明四边形O 1MNO 2为矩形得到O 1Q =MN =3,然后根据垂线段最短得到O 1O 2的最小值.【解答】解:作O 1M ⊥AP 于M ,O 2N ⊥PB 于N ,O 1Q ⊥O 2N 于Q ,如图,∵四边形APDC 和四边形PBEF 都为正方形,111222,90,,90O A O P AO P O P O B PO B ∴=∠=︒=∠=︒ ,∴△AO 1P 和△PO 2B 都是等腰直角三角形,∵O 1M ⊥AP ,O 2N ⊥PB ,∴AM =PM ,PN =BN ,∴MN =PM +PN =12AB =3,∵O1M⊥AP,O2N⊥PB,O1Q⊥O2N,1190Q MN QNM QQN∴∠=∠=∠=︒,∴四边形O1MNO2为矩形,∴O1Q=MN=3,∵O1O2≥O1Q,∴O1O2的最小值为3.故答案为:3.【点评】本题主要考查正方形的性质,等腰三角形的性质,垂线段最短,掌握正方形的性质,等腰三角形的性质,垂线段最短是解题的关键.10.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD =_____°.【答案】45【解答】解:∵当PC+PD最小时,作出D点关于MN的对称点,正好是A点,连接AC,AC为正方形对角线,根据正方形的性质得出∠PCD=45°.11.如图,正方形ABCD中,2AB=,动点E从点A出发向点D运动,同时动点F从点D出发向点C运动,点E、F运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段AF、BE相交于点P,M是线段BC上任意一点,则MD MP+的最小值为___.【答案】10【分析】首先作出点D 关于BC 的对称点D ,当点E 与点D 重合,点F 与点C 重合时,PD '最短,然后由正方形的性质和轴对称图形的性质可知:1PG =,3GD '=,最后由勾股定理即可求得PD '的长,从而可求得MD MP +的最小值.【解答】解:如图作点D 关于BC 的对称点D ,连接PD ',由轴对称的性质可知:2MD D M CD CD ''===,,∴PM DM PM MD PD +=+='',过点P 作PE 垂直DC ,垂足为G ,由题意得AE DF =,∵四边形ABCD 为正方形,∴AB AD =,90BAE ADF ∠=∠=︒,∴BAE ADF △≌△,∴ABE DAF ∠=∠,∴90BAP DAF ∠+∠=︒,∴90BAP ABP ∠+∠=︒,∴90APB ∠=︒,故可知P 的轨迹为以AB 为直径的四分之一圆弧上,当点E 与点D 重合,点F 与点C 重合时, 此时,PD '最短.∵四边形ABCD 为正方形,∴112PG AD ==,112GC DC ==. ∴3GD '=.在Rt PGD '△中,由勾股定理得:22221310PD PG GD ''=+=+=.故答案为:10.【点评】本题主要考查的是最短路径问题,由轴对称图形的性质和正方形的性质确定出点P 的位置是解题的关键.12.在正方形ABCD 中,4AB =,点E 、F 分别为AD CD 、上一点,且AE CF =,连接BF CE 、,则BF CE +的最小值是________________.【答案】45 【分析】首先利用正方形的性质可以证明ADF ∆和()CDE SAS ∆,然后利用全等三角形的性质得到BF CE +的最小值就是BF AF +的最小值,最后利用轴对称即可求解.【解答】解:如图,连接AF ,正方形ABCD 中,AE CF =,AD CD ∴=,DE DF =,在ADF ∆和CDE ∆中,AD CD ADC ADC DE DF =⎧⎪∠=∠⎨⎪=⎩,ADF ∴∆和()CDE SAS ∆,CE AF ∴=,BF CE BF AF ∴+=+,BF CE ∴+的最小值就是BF AF +的最小值,如图,作A 关于CD 的对称点H ,连接BH 交CD 于F ,则F 即可满足BF AF +最小,4AB =,AH=,4∴==,8AD DH2245∴+=+==+=.BF CE BF AF BH AB AHBF CE∴+的最小值是45.故答案:45.【点评】本题主要考查了轴对称的性质,最短路径问题,同时也利用了正方形的性质,有一定的综合性.13.如图,正方形ABCD的边长是8,点E、F分别是边AB、BC上的点,且1==,若点P是对角AE CF线AC上一个动点,则EP PF+的最小值是______.【答案】10【分析】过E作AC的垂线交AD于点E′,连接E′F交AC于点P,过F作AD的垂线交AD于点G,则E′F 即为所求,根据正方形的性质可知△AEE′是等腰三角形,AE′=1,GD=CF=1,由AD=10即可求出GE′的长,再由勾股定理即可求出E′F的长.【解答】解:过E作AC的垂线交AD于点E′,连接E′F交AC于点P,过F作AD的垂线交AD于点G,∵四边形ABCD是正方形,∴AC是正方形ABCD的一条对称轴,∴点E、E′关于AC对称,∴PE=PE′,∴PE +PF的最小值是E′F的长,∵四边形ABCD是正方形,∴∠DAC=∠BAC=45°,∵EE′⊥AC,∴△AEE′是等腰三角形,∴AE=AE′=3,∵GF⊥AD,∴GD=CF=1,∴GE′=8-GD-AE′=8-1-1=6,在Rt△GFE′中,GE′=6,GF=8,∴E′F=2222'+=+=10.68E G GF故答案为:10.【点评】本题考查的是最短路线问题及正方形的性质,根据题意作出辅助线是解答此题的关键.BM=,14.如图,在正方形ABCD中,22AB=,AC与BD交于点O,N是AO的中点,点M在BC边上,且3-的最大值为_____________.P为对角线BD上一点,则PM PN【答案】1【分析】作N关于BD的对称点E,连接PE,ME,过点M作MQ⊥AC,垂足为Q,可判定当点P,E,M三点共线时,PM-PE的值最大,为ME的长,求出CE,CQ,得到EQ,利用垂直平分线的性质得到EM=CM=1即可.【解答】解:如图:作N关于BD的对称点E,连接PE,ME,过点M作MQ⊥AC,垂足为Q,∴PN =PE ,则PM -PN =PM -PE ,∴当点P ,E ,M 三点共线时,PM -PE 的值最大,为ME 的长,在正方形ABCD 中,AB =4,∴AC =42,∵N 是AO 的中点,点N 和E 关于BD 成轴对称,∴点E 是OC 中点,∴CE =14AC =2, ∵BC =4,BM =3,∴CM =1=14BC , ∵∠BCQ =45°,∴△MCQ 为等腰直角三角形,∴CQ =2CM =22, ∴EQ =22, ∴CM =EM =1,即PM -PN 的最大值为1,故答案为:1.【点评】本题主要考查了正方形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.15.如图,正方形ABCD 边长为4,P 是正方形内一动点,且:1:3PAB PCD S S =△△,则PC PD +的最小值是______.【答案】213【分析】过点P 作EF AD ∥,由:1:3PAB PCD S S =△△可得13PE PF =,得PE =1,PF =3,过点P 作MN //AB 交AD 于点M ,交BC 于点N ,可得出四边形PFCN 是矩形,得CN =PF =3,延长CB 到K ,使NK =CN =3,连接DK ,根据两点之间线段最短故可知PC PD +的最小值为DK 的长,根据勾股定理可求解【解答】解:如图,过点P 作EF AD ∥,交AB 于点E ,交CD 于点F ,∵四边形ABCD 是正方形, ∴AB AD ⊥,AB BC ⊥,BC CD ⊥,4AB BC CD AD ====,∴EF AB EF CD ⊥⊥,∵12PAB S AB PE =⋅△,12PCD S CD PF =⋅△, ∴112132PABPCD AB PE S S CD PF ⋅==⋅△△, ∴13PE PF = ∵EF AD ∥∴4EF AD ==,∴3PF =,1PE =,过点P 作MN //AB 交AD 于点M ,交BC 于点N ,则PN BC ⊥,∴∠90PNC NCF CFP ︒=∠=∠=∴四边形CFPN 是矩形,∴四边形AEFD 是矩形,∴=3CN PF =,∵∠90DAE AEF EPD ADF ︒=∠=∠=∠=,延长CB 到K ,使NK =CN =3,则有:6CK CN KN =+=连接DK ,当D P K ,,在一条直线上时,DP PK DK +=,当D P K ,,不在一条直线上时,DP PK DK +>,故当D P K ,,共线时,222246213DP PK DK DC CK +==+=+=又N 是CK 的中点,PN CK ⊥,∴PN 是CK 的垂直平分线,∴CP =PK ,所以PC PD +的最小值为213, 故答案为:213.【点评】本题主要考查正方形的性质,矩形的判断与性质,勾股定理以及线段的垂直平分线的判断与性质等知识,掌握正方形的性质,正确做出辅助线是解题的关键.16.如图,正方形ABCD 中,3AB =,点E 为对角线AC 上的动点,以DE 为边作正方形DEFG ,点H 是CD 上一点,且23DH CD =,连接GH ,则GH 的最小值为______.【答案】22【分析】连接CG .证明(SAS)ADE CDG ≌△△,推出45DCG DAE ∠=∠=︒,推出点G 的运动轨迹是射线CG ,根据垂线段最短可知,当GH CG ⊥时,GH 的值最小.【解答】解:连接CG .四边形ABCD 是正方形,四边形DEFG 是正方形,==3DA DC AB ∴=,DE DG =,90ADC EDG ∠=∠=︒,45DAC ∠=︒,ADE CDG ∴∠=∠,(SAS)ADE CDG ∴≌△△,45DCG DAE ∴∠=∠=︒,∴点G 的运动轨迹是射线CG ,根据垂线段最短可知,当GH CG ⊥时,GH 的值最小,223DH CD ==,321CH CD DH ∴=-=-=,此时sin GH DCG CH∠= ∴ 22sin 45122GH CH =⋅︒=⨯=,即GH 的最小值为22. 故答案为:22.【点评】此题考查正方形的性质,全等三角形三角形的判定与性质,垂线段最短,解决本题的关键(SAS)ADE CDG ≌△△得到45DCG DAE ∠=∠=︒,证明出点G 的运动轨迹是射线CG .17.如图,正方形ABCD ,边长为7,点E 在边BC 上,2BE =,点F 是AB 边上一动点,连接EF ,以EF 为边向右作等边EFG ,连接CG ,线段CG 的最小值是___________.【答案】92【分析】把△EBF 绕点E 顺时针旋转60°得到△EHG ,如图,延长HG 交CD 于M ,过C 点作CQ ⊥HM ,过E 点作EP ⊥CQ ,根据旋转的性质得∠BEH =60°,EB =EH =2,∠EHG =∠EBF =90°,易得四边形HEPQ 为矩形,则PQ =EH =2,∠HEP =90°,接着计算出CP ,从而得到CQ 的长,然后利用垂线段最短得到CG 的最小值.【解答】解:∵△EFG 为等边三角形,∴EF =EG ,把△EBF 绕点E 顺时针旋转60°得到△EHG ,如图,延长HG 交CD 于M ,过C 点作CQ ⊥HM ,过E 点作EP ⊥CQ ,∴∠BEH =60°,EB =EH =2,∠EHG =∠EBF =90°,即G点在过H点且垂直于EH的线段HM上,易得四边形HEPQ为矩形,∴PQ=EH=2,∠HEP=90°,∵∠CEP=90°−∠BEH=30°,∴CP=12CE=722=52,∴CQ=CP+PQ=52+2=92.∴CG的最小值为92.故答案为92.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等,也考查了等边三角形的判定与性质,比较综合.18.如图,AC是边长为2的正方形ABCD的对角线,P为BC边上一动点,E,F为AB,AC的中点.当PE+PF的值最小时,CP的值为________.【答案】3 2【分析】作点E关于BC的对称点Q,连接FQ,交BC于点P,此时PE+PF最小,再利用中位线的性质求解即可.【解答】如图,作点E关于BC的对称点Q,连接FQ,交BC于点P,此时PE+PF最小,∵E ,F 为AB ,AC 的中点,BC =2,∴//EF BC ,112EF BC ==, ∵B 为EQ 中点,//BP EF ,∴BP 为EFQ △的中位线,∴1122BP EF ==, ∴13222CP BC BP =-=-=. 故答案为:32. 【点评】本题考查了最短路线问题-将军饮马模型,中位线的性质,熟练掌握将军饮马模型的作法是解题的关键.19.如图,已知正方形ABCD 的边长为4,点E 是AB 边上一动点,连接ED ,将ED 绕点E 顺时针旋转90︒到EF ,连接,DF CF ,则DF CF +的最小值是_____.【答案】45【分析】如图所示,根据题意构造出△AED 和△GFE 全等,分析出点F 的轨迹,然后根据D 、F 、C 三点共线时求出最小值即可.【解答】解:连接BF ,过点F 作FG ⊥AB 交AB 延长线于点G ,∵将ED 绕点E 顺时针旋转90°到EF ,∴EF ⊥DE ,且EF =DE ,∵90ADE AED ∠+∠=︒,90GEF AED +=︒∠∠,∴∠EDA =∠FEG ,∴在△AED 和△GFE 中,A EGF ADE FEG DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AED ≌△GFE (AAS ),∴FG =AE ,AD GE =,又∵AD AB =,∴GE AB =,∴AE BG =,∴FG BG =,又∵FG BG ⊥,∴BGF 是等腰直角三角形,∴45GBF ,∴BF 是∠CBC ′的角平分线,即F 点在∠CBC ′的角平分线上运动,过点C 作BF 的对称点C ',则4,BC BC '==∴C 点在AB 的延长线上,CBC '△是等腰直角三角形,∴当D 、F 、C 三点共线时,DF +CF =DC '最小,∴在DAC '△中,AD =4,8AC AB BC AB BC ''=+=+=,∴22224845DC AD AC ''=+=+=,∴DF +CF 的最小值为45,故答案为:45. 【点评】本题考查了旋转的性质,正方形的性质,轴对称求最短路径,能够将线段的和通过轴对称转化为共线线段是解题的关键.20.如图,矩形ABCD 中,AB =4,AD =23,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是_____.【答案】23【分析】分别作,DC DE 的中点,H I 连接HI ,P 点在HI 上运动,当PB HI ⊥时,PB 有最小值,证明PHB △≌CHB 即可求得BP 的最小值.【解答】分别作,DC DE 的中点,H I 连接HIP 为DF 中点当F 点与C 点重合时,P 点与H 点重合,当F 点与E 点重合时,P 点与I 点重合,∴P 点在HI 上运动当PB HI ⊥时,PB 有最小值四边形ABCD 是矩形,AB =4,AD =2390A ABC BCD ∴∠=∠=∠=︒4,23CD AB BC AD ====H为DC∴1HC=2E为AB∴=AE BE=DE EC∴DEC是等边三角形∴∠=ECD60HI EC//DHI∴∠=60=HC BC2,∴=HB∴∠=HBC∴∠=BHCPB与CHB中≌CHB(【点评】本题考查了矩形的性质,三角形全等的判定与性质,勾股定理,直角三角形的性质,等边三角形的性质,正确的作出图形并证明PHB△≌CHB是解题的关键.21.如图,在正方形ABCD中,AB=4,AC与BD相交于点O,M是AO的中点,P,Q为对角线BD上的两点,若PQ=2,则PM+CQ的最小值为___.【答案】25【分析】如图,取AD的中点T,连接MT,CT交BD于点Q,此时MP+CQ的值最小,证明四边形PQTM 是平行四边形,得到PM=TQ,可推出PM+CQ=CT,利用勾股定理求出CT即可.【解答】解:如图,取AD的中点T,连接MT,CT交BD于点Q,此时MP+CQ的值最小.∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∴AC=BD=42,∴OD=OB=OA=OC=22,∵AM=OM,AT=DT,OD=2,∴MT=12∴MT=PQ=2,∵MT∥PQ,∴四边形PQTM是平行四边形,∴PM=TQ,∴PM+CQ=TQ+CQ=CT,∵∠CMT=90°,MT=2,CM=32,∴CT=2225+=,MT CM故答案为:25.【点评】本题考查正方形的性质,勾股定理,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造平行四边形解决问题,属于中考常考题型.22.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E.若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是________.【答案】22【分析】过点D作AE的垂线交AE于点F,交AC于D′,再过D′作D′P′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′ 即为DQ+PQ的最小值.【解答】解:如图,过点D作AE的垂线交AE于点F,交AC于点D′,再过点D′作D′P'⊥AD于点P',∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△ADF≌△AD′F,∴AD′=AD=4,∵点D′与点D关于AE对称,∴QD=QD′,∴DQ+PQ=QD′+PQ=PD′,∴D′P'的长即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP'=P'D′,∴在Rt△AP'D′中,P'D′2+AP'2=AD′2,即2D'P'2=16,∴P'D′=22,即DQ+PQ的最小值为22.故答案为:22.【点评】本题考查的是轴对称——最短路线问题,根据题意作出辅助线是解答此题的关键.。
2022-2023学年初二数学第二学期培优专题17 正方形之半角模型【例题讲解】如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.(1)求证:CE CF =;(2)在图1中,若G 在AD 上,且45GCE ∠=︒,则GE BE GD =+成立吗?为什么? (3)运用(1)(2)解答中所积累的经验和知识,完成下题:①如图2,在直角梯形ABCD 中,()//AD BC BC AD >,90B ,12AB BC ==,E 是AB 上一点,且45DCE ∠=︒,4BE =,求DE 的长.②如图3,在ABC 中,45BAC ∠=︒,AD BC ⊥,2BD =,3CD =,则ABC 的面积为____(直接写出结果,不需要写出计算过程)解:(1)证明:在正方形ABCD 中 CB =CD ,∠B =∠CDA =90°,∴∠CDF =∠B =90°.在△BCE 和△DCF 中,CB CDB CDF BE DF⎧⎪∠∠⎨⎪⎩===,∴△BCE ≌△DCF(SAS ). ∴CE =CF .(2)解:GE =BE +GD 成立.理由如下:∵∠BCD =90°,∠GCE =45°, ∴∠BCE +∠GCD =45°.∵△BCE ≌△DCF (已证),∴∠BCE =∠DCF .∴∠GCF =∠GCD +∠DCF =∠GCD +∠BCE =45°.∴∠ECG =∠FCG =45°.在△ECG 和△FCG 中,CE CFECG FCG CG CG ⎧⎪∠∠⎨⎪⎩===,∴△ECG ≌△FCG (SAS ).∴GE =FG .∵FG =GD +DF ,∴GE =BE +GD . 32由(2)和题设知:DE =DG +BE , 设DG =x ,则AD =12-x ,DE =x +4, 在Rt △ADE 中,由勾股定理,得:AD 2+AE 2=DE 2∴(12-4)2+(12-x )2=(x +4)2解得x =6.∴DE =6+4=10;②将△ABD 沿着AB 边折叠,使D 与E 重合,△ACD 沿着AC 边折叠,使D 与G 重合, 可得∠BAD =∠EAB ,∠DAC =∠GAC ,∴∠EAG =∠E =∠G =90°,AE =AG =AD ,BD =EB =2,DC =CG =3,∴四边形AEFG 为正方形,设正方形的边长为x ,可得BF =x -2,CF =x -3,在Rt △BCF 中,根据勾股定理得:BF 2+CF 2=BC 2, 即(x -2)2+(x -3)2=(2+3)2,解得:x =6或x =-1(舍去),∴AD =6, 则S △ABC =12BC •AD =15.【综合演练】1.如图,在四边形纸片 ABCD 中,∠B =∠D =90°,点 E ,F 分别在边 BC ,CD 上,将 AB ,AD 分别沿 AE ,AF 折叠,点 B ,D 恰好都和点 G 重合,∠EAF =45°.(1)求证:四边形 ABCD 是正方形; (2)若 EC =FC =1,求 AB 的长度.2.如图所示,正方形ABCD 中,点E ,F 分别为BC ,CD 上一点,点M 为EF 上一点,D ,M 关于直线AF 对称.连结DM 并延长交AE 的延长线于N ,求证:45AND ∠=︒.3.已知正方形ABCD,∠EAF=45°,将∠EAF绕顶点A旋转,角的两边始终与直线CD交于点E,与直线BC交于点F,连接EF.(1)如图①,当BF=DE时,求证:△ABF≌△ADE;(2)若∠EAF旋转到如图②的位置时,求证:∠AFB=∠AFE;(3)若BC=4,当边AE经过线段BC的中点时,在AF的右侧作以AF为腰的等腰直角三角形AFP,直接写出点P到直线AB的距离.4.已知正方形ABCD,点E,F分别是边AB,BC上的动点.(1)如图1,点E,F分别是边AB,CD上的中点,证明DE=DF;(2)如图2,若正方形ABCD的边长为1,△BEF的周长为2.①试证明∠EDF=45°;②请你进一步探究图形的其它重要性质,并将如下A,B,C,D四个结论中,正确的代号直接填写在横线上(不必写出推理过程):_________.A.△DEF一定是等腰三角形.B.EF=AE+CF.C.△DEF中,EF边上的高为定值.5.已知:四边形ABCD 为正方形,AMN ∆是等腰Rt ∆,90AMN ∠=︒.(1)如图:当Rt AMN ∆绕点A 旋转时,若边AM 、AN 分别与BC 、CD 相交于点E 、F ,连接EF ,试证明:EF DF BE =+.(2)如图,当Rt AMN ∆绕点A 旋转时,若边AM 、AN 分别与BC 、CD 的延长线相交于点E 、F ,连接EF .①试写出此时三线段EF 、DF 、BE 的数量关系并加以证明.②若6CE =,2DF =,求:正方形ABCD 的边长以及AEF ∆中AE 边上的高.6.(1)如图①,在正方形ABCD 中,E 、F 分别是BC 、DC 上的点,且45EAF ∠=︒,连接EF ,探究BE 、DF 、EF 之间的数量关系,并说明理由;(2)如图②,在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,E 、F 分别是BC 、DC 上的点,且12EAF BAD ∠=∠,此时(1)中的结论是否仍然成立?请说明理由.7.已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系 (3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.8.已知正方形ABCD ,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交CB 、DC 于点M 、N ,AH MN ⊥于点H .(1)如图①,当BM DN =时,可以通过证明≌ADN ABM ,得到AH 与AB 的数量关系,这个数量关系是___________;(2)如图②,当BM DN ≠时,(1)中发现的AH 与AB 的数量关系还成立吗?说明理由; (3)如图③,已知AMN 中,45MAN ∠=︒,AH MN ⊥于点H ,3MH =,7=NH ,求AH 的长. 9.如图正方形ABCD 的边OA 、OC 在坐标轴上,已知点()3,3B .将正方形ABCO 绕点A 顺时针旋转一定的角度(小于90︒),得到正方形ADEF ,ED 交线段OC 于点G ,ED 的延长线交线段BC 于点P ,连接AP 、AG .(1)求PAG ∠的度数.(2)当OAG CPG ∠=∠时,求点P 的坐标.(3)在(2)的条件下,直线PE 上是否存在点M ,使以M 、A 、G 为顶点的三角形是等腰三角形?若存10.如图,已知AD∥BC,AB⊥BC,AB=BC=12,P为线段AB上一动点.将△BPC沿PC翻折至△EPC,延长CE交射线AD于点D.(1)如图1,当P为AB的中点时,求出AD的长;(2)如图2,延长PE交AD于点F,连接CF,求证:∠PCF=45°;(3)如图3,∠MON=45°,在∠MON内部有一点Q,且OQ=8,过点Q作OQ的垂线GH分别交OM、ON于G、H两点.当QG=2时,求QH的值.11.分层探究(1)问题提出:如图1,点E、F别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF.求证:EF=BE+DF,解题思路:把△ABE绕点A逆时针旋转度至△ADG,可使AB与AD重合.由∠FDG=ADG+∠ADC =180°,则知F、D、G三点共线,从而可证△AFG≌(),从而得EF=BE+DF,阅读以上内容并填空.(2)类比引申:如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°.探究:若∠B、∠D都不是直角,当∠B、∠D满足什么数量关系时,仍有EF=BE+DF?(3)联想拓展:如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,并且∠DAE=45°.猜想BD、CE、DE的数量关系,并给出理由.12.已知在正方形ABCD和正方形CEFG中,直线BG,DE交于点H.(1)如图1,当B,C,E共线时,求证:BH⊥DE.(2)如图2,把正方形CEFG绕C点顺时针旋转α度(0<α<90),M,N分别为BG,DE的中点,探究HM,(3)如图3,∠PDG =45°,DH ⊥PG 于H ,PH =2,HG =4.直接写出DH 的长.13.已知一次函数()134502y kx k k =++≠, (1)无论k 为何值,函数图像必过定点,求该点的坐标;(2)如图1,当k =-12时,该直线交x 轴,y 轴于A ,B 两点,直线l 2:y =x +1交AB 于点P ,点Q 是l 2上一点,若S ∆ABQ =6,求Q 点的坐标;(3)如图2,在第2问的条件下,已知D 点在该直线上,横坐标为1,C 点在x 轴负半轴,∠ABC =45︒,动点M 的坐标为(a ,a ),求CM+MD 的最小值.14.问题背景:如图1,在正方形ABCD 中,点E F 、分别在边BC CD 、上,45EAF ∠=︒,求证:EF BE DF =+.洋洋同学给出了部分证明过程,请你接着完成剩余的证明过程.正方形ABCD ,90AB AD ADP ABE ∴∠∠︒=,==,在Rt ABE △和Rt ADP △中,AB AD ABE ADP BE DP =⎧⎪∠=∠⎨⎪=⎩ ()Rt ABE Rt ADP SAS ∴△≌△迁移应用:如图2,在正方形ABCD 中,QA QB 、交CD 于点G H 、,若45AQB ∠=︒,31CH GH ==,,求AG 的长.联系拓展:如图3,在矩形ABCD 中,点E F 、分别在边BC CD 、上,45EAF ∠=︒,若::1:2:4DF AD AB =,探究BE 与EC 的数量关系,并给出证明.15.如图所示,正方形ABCD 中,点E ,F 分别为BC ,CD 上一点,点M 为EF 上一点,D ,M 关于直线AF 对称.(1)求证:B ,M 关于AE 对称;(2)若EFC ∠的平分线交AE 的延长线于G ,求证:2AG =.16.已知A (m ,n ),且满足|m ﹣2|+(n ﹣2)2=0,过A 作AB ⊥y 轴,垂足为B . (1)求A 点坐标.(2)如图1,分别以AB ,AO 为边作等边△ABC 和△AOD ,试判定线段AC 和DC 的数量关系和位置关系,并(3)如图2,过A作AE⊥x轴,垂足为E,点F、G分别为线段OE、AE上的两个动点(不与端点重合),满足∠FBG=45°,设OF=a,AG=b,FG=c,试探究2ca b﹣a﹣b的值是否为定值?如果是求此定值;如果不是,请说明理由.答案与解析【例题讲解】如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.(1)求证:CE CF =;(2)在图1中,若G 在AD 上,且45GCE ∠=︒,则GE BE GD =+成立吗?为什么? (3)运用(1)(2)解答中所积累的经验和知识,完成下题:①如图2,在直角梯形ABCD 中,()//AD BC BC AD >,90B ,12AB BC ==,E 是AB 上一点,且45DCE ∠=︒,4BE =,求DE 的长.②如图3,在ABC 中,45BAC ∠=︒,AD BC ⊥,2BD =,3CD =,则ABC 的面积为____(直接写出结果,不需要写出计算过程)解:(1)证明:在正方形ABCD 中 CB =CD ,∠B =∠CDA =90°,∴∠CDF =∠B =90°.在△BCE 和△DCF 中,CB CDB CDF BE DF⎧⎪∠∠⎨⎪⎩===,∴△BCE ≌△DCF(SAS ). ∴CE =CF .(2)解:GE =BE +GD 成立.理由如下:∵∠BCD =90°,∠GCE =45°, ∴∠BCE +∠GCD =45°.∵△BCE ≌△DCF (已证),∴∠BCE =∠DCF .∴∠GCF =∠GCD +∠DCF =∠GCD +∠BCE =45°.∴∠ECG =∠FCG =45°.在△ECG 和△FCG 中,CE CFECG FCG CG CG ⎧⎪∠∠⎨⎪⎩===,∴△ECG ≌△FCG (SAS ).∴GE =FG .∵FG =GD +DF ,∴GE =BE +GD . 32由(2)和题设知:DE=DG+BE,设DG=x,则AD=12-x,DE=x+4,在Rt△ADE中,由勾股定理,得:AD2+AE2=DE2∴(12-4)2+(12-x)2=(x+4)2解得x=6.∴DE=6+4=10;②将△ABD沿着AB边折叠,使D与E重合,△ACD沿着AC边折叠,使D与G重合,可得∠BAD=∠EAB,∠DAC=∠GAC,∴∠EAG=∠E=∠G=90°,AE=AG=AD,BD=EB=2,DC=CG=3,∴四边形AEFG为正方形,设正方形的边长为x,可得BF=x-2,CF=x-3,在Rt△BCF中,根据勾股定理得:BF2+CF2=BC2,即(x-2)2+(x-3)2=(2+3)2,解得:x=6或x=-1(舍去),∴AD=6,则S△ABC=12BC•AD=15.【综合演练】1.如图,在四边形纸片ABCD中,∠B=∠D=90°,点E,F分别在边BC,CD上,将AB,AD分别沿AE,AF折叠,点B,D恰好都和点G重合,∠EAF=45°.(1)求证:四边形ABCD是正方形;(2)若EC=FC=1,求AB的长度.【答案】(1)见解析;(2)212AB=+.【分析】(1)由题意得,∠BAE=∠EAG,∠DAF=∠FAG,于是得到∠BAD=2∠EAF=90°,推出四边形ABCD是矩形,根据正方形的判定定理即可得到结论;(2)根据EC=FC=1,得到BE=DF,根据勾股定理得到EF的长,即可求解.【解答】(1)由折叠性质知:∠BAE=∠EAG,∠DAF=∠FAG,∵∠EAF=45°,∴∠BAD=2∠EAF=2⨯45°=90°,又∵∠B=∠D=90°,由折叠性质知:AB =AG ,AD =AG ,∴AB =AD ,∴四边形ABCD 是正方形;(2)∵EC =FC =1,∴BE =DF ,EF =2222112EC FC +=+=,∵EF =EG +GF =BE +DF ,∴BE =DF =12EF =22, ∴AB =BC =BE +EC =212+. 【点评】本题考查了翻折变换的性质,勾股定理的应用,正方形的判定和性质,解答本题的关键是熟练掌握翻折变换的性质:翻折前后对应边、对应角相等.2.如图所示,正方形ABCD 中,点E ,F 分别为BC ,CD 上一点,点M 为EF 上一点,D ,M 关于直线AF 对称.连结DM 并延长交AE 的延长线于N ,求证:45AND ∠=︒.【答案】见解析【分析】连结AM ,由对称的性质可知DAF MAF ∆≅∆,进而可证BAE MAE ∆≅∆,即可得45EAF ∠=︒,由∠AON =90°,可得45AND ∠=︒.【解答】证明:连结AM ,D 、M 关于AF 对称,AF ∴垂直平分DM ,ADF AMF ∴∆∆≌,90AMF ADF AME ∴∠=∠=︒=∠,AM AD AB ==.在Rt ABE ∆和Rt AME ∆中AE=AE AM=AB ⎧⎨⎩ABE Rt R AME t ∴∆∆≌,BAE MAE ∴∠=∠,又DAF MAF ∠=∠,45EAF ∴∠=︒,45AND ∴∠=︒.【点评】本题是四边形综合题,主要考查了轴对称的性质,等腰直角三角形的判定,勾股定理,三角形的面积等知识,综合性较强,有一定难度.准确作出辅助线是解题的关键.有关45︒角的问题,往往利用全等,构造等腰直角三角形,使问题迅速获解.3.已知正方形ABCD ,∠EAF =45°,将∠EAF 绕顶点A 旋转,角的两边始终与直线CD 交于点E ,与直线BC 交于点F ,连接EF .(1)如图①,当BF =DE 时,求证:△ABF ≌△ADE ;(2)若∠EAF 旋转到如图②的位置时,求证:∠AFB =∠AFE ;(3)若BC =4,当边AE 经过线段BC 的中点时,在AF 的右侧作以AF 为腰的等腰直角三角形AFP ,直接写出点P 到直线AB 的距离.【答案】(1)见解析;(2)见解析;(3)163或4 【分析】(1)利用SAS 定理判定即可;(2)延长CB 到G ,使BG DE =,连接AG ,易证ABG ADE ∆≅∆,则AG AE =,BAG DAE ∠=∠;再证明AGF AEF ∆≅∆即可得出结论; (3)分两种情形:①90AFP ∠=︒,②90PAF ∠=︒;①过点F 作FG AE ⊥于点G ,过点P 作PH BF ⊥,交CB 延长线于点H ,利用三角形的面积公式和勾股定理列出方程组求得线段BF ;利用PHF FBA ∆≅∆,可得44则点P 到直线AB 的距离为PH ,结论可得.【解答】解:(1)证明:四边形ABCD 为正方形,AB AD ∴=,90B D ∠=∠=︒.在ABF ∆和ADE ∆中,90AB AD B D BF DE =⎧⎪∠=∠=︒⎨⎪=⎩,()ABF ADE SAS ∴∆≅∆.(2)延长CB 到G ,使BG DE =,连接AG ,如图,四边形ABCD 为正方形,AB AD ∴=,90B D ∠=∠=︒.90ABG D ∴∠=∠=︒.在ABG ∆和ADE ∆中,90AB AD ABG D BG DE =⎧⎪∠=∠=︒⎨⎪=⎩,()ABG ADE SAS ∴∆≅∆.AG AE ∴=,BAG DAE ∠=∠.90DAE BAE ∠+∠=︒,90BAG BAE ∴∠+∠=︒.即90GAE ∠=︒.45EAF ∠=︒,45EAF GAF ∴=∠=∠︒.在GAF ∆和EAF ∆中,GA EA GAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()GAF EAF SAS ∴∆≅∆.AFB AFE ∴∠=∠.(3)点P 到直线AB 的距离为143或4,理由: 当①90AFP ∠=︒时,AF PF =;过点F 作FG AE ⊥于点G ,过点P 作PH BF ⊥,交CB 延长线于点H ,如图,四边形ABCD 为正方形,4AB BC ∴==,90ABC ∠=︒.点E 是BC 的中点,122BE CB ∴==, 22224225AE AB BE ∴=+=+=.设BF x =,AF y =,FG AE ⊥,45FAE ∠=︒,22FG AG y ∴==. 1122AEF S EF AB AE FG ∆=⨯⨯=⨯, EF AB AE FG ∴⋅=⋅.2(2)4252x y ∴+⨯=⨯⨯. 在Rt ABF 中,222AB BF AF +=,2224x y ∴+=.222104(2)4y x ⎧=+⎪解得:11434103x y ⎧=⎪⎪⎨⎪=⎪⎩,2212410x y =-⎧⎪⎨=-⎪⎩(不合题意,舍去). 43BF ∴=. 90AFP ∠=︒,90PFH AFB ∴∠+∠=︒,90ABC ∠=︒,90AFB FAB ∴∠+∠=︒,PFH FAB ∴∠=∠.在PHF ∆和FAB ∆中,90PHF ABF PFH FABPF FA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()PHF FBA AAS ∴∆≅∆.4FH AB ∴==,P ∴到直线AB 的距离为416433HB HF FB =+=+=. ②当90PAF ∠=︒,PA AF =时,过P 作PH AB ⊥,交BA 的延长线于点H ,如图,则点P 到直线AB 的距离为PH ,90PAF ∠=︒,90PAH FAB ∴∠+∠=︒,90ABC ∠=︒,90AFB FAB ∴∠+∠=︒,PAH AFB ∴∠=∠.90PHA ABF PAH AFBPA AF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()PHA ABF AAS ∴∆≅∆.4PH AB ∴==.∴点P 到直线AB 的距离为4PH =.综上,点P 到直线AB 的距离为163或4. 【点评】本题是四边形的综合题,主要考查了三角形全等的判定与性质,正方形的性质,三角形的面积,勾股定理,二元二次方程组的解法,根据正方形的特殊性质构造全等三角形是解题的关键.4.已知正方形ABCD ,点E ,F 分别是边AB ,BC 上的动点.(1)如图1,点E ,F 分别是边AB ,CD 上的中点,证明DE =DF ;(2)如图2,若正方形ABCD 的边长为1,△BEF 的周长为2.①试证明∠EDF =45°;②请你进一步探究图形的其它重要性质,并将如下A ,B ,C ,D 四个结论中,正确的代号直接填写在横线上(不必写出推理过程):_________.A .△DEF 一定是等腰三角形.B .EF =AE +CF .C .△DEF 中,EF 边上的高为定值.D .△DEF 的面积存在最小值. 【答案】(1)见解析;(2)①见解析;②BCD【分析】(1)根据正方形性质及中点定义可得∠A =∠C =90°,AD =CD =AB =BC ,AE =12AB ,CF =12BC ,进而得出AE =CF ,利用SAS 证得△ADE ≌△CDF ,即可得出结论;(2)①延长BC 至G ,使CG =AE ,如图2,根据正方形性质得出BE +BF +FG =2,根据△BEF 的周长为2,得出BE +BF +EF =2,可得EF =FG ,利用SAS 证明△DCG ≌△DAE ,得出DG =DE ,再证明△DEF ≌△DGF (SSS ),②如图2,设AE =x ,则BE =1﹣x ,BF =1+x ﹣FG =1+x ﹣EF ,得出EF =211x x ++,DE =21x +,DF =2221x x++,可判断A 不正确,由①可判断B 、C 正确,如图3,连接BD ,延长DA 至G ,延长DC 至H ,使DG =DH =DB =2,连接GH ,交AB 于点E ',交BC 于点F ',证得A E '+C F '=E F '',得出∠E DF ''=45°,此时,E F ''最小,即△DEF 的面积存在最小值,可判断D 正确.【解答】解:(1)∵四边形ABCD 是正方形,∴∠A =∠C =90°,AD =CD =AB =BC ,∵点E ,F 分别是边AB ,CD 上的中点,∴AE =12AB ,CF =12BC ,∴AE =CF ,在△ADE 和△CDF 中, AD CD A C AE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CDF (SAS ),∴DE =DF ;(2)如图2,①延长BC 至G ,使CG =AE ,∵四边形ABCD 是正方形,∴∠A =∠BCD =∠ADC =90°,AD =CD =AB =BC =1,∴BE +AE +BF +CF =BE +CG +BF +CF =2,即BE +BF +FG =2,∵△BEF 的周长为2,∴BE +BF +EF =2,∴EF =FG ,∴∠DCG =∠A ,在△DCG 和△DAE 中,CD AD DCG A CG AE =⎧⎪∠=∠⎨⎪=⎩,∴△DCG ≌△DAE (SAS ),∴DG =DE ,∠CDG =∠ADE ,∵∠ADE +∠EDC =90°,∴∠CDG +∠EDC =90°,∴∠EDG =90°,在△DEF 和△DGF 中,DE DG EF FG DF DF =⎧⎪=⎨⎪=⎩,∴△DEF ≌△DGF (SSS ),∴∠EDF =∠FDG ,∵∠EDF +∠FDG =90°,∴∠EDF =∠FDG =45°;②如图2,设AE =x ,则BE =1﹣x ,BF =1+x ﹣FG =1+x ﹣EF ,∵BE 2+BF 2=EF 2,∴(1﹣x )2+(1+x ﹣EF )2=EF 2, 解得:EF =211x x++, 在Rt △ADE 中,DE =21x +,∵CF =11x -,∴DF =2211()1x x -++=2221x x ++, ∴△DEF 不一定是等腰三角形,故结论A 不正确;由①知,EF =FG =CF +CG =CF +AE ,故结论B 正确;由①知,△DEF ≌△DGF ,∴EF 边上的高=GF 边上的高=1,故结论C 正确;如图3,连接BD ,延长DA 至G ,延长DC 至H ,使DG =DH =DB =2,连接GH ,交AB 于点E ',交BC 于点F ',则∠DGH =∠DHG =45°,A E '=AG =C F '=CH =2﹣1,∴B E '=B F '=AB ﹣AE ′=2﹣2,由勾股定理得:E F ''=2(2﹣2)=22﹣2,又∵AE'+C F '=22﹣2,∴A F '+C F '=E F '',根据①可知∠E DF ''=45°,此时,E F ''最小,即△DEF 的面积存在最小值,故结论D 正确;故答案为:BCD .【点评】本题是四边形综合题,考查了正方形性质,全等三角形判定和性质,等腰三角形判定和性质,勾股定理等,添加辅助线构造全等三角形是解题关键.5.已知:四边形ABCD 为正方形,AMN ∆是等腰Rt ∆,90AMN ∠=︒.(1)如图:当Rt AMN ∆绕点A 旋转时,若边AM 、AN 分别与BC 、CD 相交于点E 、F ,连接EF ,试证明:EF DF BE =+.(2)如图,当Rt AMN ∆绕点A 旋转时,若边AM 、AN 分别与BC 、CD 的延长线相交于点E 、F ,连接EF .①试写出此时三线段EF 、DF 、BE 的数量关系并加以证明.②若6CE =,2DF =,求:正方形ABCD 的边长以及AEF ∆中AE 边上的高. 【答案】(1)证明见解析;(2)①EF BE DF =-,证明见解析;②25【分析】(1)延长CB 到G ,使BG=DF ,连接AG ,根据正方形性质得出AD=AB ,∠D=∠ABG ,根据全等三角形的判定推出即可;(2)①EF=BE -DF ,理由是:在BC 上取BG=DF ,连接AG ,证△ABG ≌△ADF ,△FAE ≌△EAG 即可;②过F 作FH ⊥AE 于H ,设正方形ABCD 的边长是x ,则BC=CD=x ,EF=GE=BC-BG+CE=x+4,在Rt △FCE 中,由勾股定理得出方程(x+4)2=(x+2)2+62,求出x 后再求出FH 即可.【解答】(1)证明:如图1,延长CB 到G ,使BG=DF ,连接AG ,∵四边形ABCD 是正方形,∴∠D=∠ABC=∠DAB=∠ABG=90°,AD=AB ,在△ADF 和△ABG 中,AD AB D ABG DF BG ⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△ABG (SAS ),∵∠EAF=45°,∴∠EAG=∠EAB+∠BAG=∠EAB+∠DAF=45°,∴∠EAF=∠EAG ,∵AE=AE ,∴△EAF ≌△EAG ,∴EF=EG=EB+BG=EB+DF .(2)①三线段EF 、DF 、BE 的数量关系是:EF BE DF =-,理由如下:如图2,在BC 上取一点G ,使BG DF =连接AG ,同(1)可证ABG ADF ∆∆≌,∴AG=AF ,∠DAF=∠BAG ,∵AMN ∆是等腰直角三角形,∴45MNA N ∠=∠=︒,∴45FAD DAE ∠+∠=︒,∴45DAE BAG ∠+∠=︒,∵90DAB ∠=︒,∴904545GAE FAE ∠=︒-︒=︒=∠,在FAE ∆和GAE ∆中,AF AG FAE GAF AE AE =⎧⎪∠=∠⎨⎪=⎩∴()FAE GAE SAS ∆∆≌,∴EF EG BE BG ==-,∵BG DF =,∴EF BE DF =-.②如图2,过F 作FH ⊥AE 于H ,∵CE=6,DF=BG=2,∴EF=GE=CG+CE=BC-BG+CE=x-2+6=x+4,在Rt △FCE 中,由勾股定理得:EF 2=FC 2+CE 2,∴(x+4)2=(x+2)2+62,解得:x=6, ∴AG=AF=2262210+=, ∵∠FAM=45°,∴FH=22AF=22102⨯=25,, 即△AEF 中AE 边上的高为25.【点评】本题考查旋转综合题、正方形的性质、全等三角形的性质和判定、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.6.(1)如图①,在正方形ABCD 中,E 、F 分别是BC 、DC 上的点,且45EAF ∠=︒,连接EF ,探究BE 、DF 、EF 之间的数量关系,并说明理由;(2)如图②,在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,E 、F 分别是BC 、DC 上的点,且12EAF BAD ∠=∠,此时(1)中的结论是否仍然成立?请说明理由.【答案】(1)EF BE DF =+,理由见解析;(2)成立,理由见解析【分析】(1)典型的“夹半角模型”,延长CB 到M 使得BM DF =,先证ADF ABM ≌,再证EAM EAF ≌,最后根据边的关系即可证明;(2)图形变式题可以参考第一问的思路,延长CB 到M 使得BM DF =,先证ADF ABM ≌,再证EAM EAF ≌,最后根据边的关系即可证明;【解答】解:(1)EF BE DF =+证明:延长CB 到M ,使得BM DF =连接AM∵四边形ABCD 是正方形∴AB AD =,D ABM ∠=∠又∵BM DF =∴()ADF ABM SAS ≌∴AF AM =,12∠=∠∵45EAF ∠=︒∴1345∠+∠=︒∴2345MAE EAF ∠+∠=∠=︒=∠又∵AE AE =∴()EAM EAF SAS ≌∴EF EM BE BM ==+又∵BM DF =∴EF EB DF =+(2)EF BE DF =+证明:延长CB 到M ,使得BM DF =连接AM∵180ABC D ∠+∠=︒,4180ABC ∠+∠=︒∴4D ∠=∠∴()ADF ABM SAS ≌∴AF AM =,12∠=∠∵12EAF BAD ∠=∠∴13EAF ∠+∠=∠∴23MAE EAF ∠=∠+∠=∠又∵AE AE =∴()EAM EAF SAS ≌∴EF EM BE BM ==+又∵BM DF =∴EF EB DF =+【点评】本题考查了全等三角形的判定和性质,正确的根据“夹半角模型”作出辅助线是解题的关键.7.已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系(3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.【答案】(1)见解析;(2)BM DN MN -=;(3)3【分析】(1)延长CB 到G 使BG DN =,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,再根据45MAN ∠=︒,90BAD ∠=︒,可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN +=;(2)在BM 上取一点G ,使得BG DN =,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,由此可得90GAN BAD ∠=∠=︒,再根据45MAN ∠=︒可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,(3)在DN 上取一点G ,使得DG BM =,连接AG ,先证明ABM ADG ≌,再证明AMN AGN △≌△,设DG BM x ==,根据DC BC =可求得2x =,由此可得6AB BC CD CN ====,最后再证明ABP NCP △≌△,由此即可求得答案.【解答】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,∵四边形ABCD 是正方形,∴AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN BG DN =⎧⎪∠=∠⎨⎪=⎩,()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,45MAN ∠=︒,90BAD ∠=︒,∴45DAN BAM BAD MAN ∠+∠=∠-∠=︒,45GAM GAB BAM DAN BAM ∴∠=∠+∠=∠+∠=︒,GAM NAM ∴∠=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩,()AMN AMG SAS ∴△≌△,MN GM ∴=,又∵BM GB GM +=,BG DN =,BM DN MN ∴+=;(2)BM DN MN -=,理由如下:∵四边形ABCD 是正方形,∴AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN GB DN =⎧⎪∠=∠⎨⎪=⎩,()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,∴GAB GAD DAN GAD ∠+∠=∠+∠,∴90GAN BAD ∠=∠=︒,又45MAN ∠=︒,45GAM GAN MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩,()AMN AMG SAS ∴△≌△,MN GM ∴=,又∵BM BG GM -=,BG DN =,∴BM DN MN -=,故答案为:BM DN MN -=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,∵四边形ABCD 是正方形,∴AB AD BC CD ===,90ABM ADG BAD ∠=∠=∠=︒,//AB CD ,在ABM 与ADG △中,AB AD ABM ADG BM DG =⎧⎪∠=∠⎨⎪=⎩,()ABM ADG SAS ∴△≌△,AM AG ∴=,MAB GAD ∠=∠,∴MAB BAG GAD BAG ∠+∠=∠+∠,∴90MAG BAD ∠=∠=︒,又45MAN ∠=︒,45GAN MAG MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AGN 中,AM AG MAN GAN AN AN =⎧⎪∠=∠⎨⎪=⎩,()AMN AGN SAS ∴△≌△,10MN GN ∴==,设DG BM x ==,∵6CN =,8MC =,∴1064DC DG GN CN x x =+-=+-=+,8BC MC BM x =-=-,∵DC BC =,∴48x x +=-,2∴6AB BC CD CN ====,∵//AB CD ,∴BAP CNP ∠=∠,在ABP 与NCP 中,APB NPC BAP CNP AB CN ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABP NCP AAS ∴△≌△,132CP BP BC ∴===, ∴CP 的长为3.【点评】本题考查了正方形的性质,全等三角形的判定与性质,能够作出正确的辅助线并能灵活运用全等三角形的判定与性质是解决本题的的关键.8.已知正方形ABCD ,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交CB 、DC 于点M 、N ,AH MN ⊥于点H .(1)如图①,当BM DN =时,可以通过证明≌ADN ABM ,得到AH 与AB 的数量关系,这个数量关系是___________;(2)如图②,当BM DN ≠时,(1)中发现的AH 与AB 的数量关系还成立吗?说明理由;(3)如图③,已知AMN 中,45MAN ∠=︒,AH MN ⊥于点H ,3MH =,7=NH ,求AH 的长.【答案】(1)AB AH =;(2)AB AH =成立,理由见解析;(3)5+46AH =【分析】(1)由“SAS ”可证Rt △ABM ≌Rt △ADN ,从而可证∠BAM =∠MAH =22.5°,由AAS 可证Rt △ABM ≌Rt △AHM ,即可得AB =AH ;(2)延长CB 至E ,使BE =DN ,由Rt △AEB ≌Rt △AND 得AE =AN ,∠EAB =∠NAD ,从而可证△AEM ≌△ANM ,根据全等三角形对应边上的高相等即可得AB =AH ;(3)分别沿AM ,AN 翻折△AMH 和△ANH ,得到△ABM 和△AND ,分别延长BM 和DN 交于点C ,可证四边形【解答】解:(1)∵正方形ABCD , ∴AB =AD ,∠B =∠D =∠BAD =90°, 在Rt △ABM 和Rt △ADN 中, AB AD B D BM DN ⎧⎪∠∠⎨⎪⎩===∴Rt △ABM ≌Rt △ADN (SAS ), ∴∠BAM =∠DAN ,AM =AN , ∵∠MAN =45°,∴∠BAM +∠DAN =45°,∴∠BAM =∠DAN =22.5°,∵∠MAN =45°,AM =AN ,AH ⊥MN , ∴∠MAH =∠NAH =22.5°, ∴∠BAM =∠MAH ,在Rt △ABM 和Rt △AHM 中, BAM MAH B AHM AM AM ∠∠⎧⎪∠∠⎨⎪⎩===∴Rt △ABM ≌Rt △AHM (AAS ), ∴AB =AH ,故答案为:AB =AH ;(2)AB =AH 成立,理由如下: 延长CB 至E ,使BE =DN ,如图:∵四边形ABCD 是正方形,在Rt △AEB 和Rt △AND 中,AB AD ABE D BE DN ⎧⎪∠∠⎨⎪⎩===∴Rt △AEB ≌Rt △AND (SAS ),∴AE =AN ,∠EAB =∠NAD ,∵∠DAN +∠BAM =45°,∴∠EAB +∠BAM =45°,∴∠EAM =45°,∴∠EAM =∠NAM =45°,在△AEM 和△ANM 中,AE AN EAM MAN AM AM ⎧⎪∠∠⎨⎪⎩===∴△AEM ≌△ANM (SAS ),∵AB ,AH 是△AEM 和△ANM 对应边上的高,∴AB =AH .(3)分别沿AM ,AN 翻折△AMH 和△ANH ,得到△ABM 和△AND ,分别延长BM 和DN 交于点C ,如图:∵沿AM ,AN 翻折△AMH 和△ANH ,得到△ABM 和△AND ,∴AB =AH =AD ,∠BAD =2∠MAN =90°,∠B =∠AHM =90°=∠AHN =∠D ,∴四边形ABCD 是正方形,∴AH =AB =BC =CD =AD .37设AH =AB =BC =CD =x ,在Rt △MCN 中,由勾股定理,得MN 2=MC 2+NC 2,∴()()()2227+3=37x x -+-,解得546x =+或546x =-(舍去),∴5+46AH =.【点评】本题考查全等三角形的判定和性质,正方形性质及应用,勾股定理等知识,解题的关键是作辅助线,构造全等三角形.9.如图正方形ABCD 的边OA 、OC 在坐标轴上,已知点()3,3B .将正方形ABCO 绕点A 顺时针旋转一定的角度(小于90︒),得到正方形ADEF ,ED 交线段OC 于点G ,ED 的延长线交线段BC 于点P ,连接AP 、AG .(1)求PAG ∠的度数.(2)当OAG CPG ∠=∠时,求点P 的坐标.(3)在(2)的条件下,直线PE 上是否存在点M ,使以M 、A 、G 为顶点的三角形是等腰三角形?若存在,请直接写出M 点的坐标,若不存在,请说明理由. 【答案】(1)∠PAG =45°(2)P 点坐标为:(3,333- );(3)M 1(0,-3)、M 2(23,3).【分析】(1)由AD =AB ,AP =AP ,根据斜边和一条直角边对应相等的两个直角三角形全等,易证Rt △ADP ≌Rt △ABP ,同理易证Rt △AOG ≌Rt △ADG ,继而可得∠DAP =∠BAP ,∠OAG =∠DAG ;然后根据∠OAG +∠DAG +∠DAP +∠BAP =90°,求出∠PAG 的度数;(2)根据题意易得:∠OAG +∠AGO =90°, ∠CPG +∠PGC =90°,继而可得∠AGO +∠AGD +∠PGC =180°,∠AGO =∠AGD =∠PGC =60°,∠OAG =∠CPG =30°,在Rt △AOG 中,3OG =,,CG =3﹣3,在Rt △CPG 中,可得333PC =-,继而即可求解;(3)根据题意,分两种情况:①当点M 在为直线PE 与y 轴交点时;②当点M 为直线EP 与直线AB 的交点时;根据以M 、A 、G 为顶点的三角形是等腰三角形,求出M 点坐标即可.1又∵∠AOG=∠MOG=90°,OG=OG,∴△AOG≌△MOG,∴AG=MG,OM=OA=3,∴点M坐标为(0,﹣3).②如图2,当点M为直线EP与直线AB的交点时,∵AB//CO,∴∠AMG=∠PGC=60°,又∵∠AGP=60°,∴∠AMG=∠AGP=60°,∴△AGM是等边三角形,∴AM=AG=23,∴M的横坐标是23,纵坐标是3,∴点M坐标为(23,3).综上,可得点M坐标为(0,﹣3)或(23,3).【点评】本题考查几何变换综合题,涉及到全等三角形的判定和性质,等腰三角形的判定及其性质,解直角三角形,解题的关键是综合运用所学知识,利用数形结合的思想,学会分类讨论.10.如图,已知AD∥BC,AB⊥BC,AB=BC=12,P为线段AB上一动点.将△BPC沿PC翻折至△EPC,延长CE交射线AD于点D.(1)如图1,当P为AB的中点时,求出AD的长;(2)如图2,延长PE交AD于点F,连接CF,求证:∠PCF=45°;(3)如图3,∠MON=45°,在∠MON内部有一点Q,且OQ=8,过点Q作OQ的垂线GH分别交OM、ON于G、2【答案】(1)3AD =;(2)证明过程见解析;(3)24=5QH . 【分析】(1)如图1,根据平行线的性质得到∠A =∠B =90°,由折叠的性质得到∠CEP =∠B =90°,PB =PE ,∠BPC =∠EPC ,根据全等三角形Rt PAD Rt PED ≅的性质得到DA DE =.作DT BC ⊥于T ,设AD x =,根据AB =BC =12,得到12DC x =+,12CT x =-,根据勾股定理求出AD 的长;(2)如图2,过C 作CK ⊥AD 交AD 的延长线于K ,推出四边形ABCK 是正方形,求得CK =CB ,根据折叠的性质得到∠CEP =∠B =90°,BC =CE ,∠BCP =∠ECP ,得到CE= CB= CK ,根据全等三角形Rt CEF Rt CKF ≅的性质即可得到结论;(3)如图3,将△OQG 沿OM 翻折至△OUG ,将△OQH 沿ON 翻折至△OWH ,延长UG ,WH 交于V ,根据已知条件和折叠的性质,利用有三个角是直角的四边形是矩形和邻边相等的矩形是正方形,推出四边形UOWV 是正方形,设QH =y ,在Rt GVH 中,根据勾股定理即可得到结论.【解答】解:(1)如图1,连结PD ,∵AD ∥BC ,AB ⊥BC ,∴∠A =∠B =90°∵将△BPC 沿PC 翻折至△EPC ,∴∠CEP =∠B =90°,PB =PE ,∠BPC =∠EPC ,∴∠DEP =90°∵当P 为AB 的中点,∴AP =BP∴PA =PE∵PD =PD∴()Rt PAD Rt PED HL ≅,∴DA DE =121212由勾股定理得222(12)12(12)x x -+=+,解得3x =,∴3AD =(2)如图2,作CK AD ⊥交延长线于K ,∴90A B K ∠=∠=∠=︒∴四边形ABCK 为矩形又∵AB =BC∴矩形ABCK 为正方形∴CK =CB ,∠BCK =90°∵将△BPC 沿PC 翻折至△EPC ,∴∠FED =90°,CE= CB= CK ,又∵CF =CF∴()Rt CEF Rt CKF HL ≅,∴∠ECF =∠KCF∴∠BCP +∠KCF =∠PCE +∠FCE =45°∴∠PCF =45°(3)如图3,将△OQG 沿OM 翻折至△OUG ,将△OQH 沿ON 翻折至△OWH ,延长UG ,WH 交于V ,∴∠UOG =∠QOG ,∠WOH =∠QOH ,OU =OQ =OW =8,UG =QG =2,设QH =WH =y∴ ∠UOW =2∠MON =90°,∵GH ⊥OQ∴∠OQG=∠OQH =90° . ∴∠U =∠W =90°=∠UOW ,∴四边形UOWV 是正方形∴UV =WV =8,∠V =90°,∴GV =6,HV =8-y ,GH =y +2∴222GV HV GH +=∴()()22268+2y y +-=解得245y =,即24=5QH .【点评】本题考查了折叠的性质,全等三角形的判定和性质,正方形的判定和性质,正确的作出辅助线是解题的关键.11.分层探究(1)问题提出:如图1,点E 、F 别在正方形ABCD 的边BC 、CD 上,∠EAF =45°,连接EF .求证:EF =BE +DF ,解题思路:把△ABE 绕点A 逆时针旋转 度至△ADG ,可使AB 与AD 重合.由∠FDG =ADG +∠ADC =180°,则知F 、D 、G 三点共线,从而可证△AFG ≌ ( ),从而得EF =BE +DF ,阅读以上内容并填空.2245°.探究:若∠B 、∠D 都不是直角,当∠B 、∠D 满足什么数量关系时,仍有EF =BE +DF ?(3)联想拓展:如图3,在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 均在边BC 上,并且∠DAE =45°.猜想BD 、CE 、DE 的数量关系,并给出理由.【答案】(1)90,△AFE ,SAS ;(2)∠B +∠D =180°;(3)EF 2=BE 2+FD 2,理由见解析【分析】(1)把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,再证明△AFG ≌△AFE 进而得到EF =FG ,即可得EF =BE +DF ;(2)∠B +∠D =180°时,EF =BE +DF ,与(1)的证法类同;(3)把△AFD 绕点A 顺时针旋转90°得到△ABE ′,连接EE ′,根据旋转的性质,可知△AFD ≌△ABE ′得到BE ′=FD ,AE ′=AF ,∠D =∠ABE ′,∠EAD =∠E ′AB ,在Rt △ABD 中的,AB =AD ,可求得∠E ′BD =90°,所以E ′B 2+BE 2=E ′E 2,证△AE ′E ≌△AE ′F ,利用FE =EE ′得到EF 2=BE 2+FD 2.【解答】解:(1)∵AB =AD ,∴把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合.∴∠BAE =∠DAG ,∵∠BAD =90°,∠EAF =45°,∴∠BAE +∠DAF =45°,∴∠EAF =∠FAG ,∵∠ADC =∠B =90°,∴∠FDG =180°,∴点F 、D 、G 共线,在△AFE 和△AFG 中, AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AFG ≌△AFE (SAS ),∴EF =FG ,故答案为:90,△AFE ,SAS ;(2)当∠B +∠D =180°时,EF =BE +DF ,如图2∵AB =AD ,∴把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,∴∠BAE =∠DAG ,∵∠BAD =90°,∠EAF =45°,∴∠BAE +∠DAF =45°,∴∠EAF =∠FAG ,∵∠ADC +∠B =180°,∴∠FDG =180°,∴点F 、D 、G 共线,在△AFE 和△AFG 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△AFG (SAS ),∴EF =FG ,即EF =BE +DF ,故答案为:∠B +∠D =180°;(3)猜想:EF 2=BE 2+FD 2,证明:把△AFD 绕点A 顺时针旋转90°得到△ABE ′,连接EE ′,如图3,∴△AFD ≌△ABE ′,∴BE ′=FD ,AE ′=AF ,∠D =∠ABE ′,∠EAD =∠E ′AB ,∵AB =AD ,∴∠ABD =∠ADB =45°,∴∠ABD +∠ABE ′=90°,即∠E ′BD =90°,∴E ′B 2+BE 2=E ′E 2,又∵∠FAE =45°,∴∠BAE +∠EAD =45°,∴∠E ′AB +∠BAE =45°,即∠E ′AE =45°,在△AEE ′和△AEF 中, AE AE E AE FAE AE AF ⎧=⎪'∠=∠⎨⎪'=⎩, ∴△AEE ′≌△AEF (SAS ),∴EE ′=FE ,∴EF 2=BE 2+DF 2.【点评】本题主要考查了几何变换综合,结合全等三角形的性质与判定计算是关键.12.已知在正方形ABCD 和正方形CEFG 中,直线BG ,DE 交于点H .(1)如图1,当B ,C ,E 共线时,求证:BH ⊥DE .(2)如图2,把正方形CEFG 绕C 点顺时针旋转α度(0<α<90),M ,N 分别为BG ,DE 的中点,探究HM ,HN ,CM 之间的数量关系,并证明你的结论.(3)如图3,∠PDG =45°,DH ⊥PG 于H ,PH =2,HG =4.直接写出DH 的长.【答案】(1)见解析;(2)MH2+HN2=2CM2,理由见解析;(3)3+17.【分析】(1)根据正方形的性质得到BC=CD,CG=CE,∠BCG=∠DCE=90°,根据全等三角形的性质得到∠CBG=∠CDE,根据余角的性质即可得到结论;(2)根据正方形的性质得到BC=CD,CG=CE,∠BCD=∠GCE=90°,由全等三角形的性质得到∠CBG=∠CDE,BG=DE,求得∠MHN=90°,得到BM=DN,根据全等三角形的性质得到CM=CN,∠BCM=∠DCN,根据勾股定理即可得到结论;(3)根据折叠的性质得到AD=DH=CD,∠A=∠C=∠DHP=90°,∠ADP=∠HDP,∠GDH=∠GDC,AP=PH =2,CG=HG=4,根据正方形的性质得到∠B=90°,设DH=AD=AB=BC=x,根据勾股定理列方程即可得到结论.【解答】解:(1)证明:∵在正方形ABCD和正方形CEFG中,BC=CD,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,∵∠CDE+∠DEC=90°,∴∠HBE+∠BEH=90°,∴∠BHE=90°,∴BH⊥DE;(2)解:MH2+HN2=2CM2,理由:∵在正方形ABCD和正方形CEFG中,BC=CD,CG=CE,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,BG=DE,∵∠DPH=∠CPM,∴∠DHP=∠BCP=90°,。
第九章《正方形》提优复习【知识图解】1.2.平行四边形、矩形、菱形、正方形之间的关系图:【技法透析】1.正方形是轴对称图形,有四条对称轴正方形是中心对称图形,两对角线的交点是对称中心.2.正方形对角线的特殊性质一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°,两条对角线把正方形分成四个全等的等腰直角三角形.3.正方形的判定方法(1)先证明它是矩形,再证明它有一组邻边相等;(2)先证明它是菱形,再证明它有一个角为直角.考点1利用正方形的性质解题例1 如图所示,正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN ⊥DM,且交∠CBE的平分线于N.(1)求证:MD=MN.(2)若将上述条件的“M是AB的中点”改为“M是AB上任意一点”,其余条件不变,如图(2),则结论“MD=MN”还成立吗?若成立,给出证明;若不成立,请说明理由.【切题技巧】(1)证MD=MN,可证它们所在的三角形全等,易知MN在钝角△MBN 中,而MD在直角△AMD中,显然需添加辅助线构造全等三角形,由△MBN的特征想到可在AD上取中点F,构造△DFM≌△MBN;(2)可类比图(1)中的方法【规范解答】(1)证明:取AD的中点F,连接MF.(2)结论MD=MN仍成立.证明:在AD上取点F,使AF=AM,连接MF.由(1)中结论可得:DF=BM,∠DFM=∠MBN,∠FDM=∠BMN,∴△DFM≌△MBA,∴MD=NM.【借题发挥】证明两条线段相等的一般思路是,先找到或根据条件构造,使这两条线段分别处在两个“相关”的三角形中,然后再证明这两个三角形全等即可,在探索(2)中结论时,可类比(1)问的分析思路进行.【同类拓展】1.已知在锐角△ABC和锐角△AFH的外面作正方形ABEF和ACGH,AD是△ABC的高,如图所示.求证:DA的延长线平分FH.考点2正方形中规律探究问题例2 如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形剪成四个小正方形,共得到10个小正方形,称为第三次操作;…,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( )A.669 B.670 C.671 D.672【切题技巧】第一次操作,得到4个小正方形;第二次操作得到7个小正方形,即7=4+3;第三次操作得到10个小正方形,即10=4+3+3;由此推断第n次操作可得到4+3(n-1)个小正方形,由4+3(n-1)=2011得n=670,故选B.【规范解答】 B【借题发挥】对于规律问题,要仔细观察、归纳、合理推理,找到变化的特征,从而得出结论.2.如图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形边长A1B1C1D1按原法延长一倍后得到正方形A2B2C2D2(如图2);以此类推…,则正方形A4B4C4D4的面积为_______.考点3正方形的判定例3 如图,已知△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,与∠BCA相邻的外角∠ACD的平分线交于点F.(1)求证:OE=OF;(2)当点O运动到何处时四边形AECF是矩形?说明你的理由;(3)若能使四边形AECF为正方形,则原△ABC的形状如何?并证明你的猜想.【切题技巧】(1)由“角平分线+平行线 等腰三角形”的思路可证OE=OC=OF;(2)由矩形的对角线互相平分可知O为AC的中点;(3)在(2)的前提下,可知∠ACE=45°,即∠ACB=90°时,四边形AECF为正方形.【规范解答】∴四边形AECF是矩形,∴当点O运动到AC的中点时,四边形AECF为矩形.(3)解:若能使四边形AECF为正方形,则原△ABC为直角三角形,其中∠ACB=90°,O为AC边的中点,理由如下:由(2)可知:若OA-OC,则四边形AECF为矩形.若∠ACB=90°,则∠ECO=∠FCO=45°,即OC平分∠ECF.∵OE=OF,即OC为△ECF的中线,∴CE=CF.∵四边形AECF为矩形.∴四边形AECF为正方形.【借题发挥】特殊四边形是指平行四边形、矩形、正方形、梯形,其性质可从边、角、对角线、对称性等方面进行比较(见下表)并记忆掌握,使之在推理中灵活地应用.【同类拓展】3.如图(1)所示,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE;②AF⊥DE.(不需要证明).(1)如图(2),若点E、F,不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”)(2)如图(3),若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE =DF,此时上面的结论①②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图(4),在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种?并写出证明过程.考点4正方形中面积问题例4 如图,正方形ABCD中,AB=3,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15°,求△AEF的面积.【切题技巧】由30°+15°=45°,联想到∠BAE+∠DAF=∠EAF,结合条件AB =AD,∠B=∠D=90°,联想到将△ADF绕点A顺时针旋转90°到△ABG的位置.【规范解答】【借题发挥】(1)将某个图形绕一点旋转90°,拼成一个新的图形,以便集中条件,这是解决几何问题常用的方法之一.(2)利用图形的旋转不变性探索图形在旋转过程中的有关规律,从中体验图形变换的理念与思想.4.如图所示,点M、N分别在正方形ABCD的边BC、CD上,已知△MCN的周长等于正方形ABCD周长的一半,求∠MAN的度数.考点5正方形中猜想证明题例5如图所示,把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M.探究线段MD、MF的关系,并加以证明.【切题技巧】由中点这一条件,想到“倍长法”,再证三角形全等.【规范解答】MD和MF的关系是:MD=MF,MD⊥MF.【借题发挥】探索是学习的生命线,深入探究,学会探索是时代提出的新要求,数学解题中的探索活动可以从以下几个方面进行:(1)在题设条件不变情况下,挖掘出更多的结论;(2)通过强化或弱化来改变条件,考查结论是否改变或寻求新的结论;(3)构造逆命题5.如图所示,在DABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.(1)如图①,试判断四边形EGFH的形状,并说明理由;(2)如图②,当EF⊥GH时,四边形EGFH的形状是_______;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是_______;(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.参考答案1.略 2. 125 3.(1)成立(2)成立(3)正方形4.45°.5.(1)四边形EGFH是平行四边形.(2) )菱形(3)菱形.(4)四边形EGFH是正方形。
专题 20 正方形例1 ①④⑤ 提示:在AD 上取AH =AE ,连EH ,则∠AHE =45°,∴∠HED =∠HDE =22.5°,则HE =HD .又∵HE =HD >AE ,故②不正确.又AGD FGD CGD S S S ∆∆∆=> ,故③不正确.例2 提示:(1)延长DM 交CE 于N ,连DF ,NF ,先证明△ADM ≌△ENM ,再证明△CDF ≌△ENF 得FD =FN ,∠DFN =∠CFE =90°,故MD ⊥MF 且MD =MF .(2)延长DM 到N 点,使DM =MN ,连FD ,FN ,先证明△ADM ≌△ENM ,得AD =EN ,∠MAD =∠MEN ,则AD ∥EN .延长EN ,DC 交于S 点,则∠ADC =∠CSN =90°.在四边形FCSE 中,∠FCS +∠FEN =180°,又∵∠FCS +∠FCD =180°,故∠FEN =∠FCD ,再证△CDF ≌△ENF .∴(1)中结论仍成立.例3 提示:延长BC 至点H ,使得CH =AE ,连结DE ,DF ,由Rt △DAE ≌Rt △DCH 得,DE =DH ,进而推证△DEF ≌△DFH ,Rt △DGE ≌Rt △DCH . 例4 设AG =a ,BG =b ,AE =x ,ED =y ,则,2. a b x y ax by +=+⎧⎨=⎩①②由①得a -x =y -b ,平方得a 2-2ax +x 2=y 2-2by +b 2. 将②代入得a 2-2ax +x 2=y 2-4ax +b 2, ∴(a +x )2=b 2+y 2,得a +x∵b 2+y 2=CH 2+CF 2=FH 2, ∴a +x =FH ,即DH +BF =FH .延长CB 至M ,使BM =DH ,连结AM ,由Rt △ABM ≌Rt △ADH ,得AM =AH ,∠MAB =∠HAD . ∴∠MAH =∠MAB +∠BAH =∠BAH +∠HAD =90°. 再证△AMF ≌△AHF .∴∠MAF =∠HAF . 即∠HAF =12∠MAH =45°. 例5 (1)如图,延长CD 至点E 1,使DE 1=BE ,连结AE 1,则△ADE 1≌△ABE . 从而,∠DAE 1=∠BAE ,AE 1=AE ,于是∠EAE 1=90°.在△AEF 和△AE 1F 中,EF =BE +DF =E 1D +DF =E 1F ,则△AEF ≌△AE 1F . 故∠EAF =∠E 1AF =12∠EAE 1=45°. (2)如图,在AE 1上取一点M 1,使得AM 1=AM ,连结M 1D ,M 1N .则 △ABM ≌△ADM 1,△ANM ≌△ANM 1, 故∠ABM =∠ADM 1,BM =DM 1,MN =M 1N .∵∠NDM 1=90°,从而M 1N 2=M 1D 2+ND 2,∴MN 2=BM 2+DN 2.FEAD CB MNM E 11A D CFHB MGEP例6 (1)BM +DN =MN 成立.如图a ,把△AND 绕点A 顺时针旋转90°,得到△ABE ,E 、B 、M 三点共线,则△DAN ≌△BAE , ∴AE =AN ,∠EAM =∠NAM =45°,AM =AM ,得△AEM ≌△ANM ,∴ME =MN . ∵ME =BE +BM =DN +BM ,∴DN +BM =MN . (2)DN -BM =MN .如图b ,对于图2,连BD 交AM 于E ,交AN 于F ,连EN ,FM 可进一步证明:①△CMN 的周长等于正方形边长的2倍; ②EF 2=BE 2+DF 2;③△AEN ,△AFM 都为等腰直角三角形; ④2AMN AEF S S ∆∆=.A 级1.75°2.②3.34.5.C 6.B 7.B 8.B9.提示:△ABE ≌△DCE ,△ADF ≌△CDF ,证明∠ABE +∠BAF =90°. 10.提示:延长CE 交DA 的延长线于G ,证明FG =FC . 11.提示:连PC ,则PC =EF .12.(1)延长DM 交EF 于N ,由△ADM ≌△ENM ,得DM =NM ,MF =12DN ,FD =FN ,故MD ⊥MF ,且MD =MF .(2)延长DM 交CE 于N ,连结DF ,FN ,先证明△ADM ≌△ENM ,再证明△CDF ≌△ENF ,(1)中结论仍成立.B 级1.2 22.60°°提示:MA 2+MC 2=MD 2+MB 23.54.D5.C6.B7.B8.提示:⑴在AD 上截取AF =AM ,∠DFM =∠MBN ,由△DFM ≌△MBN ,故DM =MN . ⑵证法同上,结论仍成立.⑶在AD 延长线取一点E ,使DE =BM ,可证明△DEM ≌△MBN ,故DM =MN .9.提示:构造边长为1的正方形ABCD ,P 为正方形ABCD 内一点,过P 作FH ∥AB 交AD 于F ,交BC 于H,作EG ∥AD 交AB 于E ,交CD 于G .设AE =a,则BE =1-a .设AF =b ,则DF =1-b .∴PA =a 2+b 2,同理:PB =(1-a )2+b 2,PC =(1-a )2+(1-b )2,PD =a 2+(1-b )2. 又∵PA +PB +PC +PD ≥2AC =22,∴命题得证.图b图aEEFADCBM N NM BCD A10.提示:MN =BM +DN ,延长CD 至M ',使M 'D =BM ,证明△ADM '≌△ABM ,△AM 'N ≌△AMN ,则∠MAN =∠M 'AN =12∠M ’AM =45°.11.提示:八边形八个内角分成两组,每一组四个角都相等.12.连结RN,MP ,△MPC ≌△BAC ≌△BRN ,则RB =MP ,又△RNM ≌△PCB ,则RM =BP ,从而四边形RBPM 是平行四边形,故BP ∥RM .。
2022-2023学年第二学期初二数学名校优选培优训练专题测试专题08 正方形的判定和性质姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2021•云岩区模拟)数学老师用四根长度相等的木条首尾顺次相接制成一个图1所示的菱形教具,此时测得∠D=60°,对角线AC长为16cm,改变教具的形状成为图2所示的正方形,则正方形的边长为()A.8cm B.4cm C.16cm D.16cm2.(2021•东阿县三模)如图,正方形ABCD的边长为2,E为AB边的中点,点F在BC边上,点B关于直线EF的对称点记为B',连接B'D,B'E,B'F.当点F在BC边上移动使得四边形BEB'F成为正方形时,B'D的长为()A.B.C.2D.33.(2018春•慈溪市期末)如图,在给定的一张平行四边形纸片上按如下操作:连接AC,作AC的垂直平分线MN分别交AD、AC、BC于M、O、N,连接AN,CM,则四边形ANCM是()A.矩形B.菱形C.正方形D.无法判断4.(2019•博山区一模)在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE.请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF.这四位同学写出的结论中不正确的是()A.小青B.小何C.小夏D.小雨5.(2022•什邡市校级二模)如图,四边形ABCD是平行四边形,下列结论中错误的是()A.当▱ABCD是矩形时,∠ABC=90°B.当▱ABCD是菱形时,AC⊥BDC.当▱ABCD是正方形时,AC=BDD.当▱ABCD是菱形时,AB=AC6.(2022春•无锡期末)在矩形ABCD中,E,F,G,H分别是边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,以下结论:①存在且仅有一个四边形EFGH是菱形.②存在无数个四边形EFGH是平行四边形.③存在无数个四边形EFGH是矩形.④除非矩形ABCD为正方形,否则不存在四边形EFGH是正方形.其中正确的是()A.③④B.①②③C.②③④D.①②④7.(2022春•济南期末)如图,在平面直角坐标系xOy中,P(4,4),A、B分别是x轴正半轴、y轴正半轴上的动点,且△ABO的周长是8,则P到直线AB的距离是()A.4 B.3 C.2.5 D.28.(2021春•永年区期末)如图,在正方形ABCD中,BD与AC相交于点O.嘉嘉作DP∥OC,CP∥OD,在正方形ABCD外,DP,CP交于点P;淇淇作DP=OC,CP=OD,在正方形ABCD外,DP,CP交于点P,两人的作法中,能使四边形OCPD是正方形的是()A.只有嘉嘉B.只有淇淇C.嘉嘉和淇淇D.以上均不正确9.(2020春•雨花区校级期末)如图,点P的坐标为(4,4),点A,B分别在x轴,y轴的正半轴上运动,且∠APB=90°,连接AB,OP,下列结论:①P A=PB;②若OP与AB的交点恰好是AB的中点,则四边形OAPB是正方形;③四边形OAPB的面积与周长为定值;④AB>OP.其中正确的结论是()A.①②B.①②③C.①③④D.①②④10.(2022•大庆三模)如图,已知四边形ABCD为正方形AB=2,点E为对角线AC上一点,连接DE,过点E作EF⊥DE,交BC延长线于点F,以DE、EF为邻边作矩形DEFG,连接CG.在下列结论中:①矩形DEFG是正方形;②2CE+CG=AD;③CG平分∠DCF;④CE=CF.其中正确的结论有()A.①③B.②④C.①②③D.①②③④评卷人得分二.填空题(共7小题,满分14分,每小题2分)11.(2022春•鼓楼区校级期中)现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是(填写图形的形状)(如图),它的一边长是.12.(2021春•万山区期中)如图,AD是△ABC的角平分线,DE,DF分别是△BAD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是(填序号).13.(2022春•新泰市期中)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OBE≌△OCF;③四边形CEOF的面积为正方形ABCD面积的;④DF2+CE2=EF2.其中正确的为.(将正确的序号都填入)14.(2019春•伊通县期末)小明用四根长度相同的木条制作了能够活动的菱形学具,他先把活动学具制作成图1所示菱形,并测得∠B=60°,接着活动学具制作成图2所示正方形,并测得正方形的对角线AC =acm,则图1中对角线AC的长为cm.15.(2022春•香坊区校级月考)如图,在四边形ABCD中,∠BAD=45°,∠BCD=90°,连接BD、CA,且CA平分∠BCD,若AC=45,BC=15,则BD=.16.(2021•河南一模)正方形ABCD的边长为4,点M,N在对角线AC上(可与点A,C重合),MN=2,点P,Q在正方形的边上.下面四个结论中,①存在无数个四边形PMQN是平行四边形;②存在无数个四边形PMQN是菱形;③存在无数个四边形PMQN是矩形;④至少存在一个四边形PMQN是正方形.所有正确结论的序号是.17.(2022春•江岸区校级月考)如图,AD是△ABC的高,∠BAC=45°,若AD=18,DC=6,则△ABC的面积是.评卷人得分三.解答题(共9小题,满分66分)18.(2022春•江阴市期末)如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,AH=2.(1)如图1,当DG=2时,求证:菱形EFGH是正方形.(2)如图2,连接CF,当△FCG的面积等于1时,求线段DG的长度.19.(2021春•上城区校级期末)如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并说明理由.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?请说明理由.(3)当点O在边AC上运动时,四边形BCFE是菱形(填“可能”或“不可能”).请说明理由.20.(2021春•梁山县期中)如图,已知在▱ABCD中,AE平分∠BAD,交DC于E,DF⊥BC,交AE于G,且DF=AD.(1)若∠C=60°,AB=2,求EC的长;(2)求证:CD=DG+FC.21.(2022春•夏邑县期中)如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE,过点E作EF⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB的中点,连接DF,求点E到DF的距离.22.(2021春•怀化期末)如图,在Rt△ABC中,两锐角的平分线AD,BE相交于O,OF⊥AC于F,OG⊥BC 于G.(1)求证:四边形OGCF是正方形.(2)若∠BAC=60°,AC=4,求正方形OGCF的边长.23.(2022春•杭州期中)已知:如图,在正方形ABCD中,E,F分别是BC,CD上的点,AE、BF相交于点P,并且AE=BF.(1)如图1,判断AE和BF的位置关系?并说明理由;(2)若AB=8,BE=6,求BP的长度;(3)如图2,FM⊥DN,DN⊥AE,点F在线段CD上运动时(点F不与C、D重合),四边形FMNP 是否能否成为正方形?请说明理由.24.(2022春•沂水县期中)(1)将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,如图1.求证:四边形AEA'D是正方形;(2)将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C'处,点B落在点B'处,得到折痕EF,B'C'交AB于点M,如图2.线段MC'与ME是否相等?若相等,请给出证明;若不等,请说明理由.25.(2022春•黄石期末)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.26.(2020春•利州区期末)如图①,在正方形ABCD中,点E,F分别在AB、BC上,且AE=BF.(1)试探索线段AF、DE的数量关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图②中补全图形,并说明理由.答案与解析一.选择题(共10小题,满分20分,每小题2分)1.(2021•云岩区模拟)数学老师用四根长度相等的木条首尾顺次相接制成一个图1所示的菱形教具,此时测得∠D=60°,对角线AC长为16cm,改变教具的形状成为图2所示的正方形,则正方形的边长为()A.8cm B.4cm C.16cm D.16cm解:如图1,图2中,连接AC.图1中,∵四边形ABCD是菱形,∴AD=DC,∵∠D=60°,∴△ADC是等边三角形,∴AD=DC=AC=16cm,∴正方形ABCD的边长为16cm,故选:C.2.(2021•东阿县三模)如图,正方形ABCD的边长为2,E为AB边的中点,点F在BC边上,点B关于直线EF的对称点记为B',连接B'D,B'E,B'F.当点F在BC边上移动使得四边形BEB'F成为正方形时,B'D的长为()A.B.C.2D.3解:如图,连接BB',连接BD,∵四边形ABCD是正方形,∴BD=AB=2,BD平分∠ABC,∵E为AB边的中点,∴AE=BE=1,∵四边形BEB'F是正方形,∴BB'=BE=,BB'平分∠ABC,∴点B,点B',点D三点共线,∴B'D=BD﹣BB'=,故选:A.3.(2018春•慈溪市期末)如图,在给定的一张平行四边形纸片上按如下操作:连接AC,作AC的垂直平分线MN分别交AD、AC、BC于M、O、N,连接AN,CM,则四边形ANCM是()A.矩形B.菱形C.正方形D.无法判断证明:∵MN垂直平分AC,∴AO=CO,∠AOM=90°,又∵AD∥BC,∴∠MAC=∠NCA,在△AOPM和△CON中,,∴△AOPM≌△CON,∴OM=ON,∴AC和MN互相垂直平分,∴四边形ANCM是菱形;故选:B.4.(2019•博山区一模)在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE.请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF.这四位同学写出的结论中不正确的是()A.小青B.小何C.小夏D.小雨解:∵四边形ABCD是平行四边形,∴OA=OC,CD∥AB,∴∠ECO=∠F AO,(故小雨的结论正确),在△EOC和△FOA中,,∴△EOC≌△FOA,∴OE=OF(故小青的结论正确),∴S△EOC=S△AOF,∴S四边形AFED=S△ADC=S平行四边形ABCD,∴S四边形AFED=S四边形FBCE故小夏的结论正确,∵△EOC≌△FOA,∴EC=AF,∵CD=AB,∴DE=FB,DE∥FB,∴四边形DFBE是平行四边形,∵OD=OB,EO⊥DB,∴ED=EB,∴四边形DFBE是菱形,无法判断是正方形,故小何的结论错误,故选:B.5.(2022•什邡市校级二模)如图,四边形ABCD是平行四边形,下列结论中错误的是()A.当▱ABCD是矩形时,∠ABC=90°B.当▱ABCD是菱形时,AC⊥BDC.当▱ABCD是正方形时,AC=BDD.当▱ABCD是菱形时,AB=AC解:因为矩形的四个角是直角,故A正确,因为菱形的对角线互相垂直,故B正确,因为正方形的对角线相等,故C正确,菱形的对角线和边长不一定相等,例如:∠ABC=80°,因为AB=BC,所以∠BAC=∠ACB=50°,此时AC>AB,故选:D.6.(2022春•无锡期末)在矩形ABCD中,E,F,G,H分别是边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,以下结论:①存在且仅有一个四边形EFGH是菱形.②存在无数个四边形EFGH是平行四边形.③存在无数个四边形EFGH是矩形.④除非矩形ABCD为正方形,否则不存在四边形EFGH是正方形.其中正确的是()A.③④B.①②③C.②③④D.①②④解:如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线EG和HF,分别交AB,BC,CD,AD于E,F,G,H,则四边形EFGH是平行四边形,故存在无数个四边形EFGH是平行四边形;故②正确;当EG=HF时,四边形EFGH是矩形,故存在无数个四边形EFGH是矩形;故③正确;当EG⊥HF时,存在无数个四边形EFGH是菱形;故①错误;当四边形EFGH是正方形时,EH=HG,则△AEH≌△DHG,∴AE=HD,AH=GD,∵GD=BE,∴AB=AD,∴四边形ABCD是正方形,当四边形ABCD为正方形时,四边形EFGH是正方形,故④正确;故选:C.7.(2022春•济南期末)如图,在平面直角坐标系xOy中,P(4,4),A、B分别是x轴正半轴、y轴正半轴上的动点,且△ABO的周长是8,则P到直线AB的距离是()A.4 B.3 C.2.5 D.2 解:方法一:如图,过点P作PC⊥x轴,PD⊥y轴,垂直分别为C,D,设OB=a,OA=b,AB=c,P到直线AB的距离是h,∵△ABO的周长是8,∴a+b+c=8,∴a+b=8﹣c,∴a2+2ab+b2=64﹣16c+c2根据勾股定理得:a2+b2=c2,∴ab=32﹣8c,∵S△P AB=4×4﹣ab﹣4(4﹣b)﹣4(4﹣a)=2(a+b)﹣ab=2(8﹣c)﹣(32﹣8c)=16﹣2c﹣16+4c=2c,∵S△P AB=×c•h,∴2c=×c•h,∴h=4.∴P到直线AB的距离为4.方法二:如图,过点P作PC⊥x轴,PD⊥y轴,垂直分别为C,D,∵P(4,4),∴四边形CODP是边长为4的正方形,∴PC=PD=OC=OD=4,∵A、B分别是x轴正半轴、y轴正半轴上的动点,∴将△P A′D沿P A′折叠得到△P A′E,延长A′E交y轴于点B,∴∠P A′D=∠P A′E,PE=PD,A′D=A′E,∠PDA′=∠PEA′=90°,∴PE=PC,在Rt△PEB和Rt△PCB中,,∴Rt△PEB≌Rt△PCB(HL),∴BE=BC,∵△A′BO的周长是8,∴A′O+BO+A′B=A′O+BO+BE+A′E=A′O+BO+BC+A′D=CO+DO=8,∴△A′BO符合题意中的△ABO,∴P到直线AB的距离PE=4,故选:A.8.(2021春•永年区期末)如图,在正方形ABCD中,BD与AC相交于点O.嘉嘉作DP∥OC,CP∥OD,在正方形ABCD外,DP,CP交于点P;淇淇作DP=OC,CP=OD,在正方形ABCD外,DP,CP交于点P,两人的作法中,能使四边形OCPD是正方形的是()A.只有嘉嘉B.只有淇淇C.嘉嘉和淇淇D.以上均不正确解:∵四边形ABCD是正方形,∴OD=OC,OD⊥OC,∵DP∥OC,CP∥OD,∴四边形DOCP是平行四边形,∴DP=OC,CP=OD,∴DP=OC=CP=OD,∴平行四边形DOCP是正方形,故嘉嘉正确;∵四边形ABCD是正方形,∴OD=OC,OD⊥OC,∵DP=OC,CP=OD,∴DP=OC=CP=OD,∴四边形DOCP是正方形,故淇淇正确;故选:C.9.(2020春•雨花区校级期末)如图,点P的坐标为(4,4),点A,B分别在x轴,y轴的正半轴上运动,且∠APB=90°,连接AB,OP,下列结论:①P A=PB;②若OP与AB的交点恰好是AB的中点,则四边形OAPB是正方形;③四边形OAPB的面积与周长为定值;④AB>OP.其中正确的结论是()A.①②B.①②③C.①③④D.①②④解:过P作PM⊥y轴于M,PN⊥x轴于N,AB与OP交于点C,如图所示:∵P(4,4),∴PN=PM=4,∵x轴⊥y轴,∴∠MON=∠PNO=∠PMO=90°,∴∠MPN=360°﹣90°﹣90°﹣90°=90°,则四边形MONP是正方形,∴OM=ON=PN=PM=4,∵∠MPN=∠APB=90°,∴∠MPB=∠NP A,在△MPB和△NP A中,,∴△MPB≌△NP A(ASA),∴P A=PB,故①正确;∵OP与AB的交点恰好是AB的中点,∴BC=AC,在Rt△APB中,PC是斜边AB的中线,∴PC=BC,在Rt△AOB中,OC是斜边AB的中线,∴OC=BC,∴BC=AC=PC=OC,∴四边形OAPB是矩形,∵P A=PB,∴四边形OAPB是正方形,故②正确;∵△MPB≌△NP A,∴四边形OAPB的面积=四边形BONP的面积+△PNA的面积=四边形BONP的面积+△PMB的面积=正方形PMON的面积=4×4=16,∵△MPB≌△NP A,∴BM=AN,∴OA+OB=ON+AN+OB=ON+OM=4+4=8,P A=PB,且P A和PB的长度会不断的变化,故周长不是定值,故③错误;∵若OP与AB的交点恰好是AB的中点,则四边形OAPB是正方形,∴AB=OP,故④错误;故选:A.10.(2022•大庆三模)如图,已知四边形ABCD为正方形AB=2,点E为对角线AC上一点,连接DE,过点E作EF⊥DE,交BC延长线于点F,以DE、EF为邻边作矩形DEFG,连接CG.在下列结论中:①矩形DEFG是正方形;②2CE+CG=AD;③CG平分∠DCF;④CE=CF.其中正确的结论有()A.①③B.②④C.①②③D.①②③④解:过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD是正方形,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,∴NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形;故①正确;∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∠DAE=∠DCG=45°,∵∠DCF=90°,∴CG平分∠DCF,故③正确;∴AC=AE+CE=CE+CG=AD,故②错误;当DE⊥AC时,点C与点F重合,∴CE不一定等于CF,故④错误,故选:A.二.填空题(共7小题,满分14分,每小题2分)11.(2022春•鼓楼区校级期中)现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是正方形(填写图形的形状)(如图),它的一边长是cm.解:如图,作AB平行于小正方形的一边,延长小正方形的另一边与大正方形的一边交于B点,∴△ABC为直角边长为8cm的等腰直角三角形,∴AB=AC=8,∴阴影正方形的边长=AB=8 cm.故答案为:正方形,cm.12.(2021春•万山区期中)如图,AD是△ABC的角平分线,DE,DF分别是△BAD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是②③④(填序号).解:如果OA=OD,则四边形AEDF是矩形,没有说∠A=90°,不符合题意,故①错误;∵AD是△ABC的角平分线,∴∠EAD=∠F AD,在△AED和△AFD中,∴△AED≌△AFD(AAS),∴AE=AF,DE=DF,∴AE+DF=AF+DE,故④正确;∵在△AEO和△AFO中,,∴△AEO≌△AFO(SAS),∴EO=FO,又∵AE=AF,∴AO是EF的中垂线,∴AD⊥EF,故②正确;∵当∠A=90°时,四边形AEDF的四个角都是直角,∴四边形AEDF是矩形,又∵DE=DF,∴四边形AEDF是正方形,故③正确.综上可得:正确的是:②③④,故答案为:②③④.13.(2022春•新泰市期中)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OBE≌△OCF;③四边形CEOF的面积为正方形ABCD面积的;④DF2+CE2=EF2.其中正确的为①②③.(将正确的序号都填入)解:①在正方形ABCD中,OC=OD,∠COD=90°,∠ODC=∠OCB=45°,∵∠EOF=90°,∴∠COE=∠EOF﹣∠COF=90°﹣∠COF,∴∠COE=∠DOF,∴△COE≌△DOF(ASA),故①正确;②在正方形ABCD中,OC=OB,∠COB=90°,∠OBC=∠OCB=45°,∵∠EOF=90°,∴∠BOE=∠COF,∴△OBE≌△OCF(ASA);故②正确;③由①全等可得四边形CEOF的面积与△OCD面积相等,∴四边形CEOF的面积为正方形ABCD面积的,故③正确;④∵△COE≌△DOF,∴CE=DF,∵四边形ABCD为正方形,∴BC=CD,∴BE=CF,在Rt△ECF中,CE2+CF2=EF2,∴DF2+BE2=EF2,故④错误;综上所述,正确的是①②③,故选:①②③.14.(2019春•伊通县期末)小明用四根长度相同的木条制作了能够活动的菱形学具,他先把活动学具制作成图1所示菱形,并测得∠B=60°,接着活动学具制作成图2所示正方形,并测得正方形的对角线AC =acm,则图1中对角线AC的长为a cm.解:如图1,2中,连接AC.在图2中,∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∵AC=a,∴AB=BC=a,在图1中,∵∠B=60°,BA=BC,∴△ABC是等边三角形,∴AC=BC=a,故答案为:a,15.(2022春•香坊区校级月考)如图,在四边形ABCD中,∠BAD=45°,∠BCD=90°,连接BD、CA,且CA平分∠BCD,若AC=45,BC=15,则BD=39.解:将△ADC绕点A逆时针旋转90°到△AC'D',连接C'C,过点A作AH⊥CC′于H.则△AC'C是等腰直角三角形,AC=AC′=45,CC′=90,∵∠BCD=90°,且CA平分∠BCD,∴∠C'=∠ACB=45°,∴C',D',B,C均在同一直线上,在△DAB与△D'AB中,,∴△DAB≌△D'AB(SAS),∴DB=D'B,设DB=D'B=x,在Rt△BCD中,BD2﹣CD2=BC2,∴x2﹣CD2=152①,∵BC+BD'+C'D'=CC'=90,∴15+x+CD=90,即x+CD=75②,由①②可得:x=39,∴BD=39.故答案为:39.16.(2021•河南一模)正方形ABCD的边长为4,点M,N在对角线AC上(可与点A,C重合),MN=2,点P,Q在正方形的边上.下面四个结论中,①存在无数个四边形PMQN是平行四边形;②存在无数个四边形PMQN是菱形;③存在无数个四边形PMQN是矩形;④至少存在一个四边形PMQN是正方形.所有正确结论的序号是①②④.解:如图,作线段MN的垂直平分线交AD于P,交AB于Q.∵PQ垂直平分线段MN,∴PM=PN,QM=QN,∵四边形ABCD是正方形,∴∠P AN=∠QAN=45°,∴∠APQ=∠AQP=45°,∴AP=AQ,∴AC垂直平分线段PQ,∴MP=MQ,∴四边形PMQN是菱形,在MN运动过程中,这样的菱形有无数个,当点M与A或C重合时,四边形PMQN是正方形,∴至少存在一个四边形PMQN是正方形,∵当点M与A或C重合时,四边形PMQN是正方形(即是矩形),且MN=2,∴不可能存在无数个矩形,∴①②④正确,故答案为①②④.17.(2022春•江岸区校级月考)如图,AD是△ABC的高,∠BAC=45°,若AD=18,DC=6,则△ABC 的面积是135.解:以AD为边作正方形ADEF,在EF上截取FQ=BD,在△ABD和△AQF中,,∴△ABD≌△AQF(SAS),∴AB=AQ,∠BAD=∠F AQ,∵∠BAC=45°,∴∠BAD+∠DAC=45°,∴∠DAC+∠F AQ=45°,即∠CAQ=45°,∴∠BAC=∠CAQ.在△BAC和△QAC中,,∴△BAC≌△QAC(SAS),∴BC=CQ=BD+6,设BD=x,则FQ=x,∴QE=EF﹣FQ=18﹣x,CE=DE﹣CD=AD﹣CD=18﹣6=12.在Rt△CQE中,∠E=90°,CQ=BD+6=x+6,∵CE2+QE2=CQ2,∴122+(18﹣x)2=(x+6)2,解得:x=9,∴BD=9,∴BC=BD+DC=9+6=15,∴△ABC的面积=AD•BC=18×15=135.故答案为:135.三.解答题(共9小题,满分66分)18.(2022春•江阴市期末)如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,AH=2.(1)如图1,当DG=2时,求证:菱形EFGH是正方形.(2)如图2,连接CF,当△FCG的面积等于1时,求线段DG的长度.(1)证明:∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HDG和Rt△EAH中,,∴Rt△HDG≌Rt△EAH(HL),∴∠DHG=∠AEH,∴∠DHG+∠AHE=90°∴∠GHE=90°,∴菱形EFGH为正方形;(2)解:过F作FM⊥CD,交DC的延长线于点M,连接GE,∵CD∥AB,∴∠AEG=∠MGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠AEH=∠FGM;在△EHA和△GFM中,,∴△EHA≌△GFM(AAS),∴MF=AH=2,设DG=x,∴CG=6﹣x,∴S△FCG=CG•FM=6﹣x=1,∴x=5,即DG=5.故线段DG的长度为5.19.(2021春•上城区校级期末)如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并说明理由.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?请说明理由.(3)当点O在边AC上运动时,四边形BCFE不可能是菱形(填“可能”或“不可能”).请说明理由.解:(1)OE=OF.理由如下:∵CE是∠ACB的角平分线,∴∠ACE=∠BCE,又∵MN∥BC,∴∠NEC=∠ECB,∴∠NEC=∠ACE,∴OE=OC,∵CF是∠BCA的外角平分线,∴∠OCF=∠FCD,又∵MN∥BC,∴∠OFC=∠FCD,∴∠OFC=∠OCF,∴OF=OC,∴OE=OF;(2)当点O运动到AC的中点,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由如下:∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.已知MN∥BC,当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形;(3)不可能.理由如下:如图,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=∠ACB+∠ACD=(∠ACB+∠ACD)=90°,若四边形BCFE是菱形,则BF⊥EC,但在△GFC中,不可能存在两个角为90°,所以不存在其为菱形.故答案为不可能.20.(2021春•梁山县期中)如图,已知在▱ABCD中,AE平分∠BAD,交DC于E,DF⊥BC,交AE于G,且DF=AD.(1)若∠C=60°,AB=2,求EC的长;(2)求证:CD=DG+FC.(1)解:∵在▱ABCD中,AB=DC=2,∠C=60°,DF⊥BC,∴DF=DC•sin60°=2×=,∵DF=AD.∴AD=DF=,∵AB∥CDAE平分∠BAD,∴∠DAE=∠BAE=∠AED,∴AD=DE=∴EC=DC﹣DE=2﹣.(2)证明:延长FD至M,使DM=FC,在△ADM和△DFC中∴△ADM≌△DFC(SAS),∴∠DAM=∠FDC,AM=DC,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAE=∠AED,∵∠BAE=∠DAE,∴∠DAE=∠AED,∴∠DAE+∠DAM=∠AED+∠FDC,即∠MAG=∠MGA,∴AM=MG,∴DC=DG+FC.21.(2022春•夏邑县期中)如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE,过点E作EF⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB的中点,连接DF,求点E到DF的距离.(1)证明:如图,作EM⊥AD于M,EN⊥AB于N.∵四边形ABCD是正方形,∴∠EAD=∠EAB,∵EM⊥AD于M,EN⊥AB于N,∴EM=EN,∵∠EMA=∠ENA=∠DAB=90°,∴四边形ANEM是矩形,∵EF⊥DE,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN,∵∠EMD=∠ENF=90°,∴△EMD≌△ENF,∴ED=EF,∵四边形DEFG是矩形,∴四边形DEFG是正方形.(2)解:∵四边形DEFG是正方形,四边形ABCD是正方形,∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∴AE+AG=AE+EC=AC=AD=4.(3)解:连接DF,∵四边形ABCD是正方形,∴AB=AD=4,AB∥CD,∵F是AB中点,∴AF=FB,∴DF==2,∴点E到DF的距离=DF=.22.(2021春•怀化期末)如图,在Rt△ABC中,两锐角的平分线AD,BE相交于O,OF⊥AC于F,OG⊥BC 于G.(1)求证:四边形OGCF是正方形.(2)若∠BAC=60°,AC=4,求正方形OGCF的边长.(1)证明:过O作OH⊥AB于H点,∵OF⊥AC于点F,OG⊥BC于点G,∴∠OGC=∠OFC=90°.∵∠C=90°,∴四边形OGCF是矩形.∵AD,BE分别是∠BAC,∠ABC的角平分线,OF⊥AC,OG⊥BC,∴OG=OH=OF,又四边形OGCF是矩形,∴四边形OGCF是正方形;(2)解:在Rt△ABC中,∵∠BAC=60°,∴∠ABC=90°﹣∠BAC=90°﹣60°=30°,∴AC=AB,∵AC=4,∴AB=2AC=2×4=8,∵AC2+BC2=AB2,∴BC==4,在Rt△AOH和Rt△AOF中,,∴Rt△AOH≌Rt△AOF(HL),∴AH=AF,设正方形OGCF的边长为x,则AH=AF=4﹣x,BH=BG=4﹣x,∴4﹣x+4﹣x=8,∴x=2﹣2,即正方形OGCF的边长为2﹣2.23.(2022春•杭州期中)已知:如图,在正方形ABCD中,E,F分别是BC,CD上的点,AE、BF相交于点P,并且AE=BF.(1)如图1,判断AE和BF的位置关系?并说明理由;(2)若AB=8,BE=6,求BP的长度;(3)如图2,FM⊥DN,DN⊥AE,点F在线段CD上运动时(点F不与C、D重合),四边形FMNP 是否能否成为正方形?请说明理由.解:(1)AE⊥BF,理由如下:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,在Rt△ABE和Rt△BCF中,,∴Rt△ABE≌Rt△BCF(HL),∴∠BAE=∠CBF,∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴AE⊥BF;(2)在Rt△ABE中,AB=8,BE=6,根据勾股定理得:AE==10,∵S△ABE=AB•BE=AE•BP,∴8×6=10BP,∴BP=4.8,∴BP的长度为4.8;(3)四边形FMNP不能成为正方形,理由如下:由(1)知:AE⊥BF,∴∠APF=90°,∵FM⊥DN,DN⊥AE,∴∠FMN=∠MNP=90°,∴四边形FMNP是矩形,∵∠BAP+∠NAD=∠NAD+∠ADN=90°,∴∠BAP=∠ADN,在△BAP和△ADN中,,∴△BAP≌△ADN(ASA),∴AN=BP,AP=DN,∵AE=BF,∴AE﹣AN=BF﹣BP,∴EN=PF,∵点F在线段CD上运动时(点F不与C、D重合),∴P、E不重合,∴PN≠PF,∴四边形FMNP不能成为正方形.24.(2022春•沂水县期中)(1)将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,如图1.求证:四边形AEA'D是正方形;(2)将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C'处,点B落在点B'处,得到折痕EF,B'C'交AB于点M,如图2.线段MC'与ME是否相等?若相等,请给出证明;若不等,请说明理由.(1)证明:∵ABCD是矩形,∴∠A=∠ADC=90°,∵将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,∴AD=A′D,AE=A′E,∠ADE=∠A′DE=45°,∵AB∥CD,∴∠AED=∠A′DE=∠ADE,∴AD=AE,∴AD=AE=A′E=A′D,∴四边形AEA′D是菱形,∵∠A=90°,∴四边形AEA′D是正方形;(2)解:MC′=ME.证明:如图1,连接C′E,由(1)知,AD=AE,∵四边形ABCD是矩形,∴AD=BC,∠EAC′=∠B=90°,由折叠知,B′C′=BC,∠B=∠B′,∴AE=B′C′,∠EAC′=∠B′,又EC′=C′E,在Rt△EC′A和Rt△C′EB′中,,∴Rt△EC′A≌Rt△C′EB′(HL),∴∠C′EA=∠EC′B′,∴MC′=ME.25.(2022春•黄石期末)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=AB=2,∵EC=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.(3)①当DE与AD的夹角为30°时,点F在BC边上,∠ADE=30°,则∠CDE=90°﹣30°=60°,在四边形CDEF中,由四边形内角和定理得:∠EFC=360°﹣90°﹣90°﹣60°=120°,②当DE与DC的夹角为30°时,点F在BC的延长线上,∠CDE=30°,如图3所示:∵∠HCF=∠DEF=90°,∠CHF=∠EHD,∴∠EFC=∠CDE=30°,综上所述,∠EFC=120°或30°.26.(2020春•利州区期末)如图①,在正方形ABCD中,点E,F分别在AB、BC上,且AE=BF.(1)试探索线段AF、DE的数量关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图②中补全图形,并说明理由.解:(1)AF=DE.∵ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°,∵AE=BF,∴△DAE≌△ABF,∴AF=DE.(2)四边形HIJK是正方形.如下图,H、I、J、K分别是AE、EF、FD、DA的中点,∴HI=KJ=AF,HK=IJ=ED,∵AF=DE,∴HI=KJ=HK=IJ,∴四边形HIJK是菱形,∵△DAE≌△ABF,∴∠ADE=∠BAF,∵∠ADE+∠AED=90°,∴∠BAF+∠AED=90°,∴∠AOE=90°∴∠KHI=90°,∴四边形HIJK是正方形.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题18.7正方形专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•锡山区期末)下列说法正确的是( )A.菱形的四个角都是直角B.菱形的对角线相等C.矩形的对角线相等垂直D.正方形的对角线相等【分析】直接根据矩形,菱形,正方形的性质进行判断.【解答】解:∵菱形的四条边相等,但四个角不一定相等;对角线互相垂直且平分,但不一定相等,∴选项A,B错误;∵矩形的对角线相等,但不一定垂直.∴选项C错误;∵正方形的对角线相等且互相垂直平分.∴选项D正确.故选:D.2.(2022春•丹凤县期末)下列说法中,是正方形具有而矩形不具有的性质是( )A.两组对边分别平行B.对角线互相垂直C.四个角都为直角D.对角线互相平分【分析】根据正方形、矩形的性质即可判断.【解答】解:因为正方形的对角相等,对角线相等、垂直、且互相平分,矩形的对角相等,对角线相等,互相平分,所以正方形具有而矩形不具有的性质是对角线互相垂直.故选:B.3.(2022春•安宁市期末)如图,在正方形ABCD外侧作等边△ADE,则∠AEB的度数为( )A.15°B.22.5°C.20°D.10°【分析】由四边形ABCD是正方形,△ADE是正三角形可得AB=AE,利用正方形和正三角形的内角性质即可得答案.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,又∵△ADE是正三角形,∴AE=AD,∠DAE=60°,∴△ABE是等腰三角形,∠BAE=90°+60°=150°,∴∠ABE=∠AEB=15°.故选:A.4.(2022春•青秀区校级期末)如图,正方形ABCD的对角线AC,BD交于点O,E、F分别为AO、AD的中点,若EF=3,则OD的长是( )A.3B.4C.5D.6【分析】由题意可得,EF是△AOD的中位线,然后根据中位线的性质定理解答即可.【解答】解:∵E、F分别为AO、AD的中点,∴EF是△AOD的中位线.∴EF=OD,即OD=2EF.∵EF=3,∴OD=6.故选:D.5.(2022春•石家庄期末)如图,在正方形ABCD中,点E,F分别在边AB,CD上,∠EFC=120°,若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则∠AEB′为( )A.70°B.65°C.30°D.60°【分析】依据正方形的性质以及折叠的性质,即可得到∠AEB'=60°.【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠BEF+∠EFC=180°,∵∠EFC=120°,∴∠BEF=180°﹣∠EFC=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,故选:D.6.(2022春•唐河县期末)已知:如图,M是正方形ABCD内的一点,且MC=MD=AD,则∠AMB的度数为( )A.120°B.135°C.145°D.150°【分析】利用等边三角形和正方形的性质求得∠ADM=30°,然后利用等腰三角形的性质求得∠MAD的度数,从而求得∠BAM=∠ABM的度数,利用三角形的内角和求得∠AMB的度数.【解答】解:∵MC=MD=AD=CD,∴△MDC是等边三角形,∴∠MDC=∠DMC=∠MCD=60°,∵∠ADC=∠BCD=90°,∴∠ADM=30°,∴∠MAD=∠AMD=75°,∴∠BAM=15°,同理可得∠ABM=15°,∴∠AMB=180°﹣15°﹣15°=150°,7.(2022秋•苏州期中)如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD 于点F,连接EF.若DF=3,则BE的长为( )A.2B.3C.4D.5【分析】如图,首先把△ADF旋转到△ABG,然后利用全等三角形的性质得到DF=BG,∠DAF=∠BAG,然后根据题目中的条件,可以得到△EAG≌△EAF,再根据DF=3,AB=6和勾股定理,可以求出BE的长,本题得以解决.【解答】解;如图,把△ADF绕A逆时针旋转90°得到△ABG,∴△ADF≌△ABG,∴∠ADF=∠ABG=∠ABE=90°,∴∠ABG+∠ABE=180°,∴G、B、E三点共线,∴DF=BG,∠DAF=∠BAG,∵∠DAB=90°,∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠BAG+∠EAB=45°,∴∠EAF=∠EAG,在△EAG和△EAF中,,∴△EAG≌△EAF(SAS),∴GE=FE,设BE=x,∵CD=6,DF=3,∴CF=3,则GE=BG+BE=3+x,CE=6﹣x,∵∠C=90°,∴(6﹣x)2+32=(3+x)2,解得,x=2,∴BE的长为2.故选:A.8.(2022春•肥城市期中)如图,E、F分别是正方形ABCD的边CD、BC上的点,且CE=BF,AF、BE 相交于点G,下列结论中正确的是( )①AF=BE;②AF⊥BE;③AG=GE;④S△ABG=S四边形CEGF.A.①②③B.①②④C.①③④D.②③④【分析】根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得解.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABC=∠BCD=90°,在△ABF与△BCE中,,∴ΔABF≌ΔBCE,∴AF=BE,故①正确;∵∠BAF+∠BFA=90°,∠BAF =∠EBC ,∴∠EBC +∠BFA =90°,∴∠BGF =90°,∴AF ⊥BE ,故②正确;∵GF 与BG 的数量关系不清楚,∴无法得AG 与GE 的数量关系,故③错误;∵△ABF ≌△BCE ,∴S △ABF =S △BCE ,∴S △ABF ﹣S △BGF =S △BCE ﹣S △BGF ,即S △ABG =S 四边形CEGF ,故④正确;综上可得:①②④正确,故选:B .9.(2022春•鹿城区校级期中)如图,小聪用图1中的一副七巧板拼出如图2所示“鸟”,已知正方形ABCD 的边长为4,则图2中E ,F 两点之间的距离为( )A .B .2C .D .【分析】过E 作EG ⊥FG 于G ,由七巧板和正方形的性质可知,EG =1,FG =1+4=5,再利用勾股定理可得答案.【解答】解:如图,过E 作EG ⊥FG 于G ,由七巧板和正方形的性质可知:EG =1,FG =1+4=5,在Rt△FEG中,由勾股定理得,EF==,故选:A.10.(2022秋•市南区校级月考)如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=DF;②四边形PECF的周长为8;③EF的最小值为2;④AP⊥EF.其中正确结论的序号为( )A.①②B.①②④C.②③④D.①②③【分析】①先证△PDF是等腰直角三角形,则PD=DF,即可判断;②先证明△PEB是等腰直角三角形,再根据三个角是直角的四边形是矩形可得四边形PECF为矩形,则四边形PECF的周长=2BC=8,即可判断;③证明△ADP≌△CDP,则AP=PC,根据矩形对角线相等得PC=EF,当AP⊥BD时,垂线段最短,即可判断;④证明Rt△AMP≌Rt△FPE,得到∠BAP=∠PFE,进而求解.【解答】解:如图,连接PC,①∵正方形ABCD的边长为4,P是对角线BD上一点,∴∠PDC=45°,又∵PF⊥CD,∴∠PFD=90°,∴△PDF为等腰直角三角形,∴PD=DF,故①正确;②由①同理得:△BPE是等腰直角三角形,∴PE=BE,∵∠PEC=∠ECF=∠PFC=90°∴四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2(CE+BE)=2BC=2×4=8,故②正确;③∵四边形PECF为矩形,∴PC=EF,∵四边形ABCD为正方形,∴AD=CD,∠ADP=∠CDP,在△ADP和△CDP中,,∴△ADP≌△CDP(SAS),∴AP=PC,∴AP=EF,当AP最小时,EF最小,∴当AP⊥BD时,垂线段最短,即AP=BD=2时,EF的最小值等于2;故③错误;④延长FP交AB于M,延长AP交EF于H,∵AB∥CD,PF⊥CD,∴FM⊥AB,∵BD平分∠ABC,PM⊥AB,PE⊥BC,∴PM=PE,∵AP=EF,∠AMP=∠EPF=90°,∴Rt△AMP≌Rt△FPE(HL),∴∠BAP=∠PFE,∵∠AMP=90°,∴∠BAP+∠APM=90°,∵∠APM=∠HPF,∴∠PFH+∠HPF=90°,∴∠PHF=90°,∴AP⊥EF,故④正确;综上,①②④正确.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022春•北京期中)如果正方形的一条对角线长为3,那么该正方形的面积为 9 .【分析】利用对角线乘积的一半即可求出正方形的面积.【解答】解:正方形的面积是:3×3×=9.故答案为:9.12.(2022春•嘉兴期末)已知矩形ABCD,请添加一个条件: AB=BC(答案不唯一) ,使得矩形ABCD 成为正方形.【分析】根据正方形的判定添加条件即可.【解答】解:添加的条件可以是AB=BC.理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形.故答案为:AB=BC(答案不唯一).13.(2022•新野县三模)在▱ABCD中,已知AC,BD为对角线,现有以下四个条件:①∠ABC=90°;②AC=BD;③AC⊥BD;④AB=BC.从中选取两个条件,可以判定▱ABCD为正方形的是 ①③(答案不唯一) .(写出一组即可)【分析】根据正方形的判断方法即可判断.【解答】解:根据正方形的判断方法可知:满足条件①③或①④或②③或②④时,▱ABCD是正方形.故答案为:①③(答案不唯一).14.(2022秋•通海县校级期中)如图,点E是正方形ABCD内一点,连接AE、BE、CE,若AE=1,BE=2,CE=3则∠AEB= 135 度.【分析】将△BCE绕点B顺时针旋转270°,△FBE是等腰直角三角形,可得∠FEB=45°,再证明△AFE是直角三角形,可得∠AEF=90°,进而可得∠AEB的度数.【解答】解:如下图,将△BCE绕点B逆时针旋转90°,∵△BCE绕点B顺时针旋转90°,∴∠FBE=90°,∵BE=BF=2,∴△FBE是等腰直角三角形,∴∠FEB=45°,FE=2,∵AF=CE=3,AE=1,FE=2,∴AF2=32=9,AE2+FE2=12+(2)2=1+8=9,∴AF2=AE2+FE2,∴△AFE是直角三角形,∴∠AEF=90°,∴∠AEB=∠FEB+∠AEF=45°+90°=135°.故答案为:135.15.(2022春•冠县期末)如图,菱形ABCD的边长为4,∠DAB=60°,对角线AC,BD相交于点O,点E,F同时从O点出发在线段AC上以0.5cm/s的速度反向运动(点E,F分别到达A,C两点时停止运动),设运动时间为ts.连接DE,DF,BE,BF,当t= 4 s时,四边形DEBF为正方形.【分析】根据等边三角形的性质,可以得到BD的长,然后根据菱形的性质可以得到OD的长和BD⊥EF,再根据正方形的性质,可以得到OD=OE,然后即可计算出t的值.【解答】解:∵四边形ABCD是菱形,∴AD=AB,∵∠DAB=60°,∴△ABD是边长为4cm的等边三角形,∴BD=4cm,∵四边形ABCD是菱形,∴AC⊥BD,∴OD=2cm,∵四边形DEBF为正方形,∴OD=OE,∴t=2÷0.5=4,即t=4时,四边形DEBF为正方形,故答案为:4.16.(2022•攀枝花)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC=150°时,四边形ADFE是矩形;③当AB=AC时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE是正方形.其中正确结论有 ①②③④ (填上所有正确结论的序号).【分析】①利用SAS证明△EFB≌△ACB,得出EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;根据两边分别相等的四边形是平行四边形得出四边形ADFE是平行四边形,即可判断结论①正确;②当∠BAC=150°时,求出∠EAD=90°,根据有一个角是90°的平行四边形是矩形即可判断结论②正确;③先证明AE=AD,根据一组邻边相等的平行四边形是菱形即可判断结论③正确;④根据正方形的判定:既是菱形,又是矩形的四边形是正方形即可判断结论④正确.【解答】解:①∵△ABE、△CBF是等边三角形,∴BE=AB,BF=CB,∠EBA=∠FBC=60°;∴∠EBF=∠ABC=60°﹣∠ABF;∴△EFB≌△ACB(SAS);∴EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;由AE=DF,AD=EF即可得出四边形ADFE是平行四边形,故结论①正确;②当∠BAC=150°时,∠EAD=360°﹣∠BAE﹣∠BAC﹣∠CAD=360°﹣60°﹣150°﹣60°=90°,由①知四边形AEFD是平行四边形,∴平行四边形ADFE是矩形,故结论②正确;③由①知AB=AE,AC=AD,四边形AEFD是平行四边形,∴当AB=AC时,AE=AD,∴平行四边形AEFD是菱形,故结论③正确;④综合②③的结论知:当AB=AC,且∠BAC=150°时,四边形AEFD既是菱形,又是矩形,∴四边形AEFD是正方形,故结论④正确.故答案为:①②③④.17.(2022春•鄂州期中)如图,分别以△ABC的边AB,AC为边往外作正方形ABDE和正方形ACFG,连接BG,CE,EG,若AB=3,AC=1,则BC2+EG2的值为 20 .【分析】连接BE,CG,先证明△BAG≌△EAC,得∠ABG=∠AEC,可得BG⊥CE,最后由勾股定理可得结论.【解答】解:如图,连接BE,CG,∵正方形ABDE和正方形ACFG,∴AB=AE,AG=AC,∠BAE=∠CAG=90°,∴∠BAG=∠CAE,∴△BAG≌△EAC(SAS),∴∠ABG=∠AEC,∵∠AHB=∠OHE,∴∠EOH=∠BAH=90°,∴∠EOG=∠BOC=90°,∴BC2+EG2=OB2+OC2+OE2+OG2=BE2+CG2,∵AB=3,AC=1,∴BE2=32+32=18,CG2=12+12=2,∴BE2+CG2=18+2=20,∴BC2+EG2=20.故答案为:20.18.(2022春•番禺区校级期中)如图,正方形ABCD中,H为CD上一动点(不含C、D),连接AH交BD 于G,过点G作GE⊥AH交BC于E,过E作EF⊥BD于F,连接AE,EH.下列结论:①AG=EG;②GE平分∠FEC;③∠EAH=45°;④BD=2GF.正确的是 ①③④ (填序号).【分析】连接CG,由四边形ABCD是正方形,得AB=AD=CB=CD,∠BAD=∠BCD=90°,即可证明∠ABG=∠CBG=45°,进而证明△ABG≌△CBG,得AG=CG,∠BAG=∠BCG,再证明∠BCG=∠GEC,得EG=CG,所以AG=EG,可判断①正确;因为AG=EG,∠AGE=90°,∠EAH=∠AEG=45°,可判断③正确;连接AC交BD于点I,则AC⊥BC,而EF⊥BD,所以∠GFE=∠AIG=90°,得∠GEF=∠AGI=90°﹣∠EGF,即可证明△GEF≌△AGI,得GF=AI,由正方形的性质可证明BD=AC=2AI=2GF,可判断④正确;假设GE平分∠FEC,则∠FEG=∠CEG,可推导出∠DHG=∠DGH=67.5°,与已知条件“H为CD上一动点”相矛盾,可判断②错误.【解答】解:连接CG,∵四边形ABCD是正方形,∴AB=AD=CB=CD,∠BAD=∠BCD=90°,∴∠ABD=∠ADB=45°,∠CBD=∠CDB=45°,∴∠ABG=∠CBG=45°,在△ABG和△CBG中,,∴△ABG≌△CBG(SAS),∴AG=CG,∠BAG=∠BCG,∵AB∥CD,∴∠BAG=∠AHD,∴∠BCG=∠AHD,∵GE⊥AH,∴∠AGE=∠HGE=90°,∴∠GEC+∠AHC=180°,∴∠GEC=180°﹣∠AHC=∠AHD,∴∠BCG=∠GEC,∴EG=CG,∴AG=EG,故①正确;∵AG=EG,∠AGE=90°,∴∠EAH=∠AEG=45°,故③正确;连接AC交BD于点I,则AC⊥BC,∵EF⊥BD,∴∠GFE=∠AIG=90°,∴∠GEF=∠AGI=90°﹣∠EGF,在△GEF和△AGI中,,∴△GEF≌△AGI(AAS),∴GF=AI,∠FEG=∠IGA=∠DGH,∵AI=CI=AC,AC=BD,∴BD=AC=2AI,∴BD=2GF,故④正确;假设GE平分∠FEC,则∠FEG=∠CEG,∴∠DGH=∠CEG,∴∠DHG=180°﹣∠AHC=∠CEG,∴∠DHG=∠DGH==67.5°,显然与已知条件“H为CD上一动点”相矛盾,∴GE不一定平分∠FEC,故②错误,故答案为:①③④.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022秋•青岛期中)已知:如图,在四边形ABCD中,AB⊥AC,DC⊥AC,∠B=∠D,点E,F分别是BC,AD的中点.(1)求证:△ABC≌△CDA;(2)求证:四边形AECF是菱形;(3)给三角形ABC添加一个条件 AB=AC ,使得四边形AECF是正方形,并证明你的结论.【分析】(1)根据AAS可证明△ABC≌△CDA;(2)证出AB=CD,AD=BC,则可得出四边形ABCD是平行四边形,由直角三角形的性质证出AE=BC=EC,则可得出结论;(3)根据正方形的判定可得出结论.【解答】(1)证明:∵AB⊥AC,DC⊥AC,∴∠BAC=∠ACD=90°,在△ABC和△CDA中,,∴△ABC≌△CDA(AAS);(2)证明:∵△ABC≌△CDA,∴AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AD∥BC,∵点E,F分别是BC,AD的中点,∴EC=BC,AF=AD,∴EC=AF,∴四边形AECF是平行四边形.∵∠BAC=90°,点E是BC的中点,∴AE=BC=EC,∴平行四边形AECF是菱形;(3)解:添加一个条件是AB=AC.∵AB=AC,点E是BC的中点,∴AE⊥BC,即∠AEC=90°,∵平行四边形AECF是菱形,∴四边形AECF是正方形.故答案为:AB=AC.20.(2022春•东莞市校级期中)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB 边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECF是正方形?(不必说明理由)【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)当∠A=45°,四边形BECD是正方形.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;(3)解:当∠A=45°时,四边形BECD是正方形,理由:∵∠ACB=90°,∴∠ABC=45°,由(2)可知,四边形BECD是菱形,∴∠ABC=∠CBE=45°,∴∠DBE=90°,∴四边形BECD是正方形.21.(2022春•寻乌县期末)如图,△ABC中,AD是∠BAC的平分线,作DE∥AB交AC于点E,DF∥AC 交AB于点F.(1)求证:四边形AEDF是菱形;(2)当△ABC满足条件 ∠BAC=90° 时,四边形AEDF是正方形.【分析】(1)先证四边形AEDF是平行四边形,再证EA=ED,即可得出结论;(2)根据有一个角是直角的菱形是正方形可得∠BAC=90°时,四边形AEDF是正方形.【解答】(1)证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EDA=∠FAD,∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∴∠EAD=∠EDA,∴EA=ED,∴平行四边形AEDF为菱形;(2)在△ABC中,当∠BAC=90°时,四边形AEDF是正方形,∵∠BAC=90°,∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).故答案为:∠BAC=90°.22.(2022秋•江阴市期中)如图,正方形ABCD的边长为8cm,点E在AD边上,AE=6cm,动点P从点A 出发,以2cm/s的速度沿A→B→C→D运动,设运动时间为t秒.(1)BE= 10cm ;(2)当点P在BE的垂直平分线上时,求t的值;(3)当t= 20 ,PE平分∠BED,试猜想此时PB是否为∠EBC的角平分线,并说明理由.【分析】(1)利用勾股定理求解即可;(2)如图1中,设BE的垂直平分线交AB于点P,交CD于点P′,连接PE.过点P′作P′T⊥AB 于点T.由题意PB=PE=8﹣t,利用勾股定理求出t,再证明PT=AE=6cm,求出BT,可得结论;(3)结论:PB是∠EBC的角平分线.如图2中,连接PB,过点P作PK⊥BE于点K.利用全等三角形的性质证明PD=PK=PC,可得结论.【解答】解:(1)∵四边形ABCD是正方形,∴∠A=90°,∴BE===10(cm),故答案为:10cm;(2)如图1中,设BE的垂直平分线交AB于点P,交CD于点P′,连接PE.过点P′作P′T⊥AB 于点T.由题意PB=PE=8﹣t,在Rt△APE中,则有t2+62=(8﹣t)2,∴t=.∵∠C=∠CBT=∠BTP′=90°,∴四边形CBTP′是矩形,∴CP′=BT,P′T=BC=AB,∵∠A=∠P′TB=90°,∠ABE+∠TPP′=90°,∠P′PT+∠PP′T=90°,∴∠ABE=∠PP′T,∴△P′TP≌△BAE(AAS),∴PT=AE=6cm,∴BT=AB﹣AP﹣PT=8﹣﹣6=,∴运动到P′时,t=8+8+=,综上所述,满足条件的t的值为或.(3)结论:PB是∠EBC的角平分线.理由:如图2中,连接PB,过点P作PK⊥BE于点K.∵PE平分∠BED,PK⊥BE.PD⊥ED,∴∠PED=∠PEK,∠D=∠PKE=90°,∵PE=PE,∴△PED≌△PEK(AAS),∴PD=PK,ED=EK=2cm,∵BE=10cm,∴BK=8cm=BC,∵PB=PB,∠C=∠PKB=90°,∴△BPK≌△BPC(AAS),∴PK=PC,∴PD=PC,∵PK⊥BE,PC⊥BC,∴∠PBK=∠PBC,∴PB平分∠EBC,∵PD=PC,∴t=8+8+4=20.故答案为:20.23.(2022•六合区校级开学)课本上有一道习题:如图1,在正方形ABCD中,点E在AB上,点F在BC 上,AF与DE相交于点G,AF=DE,求证:∠DGF=90°.(1)请完成上题的证明过程;(2)如图2,在菱形ABCD中,点E在AB上,点F在射线BC上,AF与DE相交于点G,AF=DE,求证:∠DGF=∠B.【分析】(1)根据正方形的性质和已知条件证明Rt△DAE≌Rt△ABF,再通过证明∠ADE+∠DAF=90°证明∠DGF=90°;(2)作AH⊥BC于点H,EK⊥CD于点K,根据同一个菱形的高相等证明EK=AH,再由AF=DE证明Rt△EKD≌Rt△AHF得到∠EDC=∠F,再推出∠DGF=∠B.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴DA=AB,∠DAE=∠B=90°,∵AF=DE,∴Rt△DAE≌Rt△ABF(HL),∴∠ADE=∠BAF,∴∠ADE+∠DAF=∠BAF+∠DAF=∠DAB=90°,∴∠DGF=∠ADE+∠DAF=90°.(2)证明:如图2,作AH⊥BC于点H,EK⊥CD于点K,则∠EKD=∠AHF=90°,设AF交CD于点R,∵四边形ABCD是菱形,∴BC=DC,=EK•DC=AH•BC,∴S菱形ABCD∴EK=AH,∵AF=DE,∴Rt△EKD≌Rt△AHF(HL),∴∠EDC=∠F,∴∠DRF﹣∠EDC=∠DRF﹣∠F,∵∠DGF=∠DRF﹣∠EDC,∠DCF=∠DRF﹣∠F,∴∠DGF=∠DCF,∵CD∥AB,∴∠DCF=∠B,∴∠DGF=∠B.24.(2022春•海陵区校级期末)如图,在正方形ABCD中,F为BC为边上的定点,E、G分别是AB、CD 边上的动点,AF和EG交于点H.有2个选项:①AF⊥EG②AF=EG.(1)请从2个选项中选择一个作为条件,余下一个作为结论,得到一个真命题,并证明.你选择的条件是 ① ,结论是 ② (只要填写序号);(2)若AB=6,BF=2.①若BE=3,求AG的长;②连结AG、EF,直接写出AG+EF的最小值.【分析】(1)条件是①,结论是②.过点G作GP⊥AB交于P,证明△ABF≌△GPE(ASA)即可;(2)①在Rt△APG中,求出AP=1,PG=6,利用勾股定理得出AG=;②过点F作FQ∥EG,过点G作GQ∥EF,当A、G、Q三点共线时,AG+EF的值最小,证明△AFQ是等腰直角三角形,由勾股定理即可求AQ的值即为所求.【解答】解:(1)(答案不唯一)选择的条件是①,结论是②.理由如下:如图1,过点G作GP⊥AB交于P,∵AH⊥EG,∴∠AEH+∠DAH=90°,∵∠PEG+∠PGC=90°,∴∠EAH=∠PGE.在△ABF与△GPE中,,∴△ABF≌△GPE(ASA),∴AF=EG.故答案为:①,②(答案不唯一);(2)①∵BF=2,∴PE=2,∵AB=6,BE=3,∴AE=3,∴AP=1,在Rt△APG中,AP=1,PG=6,∴AG==;②过点F作FQ∥EG,过点G作GQ∥EF,∴四边形EFQG为平行四边形,∴GQ=EF,∴AG+EF=AG+GQ≥AQ,∴当A、G、Q三点共线时,AG+EF的值最小,∵EG=AF,EG=FQ,∴AF=FQ,∵AF⊥EG,∴AF⊥FQ,∴△AFQ是等腰直角三角形,∵AF==2,∴AQ=4,∴AG+EF的最小值为4.。
正方形
【思维入门】
1.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,
④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有
下列四种选法,其中错误的是()
A.①②B.②③
C.①③D.②④
2.如图8-26-1,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()
图8-26-1
A.45°B.55°
C.60°D.75°
3.如图8-26-2,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()
图8-26-2
A.2.5 B. 5
C.3
2 2 D.2
4.如图8-26-3,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为____.
图8-26-3
5.如图8-26-4,在正方形ABCD中,P是对角线AC上一点,连结BP,DP,延长BC 到E,使PB=PE.求证:∠PDC=∠PEC.
图8-26-4
【思维拓展】
6.如图8-26-5,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,
3),则点C的坐标为()
图8-26-5
A.(-3,1) B.(-1,3)
C.(3,1) D.(-3,-1)
7.如图8-26-6,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连结AG,CF.则下列结论:
①△ABG≌△AFG;②BG=CG;③AG∥CF;
④S
△EGC =S
△AFE
;⑤∠AGB+∠AED=145°.
其中正确的个数是()
图8-26-6
A .2
B .3
C .4
D .5
8.如图8-26-7,将n 个边长都为2的正方形按照如图所示摆放,点A 1,A 2,…,A n
分别是正方形的中心,则这n 个正方形重叠部分的面积之和是 ( )
图8-26-7
A .n
B .n -1 C.⎝ ⎛⎭
⎪⎫14n -1
D.14n
9.如图8-26-8,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E ,F 分别在BC 和CD 上.下列结论:①CE =CF ;②∠AEB =75°;③BE +DF =EF ;④S 正方
形ABCD
=2+ 3.其中正确的序号是____(把你认为正确的都填上).
图8-26-8
10.在平面内正方形ABCD 与正方形CEFH 如图8-26-9放置,连DE ,BH ,两线交于M .
求证:(1)BH =DE ;(2)BH ⊥DE .
图8-26-9
11.如图8-26-10①,在正方形ABCD 中,E ,F 分别是边AD ,DC 上的点,且AF ⊥BE .
(1)求证:AF=BE;
(2)如图8-26-10②,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,
DA上的点,且MP⊥NQ.MP与NQ是否相等?请说明理由.
图8-26-10
12.如图8-26-11①,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF 上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连结BE,DF.请在图8-26-11②中用实线补全图形,这时DF=BE还成立吗?请说明理由.
图8-26-11
13.(1)如图8-26-12①,已知△ABC,以AB,AC为边向△ABC外作等边△ABD和等边△ACE.连结BE,CD.请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹)
图8-26-12
(2)如图8-26-12②,已知△ABC,以AB,AC为边向外做正方形ABFD和正方形ACGE.
连结BE,CD.BE与CD有什么数量关系?简单说明理由;
(3)运用(1)(2)解答中积累的经验和知识,完成下题:
如图8-26-12③,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100 m,AC=AE,求BE的长.
【思维升华】
14.如图8-26-13,正方形ABCD,点P是对角线AC上一点,连结BP,过P作PQ⊥BP,PQ交CD于Q,若AP=CQ=2,则正方形ABCD的面积为()
图8-26-13
A.6+4 2 B.16
C.12+8 2 D.32
15.如图8-26-14,四边形ABHK是边长为6的正方形,点C,D在边AB上,且AC =DB=1,点P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E,F分别为MN,QR的中点,连结EF,设EF的中点为G,则当点P从点C运动到点D时,点G移动的路径长为
()
图8-26-14
A.1B.2C.3D.6
16.如图8-26-15,已知正方形ABCD的边长为4,M点为CD边上的中点,若M点
是A点关于线段EF的对称点,则AE
ED等于
()
图8-26-15
A.5
3 B.
3
5C.2 D.
1
2
17.如图8-26-16,已知正方形ABCD中,点M在边CD上,且DM=3,MC=1,把
线段AM绕点A顺时针旋转,使点M落在BC所在的直线上的点N处,则N,C两点的距离为____.
图8-26-16第17题答图
18.如图8-26-17,已知四边形ABCD为正方形,△AEP为等腰直角三角形,∠EAP=90°,且D,P,E三点共线,若EA=AP=1,PB=5,则DP=____.
图8-26-17
19.如图8-26-18,四边形ABCD是正方形,∠1=∠2=∠3.
(1)∠1=30°,DG=3,求正方形ABCD的边长;
(2)求证:AG-GF=GE.
图8-26-18。