Multi-modal medical image registration from information theory to optimization objective
- 格式:pdf
- 大小:752.23 KB
- 文档页数:8
Bureau of Dangerous Goods, Ltd. USA美国危险品运输管理Introduction to 49-CFRNovember, 2010北京,中国©2010Bureau of Dangerous Goods, Ltd.All Rights Reserved 2一架载化工品的货机从上海到洛杉矶……One HAZMAT Cargo plane from SHA to LAX, you need …A.中国法规(CAAC, MOT, AQSIQ, etc..)B.国际法规(ICAO/IATA, IMDG)C.美国法规(49 CFR etc.)BCA一架载化工品的货机从上海到洛杉矶……One HAZMAT Cargo plane from SHA to LAX, you need …中国有关法规China’s D.G. Transport Regulation 空运By Air: CCAR-276 of CAAC水运与陆运By Water and Road: Regulations of MOT分类与鉴定DG Classification/Packaging: AQSIQ国际法规Int’l Regs.in different Transport Modes 空运Air: ICAO/IATA海运Vessel: IMDG美国危险品法规US HAZMAT Transport Regs.多种运输模式49 CFR, Security Measures©2010Bureau of Dangerous Goods, Ltd.All Rights Reserved3美国政府危险品管理美国政府危险品运输的管理T.I.中的美国国家差异(USG)简介危险品运输法规49-CFR近期锂电池运输的政策讨论©2010Bureau of Dangerous Goods, Ltd.All Rights Reserved4美国的危险品运输HAZMAT Shipments in the US每天超过1 million shipments每年超过3.1 billion tons(包括各种运输模式)每年超过34 million containers(进口到美国)每年超过28% of all freight tonnage(货物总吨位)©2010Bureau of Dangerous Goods, Ltd.All Rights Reserved5©2010Bureau of Dangerous Goods, Ltd.All Rights Reserved6Office of Hazardous Materials Safety©2010Bureau of Dangerous Goods, Ltd.All Rights Reserved7 US HAZMAT LAW & REGULATIONS The Federal HazardousMaterials TransportationLaw, 49 U.S.C. §5101et seq.©2010Bureau of Dangerous Goods, Ltd.All Rights Reserved8美国法典Code of Federal Regulations (CFRs)法典共50部,CFR (Title 49(DOT), 40(EPA) …) CFR 49 负责交通运输,涵盖多种运输模式(Multi Modal)每年10月1日出版,每日联邦登记(Federal Register) 可更新;主要内容由美国运输部(DOT)编写;其他部门也有参与撰写(e.g. TSA)。
基于混合蛙跳算法的SPECT-B超甲状腺图像配准郑伟;孟繁婧;田华;郝冬梅;吴颂红【摘要】为了降低甲状腺肿瘤的误诊率和漏诊率,提出将甲状腺肿瘤的SPECT图像和B超图像进行多模异机融合,提供涵盖功能信息和结构信息的融合后图像,为手术规划和放射治疗提供依据.配准是融合的前提,针对2种成像模式的不同特点,采用阈值方法和图割方法提取轮廓并填充为二值图像,建立仿射变换模型对待配准图像进行变换,将混合蛙跳算法引入基于特征的配准过程中,将局部区域的二值图像的互信息量作为适应度函数以获取水平平移量、垂直平移量和旋转角度的全局最优解.实验表明,该算法具有参数少、配准精度高、鲁棒性强等特点,为2种模式图像的融合奠定了基础.【期刊名称】《河北大学学报(自然科学版)》【年(卷),期】2013(033)003【总页数】7页(P305-311)【关键词】甲状腺肿瘤;SPECT图像;B超图像;特征配准;混合蛙跳算法【作者】郑伟;孟繁婧;田华;郝冬梅;吴颂红【作者单位】河北大学电子信息工程学院,河北保定071002;河北大学电子信息工程学院,河北保定071002;河北大学电子信息工程学院,河北保定071002;河北大学附属医院功能检查科,河北保定071002;河北大学附属医院功能检查科,河北保定071002【正文语种】中文【中图分类】TN911世界权威组织统计显示,甲状腺癌在2010年已跃居女性恶性肿瘤的第6位.目前,针对甲状腺肿瘤的影像检查分为功能成像(SPECT,PET等)和解剖结构成像(B 超,CT,MRI等)2类,单一检测方式的诊断准确率较低.图像融合技术能够将来自不同模式的图像中的信息结合起来,为外科手术的规划和放射治疗计划的设计提供依据.美国通用电气公司生产的SPECT/CT融合设备,将SPECT的功能图像CT 图像的准确定位相结合,确定肿瘤的位置和大小.但CT放射性会削弱人体抗菌能力,而且对于小于2cm的甲状腺肿瘤,B超检查检出率可高达67%,检出率明显高于CT,而且B超无放射性损伤.根据临床实际需求,提出了将甲状腺B超图像和SPECT图像进行融合处理,克服单模医学图像信息单一、表征局限的缺点,提供涵盖功能信息和结构信息的图像,提高对甲状腺肿瘤良、恶性判断的准确率.图像配准是融合的基础,医学图像配准就是指将来自不同模式的医学图像,通过空间变换使一幅医学图像与另一幅医学图像上的对应点或对应轮廓达到空间上的一致,或至少是所有具有诊断意义的点及手术感兴趣的点都达到匹配.因研究对象,研究目的不同,配准的方法也多种多样,常用的图像配准方法有基于灰度的方法、变换域法和基于特征的方法.现有的SPECT/CT融合设备为同机配准,采用的是衰减校正质量控制配准方法[1].文献[2]提出基于人工免疫系统模型算法的点对点的配准算法,证明其性能的优越性和高精度性;文献[3]对人脑的CT和MR采用一种新的非均匀采样的方法提高了互信息的精确度;文献[4]则对人脑的MR和CT图像提出了一种改进式同步扰动随机算法对配准的过程进行了优化;文献[5]采用大变形微分同胚尺度映射算法进行配准,高斯-牛顿策略则实现了更快的收敛速度;文献[6]提出了基于稳健点集的随机全局优化配准;文献[7]提出了一种改进的人工鱼群算法和powell算法结合完成了在低分辨率下的图像配准;文献[8]首先把点集匹配问题转化为解空间为仿射参数空间下的目标函数优化问题,然后运用粒子群算法对相应的变换参数进行搜索,获得问题最优解;文献[9]提出基于边缘保护多尺度空间配准以及自动获取非线性扩散模型中平滑参数入的方法来提高配准的精度和速度,避免局部极值.B超图像和SPECT图像成像原理不同,同一器官表现出来的图像特征差异较大,基于灰度的方法和变换域法不适用,而基于特征的方法适合用于有明显特征的图像,B超图像和SPECT图像轮廓特征明显,适合用该方法.从原始的B超图像(如图1a所示)中可以看到甲状腺的两叶、肿瘤、颊部、气管,其周围的神经、血管和甲状软骨等.SPECT对于一些凉结节和冷结节不显像,亦无法显示气管或病灶的解剖细节,图像中只能观察到甲状腺区和其上方的放射线减淡区,即为凉结节(如图1b所示).医学图像配准中所需的特征点通常为具有一定意义的点,而非纯粹几何意义上的点,河北大学附属医院专家在采集图像过程中,通过对肿瘤的触摸,标记出凉结节的位置(如图1c所示).对比2种模式的图像,2幅图像都能显示的解剖部位为甲状腺和肿瘤,是具有临床诊断意义的区域,可采用基于特征的配准方法,将甲状腺的蝴蝶形轮廓特征和肿瘤的圆形轮廓特征结合起来作为配准的依据.采用基于特征的B超图像和SPECT图像的配准主要包括特征轮廓的提取,相似度测度,仿射变换模型的确定以及参数的优化.B超图像灰度对比度低、亮度分布不均匀,本文采用基于活动轮廓模型的图割算法[10]得到了所需区域的分割图(如图2a所示).SPECT图像可显示的甲状腺和肿瘤的边界较为模糊,没有一个可以视觉可观的边界,于是以肿瘤上标记点为界限(如图2b所示),分割出实验所需的甲状腺和肿瘤的整体轮廓(如图2c所示).由图2a可知,B超分割的轮廓线不圆滑,图2c所示的SPECT分割轮廓线较圆滑,且轮廓线不能达到完全对齐,于是不能采用基于轮廓线的配准,而由于两图像轮廓的区域内像素差异大,亦会造成误配准,于是我们将分割出的轮廓填充,以甲状腺和肿瘤的轮廓区域的二值图像分别作为参考图像和待配准图像.填充后的结果如图2d和图2e所示.相似性测度是用来度量图像间相似性的一种准则,本文以甲状腺和肿瘤轮廓区域二值图像的平均互信息作为配准测度.若A代表参考图像,B代表待配准图像,它们之间的平均互信息I(A;B)为其中,H(A)和H(B)分别是图像A和图像B的熵,H(AB)是它们的联合熵,都可由A和B的联合直方图hAB求出,见式(2)式中,A(i,j)和B(i,j)分别表示2幅图像相同位置的坐标点,n[A(i,j),B(i,j)]表示同一灰度级出现的次数.对上式两边除以全部灰度值出现的次数和n,即可得到归一化的联合直方图函数p(A,B)为则B超图像和SPECT图像轮廓区域二值图像的互信息为待配准B超图像是三维甲状腺图像的断层图像,由于甲状腺内部无相对运动,可以把甲状腺近似的看做刚体运动,以SPECT图像中医生标出的肿瘤大小为基准同比例缩放,并把图像均裁至208*208,使待配准的图像经过预处理后具有相同的空间比例.设待配准图像未旋转时中心坐标为(a,b),旋转后的中心坐标为(c,d),若对图像进行水平平移Δx个像素,垂直平移Δy个像素,并以图像中心为基点旋转θ弧度,旋转后新图像左上角为原点,则SPECT图像和B超图像的仿射变换模型为B超图像和SPECT图像的配准问题就是寻求参数Δx,Δy,θ的解,代入仿射变换模型T,使互信息MI(T)最大,即可得2种模式图像的配准结果.多参数优化问题成为决定配准精度的核心因素,优化策略的选取尤为重要.混合蛙跳算法(shufled frog leaping algorithm,SFLA)是2003年由Eusuf和Lansey提出的一种基于群体智能的后启发式计算技术[11].它结合了基于模因进化的模因演算法(MA,memeticalgorithm)和基于群体行为的粒子群算法(PSO,particle swarm optimization)2种群智能优化算法的优点,模拟青蛙群体寻找食物时,按族群分类进行思想传递的过程,关键是全局搜索策略和局部深度搜索策略的完美结合使得最后的解能够跳出局部极值点,向着全局最优的方向进行搜索,具有概念简单、调整的参数少、计算速度快、全局搜索寻优能力强,易于实现等特点.首先,随机生成U只青蛙组成初始群体,nDim表示变量的个数即解空间的维数,因需要寻优的参数为Δx,Δy,θ,所以nDim=3.第i只青蛙可以表示成U(i)=(U1i,U2i,U3i).然后,把U1i,U2i,U31代入放射变换模型对待配准图像进行变换,再计算参考图像和变换后待配准图像的最大互信息,即为每只青蛙的适应度,用fUi表示,并将种群内青蛙个体按适应度降序排列,并记录全局最佳解Ug,即为U1.将整个青蛙群体分成m个族群,根据式(6)的分组方式每个族群包含n只青蛙,并满足关系U=m×n.对每个子族群进行局部深度搜索,即对k循环进行更新操作,根据混合蛙跳规则[12](如图3所示)青蛙的位置进行更新,Ds表示移动的距离,U′w表示更新后的青蛙,更新策略为其中,rand()表示0和1之间的随机数,同时更新的距离Ds必须在可行域内.其中,Ub表示子群中的最佳解,Uw代表子群中的最差解.更新后,如果得到的解U′w优于原来的解Uw,则令U′w=Uw.如果没有改进,则用全局最优解Ug取代原来的解Uw重复执行更新策略.如果仍然没有改进,则随机产生一个新的解Urandom取代原来的解Uw.当所有子群内部更新完成后,对子群的青蛙重新混合并排序进行分组和对子群的内部搜索,如此反复直到收敛到最优解或达到最大进化代数为止.在选定了混合蛙跳的优化方法后,有5个参数需要调整和确定[13]:子种群的个数、每个子群蛙的个数、每个子种群中的进化迭代次数、允许每只青蛙移动的最大距离、允许整个种群进化的代数次数.根据多次实验确定的参数可知,子群的个数和每个子群蛙的个数要选择合适的大小,子群蛙的个数太小就会丧失局部搜索的优点,还要保证初始种群的容量,容量越大,则能够找到全局最优的概率越大,经实验测试,选用4*5青蛙群体.子群的进化迭代次数太小不益于子种群信息交流,太大则容易陷入局部最优,经实验测得迭代次数5至8最恰当.允许青蛙改变的距离Dmax控制的是算法进行全局搜索的能力,所以Dmax太小,则会降低全局搜索的能力,使算法容易陷入局部最优值,如果Dmax过大,则容易使算法错过最优解,经实验测试,20至34最适合.一般来说,当循环进化到一定次数后,代表最好解的青蛙的适应值就不再改变了,算法即可以此为条件停止了.图4横坐标代表进化迭代的次数,纵坐标代表全局最好青蛙的适应值,可以看出,在45代的时候适应值就不再改变了,并基本保持稳定,设定迭代次数为45即可.实验环境为Matlab7.1,Dell,CPU2.53GB,内存2GB.采用的所有数据来源于河北大学附属医院,SPECT图像采自GE Infina Hawkeye 4SPECT-CT单光子发射断层仪,B超图像采自Voluson E8三维彩色超声诊断仪,这2幅图像均按每4mm一断层,同一时期取至同一病人甲状腺的同一层面.为了验证本方法的有效性,先以2幅SPECT图像为例,一幅为参考图像,另一幅图像是人为改变水平平移量为10个像素,垂直平移量为20个像素,旋转角度为10个角度的待配准图像.利用本方法配准前后的数据如表1所示.由表1数据可以看到,基于轮廓特征点最大互信息的图像配准方法误差可以保证在3个像素内,可以达到很好的配准效果,配准精度较高,且有较好的稳定性. 在调至相同迭代次数的条件下,再与其他算法的配准效果加以比较,结果如图5所示.第1行分别表示配准前,粒子群算法(PSO),蚁群算法(Ant Colony),本文算法配准后的轮廓叠加图,第2行为对应的最后融合结果.比较3幅结果图,可以明显看出,粒子群算法和蚁群算法并未达到甲状腺和肿瘤位置的对齐,而本文算法具有较好的配准效果,混合蛙跳算法可以基本达到甲状腺和肿瘤的对齐,能够满足临床基本诊断需要.对这3种算法的配准时间和配准精度进行了比较,结果如表2所示.由表2数据也可证明虽然粒子群算法时间较快,但配准精度不高,且实验结果具有随机性;蚁群算法配准精度比粒子群算法精度高,但优化时间长.本文算法比蚁群算法有更高的配准精度,比粒子群算法有更快的配准速度.提出了一种基于混合蛙跳算法的甲状腺SPECT-B超图像配准方法,通过多次实验证明,该方法对甲状腺的SPECT图像和B超图像配准有较好的效果,不仅能够有效地防止配准结果陷入局部最优当中,还有很强的鲁棒性,能够为甲状腺的SPECT图像和B超图像的融合提供满足要求的配准图像,对甲状腺肿瘤的临床诊断具有较高的参考价值.【相关文献】[1] SUH J W,KWON O K,SCHEINOST D,et al.CT-PET weighted image fusion for separately scanned whole body rat[J].Med Phys,2012,39(1):533-542.[2] DELIBASIS K K,ASVESTAS P A,MATSOPOULOS G K.Automatic point correspondence using an artificial immune system optimization technique for medical image registration[J].Computerized Medical Imaging and Graphics,2011,35(1):31-41.[3] FREIMAN M,WERMAN M,JOSKOWICZ L A.curvelet-based patient-specific prior for accurate multi-modal brain image rigid registration[J].Medical Image Analysis,2011,15(1):125-132.[4] KHADER M,HAMZA A B.An information-theoretic method for multimodality medical image registration[J].Expert Systems with Applications,2012,39(5):5548-5556.[5] ASHBURNER J,FRISTON K J.Diffeomorphic registration using geodesic shooting and Gauss-Newton optimization[J].NeuroImage,2011,55(3):954-967.[6] PAPAZOV C,BURSCHKA D.Stochastic global optimization for robust point set registration[J].Computer Vision and Image Understanding,2011,115(12):1598-1609.[7]赵海峰,姚丽莎,罗斌,等.改进的人工鱼群算法和Powell法结合的医学图像配准[J].西安交通大学报,2011,45(4):46-52.ZHAO Haifeng,YAO Lisha,LUO Bin,et al.Registration of multi-resolution medical images using a modified artificial fish-swarm algorithm combined with Powell's Method [J].Journal of Xi'an Jiaotong University,2011,45(4):46-52.[8]谭志国,鲁敏,任戈,等.匹配与姿态估计的粒子群优化算法[J].中国图象图形学报,2011,16(4):640-646.TAN Zhiguo,LU Min,REN Ge,et al.Particle swarm optimization based pose and correspondence estimation[J].Journal of Image and Graphics,2011,16(4):640-646.[9]李登旺,王洪君,尹勇,等.基于边缘保护多尺度空间的医学图像配准方法[J].模式识别与人工智能,2011,24(1):117-122.LI Dengwang,WANG Hongjun,YIN Yong,et al.Multiscale registration based on edge-preserved scale space for medical Images[J].Pattern Recognition and Artificial Intelligence,2011,24(1):117-122.[10] XU Ning,AHUJA N,BANSAL R.Object segmentation using graph cuts based active contours[J].Computer Vision and Image Understanding,2007,107(3):210-224.[11] EUSUFF M M,LANSEY K E.Optimization of water distribution network design using the shuffled frog leaping algo rithm[J].Journal of Water Resources Planning and Management,2003,129(3):210-225.[12]崔文华,刘晓冰,王伟,等.混合蛙跳算法研究综述[J].控制与决策,2012,27(4):481-486,493.CUI Wenhua,LIU Xiaobing WANG Wei,et al.Survey on shuffled frog leaping algorithm [J].Control and Decision,2012,27(4):481-486,493.[13] ELBELTAGI E,HEGAZY T,GRIERSON parison among five evolutionary-based optimization algorithm[J].Advanced Engineering Informaties,2001,19(1):43-53.。
多模态医学图像融合处理技术研究随着医疗技术的不断发展,多模态医学图像技术在临床应用中越来越广泛。
医学图像包括CT扫描、MRI、X光等多种不同的成像技术,经过融合处理,可以获得更全面、更准确的医学信息。
本文将讨论多模态医学图像融合处理技术的研究现状,以及其在临床应用中的重要性和应用前景。
一、多模态医学图像融合技术的研究现状1.图像融合的定义多模态医学图像融合是指将来自不同成像技术的多个医学图像融合在一起,以获得更全面、更准确的信息。
如何有效地实现不同成像技术的融合,是多模态医学图像融合技术研究的核心问题之一。
2.图像融合的分类和方法图像融合可以分为低级、中级和高级三个层次:(1)低级融合:对于同一种成像技术的图像进行融合。
常用的方法包括平均值法、最大值法、最小值法等。
(2)中级融合:对于不同成像技术、但有部分信息相同的图像进行融合。
常用的方法包括小波变换、主成分分析等。
(3)高级融合:对于不同成像技术、没有重叠部分的图像进行融合。
常用的方法包括变换域相关法、贪婪算法等。
3.图像融合的应用多模态医学图像融合技术在很多医学领域都有广泛的应用,如肿瘤诊断、病理分析、手术导航等。
图像融合可以提高诊断的准确性和精度,帮助医生更快、更准确地作出诊断,提高治疗效果。
二、多模态医学图像融合技术在临床应用中的重要性1.提高诊断准确性通过多模态医学图像融合技术,可以获得更全面、更准确的医学信息,帮助医生更好地判断疾病的发展,从而提高诊断的准确性和精度。
例如,在肿瘤诊断中,MRI和CT扫描可以提供完整的肿瘤图像,而PET扫描则提供了肿瘤活动的信息,将它们进行融合可以更好地判断肿瘤的位置和性质。
2.指导手术和治疗多模态医学图像融合技术可以在手术前确定手术的方案和路径,指导整个手术过程。
在治疗中,图像融合技术可以提供更准确的治疗方案,人工智能辅助判断疾病状态,为治疗提供更精细的信息。
3.促进医学科学研究多模态医学图像融合技术可以帮助医学科学家更好地分析、研究疾病的发展和变化过程。
医学图像配准技术A Survey of Medical Image Registration张剑戈综述,潘家普审校(上海第二医科大学生物医学工程教研室,上海 200025)利用CT、MRI、SPECT及PET等成像设备能获取人体内部形态和功能的图像信息,为临床诊断和治疗提供了可靠的依据。
不同成像模式具有高度的特异性,例如CT通过从多角度的方向上检测X线经过人体后的衰减量,用数学的方法重建出身体的断层图像,清楚地显示出体内脏器、骨骼的解剖结构,但不能显示功能信息。
PET是一种无创性的探测生理性放射核素在机体内分布的断层显象技术,是对活机体的生物化学显象,反映了机体的功能信息,但是图像模糊,不能清楚地反映形态结构。
将不同模式的图像,通过空间变换映射到同一坐标系中,使相应器官的影像在空间中的位置一致,可以同时反映形态和功能信息。
而求解空间变换参数的过程就是图像配准,也是一个多参数优化过程。
图像配准在病灶定位、PACS系统、放射治疗计划、指导神经手术以及检查治疗效果上有着重要的应用价值。
图像配准算法可以从不同的角度对图像配准算法进行分类[1]:同/异模式图像配准,2D/3D图像配准,刚体/非刚体配准。
本文根据算法的出发点,将配准算法分为基于图像特征(feature-based)和基于像素密度(intensity-based)两类。
基于特征的配准算法这类算法利用从待配准图像中提取的特征,计算出空间变换参数。
根据特征由人体自身结构中提取或是由外部引入,分为内部特征(internal feature)和外部特征(external feature)。
【作者简介】张剑戈(1972-),男,山东济南人,讲师,硕士1. 外部特征在物体表面人为地放置一些可以显像的标记物(外标记,external marker)作为基准,根据同一标记在不同图像空间中的坐标,通过矩阵运算求解出空间变换参数。
外标记分为植入性和非植入性[2]:立体框架定位、在颅骨上固定螺栓和在表皮加上可显像的标记。
引言随着放疗技术的快速发展,调强放疗(Intensity Modulated Radiation Therapy,IMRT)在肿瘤治疗中的应用日益广泛。
IMRT不仅可以提高靶区剂量与均匀性,还可以降低周围正常组织受照剂量[1],减轻放疗不良反应,提高患者生存质量[2-3]。
有研究显示,食管癌在放疗过程中,靶区存在不同程度的缩小和移位[4]。
因此,为了避免靶区漏照,保护危及器官(Organs at Risk,OARs),通常需在食管癌患者放疗的中后期再次进行CT模拟定位并制定自适应放食管癌自适应放疗不同累加方法对危及器官受照剂量的差异比较许晓燕1,王沛沛1,李金凯1,昌志刚1,顾宵寰1,鞠孟阳2,葛小林1,孙新臣11. 江苏省人民医院(南京医科大学第一附属医院)放射治疗科,江苏南京 210000;2. 南京医科大学特种医学系,江苏南京 211100[摘 要] 目的 比较食管癌自适应放疗时,三种累加方法所得危及器官(Organs at Risk,OARs)受照剂量的差异。
方法 回顾性分析50例根治性食管癌自适应放疗计划,PTV:50 Gy/25 f,PGTV:60 Gy/30 f。
在治疗20~25 f期间重新CT模拟定位,根据肿瘤靶区退缩情况制定自适应放疗计划。
通过人工计算(A组)、治疗计划系统(B组)和MIM多模态形变配准系统(C组)三种方法分别计算双肺、心脏及脊髓的累加受照剂量。
结果 方差分析显示双肺V5差异有统计学意义(F=8.933,P<0.001),A组最小为(51.95±12.67)%;V20差异无统计学意义(P>0.05)。
心脏V40差异有统计学意义(F=3.590,P<0.05),A组最大为(17.69±12.48)%。
脊髓D max差异有统计学意义(F=5.587,P<0.001),A组最大为(43.98±2.23 )Gy。
结论 食管癌自适应放疗时,人工计算方法会低估双肺的低剂量受照体积,并会高估脊髓的最大受照剂量。
多模态医学图像融合与诊断模型构建研究随着医疗技术的不断发展和进步,多模态医学图像融合与诊断模型构建研究成为了医学图像分析领域的热门话题。
多模态医学图像融合是指将不同的医学图像数据融合成一个综合的图像来提供更全面、准确的医学信息和更好的辅助诊断。
本文将从多模态医学图像融合的意义、方法和应用角度进行阐述,以及构建诊断模型的相关研究。
多模态医学图像融合的意义在于提高医学图像的质量、准确性和可视化效果,进而提升医生的诊断能力和效率。
传统的医学图像只能提供局部信息,缺乏全面性。
而融合不同模态的图像,如MRI、CT、PET等,可以综合不同的视角和信息,提供更全面的医学数据,从而更准确地诊断疾病。
此外,图像融合还能够减少图像噪音和伪影,改善医学图像的质量,有助于医生更好地观察和分析病变。
多模态医学图像融合的方法主要分为空域方法和变换域方法。
空域方法是基于像素级的操作,通过图像融合区域的像素值相加、平均等操作来融合不同的医学图像。
这种方法简单直观,易于实现。
但是由于未考虑像素之间的关系,可能会导致信息损失和伪影的产生。
变换域方法则是通过将不同模态的图像进行变换,如小波或奇异值分解等,然后在变换域中融合不同模态的图像。
这种方法能更好地保留不同模态图像的特性和细节信息,但计算复杂度较高。
除了方法之外,多模态医学图像融合的应用也十分广泛。
其中最常见的应用是辅助诊断和手术规划。
通过将不同模态图像的信息融合,可以提供更全面、准确的医学信息,辅助医生诊断和进行手术规划。
另外,多模态医学图像融合还可用于研究疾病的发展和变化趋势,比如肿瘤的生长和扩散。
融合不同时间点的图像数据可以更好地观察病变的变化,从而更好地评估疾病的进展情况。
诊断模型的构建是多模态医学图像融合的重要研究方向之一。
借助深度学习和人工智能技术,可以构建出高度自动化、准确性较高的诊断模型。
诊断模型是指将融合的多模态医学图像作为输入数据,利用机器学习算法来自动分析和诊断疾病。
多模态融合多模态融合 1多模态机器学习MultiModal Machine Learning (MMML),旨在通过机器学习理解并处理多种模态信息。
包括多模态表示学习Multimodal Representation,模态转化Translation,对齐Alignment,多模态融合Multimodal Fusion,协同学习Co-learning等。
多模态融合Multimodal Fusion也称多源信息融合(Multi-source Information Fusion),多传感器融合(Multi-sensor Fusion)。
多模态融合是指综合来自两个或多个模态的信息以进行预测的过程。
在预测的过程中,单个模态通常不能包含产生精确预测结果所需的全部有效信息,多模态融合过程结合了来自两个或多个模态的信息,实现信息补充,拓宽输入数据所包含信息的覆盖范围,提升预测结果的精度,提高预测模型的鲁棒性。
一、融合方法1.1早期融合为缓解各模态中原始数据间的不一致性问题,可以先从每种模态中分别提取特征的表示,然后在特征级别进行融合,即特征融合。
由于深度学习中会涉及从原始数据中学习特征的具体表示,从而导致有时需在未抽取特征之前就进行数据融合,因此数据层面和特征层面的融合均称为早期融合。
特征融合实现过程中,首先提取各输入模态的特征,然后将提取的特征合并到融合特征中,融合特征作为输入数据输入到一个模型中,输出预测结果。
早期融合中,各模态特征经转换和缩放处理后产生的融合特征通常具有较高的维度,可以使用主成分分析( PCA) 和线性判别分析( LDA) 对融合特征进行降维处理。
早期融合中模态表示的融合有多种方式,常用的方式有对各模态表示进行相同位置元素的相乘或相加、构建编码器—解码器结构和用LSTM 神经网络进行信息整合等。
1.2后期融合后期融合法又称决策级融合法,先用不同的模型训练不同的模式,然后融合多个模型的输出结果。
多模态医学图像融合技术的研究与应用随着医疗技术的不断进步,多模态医学图像融合技术越来越受到医学界的重视。
这项技术能够将来自不同医学成像设备的图像进行综合,从而创造出更为细致全面的图像,为医生提供更为准确的诊断与治疗辅助工具。
下面将就多模态医学图像融合技术的研究与应用进行探索。
一、多模态医学图像融合技术的理论基础多模态医学图像融合技术的理论基础主要由三个方面构成:1. 信号处理多模态医学图像融合技术中的图像序列需要通过信号处理的方法来合并,以形成一张全面的图像。
这项技术需要对不同图像序列进行预处理,包括噪声滤波、分割、配准与校准。
2. 特征提取特征提取是多模态医学图像融合技术中的一个重要步骤,其目的是将不同成像设备中重叠的特征提取出来,从而实现图像融合。
该过程需要结合深度学习与图像分析方法,对特征的定位、提取与分类进行处理。
3. 融合策略多模态医学图像融合技术的终极目标是将来自多种成像设备的图像融合在一起,从而提供更为细致的诊断图像。
为实现这一目标,需要对不同图像序列进行分析,并将其转化为能够融合的数据类型。
这项技术需要结合容错措施与不确定性分析方法,以确保融合图像的准确度和鲁棒性。
二、多模态医学图像融合技术的实现为了实现多模态医学图像融合技术,需要先进行多模态图像的获取、预处理和配准。
同时,还需要使用特征提取算法来提取不同成像设备之间的重叠特征。
最后,将特征进行融合处理,生成一张全面的医学图像。
要成功实现多模态医学图像融合技术,需要结合多种不同方法。
其中,深度学习技术以其能够自动提取特征的优势,在此方面得到了广泛的应用。
此外,几何变换方法也能够对不同成像设备中的图像进行校准与配准,从而提高图像融合的精度。
三、多模态医学图像融合技术的应用多模态医学图像融合技术不仅仅能够提供更为精准的诊断图像,还能够为临床医生提供更为全面的信息,帮助他们做出更为准确的诊断与治疗决策。
下面将为大家介绍该技术在前沿医学领域的应用。
人脸识别技术在多模态生物特征识别中的应用引言当前,随着科技的不断发展,多模态生物特征识别成为当前生物识别领域的热点之一。
这一领域的发展涉及到多种技术,其中人脸识别技术作为最常用和最具代表性的一种技术,在多模态生物特征识别中扮演着重要的角色。
本文将就人脸识别技术在多模态生物特征识别中的应用进行探讨。
一、人脸识别技术的基本原理人脸识别技术是一种通过计算机对人脸图像进行分析和处理的技术。
其基本原理包括人脸检测、人脸特征提取和人脸匹配三个步骤。
首先是人脸检测,其目的是从图像中自动检测出人脸的位置。
常用的人脸检测算法有基于特征的方法和基于学习的方法,它们通过提取图像中的特征信息、进行分类和判别,以实现对人脸的检测。
接下来是人脸特征提取,即从检测到的人脸图像中提取关键的人脸特征信息。
常见的人脸特征提取算法有主成分分析法(PCA)、线性判别分析法(LDA)和局部二值模式(LBP)等。
这些算法通过对图像进行特征分析和提取,得到一组用于表示人脸的高维特征向量。
最后是人脸匹配,即将提取得到的特征向量与已有的人脸特征数据库进行比对和匹配,以判断待识别人脸的身份。
匹配算法的选择主要考虑算法的准确度、计算效率和实时性等方面。
二、多模态生物特征识别多模态生物特征识别是指利用多种特征信息进行人员身份识别的技术。
除了人脸识别技术,还包括指纹识别、虹膜识别、声纹识别等多种技术。
利用多种特征信息进行身份识别可以提高识别的准确性和可靠性。
多模态生物特征识别的关键在于如何融合多种特征信息。
目前常用的融合方法有特征级融合、决策级融合和分级融合等。
特征级融合是指将不同特征的向量直接连接起来,形成一个更长的向量,用于表示个体的特征信息。
决策级融合是指将不同模态的识别结果进行加权融合,得到最终的识别结果。
分级融合是指将不同模态的识别结果按层次进行处理和融合。
三、人脸识别技术由于其成本低、易于操作和不需要接触式的特点,被广泛应用于多模态生物特征识别中。
医疗影像处理中的像配准算法在医疗影像领域,像配准(Image Registration)是一项重要的任务。
它是指将多个不同的医疗影像进行准确的对齐,使得医生可以更好地对患者进行诊断和治疗。
本文将介绍医疗影像处理中常用的像配准算法及其原理。
一、刚性配准算法刚性配准算法是最简单且常用的像配准方法之一。
它适用于只存在旋转和平移变换的情况。
该算法通过对齐两幅图像中的关键点来实现配准。
在图像中选择一些具有代表性的特征点,然后通过计算这些特征点之间的距离和角度差异来估计旋转和平移变换参数。
最后,将待配准图像根据计算得到的参数进行调整,使得两幅图像重叠并达到对齐的效果。
二、非刚性配准算法非刚性配准算法适用于存在形变的情况,可以通过对图像进行局部变形来实现对齐。
常见的非刚性配准算法包括基于特征的方法、基于图像强度的方法以及基于变形场的方法。
1. 基于特征的非刚性配准方法基于特征的非刚性配准方法使用图像中的特征点或特征区域进行配准。
这些特征可以是局部的高亮区域、角点等。
算法首先提取图像的特征,然后计算这些特征之间的相似性度量,最后通过最小化相似性度量来进行图像变形和对齐。
2. 基于图像强度的非刚性配准方法基于图像强度的非刚性配准方法是将图像的强度信息考虑在内的配准方法。
这种方法通过最小化两幅图像之间的强度差异来实现配准。
通常采用优化算法,例如最小二乘法或梯度下降法,在像素级别上进行图像变形和对齐。
3. 基于变形场的非刚性配准方法基于变形场的非刚性配准方法使用变形场来描述图像之间的形变关系。
变形场是一个向量场,每个像素点都对应一个向量,表示该像素点相对于原始位置的偏移量。
算法首先计算变形场,然后通过将变形场应用于待配准图像,使得两幅图像在局部区域内形变一致,最终达到全局对齐。
综上所述,医疗影像处理中的像配准算法包括刚性配准算法和非刚性配准算法。
刚性配准适用于旋转和平移变换,而非刚性配准适用于存在形变的情况。
医疗影像中的像配准任务对于医生的诊断和治疗具有重要意义,它可以提供更准确的结果,帮助医生做出正确的判断和决策。
磁共振在乳腺癌新辅助治疗疗效评估与预测中的应用进展田力文1,2,王翠艳21 山东大学齐鲁医学院,济南250012;2 山东省立医院医学影像科摘要:新辅助治疗(NAT )是乳腺癌综合治疗的重要组成部分。
目前,NAT 疗效评估的金标准是组织病理学,但其需要术后标本,存在明显滞后性。
准确评估和预测NAT 疗效对及时改进治疗方案、确定精准的手术计划具有重要价值。
已有多种影像学检查方法被用于乳腺癌NAT 疗效评估与预测,其中磁共振(MR )检查因其优越的软组织分辨力和多方位、多参数成像特点,成为准确性最高的影像学手段。
传统MR 成像可从肿瘤长径、体积和退缩模式等形态学改变来评估与预测NAT 疗效。
近年来随着MR 功能成像技术不断更新迭代,动态对比增强磁共振成像、扩散加权成像及体素内不相干运动扩散加权成像、酰胺质子转移成像、磁共振波谱成像等MR 功能成像从不同维度实现了对乳腺癌NAT 疗效的早期预测,进一步提高了MR 成像对NAT 疗效的早期预测能力。
关键词:乳腺癌;新辅助治疗;磁共振成像doi :10.3969/j.issn.1002-266X.2023.13.022中图分类号:R737.9 文献标志码:A 文章编号:1002-266X (2023)13-0087-05世界卫生组织国际癌症研究机构发布的2020年全球最新癌症负担数据显示,乳腺癌已超过肺癌成为全球新发病例最多的恶性肿瘤。
国家癌症中心公布的最新数据显示,2022年我国女性乳腺癌的发基金项目:山东省医学会乳腺疾病科研基金(YXH2020ZX068)。
通信作者:王翠艳(E -mail : wcyzhang@ )[9]SHAN S , ZHU W , ZHANG G , et al. Video -urodynamics efficacyof sacral neuromodulation for neurogenic bladder guided by three -dimensional imaging CT and C -arm fluoroscopy : a single -center prospective study [J ]. Sci Rep , 2022,12(1):16306.[10]王磊,宋奇翔,许成,等.计算机辅助设计3D 打印在骶神经调控术中的应用[J ].第二军医大学学报,2019,40(11):1203-1207.[11]ZHANG J , ZHANG P , WU L , et al. Application of an individu⁃alized and reassemblable 3D printing navigation template for accu⁃rate puncture during sacral neuromodulation [J ]. Neurourol Uro⁃dyn , 2018,37(8):2776-2781.[12]BRUNS N , KRETTEK C. 3D -printing in trauma surgery : Plan⁃ning , printing and processing [J ]. Unfallchirurg , 2019,122(4):270-277.[13]GU Y , LV T , JIANG C , et al. Neuromodulation of the pudendalnerve assisted by 3D printed : A new method of neuromodulation for lower urinary tract dysfunction [J ]. Front Neurosci , 2021,15:619672.[14]WANG Q , GUO W , LIU Y , et al. Application of a 3D -printednavigation mold in puncture drainage for brainstem hemorrhage [J ]. J Surg Res , 2020,245:99-106.[15]WOO S H , SUNG M J , PARK K S , et al. Three -dimensional -printing technology in hip and pelvic surgery : Current landscape[J ]. Hip Pelvis , 2020,32(1):1-10.[16]CAVALCANTI KUBMAUL A , GREINER A , KAMMERLAND⁃ER C , et al. Biomechanical comparison of minimally invasive treatment options for type C unstable fractures of the pelvic ring[J ]. Orthop Traumatol Surg Res , 2020,106(1):127-133.[17]廖正俭,刘宇清,何炳蔚,等.多模态影像融合结合3D 打印技术在大脑镰旁脑膜瘤切除术中的初步应用[J ].宁夏医学杂志,2020,42(6):499-501.[18]HU Y , MODAT M , GIBSON E , et al. Weakly -supervised convo⁃lutional neural networks for multimodal image registration [J ]. Med Image Anal , 2018,49:1-13.[19]CONDINO S , CARBONE M , PIAZZA R , et al. Perceptual limitsof optical see -through visors for augmented reality guidance of man⁃ual tasks [J ]. IEEE Trans Biomed Eng , 2020,67(2):411-419.[20]SUN R , ALDUNATE R G , SOSNOFF J J. The validity of amixed reality -based automated functional mobility assessment [J ]. Sensors (Basel ), 2019,19(9):2183.[21]COOLEN B , BEEK P J , GEERSE D J , et al. Avoiding 3DObstacles in mixed reality : Does it differ from negotiating real obstacles [J ] Sensors (Basel ), 2020,20(4):1095.[22]NIAZI A U , CHIN K J , JIN R , et al. Real -time ultrasound -guidedspinal anesthesia using the SonixGPS ultrasound guidance sys⁃tem : a feasibility study [J ]. Acta Anaesthesiol Scand , 2014,58(7):875-881.[23]WARNAT -HERRESTHAL S , SCHULTZE H , SHASTRY K L ,et al. Swarm learning for decentralized and confidential clinical machine learning [J ]. Nature , 2021,594(7862):265-270.[24]PRICE W N 2ND , COHEN I G. Privacy in the age of medical bigdata [J ]. Nat Med , 2019,25(1):37-43.(收稿日期:2023-02-24)开放科学(资源服务)标识码(OSID )87病率约为29.05/10万,是女性发病率最高的恶性肿瘤。
医学图像中的多模态融合技术一、前言医学领域的进步对于人类的健康状况有着非常重要的意义。
在现代医学领域中,医学图像技术发挥着极为重要的作用。
医学图像技术通过对人体内部结构和功能的检测、分析和诊断,为医生提供了通识别病情、预测病程、制定治疗方案、进行手术操作等方面提供了有力的支持。
尤其是在疑难杂症的诊断和治疗上,医学图像技术显得尤为重要。
二、多模态医学图像技术的介绍多模态医学图像技术是通过在不同的成像模式下得到的一系列医学图像,利用图像融合技术将各模态图像信息有机地结合在一起,在空间和时间范围内建立起医学图像的立体模型。
多模态医学图像技术的发展极大提高了医生的诊断水平,使得他们在诊断、治疗和手术操作方面能够更精准、更安全。
三、多模态图像融合技术的应用在临床应用中,多模态图像融合技术具有广泛的应用前景。
1、肿瘤诊断方面:利用磁共振成像和CT成像的多模态图像融合技术,可以较准确地对肿瘤进行分析和诊断。
同时多模态图像融合技术在肿瘤治疗的过程中也极其重要,通过分析多模态图像可以对肿瘤的范围、形态、生长方式以及治疗效果进行评估和预测,从而制定出更加合理有效的治疗方案。
2、脑部疾病诊断方面:利用神经科学特有的医学成像技术,例如CT、MRI、PET等,进行多模态图像融合,可以对脑部疾病的结构和功能进行全面的诊断和评估,为脑部疾病的治疗和干预做出更加科学、合理的规划。
3、骨科手术方面:结合成像技术和手术导航技术,利用多模态图像融合技术可以更加准确地进行骨科手术操作,降低手术风险,同时提升手术效果。
四、多模态医学图像技术的未来展望随着图像技术和计算机技术的不断发展,多模态医学图像技术在未来的应用前景将会更加广泛和深入。
例如,结合人工智能技术进行分析,可以更加准确地对病情进行分类和预测,同时也可以用于手术操作中的辅助和指导、辅助诊断等方面。
此外,利用虚拟现实技术和增强现实技术,可以将多模态医学图像应用于医学教育、医学培训和病人沟通等方面,从而更好地促进医疗保健业的发展。
多模态医学图像配准和融合方法及其临床应用进展引言:多模态医学图像配准和融合是医学影像处理中重要的研究领域,其主要目的是将来自不同模态的医学图像进行对齐和融合,以提高医学图像的质量和信息量。
这种技术的发展,可以帮助医生更准确地进行疾病诊断和治疗规划,并提高患者的治疗效果。
本文将介绍一些常见的多模态医学图像配准和融合方法,并探讨其在临床应用中的进展。
一、多模态医学图像配准方法1.基于特征点的配准方法该方法通过提取医学图像中的特征点,并建立特征点之间的对应关系,实现多模态图像的配准。
常用的特征点包括角点、边缘点等。
2.基于图像亮度信息的配准方法该方法通过比较不同模态图像之间的亮度信息,并通过优化配准过程中的亮度变换参数,实现多模态图像的准确配准。
3.基于形状信息的配准方法该方法通过提取医学图像中的形状信息,并通过优化配准过程中的形状变换参数,实现多模态图像的准确配准。
二、多模态医学图像融合方法1.基于加权平均的融合方法该方法通过为不同模态图像分配适当的权重,将其加权平均得到一幅融合图像。
权重的分配可以根据不同模态图像的质量、重要性等因素进行优化。
2.基于变换的融合方法该方法通过对不同模态图像进行变换操作,将其变换到同一个坐标系上,并进行像素级别的融合,以得到一幅更准确、更具信息量的融合图像。
临床应用进展:1.肿瘤检测和定位通过将不同模态图像进行配准和融合,可以提高肿瘤的检测和定位准确性。
例如,结合MRI和PET图像可以提供肿瘤的形状、大小和代谢信息,有助于肿瘤的早期检测和治疗。
2.导航手术配准和融合不同模态图像可以提供更准确的手术导航信息,帮助医生在手术中更精确定位病灶,减少手术风险和创伤。
3.脑功能研究通过配准和融合结构和功能图像,可以更准确地研究脑功能的相关区域。
例如,结合MRI和功能磁共振成像(fMRI)可以提供更准确的脑功能活动信息,有助于研究脑神经网络的功能连接。
结论:多模态医学图像配准和融合方法在医学影像处理中具有重要意义,其临床应用进展迅速。
摘要:近年来,人工智能成为学术界和工业界的研究热点,并已经成功应用于医疗健康等领域。
着重介绍了人工智能在医学影像领域最新的研究与应用进展,包括智能成像设备、智能图像处理与分析、影像组学、医学影像与自然语言处理的结合等前沿方向。
分析了研究和发展从源头入手的全链条人工智能技术的重要性和可行性,阐述了学术界和工业界在这一重要方向上的创新性工作。
同时指出,人工智能在医学影像领域中的研究尚处于起步阶段,人工智能与医学影像的结合将成为国际上长期的研究热点。
关键词:人工智能; 医学影像; 成像方法; 图像处理与分析; 自然语言处理1 引言人工智能(artificial intelligence, AI)是当下学术界和产业界的一个热点。
经过近几年的高速发展,深度学习已经实现了在传统的图像、视频、语音识别等领域的落地,并迅速地向文本处理、自然语言理解、人机对话、情感计算等方面渗透,并在安防、物流、无人驾驶等行业发挥了重要作用。
人口老龄化问题的显现以及人们对健康与日俱增的要求,对目前有限的医疗资源和医疗技术提出了更大的挑战。
医疗领域亟需新的技术满足这些需求。
与此同时,国内外与医疗相关的人工智能技术也在飞速地发展,科研和创业项目如雨后春笋,为解决医疗领域的挑战提供了新的机遇。
目前已经出现了计算机辅助诊断、智能专家系统、手术机器人、智能药物研发以及健康管理等多种产品。
在众多的医疗信息中,医学影像是疾病筛查和诊断、治疗决策的最主要的信息来源。
基于医学影像的诊断和治疗是一个典型的长链条、专业化的领域,涵盖了医学影像成像、图像处理与分析、图像可视化、疾病早期筛查、风险预测、疾病辅助检测与诊断、手术计划制定、术中辅助导航、随访跟踪与分析、康复计划制定等一系列方向。
目前,医院存储的信息超过90%是影像信息,影像信息已经形成了巨大的数据积累。
为此,基于医学影像大数据的人工智能技术与应用就成为医疗机构、科研、产业和政府共同关注的焦点。
多模态医学图像分析技术的研究进展随着科技的不断发展,医学图像分析技术也在不断地进步着。
多模态医学图像分析技术是其中一项重要的技术,它可以通过对不同模态的医学图像进行综合分析,提高医疗诊断的效率和准确性。
本文将对多模态医学图像分析技术的研究进展进行探讨。
一、多模态医学图像的概念首先,需要明确多模态医学图像的概念。
多模态医学图像是指通过多种不同的成像技术,获取的不同类型的医学图像。
这些医学图像可以是CT图像、MRI图像、X光图像、超声波图像等等。
每种成像技术所获取的图像都有其独特的信息,而将这些不同的医学图像进行综合分析,可以帮助医生更加准确地进行诊断。
二、多模态医学图像分析技术的意义多模态医学图像分析技术的意义十分重大。
传统的医学图像分析技术只能利用单一模态的医学图像,且对于某些病症可能会出现误诊或漏诊的情况,而多模态医学图像分析技术可以通过综合分析多种不同类型的医学图像,大大提高医生诊断的准确性和精度。
尤其在复杂的病例中,多模态医学图像分析技术显得尤为重要。
三、多模态医学图像分析技术的研究进展多模态医学图像分析技术的研究起步时间并不算太早,但是在后续的发展中,其研究进展迅猛。
以下是多模态医学图像分析技术的研究进展总结:1.图像融合技术图像融合是将来自不同模态的图像进行融合的一种技术。
它可以将不同模态的图像融合在一起,形成一个更加完整、详细的医学图像。
目前常用的图像融合技术包括互信息、小波变换、等离子体模型和偏最小二乘回归等。
2.特征提取技术特征提取是多模态医学图像分析技术中非常重要的一环。
通过特征提取,可以从不同模态的图像中提取出具有代表性的特征,以助于医学诊断。
目前,在多模态医学图像的特征提取方面,研究者们主要使用了深度学习技术。
3.自动分割技术自动分割是将多模态医学图像中的不同组织、器官按照一定规则进行自动分割的一种技术。
通过自动分割技术,可以在不同的医学图像中提取出不同的组织结构,并进行对比分析,以便更加准确地诊断病情。
异源图像匹配自相似性测度的快速算法自相似性是圖像特征分析的一项重要指标,将其作为异源图像的匹配测度有着很强的可靠性,但因为要在多个通道的特征图像上进行匹配,计算效率是其中的一个瓶颈问题。
文章将特征图像的差平方和运算转换到频率域处理,利用快速傅里叶变换将图像特征的计算效率提高一个数量级,实现了异源图像匹配的一种快速算法。
标签:异源图像匹配;快速傅里叶变换;自相似性;匹配测度1 概述异源图像(来自不同类型传感器获取的图像)匹配的研究重点主要在于匹配测度问题。
由于成像机理不同,灰度差异很难用显式的函数模型表示。
互信息[1]无需对图像的灰度映射关系作出假设,适用于异源图像匹配的测度,不足是计算量大,目前还找不到有效的快速计算方法。
文献[2]采用另外一种匹配策略,利用图像的自相似性将图像变换成多个通道的特征图像,灰度特性差异很大的异源图像,在各个通道的特征图像上具有很强的相似性,采用差平方和计算,就可以实现异源图像之间的匹配。
自相似性测度的主要优势是有较强的抗干扰能力,因此算法的可靠性较高。
但是由于需要在多个通道上的特征图像之间进行匹配,因此计算量大的问题仍然有待解决。
本文将差平方和的计算转换到频率域进行处理,通过快速傅里叶变换,来实现异源图像匹配的一种快速算法。
2 异源图像匹配的自相似性测度自相似性曾被成功地应用于图像去噪和图像检索,在此研究基础上进一步利用自相似性构建图像的特征图像,灰度特性差异很大的异源图像,在特征图像上呈现出了很强的相似性[2]。
特征图像的生成可以通过卷积实现:式中q表示图像块的形状规格,X表示图像坐标,t表示基准图像块与领近图像块的相对位移,C为卷积模板(例如图像块规格若为3×3矩形,则C为元素全部为1的3×3矩阵)。
通过卷积运算可以直接求得所有像点在4或6个领域方向的自相似特征。
如图1左为红外图像,右为可见光图像,由于两种图像的成像机理不同,对应位置的图像灰度呈现出不确定性的差异。
Deformable Medical Image Registration:A Survey Aristeidis Sotiras*,Member,IEEE,Christos Davatzikos,Senior Member,IEEE,and Nikos Paragios,Fellow,IEEE(Invited Paper)Abstract—Deformable image registration is a fundamental task in medical image processing.Among its most important applica-tions,one may cite:1)multi-modality fusion,where information acquired by different imaging devices or protocols is fused to fa-cilitate diagnosis and treatment planning;2)longitudinal studies, where temporal structural or anatomical changes are investigated; and3)population modeling and statistical atlases used to study normal anatomical variability.In this paper,we attempt to give an overview of deformable registration methods,putting emphasis on the most recent advances in the domain.Additional emphasis has been given to techniques applied to medical images.In order to study image registration methods in depth,their main compo-nents are identified and studied independently.The most recent techniques are presented in a systematic fashion.The contribution of this paper is to provide an extensive account of registration tech-niques in a systematic manner.Index Terms—Bibliographical review,deformable registration, medical image analysis.I.I NTRODUCTIOND EFORMABLE registration[1]–[10]has been,alongwith organ segmentation,one of the main challenges in modern medical image analysis.The process consists of establishing spatial correspondences between different image acquisitions.The term deformable(as opposed to linear or global)is used to denote the fact that the observed signals are associated through a nonlinear dense transformation,or a spatially varying deformation model.In general,registration can be performed on two or more im-ages.In this paper,we focus on registration methods that involve two images.One is usually referred to as the source or moving image,while the other is referred to as the target orfixed image. In this paper,the source image is denoted by,while the targetManuscript received March02,2013;revised May17,2013;accepted May 21,2013.Date of publication May31,2013;date of current version June26, 2013.Asterisk indicates corresponding author.*A.Sotiras is with the Section of Biomedical Image Analysis,Center for Biomedical Image Computing and Analytics,Department of Radi-ology,University of Pennsylvania,Philadelphia,PA19104USA(e-mail: aristieidis.sotiras@).C.Davatzikos is with the Section of Biomedical Image Analysis,Center for Biomedical Image Computing and Analytics,Department of Radi-ology,University of Pennsylvania,Philadelphia,PA19104USA(e-mail: christos.davatzikos@).N.Paragios is with the Center for Visual Computing,Department of Applied Mathematics,Ecole Centrale de Paris,92295Chatenay-Malabry,France,and with the Equipe Galen,INRIA Saclay-Ile-de-France,91893Orsay,France,and also with the Universite Paris-Est,LIGM(UMR CNRS),Center for Visual Com-puting,Ecole des Ponts ParisTech,77455Champs-sur-Marne,France. Digital Object Identifier10.1109/TMI.2013.2265603image is denoted by.The two images are defined in the image domain and are related by a transformation.The goal of registration is to estimate the optimal transforma-tion that optimizes an energy of the form(1) The previous objective function(1)comprises two terms.The first term,,quantifies the level of alignment between a target image and a source image.Throughout this paper,we in-terchangeably refer to this term as matching criterion,(dis)sim-ilarity criterion or distance measure.The optimization problem consists of either maximizing or minimizing the objective func-tion depending on how the matching term is chosen.The images get aligned under the influence of transformation .The transformation is a mapping function of the domain to itself,that maps point locations to other locations.In gen-eral,the transformation is assumed to map homologous loca-tions from the target physiology to the source physiology.The transformation at every position is given as the addition of an identity transformation with the displacementfield,or.The second term,,regularizes the trans-formation aiming to favor any specific properties in the solution that the user requires,and seeks to tackle the difficulty associ-ated with the ill-posedness of the problem.Regularization and deformation models are closely related. Two main aspects of this relation may be distinguished.First, in the case that the transformation is parametrized by a small number of variables and is inherently smooth,regularization may serve to introduce prior knowledge regarding the solution that we seek by imposing task-specific constraints on the trans-formation.Second,in the case that we seek the displacement of every image element(i.e.,nonparametric deformation model), regularization dictates the nature of the transformation. Thus,an image registration algorithm involves three main components:1)a deformation model,2)an objective function, and3)an optimization method.The result of the registration algorithm naturally depends on the deformation model and the objective function.The dependency of the registration result on the optimization strategy follows from the fact that image regis-tration is inherently ill-posed.Devising each component so that the requirements of the registration algorithm are met is a de-manding process.Depending on the deformation model and the input data,the problem may be ill-posed according to Hadamard’s definition of well-posed problems[11].In probably all realistic scenarios, registration is ill-posed.To further elaborate,let us consider some specific cases.In a deformable registration scenario,one0278-0062/$31.00©2013IEEEseeks to estimate a vector for every position given,in general, scalar information conveyed by image intensity.In this case,the number of unknowns is greater than the number of constraints. In a rigid setting,let us consider a consider a scenario where two images of a disk(white background,gray foreground)are registered.Despite the fact that the number of parameters is only 6,the problem is ill-posed.The problem has no unique solution since a translation that aligns the centers of the disks followed by any rotation results in a meaningful solution.Given nonlinear and nonconvex objective functions,in gen-eral,no closed-form solutions exist to estimate the registration parameters.In this setting,the search methods reach only a local minimum in the parameter space.Moreover,the problem itself has an enormous number of different facets.The approach that one should take depends on the anatomical properties of the organ(for example,the heart and liver do not adhere to the same degree of deformation),the nature of observations to be regis-tered(same modality versus multi-modal fusion),the clinical setting in which registration is to be used(e.g.,offline interpre-tation versus computer assisted surgery).An enormous amount of research has been dedicated to de-formable registration towards tackling these challenges due to its potential clinical impact.During the past few decades,many innovative ideas regarding the three main algorithmic registra-tion aspects have been proposed.General reviews of thefield may be found in[1]–[7],[9].However due to the rapid progress of thefield such reviews are to a certain extent outdated.The aim of this paper is to provide a thorough overview of the advances of the past decade in deformable registration.Never-theless,some classic papers that have greatly advanced the ideas in thefield are mentioned.Even though our primary interest is deformable registration,for the completeness of the presenta-tion,references to linear methods are included as many prob-lems have been treated in this low-degree-of-freedom setting before being extended to the deformable case.The main scope of this paper is focused on applications that seek to establish spatial correspondences between medical im-ages.Nonetheless,we have extended the scope to cover appli-cations where the interest is to recover the apparent motion of objects between sequences of successive images(opticalflow estimation)[12],[13].Deformable registration and opticalflow estimation are closely related problems.Both problems aim to establish correspondences between images.In the deformable registration case,spatial correspondences are sought,while in the opticalflow case,spatial correspondences,that are associ-ated with different time points,are looked for.Given data with a good temporal resolution,one may assume that the magnitude of the motion is limited and that image intensity is preserved in time,opticalflow estimation can be regarded as a small defor-mation mono-modal deformable registration problem.The remainder of the paper is organized by loosely following the structural separation of registration algorithms to three com-ponents:1)deformation model,2)matching criteria,and3)op-timization method.In Section II,different approaches regarding the deformation model are presented.Moreover,we also chose to cover in this section the second term of the objective function, the regularization term.This choice was motivated by the close relation between the two parts.In Section III,thefirst term of the objective function,the matching term,is discussed.The opti-mization methods are presented in Section IV.In every section, particular emphasis was put on further deepening the taxonomy of registration method by grouping the presented methods in a systematic manner.Section V concludes the paper.II.D EFORMATION M ODELSThe choice of deformation model is of great importance for the registration process as it entails an important compromise between computational efficiency and richness of description. It also reflects the class of transformations that are desirable or acceptable,and therefore limits the solution to a large ex-tent.The parameters that registration estimates through the op-timization strategy correspond to the degrees of freedom of the deformation model1.Their number varies greatly,from six in the case of global rigid transformations,to millions when non-parametric dense transformations are considered.Increasing the dimensionality of the state space results in enriching the de-scriptive power of the model.This model enrichment may be accompanied by an increase in the model’s complexity which, in turns,results in a more challenging and computationally de-manding inference.Furthermore,the choice of the deformation model implies an assumption regarding the nature of the defor-mation to be recovered.Before continuing,let us clarify an important,from imple-mentation point of view,aspect related to the transformation mapping and the deformation of the source image.In the in-troduction,we stated that the transformation is assumed to map homologous locations from the target physiology to the source physiology(backward mapping).While from a theoretical point of view,the mapping from the source physiology to the target physiology is possible(forward mapping),from an implemen-tation point of view,this mapping is less advantageous.In order to better understand the previous statement,let us consider how the direction of the mapping influences the esti-mation of the deformed image.In both cases,the source image is warped to the target domain through interpolation resulting to a deformed image.When the forward mapping is estimated, every voxel of the source image is pushed forward to its esti-mated position in the deformed image.On the other hand,when the backward mapping is estimated,the pixel value of a voxel in the deformed image is pulled from the source image.The difference between the two schemes is in the difficulty of the interpolation problem that has to be solved.In thefirst case,a scattered data interpolation problem needs to be solved because the voxel locations of the source image are usually mapped to nonvoxel locations,and the intensity values of the voxels of the deformed image have to be calculated.In the second case,when voxel locations of the deformed image are mapped to nonvoxel locations in the source image,their intensities can be easily cal-culated by interpolating the intensity values of the neighboring voxels.The rest of the section is organized by following coarsely and extending the classification of deformation models given 1Variational approaches in general attempt to determine a function,not just a set of parameters.SOTIRAS et al.:DEFORMABLE MEDICAL IMAGE REGISTRATION:A SURVEY1155Fig.1.Classi fication of deformation models.Models that satisfy task-speci fic constraints are not shown as a branch of the tree because they are,in general,used in conjunction with physics-based and interpolation-based models.by Holden [14].More emphasis is put on aspects that were not covered by that review.Geometric transformations can be classi fied into three main categories (see Fig.1):1)those that are inspired by physical models,2)those inspired by interpolation and ap-proximation theory,3)knowledge-based deformation models that opt to introduce speci fic prior information regarding the sought deformation,and 4)models that satisfy a task-speci fic constraint.Of great importance for biomedical applications are the con-straints that may be applied to the transformation such that it exhibits special properties.Such properties include,but are not limited to,inverse consistency,symmetry,topology preserva-tion,diffeomorphism.The value of these properties was made apparent to the research community and were gradually intro-duced as extra constraints.Despite common intuition,the majority of the existing regis-tration algorithms are asymmetric.As a consequence,when in-terchanging the order of input images,the registration algorithm does not estimate the inverse transformation.As a consequence,the statistical analysis that follows registration is biased on the choice of the target domain.Inverse Consistency:Inverse consistent methods aim to tackle this shortcoming by simultaneously estimating both the forward and the backward transformation.The data matching term quanti fies how well the images are aligned when one image is deformed by the forward transformation,and the other image by the backward transformation.Additionally,inverse consistent algorithms constrain the forward and backward transformations to be inverse mappings of one another.This is achieved by introducing terms that penalize the difference between the forward and backward transformations from the respective inverse mappings.Inverse consistent methods can preserve topology but are only asymptotically symmetric.Inverse-consistency can be violated if another term of the objective function is weighted more importantly.Symmetry:Symmetric algorithms also aim to cope with asymmetry.These methods do not explicitly penalize asym-metry,but instead employ one of the following two strategies.In the first case,they employ objective functions that are by construction symmetric to estimate the transformation from one image to another.In the second case,two transformation functions are estimated by optimizing a standard objective function.Each transformation function map an image to a common domain.The final mapping from one image to another is calculated by inverting one transformation function and composing it with the other.Topology Preservation:The transformation that is estimated by registration algorithms is not always one-to-one and cross-ings may appear in the deformation field.Topology preserving/homeomorphic algorithms produce a mapping that is contin-uous,onto,and locally one-to-one and has a continuous inverse.The Jacobian determinant contains information regarding the injectivity of the mapping and is greater than zero for topology preserving mappings.The differentiability of the transformation needs to be ensured in order to calculate the Jacobian determi-nant.Let us note that Jacobian determinant and Jacobian are in-terchangeably used in this paper and should not be confounded with the Jacobian matrix.Diffeomorphism:Diffeomoprhic transformations also pre-serve topology.A transformation function is a diffeomorphism,if it is invertible and both the function and its inverse are differ-entiable.A diffeomorphism maps a differentiable manifold to another.1156IEEE TRANSACTIONS ON MEDICAL IMAGING,VOL.32,NO.7,JULY2013In the following four subsections,the most important methods of the four classes are presented with emphasis on the approaches that endow the model under consideration with the above desirable properties.A.Geometric Transformations Derived From Physical Models Following[5],currently employed physical models can be further separated infive categories(see Fig.1):1)elastic body models,2)viscousfluidflow models,3)diffusion models,4) curvature registration,and5)flows of diffeomorphisms.1)Elastic Body Models:a)Linear Models:In this case,the image under deforma-tion is modeled as an elastic body.The Navier-Cauchy Partial Differential Equation(PDE)describes the deformation,or(2) where is the forcefield that drives the registration based on an image matching criterion,refers to the rigidity that quanti-fies the stiffness of the material and is Lamésfirst coefficient. Broit[15]first proposed to model an image grid as an elastic membrane that is deformed under the influence of two forces that compete until equilibrium is reached.An external force tries to deform the image such that matching is achieved while an internal one enforces the elastic properties of the material. Bajcsy and Kovacic[16]extended this approach in a hierar-chical fashion where the solution of the coarsest scale is up-sam-pled and used to initialize thefiner one.Linear registration was used at the lowest resolution.Gee and Bajscy[17]formulated the elastostatic problem in a variational setting.The problem was solved under the Bayesian paradigm allowing for the computation of the uncertainty of the solution as well as for confidence intervals.Thefinite element method(FEM)was used to infer the displacements for the ele-ment nodes,while an interpolation strategy was employed to es-timate displacements elsewhere.The order of the interpolating or shape functions,determines the smoothness of the obtained result.Linear elastic models have also been used when registering brain images based on sparse correspondences.Davatzikos[18]first used geometric characteristics to establish a mapping be-tween the cortical surfaces.Then,a global transformation was estimated by modeling the images as inhomogeneous elastic ob-jects.Spatially-varying elasticity parameters were used to com-pensate for the fact that certain structures tend to deform more than others.In addition,a nonzero initial strain was considered so that some structures expand or contract naturally.In general,an important drawback of registration is that when source and target volumes are interchanged,the obtained trans-formation is not the inverse of the previous solution.In order to tackle this shortcoming,Christensen and Johnson[19]pro-posed to simultaneously estimate both forward and backward transformations,while penalizing inconsistent transformations by adding a constraint to the objective function.Linear elasticity was used as regularization constraint and Fourier series were used to parametrize the transformation.Leow et al.[20]took a different approach to tackle the incon-sistency problem.Instead of adding a constraint that penalizes the inconsistency error,they proposed a unidirectional approach that couples the forward and backward transformation and pro-vides inverse consistent transformations by construction.The coupling was performed by modeling the backward transforma-tion as the inverse of the forward.This fact was also exploited during the optimization of the symmetric energy by only fol-lowing the gradient direction of the forward mapping.He and Christensen[21]proposed to tackle large deforma-tions in an inverse consistent framework by considering a se-quence of small deformation transformations,each modeled by a linear elastic model.The problem was symmetrized by consid-ering a periodic sequence of images where thefirst(or last)and middle image are the source and target respectively.The sym-metric objective function thus comprised terms that quantify the difference between any two successive pairs of images.The in-ferred incremental transformation maps were concatenated to map one input image to another.b)Nonlinear Models:An important limitation of linear elastic models lies in their inability to cope with large defor-mations.In order to account for large deformations,nonlinear elastic models have been proposed.These models also guar-antee the preservation of topology.Rabbitt et al.[22]modeled the deformable image based on hyperelastic material properties.The solution of the nonlinear equations was achieved by local linearization and the use of the Finite Element method.Pennec et al.[23]dropped the linearity assumption by mod-eling the deformation process through the St Venant-Kirchoff elasticity energy that extends the linear elastic model to the non-linear regime.Moreover,the use of log-Euclidean metrics in-stead of Euclidean ones resulted in a Riemannian elasticity en-ergy which is inverse consistent.Yanovsky et al.[24]proposed a symmetric registration framework based on the St Venant-Kir-choff elasticity.An auxiliary variable was added to decouple the regularization and the matching term.Symmetry was im-posed by assuming that the Jacobian determinants of the defor-mation follow a zero mean,after log-transformation,log-normal distribution[25].Droske and Rumpf[26]used an hyperelastic,polyconvex regularization term that takes into account the length,area and volume deformations.Le Guyader and Vese[27]presented an approach that combines segmentation and registration that is based on nonlinear elasticity.The authors used a polyconvex regularization energy based on the modeling of the images under deformation as Ciarlet-Geymonat materials[28].Burger et al.[29]also used a polyconvex regularization term.The au-thors focused on the numerical implementation of the registra-tion framework.They employed a discretize-then-optimize ap-proach[9]that involved the partitioning voxels to24tetrahedra.2)Viscous Fluid Flow Models:In this case,the image under deformation is modeled as a viscousfluid.The transformation is governed by the Navier-Stokes equation that is simplified by assuming a very low Reynold’s numberflow(3) These models do not assume small deformations,and thus are able to recover large deformations[30].Thefirst term of theSOTIRAS et al.:DEFORMABLE MEDICAL IMAGE REGISTRATION:A SURVEY1157Navier-Stokes equation(3),constrains neighboring points to de-form similarly by spatially smoothing the velocityfield.The velocityfield is related to the displacementfield as.The velocityfield is integrated in order to estimate the displacementfield.The second term al-lows structures to change in mass while and are the vis-cosity coefficients.Christensen et al.[30]modeled the image under deformation as a viscousfluid allowing for large magnitude nonlinear defor-mations.The PDE was solved for small time intervals and the complete solution was given by an integration over time.For each time interval a successive over-relaxation(SOR)scheme was used.To guarantee the preservation of topology,the Jaco-bian was monitored and each time its value fell under0.5,the deformed image was regridded and a new one was generated to estimate a transformation.Thefinal solution was the con-catenation of all successive transformations occurring for each regridding step.In a subsequent work,Christensen et al.[31] presented a hierarchical way to recover the transformations for brain anatomy.Initially,global affine transformation was per-formed followed by a landmark transformation model.The re-sult was refined byfluid transformation preceded by an elastic registration step.An important drawback of the earliest implementations of the viscousfluid models,that employed SOR to solve the equa-tions,was computational inefficiency.To circumvent this short-coming,Christensen et al.employed a massive parallel com-puter implementation in[30].Bro-Nielsen and Gramkow[32] proposed a technique based on a convolutionfilter in scale-space.Thefilter was designed as the impulse response of the linear operator defined in its eigen-function basis.Crun et al.[33]proposed a multi-grid approach towards handling anisotropic data along with a multi-resolution scheme opting forfirst recovering coarse velocity es-timations and refining them in a subsequent step.Cahill et al.[34]showed how to use Fourier methods to efficiently solve the linear PDE system that arises from(3)for any boundary condi-tion.Furthermore,Cahill et al.extended their analysis to show how these methods can be applied in the case of other regu-larizers(diffusion,curvature and elastic)under Dirichlet,Neu-mann,or periodic boundary conditions.Wang and Staib[35]usedfluid deformation models in an atlas-enhanced registration setting while D’Agostino et al. tackled multi-modal registration with the use of such models in[36].More recently,Chiang et al.[37]proposed an inverse consistent variant offluid registration to register Diffusion Tensor images.Symmetrized Kullback-Leibler(KL)diver-gence was used as the matching criterion.Inverse consistency was achieved by evaluating the matching and regularization criteria towards both directions.3)Diffusion Models:In this case,the deformation is mod-eled by the diffusion equation(4) Let us note that most of the algorithms,based on this transforma-tion model and described in this section,do not explicitly state the(4)in their objective function.Nonetheless,they exploit the fact that the Gaussian kernel is the Green’s function of the diffu-sion equation(4)(under appropriate initial and boundary condi-tions)to provide an efficient regularization step.Regularization is efficiently performed through convolutions with a Gaussian kernel.Thirion,inspired by Maxwell’s Demons,proposed to perform image matching as a diffusion process[38].The proposed algo-rithm iterated between two steps:1)estimation of the demon forces for every demon(more precisely,the result of the appli-cation of a force during one iteration step,that is a displace-ment),and2)update of the transformation based on the cal-culated forces.Depending on the way the demon positions are selected,the way the space of deformations is defined,the in-terpolation method that is used,and the way the demon forces are calculated,different variants can be obtained.The most suit-able version for medical image analysis involved1)selecting all image elements as demons,2)calculating demon forces by considering the opticalflow constraint,3)assuming a nonpara-metric deformation model that was regularized by applying a Gaussianfilter after each iteration,and4)a trilinear interpo-lation scheme.The Gaussianfilter can be applied either to the displacementfield estimated at an iteration or the updated total displacementfield.The bijectivity of the transformation was en-sured by calculating for every point the difference between its initial position and the one that is reached after composing the forward with the backward deformationfield,and redistributing the difference to eachfield.The bijectivity of the transformation can also be enforced by limiting the maximum length of the up-date displacement to half the voxel size and using composition to update the transformation.Variants for the contour-based reg-istration and the registration between segmented images were also described in[38].Most of the algorithms described in this section were inspired by the work of Thirion[38]and thus could alternatively be clas-sified as“Demons approaches.”These methods share the iter-ative approach that was presented in[38]that is,iterating be-tween estimating the displacements and regularizing to obtain the transformation.This iterative approach results in increased computational efficiency.As it will be discussed later in this section,this feature led researchers to explore such strategies for different PDEs.The use of Demons,as initially introduced,was an efficient algorithm able to provide dense correspondences but lacked a sound theoretical justification.Due to the success of the algo-rithm,a number of papers tried to give theoretical insight into its workings.Fischer and Modersitzki[39]provided a fast algo-rithm for image registration.The result was given as the solution of linear system that results from the linearization of the diffu-sion PDE.An efficient scheme for its solution was proposed while a connection to the Thirion’s Demons algorithm[38]was drawn.Pennec et al.[40]studied image registration as an energy minimization problem and drew the connection of the Demons algorithm with gradient descent schemes.Thirion’s image force based on opticalflow was shown to be equivalent with a second order gradient descent on the Sum of Square Differences(SSD) matching criterion.As for the regularization,it was shown that the convolution of the global transformation with a Gaussian。
Multimodality Image Registration byMaximization of Mutual Information Frederik Maes,*Andr´e Collignon,Dirk Vandermeulen,Guy Marchal,and Paul Suetens,Member,IEEEAbstract—A new approach to the problem of multimodality medical image registration is proposed,using a basic concept from information theory,mutual information(MI),or relative entropy,as a new matching criterion.The method presented in this paper applies MI to measure the statistical dependence or information redundancy between the image intensities of corresponding voxels in both images,which is assumed to be maximal if the images are geometrically aligned.Maximization of MI is a very general and powerful criterion,because no assumptions are made regarding the nature of this dependence and no limiting constraints are imposed on the image content of the modalities involved.The accuracy of the MI criterion is validated for rigid body registration of computed tomog-raphy(CT),magnetic resonance(MR),and photon emission tomography(PET)images by comparison with the stereotactic registration solution,while robustness is evaluated with respect to implementation issues,such as interpolation and optimization, and image content,including partial overlap and image degra-dation.Our results demonstrate that subvoxel accuracy with respect to the stereotactic reference solution can be achieved completely automatically and without any prior segmentation, feature extraction,or other preprocessing steps which makes this method very well suited for clinical applications.Index Terms—Matching criterion,multimodality images,mu-tual information,registration.I.I NTRODUCTIONT HE geometric alignment or registration of multimodality images is a fundamental task in numerous applications in three-dimensional(3-D)medical image processing.Medical diagnosis,for instance,often benefits from the complemen-tarity of the information in images of different modalities. In radiotherapy planning,dose calculation is based on the computed tomography(CT)data,while tumor outlining is of-ten better performed in the corresponding magnetic resonance (MR)scan.For brain function analysis,MR images provide anatomical information while functional information may beManuscript received February21,1996;revised July23,1996.This work was supported in part by IBM Belgium(Academic Joint Study)and by the Belgian National Fund for Scientific Research(NFWO)under Grants FGWO 3.0115.92,9.0033.93and G.3115.92.The Associate Editor responsible for coordinating the review of this paper and recommending its publication was N.Ayache.Asterisk indicates corresponding author.*F.Maes is with the Laboratory for Medical Imaging Research, Katholieke Universiteit Leuven,ESAT/Radiologie,Universitair Ziekenhuis Gasthuisberg,Herestraat49,B-3000Leuven,Belgium.He is an Aspirant of the Belgian National Fund for Scientific Research(NFWO)(e-mail: Frederik.Maes@uz.kuleuven.ac.be).A.Collingnon,D.Vandermeulen,G.Marchal,and P.Suetens are with the Laboratory for Medical Imaging Research,Katholieke Universiteit Leuven, ESAT/Radiologie,Universitair Ziekenhuis Gasthuisberg,Herestraat49,B-3000Leuven,Belgium.Publisher Item Identifier S0278-0062(97)02397-5.obtained from positron emission tomography(PET)images, etc.The bulk of registration algorithms in medical imaging(see [3],[16],and[23]for an overview)can be classified as being either frame based,point landmark based,surface based,or voxel based.Stereotactic frame-based registration is very ac-curate,but inconvenient,and cannot be applied retrospectively, as with any external point landmark-based method,while anatomical point landmark-based methods are usually labor-intensive and their accuracy depends on the accurate indication of corresponding landmarks in all modalities.Surface-based registration requires delineation of corresponding surfaces in each of the images separately.But surface segmentation algorithms are generally highly data and application dependent and surfaces are not easily identified in functional modalities such as PET.Voxel-based(VSB)registration methods optimize a functional measuring the similarity of all geometrically cor-responding voxel pairs for some feature.The main advantage of VSB methods is that feature calculation is straightforward or even absent when only grey-values are used,such that the accuracy of these methods is not limited by segmentation errors as in surface based methods.For intramodality registration multiple VSB methods have been proposed that optimize some global measure of the absolute difference between image intensities of corresponding voxels within overlapping parts or in a region of interest(ROI) [5],[11],[19],[26].These criteria all rely on the assumption that the intensities of the two images are linearly correlated, which is generally not satisfied in the case of intermodality registration.Crosscorrelation of feature images derived from the original image data has been applied to CT/MR matching using geometrical features such as edges[15]and ridges[24] or using especially designed intensity transformations[25]. But feature extraction may introduce new geometrical errors and requires extra calculation time.Furthermore,correlation of sparse features like edges and ridges may have a very peaked optimum at the registration solution,but at the same time be rather insensitive to misregistration at larger distances,as all nonedge or nonridge voxels correlate equally well.A mul-tiresolution optimization strategy is therefore required,which is not necessarily a disadvantage,as it can be computationally attractive.In the approach of Woods et al.[30]and Hill et al.[12], [13],misregistration is measured by the dispersion of the two-dimensional(2-D)histogram of the image intensities of corresponding voxel pairs,which is assumed to be minimal in the registered position.But the dispersion measures they0278–0062/97$10.00©1997IEEEpropose are largely heuristic.Hill’s criterion requires seg-mentation of the images or delineation of specific histogram regions to make the method work [20],while Woods’criterion is based on additional assumptions concerning the relationship between the grey-values in the different modalities,which reduces its applicability to some very specific multimodality combinations (PET/MR).In this paper,we propose to use the much more general notion of mutual information (MI)or relative entropy [8],[22]to describe the dispersive behavior of the 2-D histogram.MI is a basic concept from information theory,measuring the statistical dependence between two random variables or the amount of information that one variable contains about the other.The MI registration criterion presented here states that the MI of the image intensity values of corresponding voxel pairs is maximal if the images are geometrically aligned.Because no assumptions are made regarding the nature of the relation between the image intensities in both modalities,this criterion is very general and powerful and can be applied automatically without prior segmentation on a large variety of applications.This paper expands on the ideas first presented by Collignon et al .[7].Related work in this area includes the work by Viola and Wells et al .[27],[28]and by Studholme et al .[21].The theoretical concept of MI is presented in Section II,while the implementation of the registration algorithm is described in Section III.In Sections IV,V,and VI we evaluate the accuracy and the robustness of the MI matching criterion for rigid body CT/MR and PET/MR registration.Section VII summarizes our current findings,while Section VIII gives some directions for further work.In the Appendexes,we discuss the relationship of the MI registration criterion to other multimodality VSB criteria.II.T HEORYTwo randomvariables,,with marginal probabilitydistributions,and:.MI,and(1)MI is related to entropy by theequationsandgivengiven(5)(7)Theentropy,whilewhenknowingby the knowledge of another randomvariablecontainsaboutandandand.The MI registration criterion states that the images are geometrically aligned by thetransformation forwhichMAES et al.:MULTIMODALITY IMAGE REGISTRATION BY MAXIMIZATION OF MUTUAL INFORMATION189(a)(b)Fig.1.Joint histogram of the overlapping volume of the CT and MR brain images of dataset A in Tables II and III:(a)Initial position:I (CT;MR )=0:46,(b)registered position:I (CT;MR )=0:89.Misregistration was about 20mm and 10 (see the parameters in Table III).If both marginaldistributionsand,the MI criterion reduces to minimizing the jointentropyor ,which is the case if one of the images is always completely contained in the other,the MI criterion reduces to minimizing the conditionalentropyisvariedandand.The MI criterion takes this into accountexplicitly,as becomes clear in (2),which can be interpreted as follows [27]:“maximizing MI will tend to find as much as possible of the complexity that is in the separate datasets (maximizing the first two terms)so that at the same time they explain each other well (minimizing the last term).”For.Thisrequiresis varied,which will be the case if the image intensity values are spatially correlated.This is illustrated by the graphs in Fig.2,showing the behaviorofaxis along the row direction,theaxis along the plane direction.One of the images is selected to be the floatingimage,are taken and transformed intothe referenceimage,or a sub-or superset thereof.Subsampling of the floating image might be used to increase speed performance,while supersampling aims at increasing accuracy.For each value of the registrationparameterfalls inside the volumeofis a six-component vector consisting of three rotationanglestoimage(8)with3diagonal matrixes representing thevoxel sizes ofimages,respectively (inmillimeters),3rotation matrix,with thematrixes-,-axis,respectively,and190IEEE TRANSACTIONS ON MEDICAL IMAGING,VOL.16,NO.2,APRIL1997Fig.3.Graphical illustration of NN,TRI,and PV interpolation in 2-D.NN and TRI interpolation find the reference image intensity value at position T s and update the corresponding joint histogram entry,while PV interpolation distributes the contribution of this sample over multiple histogram entries defined by its NN intensities,using the same weights as for TRI interpolation.B.CriterionLetatposition.The joint image intensityhistogramis computed by binning the image intensitypairs forallbeing the total number of bins in the joint histogram.Typically,weusewill not coincide with a grid pointofis generally insufficient to guaranteesubvoxel accuracy,as it is insensitive to translations up to one voxel.Other interpolation methods,such as trilinear (TRI)interpolation,may introduce new intensity values which are originally not present in the reference image,leading tounpredictable changes in the marginaldistributionof the reference image for small variationsof,the contribution of the imageintensityofon the gridofis varied.Estimations for the marginal and joint image intensitydistributionsis then evaluatedby(12)and the optimal registrationparameter is foundfrom,using Brent’s one-dimensional optimization algorithm for the line minimizations [18].The direction matrix is initialized with unit vectors in each of the parameter directions.An appropriate choice for the order in which the parameters are optimized needs to be specified,as this may influence optimization robustness.For instance,when matching images of the brain,the horizontal translation and the rotation around the vertical axis are more constrained by the shape of the head than the pitching rotation around the left-to-right horizontal axis.There-fore,first aligning the images in the horizontal plane by first optimizing the in-planeparameters may facilitate the optimization of the out-of-planeparametersMAES et al.:MULTIMODALITY IMAGE REGISTRATION BY MAXIMIZATION OF MUTUAL INFORMATION 191TABLE IID ATASETS U SEDIN THEE XPERIMENTS D ISCUSSED IN S ECTIONS VANDVIIV.E XPERIMENTSThe performance of the MI registration criterion was eval-uated for rigid-body registration of MR,CT,and PET images of the brain of the same patient.The rigid-body assumption is well satisfied inside the skull in 3-D scans of the head if patient related changes (due to for instance interscanning operations)can be neglected,provided that scanner calibration problems and problems of geometric distortions have been minimized by careful calibration and scan parameter selection,respectively.Registration accuracy is evaluated in Section V by comparison with external marker-based registration results and other retrospective registration methods,while the robust-ness of the method is evaluated in Section VI with respect to implementation issues,such as sampling,interpolation and op-timization,and image content,including image degradations,such as noise,intensity inhomogeneities and distortion,and partial image overlap.Four different datasets are used in the experiments described below (Table II).Dataset A 1contains high-resolution MR and CT images,while dataset B was obtained by smoothing and subsampling the images of dataset A to simulate lower resolution data.Dataset C 2contains stereotactically acquired MR,CT,and PET images,which have been edited to remove stereotactic markers.Dataset D contains an MR image only and is used to illustrate the effect of various image degradations on the registration criterion.All images consist of axial slices and in all casestheaxis is directedhorizontally front to back,andthedirection.In all experiments,the joint histogram size is256axis (0.7direction due to an offset inthedirection for the solution obtainedusing PV interpolation due to a 1rotation parameter.For MR to PET as well as for PET to MR registration,PV interpolation yields the smallest differences with the stereotactic reference solution,especially inthedirection due to offsets inthe192IEEE TRANSACTIONS ON MEDICAL IMAGING,VOL.16,NO.2,APRIL 1997TABLE IIIR EFERENCE AND MI R EGISTRATION P ARAMETERS FOR D ATASETS A,B,AND C AND THE M EAN AND M AXIMAL A BSOLUTE D IFFERENCE E V ALUATED AT E IGHT P OINTS N EAR THE B RAIN SURFACEvolume as the floating image and using different interpolation methods.For each combination,various optimization strate-gies were tried by changing the order in which the parameters were optimized,each starting from the same initial position with all parameters set to zero.The results are summarized in Fig.5.These scatter plots compare each of the solutions found (represented by their registrationparameterson the horizontal axis (using mm and degreesfor the translation and rotation parameters,respectively)and by the difference in the value of the MI criterion(MI)on the vertical axis.Although the differences are small for each of the interpolation methods used,MR to CT registration seems to be somewhat more robust than CT to MR registration.More importantly,the solutions obtained using PV interpolation are much more clustered than those obtained using NN or TRI interpolation,indicating that the use of PV interpolation results in a much smoother behavior of the registration criterion.This is also apparent from traces in registration space computed around the optimal solution for NN,TRI,and PV interpolation (Fig.6).These traces look very similar when a large parameter range is considered,but in the neighborhood of the registration solution,traces obtained with NN and TRI interpolation are noisy and show manylocal maxima,while traces obtained with PV interpolation are almost quadratic around the optimum.Remark that the MI values obtained using TRI interpolation are larger than those obtained using NN or PV interpolation,which can be interpreted according to (2):The TRI averaging and noise reduction of the reference image intensities resulted in a larger reduction of the complexity of the joint histogram than the corresponding reduction in the complexity of the reference image histogram itself.B.SubsamplingThe computational complexity of the MI criterion is pro-portional to the number of samples that is taken from the floating image to compute the joint histogram.Subsampling of the floating image can be applied to increase speed perfor-mance,as long as this does not deteriorate the optimization behavior.This was investigated for dataset A by registration of the subsampled MR image with the original CT image using PV interpolation.Subsampling was performed by takingsamples on a regular grid at sample intervalsofand direction,respectively,using NNinterpolation.No averaging or smoothing of the MR image before subsampling was applied.Weused,and .The same optimization strategy was used in each case.RegistrationsolutionsandMAES et al.:MULTIMODALITY IMAGE REGISTRATION BY MAXIMIZATION OF MUTUAL INFORMATION193(a)(b)Fig.5.Evaluation of the MI registration robustness for dataset A.Horizontal axis:norm of the difference vector j 0 3j for different optimization strategies,using NN,TRI,and PV interpolation. 3corresponds to the registration solution with the best value for the registration criterion for each of the interpolation schemes applied.Vertical axis:difference in the registration criterion between each solution and the optimal one.(a)Using the CT image as the floating image.(b)Using the MR image as the floatingimage.(a)(b)(c)(d)Fig.6.MI traces around the optimal registration position for dataset A:Rotation around the x axis in the range from 0180to +180 (a)and from 00.5to +0.5 (bottom row),using NN (b),TRI (c),and PV (d)interpolation.intheand 0.2mm off from the solutionfound without subsampling.C.Partial OverlapClinically acquired images typically only partially overlap,as CT scanning is often confined to a specific region to minimize the radiation dose while MR protocols frequently image larger volumes.The influence of partial overlap on the registration robustness was evaluated for dataset A for CT to MR registration using PV interpolation.The images were initially aligned as in the experiment in Section V and the same optimization strategy was applied,but only part of the CT data was considered when computing the MI criterion.More specifically,three 50-slice slabs were selected at the bottom (the skull basis),the middle,and the top part of the dataset.The results are summarized in Table IV and compared with the solution found using the full dataset by the mean and194IEEE TRANSACTIONS ON MEDICAL IMAGING,VOL.16,NO.2,APRIL 1997TABLE IVI NFLUENCEOFP ARTIAL O VERLAPONTHE R EGISTRATION R OBUSTNESSFORCTTOMR R EGISTRATIONOFD ATASETAFig.7.Effect of subsampling the MR floating image of dataset A on the registration solution.Horizontal axis:subsampling factor f ,indicating that only one out of f voxels was considered when evaluating the MI criterion.Vertical axis:norm of the difference vector j 0 3j . 3corresponds to the registration solution obtained when no subsampling is applied.maximal absolute difference evaluated over the full image at the same eight points as in Section V.The largest parameter differences occur for rotation aroundthedirection,resulting in maximal coordinate differencesup to 1.5CT voxel inthe direction,but on average all differences are subvoxel with respect to the CT voxel sizes.D.Image DegradationVarious MR image degradation effects,such as noise,in-tensity inhomogeneity,and geometric distortion,alter the intensity distribution of the image which may affect the MI registration criterion.This was evaluated for the MR image of dataset D by comparing MI registration traces obtained for the original image and itself with similar traces obtained for the original image and its degraded version (Fig.8).Such traces computed for translation inthewas alteredinto(15)(a)(b)(c)(d)Fig.8.(a)Slice 15of the original MR image of dataset D,(b)zero mean noise added with variance of 500grey-value units,(c)quadratic inhomogeneity (k =0:004),and (d)geometric distortion (k =0:00075).with being the image coordinates of the point around which the inhomogeneity is centeredand.All traces for all param-eters reach their maximum at the same position and the MI criterion is not affected by the presence of the inhomogeneity.3)Geometric Distortion:Geometricdistortions(16)(17)(18)withthe image coordinates of the center of each image planeandtranslation parameter proportionalto the averagedistortionMAES et al.:MULTIMODALITY IMAGE REGISTRATION BY MAXIMIZATION OF MUTUAL INFORMATION195(a)(b)(c)(d)Fig.9.MI traces using PV interpolation for translation in the x direction of the original MR image of dataset D over its degraded version in the range from 010to +10mm:(a)original,(b)noise,(c)intensity inhomogeneity,and (d)geometric distortion.VII.D ISCUSSIONThe MI registration criterion presented in this paper assumes that the statistical dependence between corresponding voxel intensities is maximal if both images are geometrically aligned.Because no assumptions are made regarding the nature of this dependence,the MI criterion is highly data independent and allows for robust and completely automatic registration of multimodality images in various applications with min-imal tuning and without any prior segmentation or other preprocessing steps.The results of Section V demonstrate that subvoxel registration differences with respect to the stereo-tactic registration solution can be obtained for CT/MR and PET/MR matching without using any prior knowledge about the grey-value content of both images and the correspondence between them.Additional experiments on nine other datasets similar to dataset C within the Retrospective Registration Evaluation Project by Fitzpatrick et al .[10]have verified these results [29],[14].Moreover,Section VI-C demonstrated the robustness of the method with respect to partial over-lap,while it was shown in Section VI-D that large image degradations,such as noise and intensity inhomogeneities,have no significant influence on the MI registration crite-rion.Estimations of the image intensity distributions were ob-tained by simple normalization of the joint histogram.In all experiments discussed in this paper,the joint histogram was computed from the entire overlapping part of both images,using the original image data and a fixed number of bins of256andand .For low-resolutionimages,the optimization often did not converge to the global optimum if a different parameter order was specified,due to the occurrence of local optima especially forthe196IEEE TRANSACTIONS ON MEDICAL IMAGING,VOL.16,NO.2,APRIL1997theand40mm,but we have not extensivelyinvestigated the robustness of the method with respect to theinitial positioning of the images,for instance by using multiplerandomised starting estimates.The choice of thefloating imagemay also influence the behavior of the registration criterion.In the experiment of Section VI-A,MR to CT matching wasfound to be more robust than CT to MR matching.However,it is not clear whether this was caused by sampling andinterpolation issues or by the fact that the MR image is morecomplex than the CT image and that the spatial correlation ofimage intensity values is higher in the CT image than in theMR image.We have not tuned the design of the search strategy towardspecific applications.For instance,the number of criterionevaluations required may be decreased by taking the limitedimage resolution into account when determining convergence.Moreover,the results of Section VI-B demonstrate that forhigh-resolution images subsampling of thefloating imagecan be applied without deteriorating optimization robustness.Important speed-ups can,thus,be realized by using a mul-tiresolution optimization strategy,starting with a coarselysampled image for efficiency and increasing the resolution asthe optimization proceeds for accuracy[20].Furthermore,thesmooth behavior of the MI criterion,especially when usingPV interpolation,may be exploited by using gradient-basedoptimization methods,as explicit formulas for the derivativesof the MI function with respect to the registration parameterscan be obtained[27].All the experiments discussed in this paper were for rigid-body registration of CT,MR,and PET images of the brainof the same patient.However,it is clear that the MI criterioncan equally well be applied to other applications,using moregeneral geometric transformations.We have used the samemethod successfully for patient-to-patient matching of MRbrain images for correlation of functional MR data and forthe registration of CT images of a hardware phantom to itsgeometrical description to assess the accuracy of spiral CTimaging[14].MI measures statistical dependence by comparing the com-plexity of the joint distribution with that of the marginals.Bothmarginal distributions are taken into account explicitly,whichis an important difference with the measures proposed by Hillet al.[13](third-order moment of the joint histogram)andCollignon et al.[6](entropy of the joint histogram),whichfocus on the joint histogram only.In Appendexes A and B wediscuss the relationship of these criteria and of the measureof Woods et al.[30](variance of intensity ratios)to the MIcriterion.MI is only one of a family of measures of statisticaldependence or information redundancy(see Appendix C).We have experimentedwith,the entropy correlation coefficient[1].In some cases these measures performed better thanthe original MI criterion,but we could not establish a clearpreference for either of these.Furthermore,the use of MIfor multimodality image registration is not restricted to theoriginal image intensities only:other derived features such asedges or ridges can be used as well.Selection of appropriatefeatures is an area for further research.VIII.C ONCLUSIONThe MI registration criterion presented in this paper allowsfor subvoxel accurate,highly robust,and completely automaticregistration of multimodality medical images.Because themethod is largely data independent and requires no userinteraction or preprocessing,the method is well suited to beused in clinical practice.Further research is needed to better understand the influenceof implementation issues,such as sampling and interpolation,on the registration criterion.Furthermore,the performance ofthe registration method on clinical data can be improved bytuning the optimization method to specific applications,whilealternative search strategies,including multiresolution andgradient-based methods,have to be investigated.Finally,otherregistration criteria can be derived from the one presented here,using alternative information measures applied on differentfeatures.A PPENDIX AWe show the relationship between the multimodality reg-istration criterion devised by Hill et al.[12]and the jointentropy th-order moment of thescatter-plot[22]with the following properties.1)andand with。