mathematica讲义4
- 格式:ppt
- 大小:143.00 KB
- 文档页数:8
第2章 Mathematica4.0软件包 ——初等数学部分本章主要介绍Mathematica4中与初等数学有关的各种命令。
例2-1 求近似值。
例如圆周率Pi ,我们在Mathematica4中输入以下四种命令就将得到三种不同的结果:Pi 显示结果πPi // N 显示结果π的16位近似数N[ Pi ] 显示结果π的16位近似值(包括整数位)N[ Pi, 200 ] 显示结果π的200位近似值(包括整数位)注:N[Pi] 给出Pi 的16位小数近似值(包括整数位),屏幕只显示小数点后面5位,如果将结果复制一下,就会看见16位小数近似值。
另外,N[ Pi ,m ] 给出指定的m 位P i 的近似值。
类似地有 N[ E ,80] 等等。
例2-2 求一个数x 的绝对值: Abs[ x ]例2-3 (1)关于分数和分式通分:(1/2)+(1/3) 比较:(1/2)+(1/3)//N命令Together[ f ] 表示将表达式f 通分;Apart[f] 表示将有理分式f 写为不可约分式之和。
例如:][;)1)(1(12245f Apart x x x x x f +--+-= Cancel[f] 表示消掉有理分式f 的公因子;ExpandAll[f] 表示将有理分式f 的分子分母都展开为多项式; ExpandNumerator [f] 表示将有理分式f 的分子展开为多项式; ExpandDenominator[f] 表示将有理分式f 的分母展开为多项式;(2)多项式的展开。
命令与格式如下:()],[][;15332x f t Coefficien f Expand x x f ++= 其中Expand[ f ] 表示将多项式f 展开为级数形状;Coefficient[ f, x 5 ]表示求多项式f 中x 5的系数。
运行之后得到结果:63346333198765432x x x x x x x x ++++++++(3)多项式的因式分解。
数学与统计软件讲义§0 引论计算机与数学计算机是应数学计算要求而产生的,计算机技术水平又因计算能力的提高而提高。
数学计算的发展与计算机的发展是互相促进,交织在一起的。
§0.1数学对计算机发展的促进:§0.1.1巨大的计算需求刺激了计算机发展航海测量、大地测量对计算的需求(Pascal机械计算机);美国人口调查;二战对计算的巨大需求:弹道计算;密码破译、英国防空、战争物资生产等;§0.1.2数学方法为计算机设计提供了理论基础门电路——布尔代数算法——程序数学模型——各种应用程序等§0.2计算机对数学发展的促进§0.2.1在经济、管理领域的大规模应用资源分配——数学规划、运筹学等经济预测——多元统计分析、时间序列分析等§0.2.2其它应用石油勘探;气象预报;汽车、飞机等工业产品设计;地震预报;核武器研制等。
§0.2.3对数学理论的促进机器证明——吴文俊的工作;(偏)微分方程求解——混沌问题的发现§0.3数学计算的类型§0.3.1形式演算对各种抽象的表达式进行变换,其结果仍然是一个抽象的表达式。
§0.3.2数值计算对指定变量的值,计算表达式的值,其结果是一个数值。
§0.4常用数学与统计软件在计算机发展初期,通常是针对某一具体的目的,特定的计算编制特定的程序进行计算。
随着计算的需求增加,人们为了提高效率,将大的计算过程分解一系列小的计算过程,针对这些小计算过程编制所谓的子程序。
这些子程序具有相当的通用性,即对选定的子程序进行适当的组合,就可以完成许多大的、特定的计算目的,从而形成许多庞大的科学计算程序库。
但是,调用这些子程序的接口较为复杂,而且还需要具有相当的程序语言知识才能把它们组合成完成特定目的的计算程序,使用比较麻烦。
随着计算机技术的发展,人们进一步把这些子程序集成为统一的软件包。
第一章Mathematica的启动的运行Mathematica是美国Wolfram公司生产的一种数学分析型的软件,以符号计算见长,也具有高精度的数值计算功能和强大的图形功能。
目前最新版本是Mathematica4.0,本附录仅介绍Mathematica4.0的一些常用功能,须深入掌握Mathematica的读者可查阅相关书籍。
在Windows环境下安装好Mathematica4.0,用鼠标双击Mathematica图标(刺球状),在显示器上显示如图1-1的工作窗口,这时可以键入你想计算的东西,比如键入1+1,然后同时按下Shift键和Enter键(数字键盘上只要按Enter键),这时Mathematica开始工作,计算出结果后,窗口变为图1-2。
图1-1 Mathematica的工作窗口Mathematica第一次计算时因为要启动核(kernel),所需时间要长一些,也可以在Mathematica 启动后第一次计算之前,手工启动核,方法是用鼠标点击:Kernel->Start Kernel->Local.这样第一次计算就很快了。
图1-2 完成运算后的Mathematica的窗口图1-2中的“In[1]:=”表示第一个输入;“Out[1]=”表示第一个输出结果。
接下来可键入第二个输入,按这样的方式可利用Mathematica进行“会话式”计算。
要注意的是:“In[1]:= ”和“Out[1]=”是系统自动添加的,不需用户键入。
Mathematica还提供“批处理”运行方式,即可以将Mathematica作为一种算法语言,编写程序,让计算机执行,这在第七章将会作简要介绍。
第二章 Mathematica的基本运算功能2.1 算术运算Mathematica最基本的功能是进行算术运算,包括加(+),减(-),乘(*),除(/),乘方(^),阶乘(!)等。
注意:1 在Mathematica中,也可用空格代表乘号;数字和字母相乘,乘号可以省去,例如:3*2可写成3 2,2*x可写成2x,但字母和字母相乘,乘号不能省去。
在Mathematica中用函数DSolve[]得到微分方程的准确解,用函数NDSolve得到微分方程的数值解,当然在此处要给出求解区间(x,xmin,xmax)。
NDSolve也是既能计算单个的微分方程,也能计算联立微分方程组。
它能对大多数的常微分方程和部分偏微分方程求解。
在常微分可能有一些未知函数yi,但这些未知函数都依赖于一个单变量x。
NDSolve[{eqn1,eqn2,…},y,{x,xmin,xmax}]求函数y的数值解,x属于[xmin,xmax]NDSolve[{eqnl,eqn2,…},{y1,y2,…}{x,xmin,xmax}]求多个函数yi的数值解NDSolve以InterpolatingFunction 目标生成函数yi的解,InterpolatingFunction目标提供在独立变量x的xmin到xmax范围内求少的近似值。
NDSolve用迭代法求解,它以某一个x值开始,尽可能覆盖从xmin到xmax的全区间。
为使迭代开始,NDSolve指定yi及其导数为初始条件。
初始条件给定某定点x处的y i[x]及尽可能的导数y'i[x],一般情况下,初始条件可在任意x处,NDSolve将以此为起点自动覆盖xmin 到xmax的全区域。
下面对初始条件y[0]=0和y[1]=0分别求出x从0到1的范围内y’[x]=y[x]的解。
再看下面的微分方程的数值解使用Mathematica页可以很容易的得到解的图形。
这儿给出如何观察微商的逆函数的近似值图形。
我们使用命令Evaluate代替InterpolatingFunction能够节省时间。
例如:前面我们学习了有关Mathematica的各种基本运算及操作,为了使Mathematica更有效的工作,我们可对Mathematica进行模块化运算。
在模块内部通过编写一系列表达式语句,使其实现一定的功能。
在Mathematica内部也提供了很多程序包,我们将学习如何调用它们。
第4章 Mathematica 使用基础4.4 线性代数目录索引4.4 线性代数 (3)4.4.1 矩阵定义 (3)Array[f ,n]:定义n 维向量f (3)Array[f ,{n 1,n 2,…}]:定义n 1×n 2×…阶矩阵f........................................... 3 Array[f ,{n 1,n 2,…},{r 1,r 2,…}]:定义n 1×n 2×…阶矩阵f ,其起始下标为r 1,r 2,… .......................................................................................................... 3 IdentityMatrix[n]:n 阶单位矩阵.................................................................. 3 DiagonalMatrix[list]:对角线为list 中元素的对角矩阵 .................................. 3 DiagonalMatrix[list ,k]:第k 条副对角线上为list 中元素,其余元素为0的矩阵 3SparseArray[{pos 1,pos 2,…}->{val 1,val 2,…}]: CostantArray[f ,{n 1,n 2,…}]:在位置pos i 上元素值为val i 的稀疏矩阵............................................................... 4 SparseArray[{pos 1,pos 2,…}->{val 1,val 2,…}]: CostantArray[f ,{n 1,n 2,…}]:每一个元素都等于常数c 的n 1×n 2×…阶矩阵f ..................................................... 4 HilbertMatrix[n]:n×n 阶希尔伯特矩阵,元素等于1/(i+j-1) .......................... 4 HankelMatrix[n]:n×n 阶汉克尔矩阵,第一行和第一列元素为1、2、…、n . 4 HankelMatrix[list]:以list 为第一行和第一列元素的汉克尔矩阵 ................... 4 ToeplitzMatrix[n]:n×n 阶特普利茨矩阵,第一行和第一列元素为1、2、…、n 4ToeplitzMatrix[list]:以list 为第一行和第一列元素的特普利茨矩阵 .............. 5 ※注:在Mathematica5.0中,要先调用线性代数程序包...................................... 5 A[[i ,j]]或a[[i ,j]]:A=Array[a ,{m ,n}]的第i 行第j 列元素 ..................... 7 A[[i]]:A 的第i 行元素 ............................................................................... 7 A[[All ,j]]:A 的第j 列元素 ....................................................................... 7 A[[{i1,i2,...,ip},{j1,j2,...,jq}]]:由第i1,i2,...,ip 行和第j1,j2,...,jq 列构成的子矩阵.............................................................................................. 7 Take[A ,{i0,i1},{j0,j1}]:由第i0,i1行到第j0,j1列构成的子矩阵 .... 7 Tr[A ,List]:由列表给出矩阵的对角线元素................................................. 7 4.4.2 矩阵运算 .. (7)A+B :矩阵A 、B 相加 ................................................................................ 8 c*A :常数c 乘以矩阵A.............................................................................. 8 A.B :矩阵A 、B 相乘,即矩阵的内积 (8)A*B :矩阵A 、B 的对应元素相乘 ............................................................... 8 A^n :矩阵A 的每个元素都进行n 次幂运算 (8)Dot[a ,b]:向量a 与b 的内积.cos a b ab θ=(即向量a 的长度乘以向量b 在a 上的投影的长度),θ为向量a 与b 的夹角 (9)Cross[a,b]:向量a与b的外积sin⨯=(其长度等于以向量a、a b a bθb为边的平行四边形的面积),θ为向量a与b的夹角 (9)Transpose[m]:计算矩阵m的转置 (9)ConjugateTranspose[m]:计算m的转置共轭阵 (9)Inverse[m]:求m的逆矩阵 (9)Det[m]:求m的行列式 (9)Minors[m]:求方阵m的子式,其中第{i,j}个元素是去掉第n-i+1列和第n-j+1行之后的行列式的值 (9)Minors[m,k]:求m的所有k阶子式 (9)Tr[m]:求m的迹 (9)MatrixRank[m]:求m的秩 (9)MatrixPower[m,n]:求m的n次幂 (10)MatrixExp[m]:求e m (10)Normalaze[v]:将向量v单位化 (11)Orthogonalize[{v1,v2,...}]:将向量组v1,v2,...单位化 . (11)GramSchmidt e[{v1,v2,...}]:将向量组v1,v2,...单位化(Mathematica5.0中) (11)Norm[expr]:求向量或矩阵的范数 (12)Norm[expr,p]:求p的范数 (12)Eigenvalues[m]:求方阵m的特征值 (12)Eigenvalues[m,k]:给出方阵m的前k个特征值 (12)Eigenvectors[m]:求方阵m的特征向量 (12)Eigenvectors[m,k]:给出方阵m的前k个特征向量 (12)Eigensystem[m]:给出方阵m的(特征值、特征向量) (12)Eigensystem[m,k]:给出方阵m的前k个(特征值、特征向量) (12)LinearSolve[m,b]:求mx=b的一个解,若m非奇异,得唯一解;若m奇异,的方程组的一个特解 (13)NullSpace[m]:求mx=O的基础解系 (13)LUDecomposition[m]:对方阵m进行LU分解 (14)CholeskyDecomposition[m]:将对称正定矩阵m做楚列斯基分解 (14)QRDecomposition[m]:给出m的QR分解,结果存放为{q,r},q为正交方阵,r为上三角阵 (14)JordanDecomposition[m]:给出方阵m的若尔当分解,结果存放为{s,j},s为过渡矩阵,j为若尔当标准型 (14)N[expr]:给出表达式expr的近似值,默认有效数字为6位 (15)N[expr,n]:给出expr的近似值,有效数字为n位 (15)Expr//N:给出expr的近似值,默认有效数字为6位 (15)Map[f,expr]:对expr中第1层次的元素进行f操作 (15)4.4 线性代数相信大家在学习线性代数时,对于求一个较大矩阵的逆、特征值或者将其化为标准型,都会为其繁冗的符号运算头痛不已。
Mathematica4.0使用方法数学实验课教材首钢工学院Mathematica数学实验Mathematica 是一个交互式的计算系统.这里说的交互是指:在使用Mathematica 系统的时候,计算是在使用者(用户)和Mathematica 互相交换、转递信息数据的过程中完成的.用户通过输入设备(一般指计算机键盘)给系统发出计算的指令(命令),Mathematica 完成给定的计算工作后把计算结果告诉用户(一般通过计算机显示器).Mathematica 是一个集成化的计算机软件系统.它的主要功能包括三个方面:符号演算、数值计算和图形绘制.例如,它可以完成多项式的各种计算(四则运算、展开、因式分解);可以求多项式方程、有理式方程和超越方程的精确解和近似解;做数值的或一般表达式的向量和矩阵的各种计算;求一般函数表达式的极限、导函数、积分、幂级数展开,求解微分方程等等.根据教学大纲的要求及学校的课时安排(共12课时,内含2课时考试),我们将Mathematica数学软件的学习缩编成下面的四个实验,以期在短时间内使同学们掌握该软件的基本使用方法,学会用它解决高等数学中的一些常见问题.目录第一篇微积分 (1)实验一……………………………………………………实验二……………………………………………………实验三……………………………………………………实验四……………………………………………………第二篇线性代数……………………………………………………实验一……………………………………………………实验二……………………………………………………第三篇概率统计……………………………………………………第四篇复数与积分变换……………………………………………附录Mathematiac一部分函数及意义……………………第一篇微积分实验一一、实验目的1.学习在Windows下Mathematica 4.0软件的启动与退出,并熟悉其界面;2.建立文件与保存文件;3.学习用基本运算符号和模板进行加、减、乘、除、乘方、开方等常用的算术运算;4.学习表示计算结果的近似结果;5.会用符号或模板进行常见函数的输入及多项式的变换;6.会给变量赋值.二、内容与步骤1.Mathematica 4.0的启动与退出启动计算机,屏幕上显示Windows界面,单击“开始”进入主菜单,将鼠标移向“程序”,找到包含Mathematica 4.0的程序组,单击可执行程序Mathematica 4.0就进入了该系统,此时系统已进入交互状态,在等待用户输入命令.当软件使用完毕后,需要退出Mathematica系统时,只须单击工作窗口右上方的“File”菜单中选用命令“Exit”,或者按“Alt+F4”键均可退出系统,回到操作系统状态.例如:输入2+3后,按Enter+Shift组合键或右边小键盘上的Enter键运行,屏幕上就显示出In[1]:=2+3Out[1]=5其中In[1]:= 表示第一个输入,Out[1] = 表示第一个输出,它们是在运行后由系统自动显示的,用户不必输入.注意:若直接按左边的Enter键,只是在输入的组合命令中起换行的作用.2.建立文件与保存文件在工作窗口做好的某些内容,如果想要保留以供今后多次使用,通常是建立一个文件,将做好的内容保存在文件中.单击File/ Save as,在文件名N一栏内键入一个文件名,然后左击保存S.3.算术运算与模板的使用a):输入基本运算符号加+减-乘*(或用一个空格表示相乘)除/幂乘yx^优先运算:用圆括号,并可重复多次使用.b):模板的调出与运用方法一:在Mathematica 3.0以上版本的输入中,可以使用工具按钮输入各种运算,其步骤如下:①单击菜单栏中的文件File选项;②在下拉菜单中选择调色板Palettes选项;③在下一级菜单中单击基本计算BasicaCalculations选项,将会另外出现一个工具窗口;④在其窗口中单击计算与数值Arithmetic and Numbers选项前的符号“”,使其符号变成“▽”,将出现加、减、乘、除、乘方、开方等工具按钮;⑤单击需要的按钮,在原Notebook窗口中将会出现相应输入格式,将光标移到标有“□”的位置上,输入数值或表达式,就可以完成输入格式.方法二:在第③步,在下一级菜单中单击基本计算BasicInput 选项,出现一个常用的含有多种运算的模板(加、减可以直接从键盘输入+、-号) 4. 近似与精确 a ) 命令输入:N[表达式,n] 精确到n 位有效数字;N[表达式] 近似值按计算机默认的数位(6位)处理; [表达式]// N 同上;% 表示最近一次计算机运行后的输出结果;注意:1)当输出结果是610以下的数字,近似值按计算机默认的6位有效数字处理;610及610以上的近似值计算机按科学计数法处理.2)N[表达式,n] 表示精确到n 位有效数字(注:当n=1~16时,结果都按计算机默认的6位处理). b) 模板调出:与上述算术运算模板调出的方法一相同. 例1 1)输入: N310,结果显示:0.0141592653589792)输入:N ,结果显示: 3.1(按计算机默认的6位处理) 3)输入:N %, 表示对当前结果取18位有效数字近似 4)输入:4566000.66777777777777结果显示:4.5665.Mathematica中的常数、数学函数与常见的多项式变换a)直接从键盘输入(在英文状态下)Mathematica的常数:Pi 表示πE 表示eDegree (π/180)表示度I 表示虚数iInfinity 表示无穷大∞Mathematica中常用的数学函数:幂函数Sqrt[x] (求平方根) ;指数函数Exp[x] (以e为底的指数函数);对数函数Log[x] (以e为底的对数函数);Log[a,x] (以a为底的对数函数);三角函数Sin[x],Cos[x],Tan[x],Cot[x],Sec[x],Csc[x];反三角函数ArcSin[x],ArcCos [x],……;双曲函数Sinh[x],Cosh[x],Tanh[x],Coth[x],……;反双曲函数ArcSinh[x],…….Mathematica中常见的多项式变换:Factor[表达式] 将表达式分解因式Expand[表达式] 将表达式展开成多项式和的形式Simplify[表达式] 将表达式化简成最简形式Apart[表达式] 将表达式分解为部分分式之和函数表达式的运算规则有:1).它们都以大写字母开头,后面用小写字母.当函数名可以分成几段时,每一个段的头一个字母用大写,后面的字母用小写.例如,ArcSin[x].2).函数的名字是一个字符串,其中不能有空格.3).函数的自变量表用方括号括起来,不能用圆括号.4).多元函数的自变量之间用逗号分隔.b)模板介绍在Mathematica3.0以上版本的输入中,可以使用工具按钮输入各种函数,其步骤如下:①击菜单栏中的文件File选项;②在下拉菜单中选择调色板Palettes选项;③在下一级菜单中单击基本计算BasicaCalculations选项,将会另外出现一个工具窗口;在其窗口中单击三角与指数函数Trigonometric and Exponential Finctions选项前的符号“”,使其符号变成“▽”并列出子选项的清单;在此清单中单击三角Trigonometric选项前的符号“”,使其符号变成“▽”,将会出现一些三角函数和反三角函数工具按钮;单击需要的按钮,在原Notebook窗口中将会出现相应三角函数或反三角函数输入格式,将光标移到标有“□”的位置上,输入数值或表达式,就可以完成输入格式;在此清单中单击指数与对数Exponential and Logarithmic选项前的符号“”,使其符号变成“▽”,将会出现一些指数与对数函数工具按钮;单击需要的按钮,在原Notebook窗口中将会出现相应指数或对数函数输入格式,将光标移到标有“□”的位置上,输入数值或表达式,就可以完成输入格式;在此清单中单击双曲函数Hyperbolic选项前的符号“”,使其符号变成“▽”,将会出现一些双曲函数和反双曲函数工具按钮;单击需要的按钮,在原Notebook窗口中将会出现相应双曲函数和反双曲函数输入格式,将光标移到标有“□”的位置上,输入数值或表达式,就可以完成输入格式. 在其窗口中单击计算与数值Algebra 选项前的符号“”,使其符号变成“▽”,将出现Polynomial Manipulation ,Simplifyication 等工具按钮进行相关选择即可完成多项式的变换; 例2In[13]:=Log[2,3.256] Out[13]:=1.7031 例3:已知1 ,1232221-=-+=x p x x p ,计算2121 ,p p p p ⨯+,21p p ÷并将2121 ,p p p p ⨯+的结果分解因式、展开多项式,将21p p ÷的结果分解为部分分式 输入:p1 3x^22 结果显示: 12xp2 x^1P122x p11x212xp1Factor p11x1x21Expand p1p212x 4x 22x3Apart p 136. 变量赋值:命令格式:x= a 将值a 赋给变量xu=v=a 将值a 赋给变量u 、v (给多个变量赋值)f[x]/. x->a 变量x 赋值为a (求函数f[x]在x=a 时的值) u := 延迟赋值,按Shift+Enter 键没有结果输出,待给变量赋值运行后才有结果u= 直接赋值,按Shift+Enter 键后有结果输出 u=. 清除变量u 的值Clear[x] 清除变量x 的值,多用作清除函数注意:应随时将以后不再使用的变量的值清除掉,以免影响后面某些计算结果的正确性.习题一1. 计算1)62456log 3e -+并保留15位有效数字.2) sin(30)+tan(6π)并精确到小数点后7位.3)7lg 21arctan 1arcsin ++2. 给变量赋值并计算1) 若x=6,y=e,z=x+3y ,计算3z-5y 2+6(x-7)52)x=3,y=5π,计算(lgx )⨯arcos(2y)- 9并保留18位有效数字.3.设p1=2x-1, p2=3x-7, 求 p1×p2, 并展开它,再分解因式,最后将 1/(p1×p2)分解为部分分式. 练习过程及答案N 34Log 2,566,316.8.1.0z x 3y . x 6,y3z 5y 26 x 75. x 6,y ,z 665 23 69.000000000000000000.33490675722196522x 1 3x 12x 73Expandy9.实 验 二一、实验目的1、学习使用自定义函数,会求函数值;2、学习用绘图语句作函数图形;3、学习用解方程的语句解方程、方程组;4、会建立表,进行表的基本运算. 二、内容与步骤 1、自定义函数:一般函数: f[x_]= 表达式 定义的规则x 可以被替代 f[x_]:= 表达式 延迟赋值 f[x_]=. 清除f[x_]的定义Clear[f] 清除所有以f 为函数名的函数定义 分段函数:Which[条件1,表达式1,条件2,表达式2,…条件n ,表达式n]Which 语句是表示分段函数的常用语句. 例1:定义函数:x x x x f cos )(2++=,并求f (2)的值输入命令:显示输出: 4.9输入显示结果注意:f[2.]表示求自变量为2时函数的近似值;f[2]表示为精确值..10.例2:定义函数....0()0.. 0....0x x g x x x x >⎧⎪==⎨⎪-<⎩并求:)0(),3(),1(g g g -的值 输入命令g x_: Which x 0,x,x 0,0,x0,(将分段函数自定义成一个函数)显示结果 1 输入显示结果 3 输入显示结果 0注意:中括号内的等号要输成双等号 2.作图:1)基本作图命令格式(a )只规定自变量范围的作图命令:Plot[f(x),{x,x1,x2}](b) 不仅规定自变量范围,还规定因变量范围的作图命令Plot[f(x),{x,x1,x2},PlotRange->{y1,y2}](c) 不仅规定自变量范围,还可以加标注(函数名称,坐标轴) Plot[f(x),{x,x1,x2},PlotLabel->“表达式 ”,AxesLabel ->{“x ”,“y ”}11.2)观察函数图形的叠加情况设)...(),(21x f y x f y==,若在一个坐标系里观察这几个函数图像命令格式为:Plot[{ )(),(21x f x f },{x,x1,x2}]注意:不要将“ )(),(21x f x f ”写成“ )(),(21x f y x f y ==”例3:做出y=sinx 在[-4π4π]之间的图像Plot S in x , x ,4Pi,4例4:做出y=tanx 在[0,4π],y ∈[-5,5]之间的图像PlotT an x , x ,0,4 ,PlotRange 5,.12.例5:做出y=sinx,sin2x,sin3x 在[0,2π]内的标出坐标轴的且用三种不同颜色标示的图像.3) 分段函数的作图先利用条件语句Which 自定义分段函数,然后用Plot 语句画出分段函数的图形格式步骤:首先输入 f [x _]:= Which[条件1,表达式1,条件2,表达式2,…条件n ,表达式n]再输入 Plot[f(x),{x,x1,x2}] 例6 作出....0()0.. 0....0x x g x x x x >⎧⎪==⎨⎪-<⎩的图像g x _ : Which x 0,x,x 0,0,x0, Plot g x , x ,2,13 .4)参数方程作图使用 ParametricPlot 函数可以画参数形式的图形,格式如下: ParametricPlot[{x(t),y(t)},{t ,a ,b},可选项]ParametricPlot[{{x1(t),y1(t),{x2(t),y2(t)},...},{t ,a ,b},可选项]例7 画出圆的参数方程的⎩⎨⎧==ty tx sin cos ,0<t <2π曲线图形解 In[5]:=ParametricPlot[{Sin[t],Cos[t]},{t ,0,2Pi},AspectRatio ->Automatic] Out[5]:=AspectRatio :指定作图的纵横比例.系统默认值约0.618:1.可以为 AspectRatio 指定任何一个其他数值.如果希望系统按实际情况作图即纵横比例为1:1,则需要将这个可选项设置为Automatic . 5)二元函数的图像命令格式:首先定义二元函数: z[x_,y_]:=表达式 然后作图Plot3D[z[x,y],{x,x1,x2},{y,y1,y2}].14.例8 做出222y x z +=的图像输入: 输出:上述命令大多可以通过模板调出 ① 左击菜单栏中的文件File 选项; ②在下拉菜单中选择调色板Palettes 选项;③在下一级菜单中单击基本计算BasicaCalculations 选项,将会另外出现一个工具窗口;④ 在其窗口中单击图形Graphics 选项前的符号“”,使其符号变成“▽”并列出子选项的清单进行选择3.解方程: 1)解方程命令格式:Solve[f(x)= =0,x] 2) 解方程组命令格式:Solve[{f (x)= =0,g (y)= =0,…},{x,y,…}]15.上述命令可以通过模板调出 ①左击菜单栏中的文件File 选项; ②在下拉菜单中选择调色板Palettes 选项;③在下一级菜单中单击基本计算BasicaCalculations 选项,将会另外出现一个工具窗口;④在其窗口中单击图形Algebra 选项前的符号“”,使其符号变成“▽”并列出Solving Equations 选项的清单进行选择 例9 求方程063523=++-x x x 的根. 解: 输入Solve x 35x 23x 60 输出:例10 求方程组⎩⎨⎧=+=-ny x m y x 2的根 解: 输入Solvex 2y m,x y n , x ,输出:例11求解方程b x x =++-11 解: 输入输出:4.表的操作 1)表的生成.16.一维表:{a,b,c…}二维表(表中表):{{一维表1},{一维表2},{一维表n}…} 如:一维表{1,2,3},二维表{{1,2},{5,2},{6}}2)表中元素的提取一维表b 的第i 个元素: b[[i]] 或Part[[b,i]] 二维表b 的第i 个分表:b[[i]] 或Part[[b,i]] 二维表b 的第i 个分表中的第j 个元素: b[[i,j]] 如:b={{1,2},{5,2},{6}} b[[2]]-----显示 {5,2} b[[2,1]]----- -显示53)表的运算设b1,b2表示结构完全相同的两个表,表b1,b2的和、差、积、商等于对应元素的相应运算(分母不为零)b1={{1,2},{5,2},{6}},b2={{3,1},{0,2},{2}} b1+ b2={{4,3},{5,4},{8}}习题21. 解方程组⎪⎩⎪⎨⎧=+=342y x x y 2.f(x)=2x 2+5x-8, 求f (1) f (3)f( 2)作出图像3.作出⎪⎪⎩⎪⎪⎨⎧>-≤≤-<=2 (22)0........20................sin )(32x x x x x x x x f 的图像,并求f(0.3)17.4.作出y=cosx,cos2x,cos3x 在[0,2π],标出坐标轴并带有三种不同颜色的图像 答案:Solvey 2 4x,x y 3 , x ,yx 1,y 2 , x 9,y 6f x _2x^25x 85x 2fPlot f x , x ,5,5Graphicsg 0.0.79895Plot g x , x ,5,5GraphicsPlot C os x ,Cos 2x ,Cos 3x , x ,0,2Pi ,AxesLabel "x","y" PlotStyle R GBColor 1,0,1 ,RGBColor 0,1,0 ,RGBColor 0,0,1GraphicsSurfaceGraphics实 验 三一、 实验目的1.学习用软件计算极限,判断函数的连续性;2.学习用软件计算一元函数的导数、多元函数的偏导数;3.学习用软件计算隐函数、参数式函数的导数及函数的微分、全微分; 4.学习用软件计算微分方程的解; 5.导数的简单应用. 二、 内容与步骤 1. 极限、连续:1)求一元函数的极限的命令格式是:Limit[f[x],x ->x 0] 表示求函数x →x 0 的极限;Limit[f[x],x ->x 0,Direction ->1] 表示求函数x →x 0-的极限(左极限); Limit[f[x],x ->x 0,Direction ->-1] 表示求函数x →x 0+的极限(右极限).2)若x 趋于无穷,即 x → ∞,则格式为Limit[f[x],x → ∞] x 趋于负无穷或正无穷格式为:Limit[f[x],x → - ∞] , Limit[f[x],x → + ∞]3)注:->∞ 也可由File → Palettes → BasicInput 中的符号输入 例1 求下列函数的极限:(1)443lim 24---→x x x x输入: Limit[4 ,4432→---x x x x ]输出:5 (2)xxx 3arctan lim+∞→输入:Limit[ArcTan[x]3x,x→+∞]输出:0 (3)x x x 2)4751(lim -+∞→ 输入:Limit[x x 2)4751(-+,x→∞] 输出:例2 求 x x e --→133lim 及x x e +-→133lim输入:Limit[,x→3,Direction→1]Limit[,x→3,Direction→-1] (e 为BasicInput 符号栏中的 )输出:0 输出:∞还有一些函数没有极限,此时系统会进行相应的处理,返回一些特殊的结果.例3 求当x →0时,y =sinx1的极限. 解:输入:Limit[Sin[1/x],x→0]输出:Interval[{-1,1}]上面这个例子表示当x →0时,函数sin x1在-1与1之间无穷震荡,所以没有确定的极限.例4 判定函数⎪⎩⎪⎨⎧≤+>=02302sin )(x x x xxx f 在 x=0点是否连续.解:输入:Limit[Sin[2x]x,x →0,Direction→-1] 右极限 输出:2输入: Limit[3x +2, x →0, Direction→1]] 左极限 输出:2输入:3x+2/.x→0 计算函数值 输出:2∴ 函数在x =0这一点连续. 2. 导数、偏导数1)一阶导数)(x f '的命令格式为: D[f ,x] (f 为函数表达式,x 为自变量) 2)n 阶导数)()(x f n 的命令格式为: D[f,{x,n}] (n 为导数的阶数) 3)用BasicInput 工具栏输入: (函数表达式变量∂ 此时的函数表达式可以是一元或多元函数,变量可有一个或多个,使用灵活.如输入: x x 3(求一元函数x 3对x 的一阶导数) 输出:8x输入: x,x x 3(求一元函数x 3对x 的二阶导数) 输出:输入: x x 3y 4x (求二元函数x 3y 4对x 的一阶偏导数)输出:3x 2y 8输入: y x 3y 4x (求二元函数x 3y 4对y 的一阶偏导数)输出:x 38输入: x,x x 3y 4x (求二元函数x 3y 4对x 的二阶偏导数)输出:6x y输入:x,y x 3y 4x (求二元函数x 3y 4先对x 后对y 的二阶偏导数)输出:3x 21输入: y,y x 3y 4x(求二元函数x 3y 4对y 的二阶偏导数)输出:例1 求下列显函数的导数:(1)3532x x y += (2)x e x y 2= (3)12ln +=x x y 解:(1)输入: D[2 x 5+3 x 3,x]输出: 9x 2+10x 4(2)输入:x x输出:2 xx(3)输入:x Log x2x输出:例2 求函数22ln ),(y x y x f +=的偏导数x f ∂∂,y f∂∂,y x f ∂∂∂2解: 输入:输出:x输入: 输出:x输入:输出:例3 求函数5-202Q Q R =,当Q=15和Q=20时的()20)15(R R ''及 解:求函数在一点x 0处的导数值,只需在输入表达式后面再继续输入“/.x→x 0”即可.方法一:输入:D[Q ,5Q -Q 202]/.Q →15 输出:14 (即 (15)14R '=)输入:D[Q ,5Q -Q 202]/.Q →20 输出:12. (即 (20)12R '=)方法二:(函数表达式)变量∂/.x->a输入:输出:输入:输出:12例4 求函数f (x )=sin ax cos bx 的一阶导数dx df ,并求ba x dxdf+=1.解: 输入:x S in a x Cos b x.x a输出:例5 求下列函数的高阶导数:(1)5x y = 求:y ''' (2)x xe y 3= 求:y '' (3)xx xy cos sin sin += 求:y ''解:(1)输入:D[x ^5,{x ,3}]输出:60x 2(2)输入:D[x Exp[3 x],{x ,2}]输出:6 3x9输入:Simplify[D[Sin[x]/(Sin[x]+Cos[x]),{x,2}]] 输出:Cos[x]-Sin[x]Cos[x]+Sin[x]-22()()3. ㈠求隐函数的导数由方程F (x , y )=0 确定的函数)(x f y =,称为隐函数.方法:1)自定义一个导函数G[x_]对F (x ,y )求导,但必须将变量y 输入成y[x],即y 是x 的函数.2)用Solve 函数将y [x]'解出即可.即先求导再解方程.例6 求由方程12222=+by a x 所确定的隐函数的导数.解:方法一输入:D[2222x y[x]+a b-1,x ](先自定义一个导函数G[x],这里表达式中的y 应写成y[x])输出:22b [x]2y[x]y'a 2x + 输入:Solve[G[x]==0,y'[x]](用解方程Solve 命令,从导函数的方程G[x ]=0 中解出y'[x],这里方程必须使用双等号“==” )输出:{{y'[x] → -y[x]a xb 22}}方法二:利用工具栏与解方程语句:输入:输出:例7 已知方程0=-y xe xy 确定一个y 是x 的函数)(x f ,求 )(x f '. 解: 输入:Solve x xx y xy x0,y'输出:例8.设函数满足方程sin x x y ye +=0,求 ()y x '. 解:输入:Solve x x Sin y xy xx 0,y'输出:㈡ 求函数的微分、全微分求函数的微分dy ,其形式为Dt[f(x)].输出的表达式中所含的Dt[x],这里可以视为dx .求函数f (x, y )的全微分dz , 其形式为 Dt[f[x ,y]] 例9 求y =sin2x 的微分dy . 解: 输入:Dt[Sin[2x]]输出:2 Cos[2 x] Dt[x]例10 求函数x e x x y 23ln +=的微分dy . 解: 输入:Dt[x ∧ 3 Log[x]+Exp[2 x]]输出:2 e 2 x Dt[x]+x 2Dt[x]+3x 2Dt[x]Log[x] 再化简一下输入:Simplify[%]输出:Dt[x](2 e 2 x +x 2+3x 2 Log[x]) 即 dx x x x e dy x )ln 32(222++= 例11 求函数u xy z =23的全微分. 解: 输入:Dt[x y^2 z^3]输出:y 2 z 3 Dt[x] + 2 x y z 3 Dt[y] + 3 x y 2 z 2 Dt[z] ㈢ 参数式函数的求导形如 ⎩⎨⎧==)()(t x t y ψϕ 的函数为参数式函数,其导数 t t x x y y ''='. 其输入方式为:例12.设 ⎪⎩⎪⎨⎧==ta y ta x 33sin cos ,求 dx dy解: 输入: 输出:Ta例13.求椭圆⎩⎨⎧==tb y t a x sin cos 在 4π=t 处的导数解: 输入:输出:4.用 Mathematica 解微分方程其格式为: DSolve[微分方程,y[x],x] 注意要将y 输入成y[x] 例14 解微分方程 ()()y x y x '+=1解: 输入:DSolve[y'[x]+y[x]==1,y[x],x]输出:{{y[x]->1+xE C[1]}} 例15 求微分方程(x 2+y 2)dx -xydy =0的通解.解: 输入:DSolve[(x^2+y[x]^2)Dt[x]-x y[x] Dt[y[x]]==0,y[x],x]输出:{{y[x]->-Sqrt[x 2 (C[1]+2 Log[x])]},y[x]-> Sqrt[x 2 (C[1]+2 Log[x])]}}例16 求微分方程 ()x y xy '''+=212满足初始条件10==x y ,3'0==x y 的特解. 解: 输入:DSolve[{(x^2+1)y''[x]==2x y'[x], y[0]==1, y'[0]==3}, y[x],x]输出:{{y[x]-> 1+3 x +x 3}}5.导数的简单应用 (1)求函数的单调区间例17 求函数123+-=x x y 的单调区间解:函数的单调区间需要用到一阶导函数的图像、一阶导函数为零的驻点.输入:f x _ : x 32(建立函数) Plotf x ,f' x, x ,3,3 ,PlotStyle G rayLevel 0.01 ,Dashing0.01(画函数与导函数图像,其中虚线为导函数图像)输出:输入:Solve f ' x(求函数的驻点) 输出:观察图像,两个驻点将定义域分成三个区间,可看出函数在 ),32,(--∞),32(+∞内为增函数,在)32,32(-内为减函数.(2)求函数的极值例18 求函数21xxy +=的极值 解: 输入:g x _ : 1 Plotg x ,g' x, x ,3,3 ,PlotStyle G rayLevel 0.01 ,Dashing0.01输出:输入:Solve g ' x输出: x 1 , x(从图中可看出两驻点分别是极小值点和极大值点)输入: g输出:2(3)求极值的近似值 例19 求函数)2(cos 25)2(sin 222xx x y +=位于),0(π内的极值的近似值. 解:输入:Plot f x , x ,0,输出:观察图形,函数约在x=0.8、x=2.3处有极大值,在x=1.6处有极小值,可用命令FindMinimum 直接求极值的近似值,其格式为:FindMinimum[f[x],{x ,x 0}],求以x 0为初始点的局部极小值.FindMinimum 只可求极小值的近似值,欲求极大值的近似值,须将函数换成相反函数.输入: FindMinimum f x , x ,1 输出:1.94461, x 1.623即同时得到极小值1.94461和极小值点1.62391 输入:FindMinimum f x , x ,0输出: 3.73233,x 0.8641输入: FindMinimum f x , x ,2输出:2.95708,x 2.244即函数-y 的两个极小值和两个极小值点,从而得到函数y 的两个极大值和极大值点.(4)最大、最小值的应用例20 要制造一个容积为2,上端为半球形,下端为圆柱的粮仓,问:当圆柱的高和底半径为何值时,粮仓的表面积最小? 解: 设粮仓的表面积为S ,圆柱的高为h>0, 底半径为r>0.由题意,粮仓的容积2=323421 r h r ππ⋅+,则 )31 1(2 322223r r r r h -=-=πππ ∴粮仓的表面积S=⋅r 2π)31 1(22r r -π+324 42122r r r ππ+=⋅. 输入: FindMinimum[4/r+2πr 2/3,{r,10}] 输出:{6.09295,{r →0.984745}}.(5)微分方程的应用例21 一质量为m 千克的物体从高处下落,所受空气阻力与速度成正比,设物体开始下落时(t=0)的速度为零,求物体下落速度与时间的函数关系v (t). 解:设物体所受空气阻力为f ,由题得 kv f =(k 为比例系数),下落时所受重力为mg ,根据牛顿第二定律有 v m ma kv mg f mg '==-=- 输入:DSolvem v' t m g k v t ,v 0 0 ,v t输出: 输入:Simplif输出:习题3 (每小题中括号内为该题答案)1. 求导数:(1)tan )2xy =[(2)1124=y (3)sin cos cos x y y y -+=220 求 .y '(4)cos()sin ,y xy x =223求 .y ' 326s i n [3x ]c o s [3x ]+y s i n [x y ][]2ycos[xy]-xy sin[xy](5),6x e y x ⋅= 求 )1()5(y [4051e] (6)x y z cos = , 求 y x z z '' , [y Si ,Co](7)xy e z =,求 y x z z '' , [,](8)求 y e z x cos sin = 的二阶偏导数 [SinxCos x2Cos ySin xCos y Si,SinxCos x Si,Sin xCo] (9) 求函数 ⎪⎩⎪⎨⎧==-tt ey tex 的导数[(10)求函数 ⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 的导数[2.求微分及全微分:(1)674335+-+=x x x y [7Dt x 12x 2Dt x 15x 4D] (2)32cot(ln )=x y ex[(3)xxx y ++=1sin ln [(4)y e z x sin = [ xCos y Dt yxDt x Si] (5))cos(y x x z += [Cos x y Dt x x Dt x Dt ySinx] 3.解微分方程 (1)求微分方程yxdx dy -=的通解. [(2)求微分方程0)1(22=++dy x dx xy 的通解.[(3)求微分方程x yx y dx dy tan +=的通解. [{y xx ArcSin x}] (4)求微分方程x x x y dxdysin 2cot =-的通解.[y x x 2Sin x C 1 Sin] (5)求微分方程42x y y x =+'满足初始条件61)1(=y 的特解. [ y x]4.求下列极限 (1)1lim1-+→x xx [∞](2)11lim31++-→x x x [31 ] (3)121lim +-∞→⎪⎭⎫⎝⎛+x x x x [ 2e ](4)判断函数 ⎪⎩⎪⎨⎧>≤-=0,0,1)(2x x x x x f 在 0=x 处是否连续? [ 不连续 ]实 验 四一、 实验目的1、 学习用软件计算不定积分;2、 学习用软件计算定积分、二重积分和广义积分;3、 定积分的简单应用,求平面面积和旋转体体积. 二、 内容与步骤 1.不定积分输入格式: BasicInput 符号栏中的符号注意:输出结果均不带积分常数. 例1 求下列不定积分 ⎰dx x5解:输入:x输出:6x 62. 定积分输入格式: BasicInput 符号栏中的符号例2 求下列定积分 ⎰-212 1dx x x解:输入:输出:3 例3 计算广义积分⎰+∞∞-+dx x 211解:输入:输出:例4 计算由抛物线2x y =和直线x y =所围成的平面图形的面积及该图形绕x 轴旋转一周所得的旋转体体积(表示出必要的步骤)解:(1)求交点输入:Solvey x,y x^2 , x ,输出: y 0,x 0 , y 1,x(2)作图 输入:Plotx ,x^2 , x ,2,输出:GraphClea Clea(3)定积分求面积输入:1 x x^2输出:6(4)定积分求体积输入:1x 2x输出:13.二重积分用Mathematica 计算二重积分的命令格式是:输入方法:先输入一元定积分符号,在中间积分变量的位置再输入一次定积分符号,作为累次积分的第一次积分.括号内为第一次积分,括号外为第二次积分. 例5 计算⎰⎰+1212x xxydy dx解: 输入:012xx 21x y输出:121 例6 计算⎰⎰+=Ddxdy y x I )(22, 其中D 由2 ,21,===y x y x y 围成解:①画平面区域图输入:输出:② Y - 型区域输入: 02y2yx 2y 2输出:3习题4(每小题中括号内为该题答案)求下列积分:(1)⎰-dx x x x)11(2[x+x](2)⎰+dx xsin 11[x 2Sin[]2x x Cos[]+Sin[]22] (3)⎰+dx x x 3)cos (sin [1(-9Cos[x]-Cos[3x]+9Sin[x]-Sin[3x])6](4)2ln(sin )sin x dx x⎰[ -x-Cot[x]-Cot[x] Log[Sin[x]]] (5)⎰xdx x arctan 2 [(6)21sin 1cos x xdx x++⎰ [(7)⎰--1145dx xx [6](8)⎰∞--02dx xex [](9)[2](10) 计算由曲线282yx =-和x 轴所围成的平面图形的面积及该图形绕x 轴旋转一周所得的旋转体体积(表示出必要的步骤)[3,(11)计算由曲线21yx =-和22y x =+所围成的平面图形的面积及该图形绕x 轴旋转一周所得的旋转体体积(表示出必要的步骤) 过程: Solvey x 21,y 2x 2 , x ,y 0,x 1 , y 8,xPlotx 21,2x 2 , x ,2,Graph132x 2 x 213132x 2 ^2 x 21 ^2(12)计算二重积分3y Ded σ-⎰⎰,其中D 由20,1,x y y x ===围成过程:①画平面区域图② Y - 型区域1y 2 y3第二篇 线性代数实验 一一、实验目的6.掌握Mathmatica 中矩阵的输入方法; 7.学习用Mathmatica 软件计算行列式;8.学习用Mathmatica 软件进行矩阵的基本运算; 9.学习用Mathmatica 求逆矩阵及矩阵的秩.二、内容与步骤1.Mathmatica 中矩阵的输入方法 (1)按表的格式输入: (一般方法)}}{},{},{{1212222111211mn ,m ,m n ,,n ,,a a a a a a a a a A ,生成m 行n 列的矩阵(2)菜单输入:(适用于大矩阵) a)打开主菜单Input 项;b)单击Create Table/Matrix 项,输入行数及列数,填数即可。