青岛版九年级数学上册期末综合检测试卷(教师用)(2019秋).docx
- 格式:docx
- 大小:219.09 KB
- 文档页数:19
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 1:2 ;B. 1:4 ;C. 1:5 ;D. 1:16 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程x2-4x+2=0的常数项移到等号的右边,得到x2-4x=-2方程两边同时加上一次项系数一半的平方,得到x2-4x+4=-2+4配方得(x-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD. =【答案】D【考点】相似三角形的判定【解析】【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴= ,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、= 不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC中,∠A=120°,∠B=45°,∠C=15°,则cosB等于()A. B. C. D.【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=,∴cosB=.故选D.【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O直径BD交AC于E,连结DC,则∠BEC等于()A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()A.πB.πC.2πD.π【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴= = = ,∴∠AOB= ×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2 )2,解得:AO=2,∴的长为=π,故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 1:2 ;B. 1:4 ;C. 1:5 ;D. 1:16 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程x2-4x+2=0的常数项移到等号的右边,得到x2-4x=-2方程两边同时加上一次项系数一半的平方,得到x2-4x+4=-2+4配方得(x-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD. =【答案】D【考点】相似三角形的判定【解析】【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴= ,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、= 不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC中,∠A=120°,∠B=45°,∠C=15°,则cosB等于()A. B. C. D.【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=,∴cosB=.故选D.【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O直径BD交AC于E,连结DC,则∠BEC等于()A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()A.πB.πC.2πD.π【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴= = = ,∴∠AOB= ×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2 )2,解得:AO=2,∴的长为=π,故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 1:2 ;B. 1:4 ;C. 1:5 ;D. 1:16 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程x2-4x+2=0的常数项移到等号的右边,得到x2-4x=-2方程两边同时加上一次项系数一半的平方,得到x2-4x+4=-2+4配方得(x-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD. =【答案】D【考点】相似三角形的判定【解析】【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴= ,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、= 不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC中,∠A=120°,∠B=45°,∠C=15°,则cosB等于()A. B. C. D.【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=,∴cosB=.故选D.【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O直径BD交AC于E,连结DC,则∠BEC等于()A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()A.πB.πC.2πD.π【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴= = = ,∴∠AOB= ×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2 )2,解得:AO=2,∴的长为=π,故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 1:2 ;B. 1:4 ;C. 1:5 ;D. 1:16 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程x2-4x+2=0的常数项移到等号的右边,得到x2-4x=-2方程两边同时加上一次项系数一半的平方,得到x2-4x+4=-2+4配方得(x-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD. ADAB = ABBC【答案】D【考点】相似三角形的判定【解析】【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴ACAB = ABAD,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB = ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC中,∠A=120°,∠B=45°,∠C=15°,则cosB等于()A. √32B. 12C. √3D. √22【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=√22,∴cosB=√22.故选D.【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O直径BD交AC于E,连结DC,则∠BEC等于()A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 √2,则AB̂的长是()A.ππB.32C.2πD.1π2【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴AB̂= BĈ= DĈ= AD̂,∴∠AOB= 1×360°=90°,4在Rt△AOB中,由勾股定理得:2AO2=(2 √2)2,解得:AO=2,∴AB̂的长为90π×2=π,180故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 1:2 ;B. 1:4 ;C. 1:5 ;D. 1:16 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2 C. (x-2)2=-2 D. (x-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程x2-4x+2=0的常数项移到等号的右边,得到x2-4x=-2方程两边同时加上一次项系数一半的平方,得到x2-4x+4=-2+4配方得(x-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD. =【答案】D【考点】相似三角形的判定【解析】【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意; B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴ = ,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、 = 不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC中,∠A=120°,∠B=45°,∠C=15°,则cosB等于()A.2B. 12C.D. 22【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=2,2.∴cosB=22故选D.【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O直径BD交AC于E,连结DC,则∠BEC 等于()A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 2,则的长是()A.ππB.2C.2ππD.12【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴ = = = ,× 60°=90°,∴∠AOB= 14在Rt△AOB中,由勾股定理得:2AO2=(2 2)2,解得:AO=2,∴ 的长为90 2=π,180故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 1:2 ;B. 1:4 ;C. 1:5 ;D. 1:16 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程x2-4x+2=0的常数项移到等号的右边,得到x2-4x=-2方程两边同时加上一次项系数一半的平方,得到x2-4x+4=-2+4配方得(x-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD. =【答案】D【考点】相似三角形的判定【解析】【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴= ,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、= 不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC中,∠A=120°,∠B=45°,∠C=15°,则cosB等于()A. B. C. D.【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=,∴cosB=.故选D.【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O直径BD交AC于E,连结DC,则∠BEC等于()A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()A.πB.πC.2πD.π【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴= = = ,∴∠AOB= ×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2 )2,解得:AO=2,∴的长为=π,故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 1:2 ;B. 1:4 ;C. 1:5 ;D. 1:16 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程x2-4x+2=0的常数项移到等号的右边,得到x2-4x=-2方程两边同时加上一次项系数一半的平方,得到x2-4x+4=-2+4配方得(x-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,下列条件不能判定△ADB∽△ABC 的是( )A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB 2=AD•ACD. AA AA = AA AA【答案】D【考点】相似三角形的判定【解析】【解答】解:A 、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意; B 、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C 、∵AB 2=AD•AC,∴ AA AA = AA AA ,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D 、AA AA = AA AA 不能判定△ADB∽△ABC,故此选项符合题意.故选:D .【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC 中,∠A=120°,∠B=45°,∠C=15°,则cosB 等于( ) A. √32 B. 12 C. √3 D. √22 【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=√22, ∴cosB=√22. 故选D .【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC 内接于⊙O,∠A=50°,∠ABC=60°,BD 是⊙O 直径BD 交AC 于E ,连结DC ,则∠BEC 等于( )A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 √2,则AÂ的长是()A.ππB.32C.2πD.1π【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴ AÂ= AÂ,̂= AÂ= AA×360°=90°,∴∠AOB= 14在Rt△AOB中,由勾股定理得:2AO2=(2 √2)2,解得:AO=2,=π,∴ AÂ的长为90A×2180故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 12 ;B. 14 ;C. 15 ;D. 116 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:2-4+2=0,下列配方正确的是()A. (-2)2=2B. (+2)2=2C. (-2)2=-2D. (-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程2-4+2=0的常数项移到等号的右边,得到2-4=-2方程两边同时加上一次项系数一半的平方,得到2-4+4=-2+4配方得(-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 4.如图,下列条件不能判定△ADB ∽△ABC 的是( )A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB 2=AD•ACD. AD AB = AB BC【答案】D【考点】相似三角形的判定【解析】【解答】解:A 、∵∠ABD=∠ACB ,∠A=∠A ,∴△ABC ∽△ADB ,故此选项不合题意; B 、∵∠ADB=∠ABC ,∠A=∠A ,∴△ABC ∽△ADB ,故此选项不合题意;C 、∵AB 2=AD•AC ,∴ AC AB = AB AD ,∠A=∠A ,△ABC ∽△ADB ,故此选项不合题意;D 、AD AB = AB BC 不能判定△ADB ∽△ABC ,故此选项符合题意.故选:D .【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC 中,∠A=120°,∠B=45°,∠C=15°,则cosB 等于( )A. √32B. 12C. √3D. √22 【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=√22, ∴cosB=√22. 故选D .【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC 内接于⊙O ,∠A=50°,∠ABC=60°,BD 是⊙O 直径BD 交AC 于E ,连结DC ,则∠BEC 等于( )A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 √2,则AB̂的长是()A.ππB.32C.2ππD.12【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴AB̂= BĈ= DĈ= AD̂,∴∠AOB= 1×360°=90°,4在Rt△AOB中,由勾股定理得:2AO2=(2 √2)2,解得:AO=2,∴AB̂的长为90π×2=π,180故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末专题复习】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.方程(﹣2)=3的解为()A. =5B. 1=0,2=5C. 1=2,2=0D. 1=0,2=﹣52.如图,点A,B,C在⊙O上,∠AOB=72°,则∠ACB等于()A. 28°B. 54°C. 18°D. 36°3.一个多边形有9条对角线,则这个多边形的边数是()A. 5B. 6C. 7D. 84.方程22﹣3﹣5=0的二次项系数、一次项系数、常数项分别为()A. 3、2、5B. 2、3、5C. 2、﹣3、﹣5D. ﹣2、3、55.一个人从A点出发向北偏东60°方向走了一段距离到达B点,再从B点出发向南偏西15°方向走了一段距离到C点,则∠ABC的度数为()A. 15°B. 75°C. 105°D. 45°6.如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为A. 120ºB. 约156ºC. 180ºD. 约208º7.如图3,CD是⊙O的弦,直径AB过CD的中点M,若∠BOC=40°,则∠ABD=()A. 40°B. 60°C. 70°D. 80°8.已知△ABC中,∠C=90°,AC=6,BC=8,则cosB的值是A. 0.6B. 0.75C. 0.8D.9.已知关于的方程2+m﹣6=0的一根为2,则m的值是()A. 1B. ﹣1C. 2D. 510.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为()A. B. C. D.二、填空题(共10题;共30分)11.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是________.12.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的顶端C、A与O点在一条直线上,则根据图中数据可得旗杆AB的高为________m.13.若关于的一元二次方程(m-2)2++m2-4=0的一个根为0,则m值是________.14.若△ABC∽△DEF,相似比为2:3,则S△ABC:S△DEF=________.15.某药店响应国家政策,某品牌药连续两次降价,由开始每盒16元下降到每盒14元.设每次降价的平均百分率是,则列出关于的方程是________.16.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为________17.已知:m是方程2﹣2﹣3=0的一个根,则代数式2m﹣m2=________.18.两棵树种在倾角为24°36′的斜坡上,它们的坡面距离是4米,则它们之间的水平距离是________ 米.(可用计算器计算,精确到0.1米)19.如图,⊙O的半径为5cm,弦AB为8cm,P为弦AB上的一动点,若OP的长度为整数,则满足条件的点P有________个.20.如图所示,某拦水大坝的横断面为梯形ABCD,AE、DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB= 米,背水坡CD的坡度i=1:(i为DF与FC的比值),则背水坡CD的坡长为________米.三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东30°方向,轮船向正东航行了900m,到达Q处,测得A位于北偏西60°方向,B位于南偏西30°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A、B间的距离(结果保留根号).23.已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.求证:DC 是⊙O的切线.24.已知关于的一元二次方程2+2+﹣2=0有两个不相等的实数根.(1)求的取值范围;(2)若为大于1的整数,求方程的根.25.如图,点A,B,C,D,E在圆上,弦的延长线与弦的延长线相交于点,AB是圆的直径,D是BC的中点.求证:AB=AC.26.如图(1),在□ABCD中,P是CD边上的一点,AP与BP分别平分∠DAB和∠CBA。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 1:2 ;B. 1:4 ;C. 1:5 ;D. 1:16 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程x2-4x+2=0的常数项移到等号的右边,得到x2-4x=-2方程两边同时加上一次项系数一半的平方,得到x2-4x+4=-2+4配方得(x-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD. =【答案】D【考点】相似三角形的判定【解析】【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴= ,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、= 不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC中,∠A=120°,∠B=45°,∠C=15°,则cosB等于()A. B. C. D.【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=,∴cosB=.故选D.【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O直径BD交AC于E,连结DC,则∠BEC等于()A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()A.πB.πC.2πD.π【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴= = = ,∴∠AOB= ×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2 )2,解得:AO=2,∴的长为=π,故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 1:2 ;B. 1:4 ;C. 1:5 ;D. 1:16 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程x2-4x+2=0的常数项移到等号的右边,得到x2-4x=-2方程两边同时加上一次项系数一半的平方,得到x2-4x+4=-2+4配方得(x-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD. ADAB = ABBC【答案】D【考点】相似三角形的判定【解析】【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴ACAB = ABAD,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB = ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC中,∠A=120°,∠B=45°,∠C=15°,则cosB等于()A. √32B. 12C. √3D. √22【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=√22,∴cosB=√22.故选D.【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O直径BD交AC于E,连结DC,则∠BEC等于()A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 √2,则AB̂的长是()A.ππB.32C.2πD.1π2【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴AB̂= BĈ= DĈ= AD̂,∴∠AOB= 1×360°=90°,4在Rt△AOB中,由勾股定理得:2AO2=(2 √2)2,解得:AO=2,∴AB̂的长为90π×2=π,180故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 1:2 ;B. 1:4 ;C. 1:5 ;D. 1:16 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程x2-4x+2=0的常数项移到等号的右边,得到x2-4x=-2方程两边同时加上一次项系数一半的平方,得到x2-4x+4=-2+4配方得(x-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD. ADAB = ABBC【答案】D【考点】相似三角形的判定【解析】【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴ACAB = ABAD,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB = ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC中,∠A=120°,∠B=45°,∠C=15°,则cosB等于()A. √32B. 12C. √3D. √22【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=√22,∴cosB=√22.故选D.【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O直径BD交AC于E,连结DC,则∠BEC等于()A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 √2,则AB̂的长是()A.ππB.32C.2πD.1π2【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴AB̂= BĈ= DĈ= AD̂,∴∠AOB= 1×360°=90°,4在Rt△AOB中,由勾股定理得:2AO2=(2 √2)2,解得:AO=2,∴AB̂的长为90π×2=π,180故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 1:2 ;B. 1:4 ;C. 1:5 ;D. 1:16 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2 C. (x-2)2=-2 D. (x-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程x2-4x+2=0的常数项移到等号的右边,得到x2-4x=-2方程两边同时加上一次项系数一半的平方,得到x2-4x+4=-2+4配方得(x-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD. =【答案】D【考点】相似三角形的判定【解析】【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意; B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴ = ,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、 = 不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC中,∠A=120°,∠B=45°,∠C=15°,则cosB等于()A.2B. 12C.D. 22【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=2,2.∴cosB=22故选D.【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O直径BD交AC于E,连结DC,则∠BEC 等于()A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 2,则的长是()A.ππB.2C.2ππD.12【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴ = = = ,× 60°=90°,∴∠AOB= 14在Rt△AOB中,由勾股定理得:2AO2=(2 2)2,解得:AO=2,∴ 的长为90 2=π,180故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 1:2 ;B. 1:4 ;C. 1:5 ;D. 1:16 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程x2-4x+2=0的常数项移到等号的右边,得到x2-4x=-2方程两边同时加上一次项系数一半的平方,得到x2-4x+4=-2+4配方得(x-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD. =【答案】D【考点】相似三角形的判定【解析】【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴= ,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、= 不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC中,∠A=120°,∠B=45°,∠C=15°,则cosB等于()A. B. C. D.【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=,∴cosB=.故选D.【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O直径BD交AC于E,连结DC,则∠BEC等于()A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()A.πB.πC.2πD.π【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴= = = ,∴∠AOB= ×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2 )2,解得:AO=2,∴的长为=π,故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 1:2 ;B. 1:4 ;C. 1:5 ;D. 1:16 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程x2-4x+2=0的常数项移到等号的右边,得到x2-4x=-2方程两边同时加上一次项系数一半的平方,得到x2-4x+4=-2+4配方得(x-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD. =【答案】D【考点】相似三角形的判定【解析】【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴= ,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、= 不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC中,∠A=120°,∠B=45°,∠C=15°,则cosB等于()A. B. C. D.【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=,∴cosB=.故选D.【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O直径BD交AC于E,连结DC,则∠BEC等于()A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()A.πB.πC.2πD.π【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴= = = ,∴∠AOB= ×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2 )2,解得:AO=2,∴的长为=π,故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 1:2 ;B. 1:4 ;C. 1:5 ;D. 1:16 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2 C. (x-2)2=-2 D. (x-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程x2-4x+2=0的常数项移到等号的右边,得到x2-4x=-2方程两边同时加上一次项系数一半的平方,得到x2-4x+4=-2+4配方得(x-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD. =【答案】D【考点】相似三角形的判定【解析】【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意; B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴ = ,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、 = 不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC中,∠A=120°,∠B=45°,∠C=15°,则cosB等于()A.2B. 12C. D. 22【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=2,2∴cosB=2.2故选D.【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O直径BD交AC于E,连结DC,则∠BEC等于()A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 2,则的长是()A.ππB.2C.2πD.1π2【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴ = = = ,× 60°=90°,∴∠AOB= 14在Rt△AOB中,由勾股定理得:2AO2=(2 2)2,解得:AO=2,=π,∴ 的长为90 2180故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 12 ;B. 14 ;C. 15 ;D. 116 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:2-4+2=0,下列配方正确的是()A. (-2)2=2B. (+2)2=2C. (-2)2=-2D. (-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程2-4+2=0的常数项移到等号的右边,得到2-4=-2方程两边同时加上一次项系数一半的平方,得到2-4+4=-2+4配方得(-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 4.如图,下列条件不能判定△ADB ∽△ABC 的是( )A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB 2=AD•ACD. AD AB = AB BC【答案】D【考点】相似三角形的判定【解析】【解答】解:A 、∵∠ABD=∠ACB ,∠A=∠A ,∴△ABC ∽△ADB ,故此选项不合题意; B 、∵∠ADB=∠ABC ,∠A=∠A ,∴△ABC ∽△ADB ,故此选项不合题意;C 、∵AB 2=AD•AC ,∴ AC AB = AB AD ,∠A=∠A ,△ABC ∽△ADB ,故此选项不合题意;D 、AD AB = AB BC 不能判定△ADB ∽△ABC ,故此选项符合题意.故选:D .【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC 中,∠A=120°,∠B=45°,∠C=15°,则cosB 等于( )A. √32B. 12C. √3D. √22 【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=√22, ∴cosB=√22. 故选D .【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC 内接于⊙O ,∠A=50°,∠ABC=60°,BD 是⊙O 直径BD 交AC 于E ,连结DC ,则∠BEC 等于( )A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 √2,则AB̂的长是()A.ππB.32C.2ππD.12【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴AB̂= BĈ= DĈ= AD̂,∴∠AOB= 1×360°=90°,4在Rt△AOB中,由勾股定理得:2AO2=(2 √2)2,解得:AO=2,∴AB̂的长为90π×2=π,180故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
【期末专题复习】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.方程(﹣2)=3的解为()A. =5B. 1=0,=5 C. 1=2,2=0 D. 1=0,2=﹣522.如图,点A,B,C在⊙O上,∠AOB=72°,则∠ACB等于()A. 28°B. 54°C. 18°D. 36°3.一个多边形有9条对角线,则这个多边形的边数是()A. 5 B . 6 C.7 D.84.方程22﹣3﹣5=0的二次项系数、一次项系数、常数项分别为()A. 3、2、5B. 2、3、5 C. 2、﹣3、﹣5 D. ﹣2、3、55.一个人从A点出发向北偏东60°方向走了一段距离到达B点,再从B点出发向南偏西15°方向走了一段距离到C点,则∠ABC的度数为()A. 15°B. 75°C. 105°D. 45°6.如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为A. 120ºB. 约156º C. 180ºD. 约208º7.如图3,CD是⊙O的弦,直径AB过CD的中点M,若∠BOC=40°,则∠ABD=()A. 40°B. 60°C. 70°D. 80°8.已知△ABC中,∠C=90°,AC=6,BC=8,则cosB的值是A. 0.6B. 0.75 C. 0.8D. 439.已知关于的方程2+m﹣6=0的一根为2,则m的值是()A. 1B.﹣1 C. 2D. 510.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为()A.212B.1 4C.41 2D.412二、填空题(共10题;共30分)11.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是________.12.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的顶端C、A与O点在一条直线上,则根据图中数据可得旗杆AB的高为________m.13.若关于的一元二次方程(m-2)2++m2-4=0的一个根为0,则m值是________.14.若△ABC∽△DEF,相似比为2:3,则S△ABC:S△DEF=________.15.某药店响应国家政策,某品牌药连续两次降价,由开始每盒16元下降到每盒14元.设每次降价的平均百分率是,则列出关于的方程是________.16.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为________17.已知:m是方程2﹣2﹣3=0的一个根,则代数式2m﹣m2=________.18.两棵树种在倾角为24°36′的斜坡上,它们的坡面距离是4米,则它们之间的水平距离是________ 米.(可用计算器计算,精确到0.1米)19.如图,⊙O的半径为5cm,弦AB为8cm,P为弦AB上的一动点,若OP的长度为整数,则满足条件的点P有________个.20.如图所示,某拦水大坝的横断面为梯形ABCD,AE、DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB= 62米,背水坡CD的坡度i=1:3(i为DF与FC的比值),则背水坡CD的坡长为________米.三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东30°方向,轮船向正东航行了900m,到达Q处,测得A位于北偏西60°方向,B位于南偏西30°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A、B间的距离(结果保留根号).23.已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.求证:DC是⊙O 的切线.24.已知关于的一元二次方程2+2+﹣2=0有两个不相等的实数根.(1)求的取值范围;(2)若为大于1的整数,求方程的根.25.如图,点A,B,C,D,E在圆上,弦的延长线与弦的延长线相交于点,AB是圆的直径,D是BC的中点.求证:AB=AC.26.如图(1),在□ABCD中,P是CD边上的一点,AP与BP分别平分∠DAB和∠CBA。
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=6>5,∴点P与⊙O的位置关系是点在圆外.故答案为:C.【分析】利用点与圆的位置关系,可得出结果。
2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是()A. 12 ;B. 14 ;C. 15 ;D. 116 ;【答案】A【考点】相似三角形的性质【解析】【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】∵两个相似三角形的面积之比为1:4,∴它们的最大边的比是1:2,故选A.【点评】本题考查了相似三角形的性质的应用,能运用性质进行计算是解此题的关键,注意:相似三角形的面积比等于相似比的平方.3.用配方法解方程:2-4+2=0,下列配方正确的是()A. (-2)2=2B. (+2)2=2C. (-2)2=-2D. (-2)2=6【答案】A【考点】解一元二次方程﹣配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程2-4+2=0的常数项移到等号的右边,得到2-4=-2方程两边同时加上一次项系数一半的平方,得到2-4+4=-2+4配方得(-2)2=2.故选A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.如图,下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD. =【答案】D【考点】相似三角形的判定【解析】【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴= ,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、= 不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.5.在△ABC中,∠A=120°,∠B=45°,∠C=15°,则cosB等于()A. B. C. D.【答案】D【考点】特殊角的三角函数值【解析】【解答】解:∵cos45°=,∴cosB=.故选D.【分析】直接根据特殊角的三角函数值可得出结论.6.如图,△ABC内接于⊙O,∠A=50°,∠ABC=60°,BD是⊙O直径BD交AC于E,连结DC,则∠BEC 等于()A. 50°B. 60°C. 70°D. 110°【答案】C【考点】圆周角定理【解析】【解答】解:∵∠A=50°,∴∠D=50°,∵∠A=50°,∠ABC=60°,∴∠ACB=70°,∵BD是⊙O直径BD,∴∠BCD=90°,∴∠DBC=40°,∴∠BEC=180°﹣40°﹣70°=70°.故选:C.【分析】利用圆周角定理得出∠D=50°,进而得出∠ACB=70°,再求出∠DBC=40°再利用三角形内角和定理即可得出答案.7.如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()A.πB.πC.2πD.π【答案】A【考点】圆心角、弧、弦的关系,弧长的计算【解析】【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴= = = ,∴∠AOB= ×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2 )2,解得:AO=2,∴的长为=π,故答案为:A.【分析】利用圆内接正方形的性质求出∠AOB的度数,利用勾股定理求出AO的长,再利用弧长公式计算求解。
8.如图,在半径为R的⊙O中,和度数分别为36°和108°,弦CD与弦AB长度的差为(用含有R 的代数式表示).()A. RB.RC. 2RD. 3R【答案】A【考点】圆心角、弧、弦的关系【解析】【解答】解:如图,连接OA、OB,则△OAB为等腰三角形,顶角为36°,底角为72°;连接OC、OD,则△OCD为等腰三角形,顶角为108°,底角为36°.在CD上取一点E,使得CE=OC,连接OE,则△OCE为等腰三角形,顶角为36°,底角为72°.在△COE与△OAB中,,∴△COE≌△OAB(SAS),∴OE=AB.∵∠EOD=∠OEC﹣∠ODC=72°﹣36°=36°,∴∠EOD=∠ODE,∴DE=OE,∴CD﹣AB=CD﹣OE=CD﹣DE=CE=R.故选:A.【分析】如解答图,作辅助线,构造三个等腰三角形△OAB,△OCD与△OCE;证明△COE≌△OAB,则有OE=AB;利用等腰三角形性质证明DE=OE,因此CD﹣AB=CD﹣DE=CE=R9.如图,矩形ABCD中,AB=4,AD=7,其中点E为CD的中点.有一动点P,从点A按A→B→C→E的顺序在矩形ABCD的边上移动,移动到点E停止,在此过程中以点A,P,E三点为顶点的直角三角形的个数为()A. 2B. 3C. 4D. 5【答案】B【考点】矩形的性质,圆周角定理,直线与圆的位置关系【解析】【解答】解:如图,有三个直角三角形:①当P在AB的中点时,∠AP1E=90°;②以AE为直径的圆与BC有两个交点,则∠AP2E=∠AP3E=90°;故答案为:B.【分析】可分析∠EAP或∠AEP不能为直角,只有∠APE=90度,因此P的个数就是以AE为直径的圆与矩形的交点个数.10.某树主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支总数是43.若设主干长出个支干,则可列方程()A.(+1)2=43B.2+2+1=43C.2++1=43D.(+1)=43【答案】C【考点】一元二次方程的应用【解析】【解答】设每个支干长出个小分支,根据题意列方程得:2++1=43.故答案为:C.【分析】等量关系为:主干的数量+支干的数量+小分支的数量=43,设未知数,列方程求解即可。
二、填空题(共10题;共30分)11.4cos30°+ +|﹣2|=________.【答案】3【考点】实数的运算,0指数幂的运算性质,二次根式的性质与化简,特殊角的三角函数值【解析】【解答】详解:4cos30°+ +|﹣2|==3.故答案为:3.【分析】根据特殊角的三角函数、零指数幂的法则、二次根式的化简以及绝对值的性质计算可得答案.12.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是________m(结果保留根号)【答案】【考点】解直角三角形的应用﹣仰角俯角问题【解析】【解答】由题意可得:∠BDA=45°,则AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°= ,解得:CD=40 (m),故答案为:40 .【分析】在Rt△ABD中,可得AD=AB=120m;在Rt△ADC中,由tan∠CDA=tan30°=可求得CD。
13.已知关于的一元二次方程22﹣3+4=0的一个根是1,则=________.【答案】2【考点】一元二次方程的解【解析】【解答】解:依题意,得2×12﹣3×1+4=0,即2﹣3+4=0,解得,=2.故答案是:2.【分析】把=1代入已知方程列出关于的一元一次方程,通过解方程求得的值.14.如图,一圆与平面直角坐标系中的轴切于点A(8,0),与y轴交于点B(0,4),C(0,16),则该圆的直径为________。
【答案】20【考点】矩形的判定与性质,垂径定理,切线的性质【解析】【解答】过圆心O′作y轴的垂线,垂足为D,连接O′A,∵O′D⊥BC,∴D为BC中点,∴BC=16-4=12,OD=6+4=10,∵⊙O′与轴相切,∴O′A⊥轴,∴四边形OAO′D为矩形,半径O′A=OD=10,∴直径是20.【分析】根据题意添加辅助线,过圆心O′作y轴的垂线,垂足为D,连接O′A,先根据垂径定理及已知点的坐标,求出BC、OD的长,再根据切线的性质,证明四边形OAO′D是矩形,得出O′A=OD=10,即可求出直径的长。
15.如图,是半圆的直径,点、是半圆的三等分点,若弦,则图中阴影部分的面积为________.【答案】π【考点】平行线的判定与性质,等边三角形的判定与性质,扇形面积的计算【解析】【解答】如图连接OC、OD、BD.∵点C.D是半圆O的三等分点,∠∠∠,∵OC=OD=OB,∴△COD、△OBD是等边三角形,∠∠,,,,△ △∴S阴=S扇形ππ故答案为:π【分析】如图连接OC、OD、BD.首先判断出△COD、△OBD是等边三角形,根据度鞥要三角形的性质得出COD=∠ODB=60,OD=CD=3,根据内错角相等二直线平行得出OC∥BD,根据同底等高的两个三角形的面积相等得出S△BDC=S△BDO,从而得出S阴=S扇形OBD,从而用扇形面积计算方法即可算出答案。
16.如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是________.【答案】【考点】等腰三角形的性质,三角形中位线定理,锐角三角函数的定义【解析】【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE= AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN= ,∴AM= ,∴DE= ,故答案为:【分析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据DE平分△ABC的周长,故ME=EB,又AD=DB,根据三角形的中位线定理得出DE= AM,DE∥AM,根据等腰三角形的三线合一得出∠ACN=60°,AN=MN,根据正弦函数的定义及特殊锐角三角函数值,由AN=AC•sin∠ACN得出AN的长,进而得出AM的长,从而得出DE的长。