传热学-第五章-1
- 格式:ppt
- 大小:7.65 MB
- 文档页数:30
第五章 对流传热分析q = h (t w -t f ) W/m 2 (0-4)Φ= h (t w -t f ) A W第一节 对流传热概述图5-1 几种常见的换热设备示意图一、流动的起因和流动状态二、流体的热物理性质本书采用国际单位制,各热物性的单位)如下: 1.密度ρ,k g /m 3;2.定压比热容p c ,kJ /(k g ⋅K); 3.动力黏度/u yτμ∂∂=N ⋅s / m 2 或 kg /( s ⋅m)运动黏度ν=μ/ρ m 2/s 4. 体积膨胀系数α,1/K; 比体积v ,m 3/kgpp T T v v ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=∂ρ∂ρ∂∂α11 理想气体α=1/T ,对液体或蒸汽,由实验测定,可查附录物性表。
5.热导率λ, W /(m ⋅K) ; a ,m 2/s 。
三、流体的相变 四、换热表面几何因素()l c t t u f h p f w ,,,,,,,,μαρλ= (5-1)第二节 对流传热微分方程组一、对流传热过程微分方程式图5-2 对流传热过程xw x y t q ,⎪⎪⎭⎫ ⎝⎛-=∂∂λ W/2m (1)x x x f w x x t h t t h q ∆⋅=-=)( (2) x x t h ∆-=λ∂∂t y w x⎛⎝ ⎫⎭⎪, (5-2a) w t t -=θxw x x y h ,⎪⎪⎭⎫ ⎝⎛∆-=∂θ∂θλ (5-2b) 式中()∆θθθx wfx=-,其中θw =0,θf f w t t =-。
二、连续性方程图5-3 连续性方程的推导x 方向: d x M u y ρ≡d d xx x xM M M x x∂∂+≡+ y 方向: d y M v x ρ≡ d d yy y y M M M y y∂∂+≡+ 0u v x y∂∂∂∂+= (5-3)三、动量微分方程式图5-4 动量微分方程的推导(1) 微元体的质量×加速度: D d d d Ux y ρτD d u τ= u u uu v x y ∂∂∂∂τ∂∂++D d v τ= v v vu v x y∂∂∂∂τ∂∂++(2) 微元体所受的外力: 体积力: X d x d y Y d x d y表面力: (∂σ∂∂τ∂x y xx y +) d x d y (∂σ∂∂τ∂y x yy x+) d x d y x 方向: ρ(∂∂τ∂∂∂∂u u u x v u y ++) = X +∂σ∂∂τ∂x y xx y+y 方向: ρ(∂∂τ∂∂∂∂v u v x v vy ++) = Y +∂σ∂∂τ∂y x y y x+ρ(∂∂τ∂∂∂∂u u u x v u y ++) = X -∂∂px + μ∂∂∂∂2222u xu y +⎛⎝ ⎫⎭⎪⎪ (5-4a) ρ(∂∂τ∂∂∂∂v u v x v v y ++) = Y -∂∂py + μ∂∂∂∂2222v x v y +⎛⎝ ⎫⎭⎪ (5-4b)↓ ↓ (1) (2) (3) (4)(1)惯性力项,即质量与加速度之积;(2)体积力;(3)压强梯度;(4)黏滞力。
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
《传热学》资料第五章传热过程与传热器一、名词解释1.传热过程:热量从高温流体通过壁面传向低温流体的总过程.2.复合传热:对流传热与辐射传热同时存在的传热过程.3.污垢系数:单位面积的污垢热阻.4.肋化系数: 肋侧表面面积与光壁侧表面积之比.5.顺流:两种流体平行流动且方向相同6.逆流: 两种流体平行流动且方向相反7.效能:换热器实际传热的热流量与最大可能传热的热流量之比.8.传热单元数:传热温差为1K时的热流量与热容量小的流体温度变化1K所吸收或放出的热流量之比.它反映了换热器的初投资和运行费用,是一个换热器的综合经济技术指标.9.临界热绝缘直径:对应于最小总热阻(或最大传热量)的保温层外径.二、填空题1.与的综合过程称为复合传热。
(对流传热,辐射传热)2.某燃煤电站过热器中,烟气向管壁传热的辐射传热系数为20 W/(m2.K),对流传热系数为40 W/(m2.K),其复合传热系数为。
(60W/(m2.K))3.肋化系数是指与之比。
(加肋后的总换热面积,未加肋时的换热面积)4.一传热过程的热流密度q=1.8kW/m2,冷、热流体间的温差为30℃,则传热系数为,单位面积的总传热热阻为。
(60W/(m2.K),0.017(m2.K)/W)5.一传热过程的温压为20℃,热流量为lkW,则其热阻为。
(0.02K/W)6.已知一厚为30mm的平壁,热流体侧的传热系数为100 W/(m2.K),冷流体侧的传热系数为250W/(m2.K),平壁材料的导热系数为0.2W/(m·K),则该平壁传热过程的传热系数为。
(6.1W/(m2.K))7.在一维稳态传热过程中,每个传热环节的热阻分别是0.01K/W、0.35K/W和0.009lK /W,在热阻为的传热环节上采取强化传热措施效果最好。
(0.35K/W)8.某一厚20mm的平壁传热过程的传热系数为45W/(m2.K),热流体侧的传热系数为70W/(m2K),冷流体侧的传热系数为200W/(m2.K),则该平壁的导热系数为。
第四章 对流换热在绪论中已经指出,对流换热是发生在流体和与之接触的固体壁面之间的热量传递过程,是发生在流体中的热量传递过程的特例。
由于流体系统中流体的运动,热量将主要以热传导和热对流的方式进行,这必然使热量传递过程比单纯的导热过程要复杂得多。
本章将在对换热过程进行一般性讨论的基础上,将质量守恒、动量守恒和能量守恒的基本定律应用于流体系统,导出支配流体速度场和温度场的场方程-对流换热微分方程组。
由于该方程组的复杂性,除少数简单的对流换热问题可以通过分析求解微分方程而得出相应的速度分布和温度分布之外,大多数对流换热问题的分析求解是十分困难的。
因此,在对流换热的研究中常常采用实验研究的方法来解决复杂的对流换热问题。
在这一章,我们将通过方程的无量纲化和实验研究方法的介绍而得到常用的准则及准则关系式。
讨论的重点放在工程上常用的管内流动、平行流过平板以及绕流圆管的受迫对流换热,大空间和受限空间的自然对流换热,以及蒸汽凝结与液体沸腾换热。
4-1 对流换热概述1对流换热过程对流换热是发生在流体和与之接触的固体壁面之间的热量传递过程,(直接接触是与辐射换热的区别),是宏观的热对流与微观的热传导的综合传热过程。
由于涉及流体的运动使热量的传递过程变得较为复杂,分析处理较为困难。
因此,在对流换热过程的研究和应用上,实验和数值分析的处理方法是常常采用的。
下面我们以简单的对流换热过程为例,对对流换热过程的特征进行粗略的分析。
图4-1表示一个简单的对流换热过程。
表示流体以来流速度u ∞和来流温度t ∞流过一个温度为t w 的固体壁面。
这里选取流体沿壁面流动的方向为x 坐标、垂直壁面方向为y 坐标。
由于固体壁面对流体分子的吸附作用,使得壁面上的流体是处于不流动或不滑移的状态(此论点对于极为稀薄的流体是不适用的)。
又由于流体分子相互之间的穿插扩散和(或) 相互之间的吸引造成流体之间的相互牵制。
这种相互的牵制作用就是流体的黏性力,在其作用下会使流体的速度在垂直于壁面的方向上发生改变。