八年级数学上册 2.2《轴对称的性质》什么是翻折变换素材 苏科版 精品
- 格式:doc
- 大小:40.01 KB
- 文档页数:1
苏科版八上2.2轴对称的性质一、知识点梳理1.轴对称的性质:◆成轴对称的两个图形。
◆如果两个图形成轴对称,那么对称轴是对称点连线的。
2.作一个图形关于某条直线的轴对称图形:(1)作出一些关键点或特殊点的.(2)按原图形的连接方式连接所得到的,即得到原图形的.3.镜面对称性质:(1)当物体与镜面平行时,(影像与物体相比较)上下,左右。
(2)当物体与镜面垂直时,(影像与物体相比较)上下,左右。
温馨提示:镜面对称必须是关于一个平面对称,并且成镜面对称的两个图形或物体全等二、基础过关1.下列说法正确的有( ).①全等的两个图形一定对称;②成轴对称的两个图形一定全等;③若两个图形关于某直线对称,则它们的对应点一定位于对称轴的两侧;④若点A、点B关于直线MN对称,则直线MN垂直平分线段AB.A.1个B.2个C.3个D.4个2.如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A. AM=BMB. AP=BNC. ∠MAP=∠MBPD. ∠ANM=∠BNM3.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A'处,点B落在点B'处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°4.下列条件中,能使线段AB与A1B1关于直线l对称的条件是( )A. AB与A1B1平行B. AA 1与BB 1平行C. l垂直平分AA 1与BB 1D. l垂直平分AB与A 1B 15.如图,四边形ABCD是关于直线l的轴对称图形,下列结论中,错误的是()A. AD=BCB. AD⊥BCC. AC,BD的交点在L上D. 直线AD,BC的交点在L上6.如图,在四边形ABCD中,△ABC与△ADC关于对角线AC对称,则以下结论正确的是( )①AC平分∠BAD ②CA平分∠BCD ③BD⊥AC ④BE=DE.A. ①②③④B. ①②③C. ①②D. ④7.如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为.8.如图,根据轴对称的性质可知:①线段AB的对应线段是;②点C的对应点是 ;③∠ABC的对应角是;④连接B,E,则BE被直线a .9.如图所示,点A,B在直线l的同侧,AB=4cm,点C是点B关于直线l的对称点,AC交直线l于点D,AC=5cm,则△ABD的周长为 cm.10.如图,Rt△AFC和Rt△AEB关于虚线成轴对称,现给出下列结论:①∠1=∠2;②△ANC ≌△AMB;③CD=DN,其中正确的结论是(填序号)11.如图,△ABC与△ADE关于直线MN对称.BC与DE的交点F在直线MN上.(1)指出两个三角形中的对称点;(2)指出图中相等的线段;(3)图中还有对称的三角形吗?如果有,请指出.12.如图所示,已知△ABC和直线MN.求作:△A′B′C′,使△A′B′C′和△ABC关于直线MN对称.(不要求写作法,只保留作图痕迹)13.如图,在边长为1的小正方形组成的10×10网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD 关于直线l对称,其中点A′,B′,C′,D′分别是点A,B,C,D的对称点;(2)在(1)的条件下,连接A′A′、D′D′,求四边形ADD′A′的面积.14.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格占为顶点的三角形,这样的三角形共有个,请在下面所给的格纸中一一画出.(所给的六个格纸未必全用).15.如图,O为△ABC内部一点,OB=3 ,P,R为O分别以直线AB,直线BC为对称轴的对称点.(1)请指出当∠ABC在什么角度时,会使得PR的长度等于7?并完整说明PR的长度为何在此时会等于7的理由.(2)承(1)小题,请判断当∠ABC不是你指出的角度时,PR的长度是小于7还是会大于7?并完整说明你判断的理由.三、提优训练1.下列图形中,点P与点G关于直线对称的是()A. B. C. D.2.如图,在△ABC中,AD⊥BC于点D,DB=DC,若BC=6,AD=5,则图中阴影部分的面积为()A. 30B. 15C. 7.5D. 63.图1为某四边形ABCD纸片,其中∠B=70°,∠C=80°.若将CD迭合在AB上,出现折线MN,再将纸片展开后,M、N两点分别在AD、BC上,如图2所示,则∠MNB的度数为何?() A. 90 B. 95C. 100D. 1054.如图,若△ABC与△A'B'C'关于直线MN对称,BB'交MN于点O,则下列说法中不一定正确的是 A. AC =A'C' B. AB∥B'C' C.AA'⊥MN D. BO=B'O5.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A. OP1⊥OP2B. OP1=OP2C. OP1⊥OP2且OP1=OP2D. OP1≠OP26.如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA 于点M,交OB于点N,P 1P2=15,则△PMN的周长为() A.14 B. 15 C. 16 D. 177.如图,直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC⊥BD;③AO=OC;④AB⊥BC.其中正确的结论有.8.如图,△ABC与△DEF关于直线l对称,请仅用无刻度的直尺,在下面两个图中分别作出直线l.9.如图,牧童在A处放牛,他的家在B处,l为河流所在直线,晚上回家时要到河边让牛饮水,饮水的地点选在何处,牧童所走的路程最短?10.已知:如图,在∠AOB外有一点P,试作点P关于直线OA的对称点P1,再作点P1关于直线OB的对称点P2.(1)试探索∠POP2与∠AOB的大小关系;(2)若点P在∠AOB的内部,或在∠AOB的一边上,上述结论还成立吗?11.如图,P、Q为△ABC的边AB、AC上的两定点,在BC上求作一点M,使△PQM的周长最短.(不写作法,保留作图痕迹)12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.。
苏科版数学八年级上册《2.2 轴对称的性质》说课稿一. 教材分析《2.2 轴对称的性质》这一节内容,主要让学生理解轴对称的概念,掌握轴对称的性质,并能够运用轴对称的性质解决实际问题。
教材通过引入实例,引导学生发现轴对称的规律,从而推导出轴对称的性质。
教材内容由浅入深,由具体到抽象,符合学生的认知规律。
二. 学情分析八年级的学生已经具备了一定的几何基础知识,对图形的变换也有一定的了解。
但是,轴对称的概念对于他们来说还是相对陌生,需要通过实例来引导他们理解。
同时,学生对于如何将实际问题抽象成数学问题,还需要进一步的培养和指导。
三. 说教学目标1.知识与技能:理解轴对称的概念,掌握轴对称的性质,并能够运用轴对称的性质解决实际问题。
2.过程与方法:通过观察实例,引导学生发现轴对称的规律,培养学生的抽象思维能力。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。
四. 说教学重难点1.重点:轴对称的概念,轴对称的性质。
2.难点:如何将实际问题抽象成数学问题,如何运用轴对称的性质解决实际问题。
五.说教学方法与手段1.教学方法:采用引导发现法,让学生通过观察实例,发现轴对称的规律,从而推导出轴对称的性质。
2.教学手段:利用多媒体课件,展示实例,引导学生观察,发现规律。
六. 说教学过程1.导入:通过展示一些生活中的轴对称现象,如剪纸、衣服的折叠等,引导学生发现轴对称的存在,激发学生的学习兴趣。
2.新课导入:引导学生观察实例,发现轴对称的规律,从而引出轴对称的概念。
3.性质讲解:通过实例,引导学生发现轴对称的性质,并进行总结。
4.运用性质解决问题:出示一些实际问题,引导学生运用轴对称的性质进行解决。
5.巩固练习:出示一些练习题,让学生运用轴对称的性质进行解答。
6.课堂小结:引导学生总结本节课所学的知识,巩固轴对称的概念和性质。
七. 说板书设计板书设计如下:轴对称的性质1.定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴。
苏科版八年级上册数学目录八年级数学教材作为一种文化,它是历史流传下来的,并还在继续被创造的一种文化。
目录有哪些内容呢?小编整理了关于苏科版八年级数学上册的目录,希望对大家有帮助!苏科版八年级上册数学课本目录第一章图形的全等1.1全等图形1.2全等三角形1.3探索三角形全等的条件第二章轴对称图形2.1轴对称与轴对称图形2.2轴对称的性质2.3设计轴对称图案2.4线段、角的轴对称性2.5等腰三角形的轴对称性第三章勾股定理与平方根3.1勾股定理3.2勾股定理的逆定理3.3勾股定理的简单应用第四章实数4.1平方根4.2立方根4.3实数4.4近似数第五章平面直角坐标系5.1物体位置的确定5.2平面直角坐标系第六章一次函数6.1函数6.2一次函数6.3一次函数的图象6.4用一次函数解决问题6.5一次函数与二元一次方程6.6一次函数、一元一次方程和一元一次不等式苏科版八年级数学上册全等三角形知识内容一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)二、角的平分线:从一个角的顶点得出一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。
苏科版数学八年级上册2.2《轴对称的性质》教学设计2一. 教材分析《轴对称的性质》是苏科版数学八年级上册2.2章节的内容,本节内容是在学生已经掌握了轴对称的概念和性质的基础上进行进一步的深入学习。
本节课的主要内容有:1. 轴对称图形的性质;2. 轴对称图形在实际问题中的应用。
这部分内容对于学生来说是比较抽象的,需要通过大量的实例和练习来理解和掌握。
二. 学情分析学生在学习本节课之前,已经学习了轴对称的概念和性质,对轴对称有了初步的认识和理解。
但是,对于轴对称图形的性质的理解和应用还需要进一步的加强。
此外,学生对于抽象的数学概念的理解和掌握还需要通过具体的实例和练习来进行。
三. 教学目标1.理解轴对称图形的性质;2.能够应用轴对称图形的性质解决实际问题;3.培养学生的观察能力和思维能力。
四. 教学重难点1.轴对称图形的性质;2.轴对称图形在实际问题中的应用。
五. 教学方法采用问题驱动法和案例教学法,通过具体的实例和练习来引导学生理解和掌握轴对称图形的性质,并能够应用到实际问题中。
六. 教学准备1.准备相关的实例和练习题;2.准备课件和板书。
七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称图形,如剪刀、飞机、房子等,引导学生回顾轴对称的概念和性质,为新课的学习做好铺垫。
2.呈现(15分钟)讲解轴对称图形的性质,通过具体的实例和图示来帮助学生理解和掌握。
例如,轴对称图形关于对称轴对称,对称轴是图形的中心线等。
3.操练(20分钟)让学生通过练习来巩固所学的内容。
可以设计一些选择题和填空题,让学生在解答的过程中加深对轴对称图形性质的理解。
4.巩固(15分钟)通过一些实际问题来让学生应用轴对称图形的性质进行解决。
例如,设计一个图案,使其关于某条直线对称等。
5.拓展(10分钟)让学生思考轴对称图形在实际生活中的应用,可以让学生举例说明,如设计、建筑、艺术等领域。
6.小结(5分钟)对本节课的内容进行总结,强调轴对称图形的性质和应用。
八年级数学上册2.2《轴对称的性质》折叠的性质是什么素材(新版)苏科版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册2.2《轴对称的性质》折叠的性质是什么素材(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册 2.2《轴对称的性质》折叠的性质是什么素材(新版)苏科版的全部内容。
折叠的性质是什么?
难易度:★★★★
关键词:折叠问题
答案:
折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
【举一反三】
典例:如图,在△ABC中,∠ACB=90°,∠A=20°,若将△ABC沿CD折叠,使B点落在AC边上的E处,则∠ADE的度数是()
思路导引:首先根据折叠可得:△CBD≌△CED,再根据全等三角形的性质可得∠B=∠CED,再利用三角形内角和定理计算出∠B的度数,然后根据三角形内角与外角的关系可计算出∠EDA的度数.
标准答案:C。
初中数学试卷《2.2 轴对称的性质》一、选择题1.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48°B.54°C.74°D.78°2.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°3.如图,在△ABC中,AB=AC,AB+BC=8.将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,连接BF,则△BCF的周长是()A.8 B.16 C.4 D.104.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP2B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP25.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变二、填空题6.成轴对称的两个图形.7.如果两个图形关于某直线成轴对称,那么对称轴是对称点的垂直平分线.8.设A、B两点关于直线MN对称,则垂直平分.9.画轴对称图形,首先应确定,然后找出.10.如图,如果△ABC沿直线MN折叠后,与△A'B'C完全重合,我们就说△ABC与△A'B'C'关于直线MN ;直线MN是;点A与点A'叫做点,图中还有类似的点是,图中还有相等的线段和角,分别为.11.如图,Rt△AFC和Rt△AEB关于虚线成轴对称,现给出下列结论:①∠1=∠2;②△ANC≌△AMB;③CD=DN.其中正确的结论是.(填序号)12.如图,∠A=30°,∠C′=60°,△ABC 与△A′B′C′关于直线l对称,则∠B= .13.如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E交AF于点G,若∠CEF=70°,则∠GFD′= °.三、解答题14.画出如图轴对称图形的对称轴.15.画出如图图形关于直线l的轴对称图形.16.画出如图图形关于直线l的轴对称图形.17.把如图图形补成以直线l为对称轴的轴对称图形.18.如图,在公路a的同侧,有两个居民小区A、B,现需要在公路边建一个液化气站P,要使液化气站到A、B两小区的距离和最短,这个液化气站应建在哪一处?请在图中作出来.(不写作法)19.画出下列△ABC关于直线l的轴对称图形.20.如图,作四边形ABCD关于直线l的轴对称四边形,并回答:如果这两个四边形的原图形与其轴对称图形的对应线段或延长线相交,那么交点位置如何?《2.2 轴对称的性质》参考答案与试题解析一、选择题1.如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为()A.48°B.54°C.74°D.78°【考点】轴对称的性质;三角形内角和定理.【分析】由对称得到∠C=∠C′=48°,由三角形内角和定理得∠B=54°,由轴对称的性质知∠B=∠B′=54°.【解答】解:∵在△ABC中,∠A=78°,∠C=∠C′=48°,∴∠B=180°﹣78°﹣48°=54°∵△ABC与△A′B′C′关于直线l对称,∴∠B=∠B′=54°.故选B.【点评】本题考查轴对称的性质及三角形内角和定理;把已知条件转化到同一个三角形中利用内角和求解是正确解答本题的关键.2.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.3.如图,在△ABC中,AB=AC,AB+BC=8.将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,连接BF,则△BCF的周长是()A.8 B.16 C.4 D.10【考点】翻折变换(折叠问题).【分析】由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,易得△BCF的周长等于AB+BC,则可求得答案.【解答】解:∵将△ABC折叠,使得点A落在点B处,∴AF=BF,∵AB=AC,AB+BC=8,∴△BCF的周长是:BC+CF+BF=BC+CF+AF=BC+AC=BC+AB=8.故选A.【点评】此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.4.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP2B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP2【考点】轴对称的性质.【专题】压轴题.【分析】作出图形,根据轴对称的性质求出OP1、OP2的数量与夹角即可得解.【解答】解:如图,∵点P关于直线OA、OB的对称点P1、P2,∴OP1=OP2=OP,∠AOP=∠AOP1,∠BOP=∠BOP2,∴∠P1OP2=∠AOP+∠AOP1+∠BOP+∠BOP2,=2(∠AOP+∠BOP),=2∠AOB,∵∠AOB度数任意,∴OP1⊥OP2不一定成立.故选:B.【点评】本题考查了轴对称的性质,是基础题,熟练掌握性质是解题的关键,作出图形更形象直观.5.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变【考点】轴对称的性质.【分析】根据轴对称不改变图形的形状与大小解答.【解答】解:∵轴对称变换不改变图形的形状与大小,∴与原图形相比,形状没有改变,大小没有改变.故选:A.【点评】本题考虑轴对称的性质,是基础题,熟记轴对称变换不改变图形的形状与大小是解题的关键.二、填空题6.成轴对称的两个图形全等.【考点】轴对称的性质.【分析】根据轴对称图形的性质分别填空得出即可.【解答】解:成轴对称的两个图形全等.故答案为:全等.【点评】此题主要考查了轴对称的性质,正确把握轴对称图的性质是解题关键.7.如果两个图形关于某直线成轴对称,那么对称轴是对称点连线的垂直平分线.【考点】轴对称的性质;线段垂直平分线的性质.【分析】利用轴对称的性质直接回答即可.【解答】解:如果两个图形关于某直线成轴对称,那么对称轴是对称点连线的垂直平分线.故答案为:连线.【点评】本题考查了轴对称的性质及线段的垂直平分线的性质,解题的关键是牢记有关的定义及性质,难度不大.8.设A、B两点关于直线MN对称,则直线MN 垂直平分线段AB .【考点】轴对称的性质.【专题】应用题.【分析】此题考查了轴对称图形的性质2,即:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线(中垂线).【解答】解:根据性质2,可知直线MN垂直平分线段AB.故应填直线MN;线段AB.【点评】本题考查轴对称的性质与运用,对应点所连的线段被对称轴垂直平分.9.画轴对称图形,首先应确定对称轴,然后找出对称轴点.【考点】轴对称图形.【分析】根据轴对称图形的性质填空.【解答】解:画轴对称图形,首先应确定对称轴,然后找出对称轴点.故答案是:对称轴;对称点.【点评】考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质,基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.10.如图,如果△ABC沿直线MN折叠后,与△A'B'C完全重合,我们就说△ABC与△A'B'C'关于直线MN 对称;直线MN是对称轴;点A与点A'叫做对称点,图中还有类似的点是点B与点B',点C与点C' ,图中还有相等的线段和角,分别为AB=A'B'、AC=A'C、BC=B'C;∠A=∠A'、∠B=∠B'、∠C=∠C' .【考点】翻折变换(折叠问题);轴对称的性质.【分析】折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【解答】解:∵△ABC沿直线MN折叠后,与△A'B'C完全重合,∴△ABC与△A'B'C'关于直线MN对称,直线MN是对称轴,点A与点A'叫做对称点;图中还有类似的点是点B与点B',点C与点C';图中还有相等的线段和角,分别为AB=A'B'、AC=A'C、BC=B'C;∠A=∠A'、∠B=∠B'、∠C=∠C'.故答案为:对称,对称轴,对称,点B与点B',点C与点C',AB=A'B'、AC=A'C、BC=B'C;∠A=∠A'、∠B=∠B'、∠C=∠C'.【点评】本题主要考查了折叠问题,翻折变换实质上就是轴对称变换.折叠是一种对称变换,它属于轴对称,折叠前后的图形全等,对应边和对应角相等.11.如图,Rt△AFC和Rt△AEB关于虚线成轴对称,现给出下列结论:①∠1=∠2;②△ANC≌△AMB;③CD=DN.其中正确的结论是①②.(填序号)【考点】轴对称的性质.【分析】首先利用轴对称的性质分别判断正误即可.【解答】解:①∵Rt△AFC和Rt△AEB关于虚线成轴对称,∴∠MAD=∠NAD,∠EAD=∠FAD,∴∠EAD﹣∠MAD=∠FAD﹣∠NAD,即:∠1=∠2,故正确;②∵Rt△AFC和Rt△AEB关于虚线成轴对称,∴∠B=∠C,AC=AB,在△ANC与△AMB中,,∴△ANC≌△AMB,故正确;③易得:CD=BD,但在三角形DNB中,DN不一定等于BD,故错误.故答案为:①②.【点评】本题考查轴对称的性质,熟练掌握性质是解题的关键.12.如图,∠A=30°,∠C′=60°,△ABC 与△A′B′C′关于直线l对称,则∠B= 90°.【考点】轴对称的性质;三角形内角和定理.【专题】探究型.【分析】先根据轴对称的性质得出△ABC≌△A′B′C′,由全等三角形的性质可知∠C=∠C′,再由三角形内角和定理可得出∠B的度数.【解答】解:∵△ABC 与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠C=∠C′=60°,∵∠A=30°,∴∠B=180°﹣∠A﹣∠C=180°﹣30°﹣60°=90°.故答案为:90°.【点评】本题考查的是轴对称的性质及三角形内角和定理,熟知以上知识是解答此题的关键.13.如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E交AF于点G,若∠CEF=70°,则∠GFD′= 40 °.【考点】平行线的性质;翻折变换(折叠问题).【分析】根据两直线平行,内错角相等求出∠EFG,再根据平角的定义求出∠EFD,然后根据折叠的性质可得∠EFD′=∠EFD,再根据图形,∠GFD′=∠EFD′﹣∠EFG,代入数据计算即可得解.【解答】解:矩形纸片ABCD中,AD∥BC,∵∠CEF=70°,∴∠EFG=∠CEF=70°,∴∠EFD=180°﹣70°=110°,根据折叠的性质,∠EFD′=∠EFD=110°,∴∠GFD′=∠EFD′﹣∠EFG,=110°﹣70°,=40°.故答案为:40.【点评】本题考查了平行线的性质,以及折叠变换,根据两直线平行,内错角相等求出∠EFG是解题的关键,另外,根据折叠前后的两个角相等也很重要.三、解答题14.画出如图轴对称图形的对称轴.【考点】作图-轴对称变换.【分析】根据轴对称图形的意义,如果一个图形沿着一条直线对折之后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,据此解答即可.【解答】解:如图所示.【点评】本题考查了轴对称图形的对称轴的确定,根据轴对称图形的对称轴两边的部分关于对称轴折叠能够完全重合作图即可.15.画出如图图形关于直线l的轴对称图形.【考点】作图-轴对称变换.【分析】根据轴对称图形的性质分别找出各点关于直线l的对称点,然后顺次连接即可.【解答】解:如图所示.【点评】本题考查了利用轴对称变换作图,熟练掌握轴对称的性质是解题的关键.16.画出如图图形关于直线l的轴对称图形.【考点】作图-轴对称变换.【分析】根据轴对称图形的性质分别找出各点关于直线l的对称点,然后顺次连接即可.【解答】解:如图所示.【点评】本题考查了利用轴对称变换作图,熟练掌握轴对称的性质是解题的关键.17.把如图图形补成以直线l为对称轴的轴对称图形.【考点】轴对称图形.【分析】根据轴对称图形的特点:沿一条直线对折后,直线两旁的部分能完全重合画图即可.【解答】解:如图所示:.【点评】此题主要考查了作图﹣轴对称变换,其依据是轴对称的性质.基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.18.如图,在公路a的同侧,有两个居民小区A、B,现需要在公路边建一个液化气站P,要使液化气站到A、B两小区的距离和最短,这个液化气站应建在哪一处?请在图中作出来.(不写作法)【考点】作图—应用与设计作图;轴对称-最短路线问题.【分析】作A点关于直线a的对称点A′,连接A′B交直线a于点P,此处即为液化气站位置.【解答】解:如图所示:,点P即为所求.【点评】此题主要考查了垂直平分线的作法以及两点之间线段最短的知识,解答此题的关键是熟知轴对称的性质以及线段垂直平分线上的点到线段两个端点的距离相等这一性质.19.画出下列△ABC关于直线l的轴对称图形.【考点】作图-轴对称变换.【分析】(1)首先确定A、B、C三点关于l的对称点,然后再连接即可;(2)首先确定A、B、C三点关于l的对称点,然后再连接即可.【解答】解:如图所示:.【点评】此题主要考查了作图﹣﹣轴对称变换,在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.20.如图,作四边形ABCD关于直线l的轴对称四边形,并回答:如果这两个四边形的原图形与其轴对称图形的对应线段或延长线相交,那么交点位置如何?【考点】作图-轴对称变换.【分析】分别得出对应点关于直线l的对称点,进而得出答案.【解答】解:如图所示:四边形A′B′C′D′即为所求,,这两个四边形的原图形与其轴对称图形的对应线段或延长线相交,那么交点在对称轴上.【点评】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.金戈铁制卷。
苏科版数学八年级上册2.2《轴对称的性质》教学设计1一. 教材分析《轴对称的性质》是苏科版数学八年级上册第二章第二节的内容。
本节内容主要让学生掌握轴对称的性质,并学会运用轴对称解决实际问题。
教材通过丰富的实例,引导学生探究轴对称的性质,培养学生的动手操作能力和抽象思维能力。
二. 学情分析八年级的学生已经学习了平面几何的基本概念和性质,对图形的变换有一定的了解。
但学生在学习过程中,可能对轴对称的性质理解不够深入,容易与对称轴的概念混淆。
因此,在教学过程中,教师需要注重引导学生理解轴对称的性质,并通过实际操作让学生感受轴对称的美妙。
三. 教学目标1.知识与技能目标:让学生掌握轴对称的性质,能运用轴对称解决实际问题。
2.过程与方法目标:通过观察、操作、探究等方法,培养学生的动手操作能力和抽象思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.重点:轴对称的性质。
2.难点:如何运用轴对称解决实际问题。
五. 教学方法1.情境教学法:通过丰富的实例,引导学生感受轴对称的美妙。
2.启发式教学法:引导学生主动探究轴对称的性质,培养学生的抽象思维能力。
3.合作学习法:引导学生分组讨论,培养学生的团队协作精神。
六. 教学准备1.教师准备:熟练掌握轴对称的性质,了解学生的学习情况。
2.学生准备:预习本节课的内容,了解轴对称的基本概念。
3.教具准备:多媒体设备、对称图形、剪刀等。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的对称现象,如剪纸、建筑等,引导学生关注轴对称的美。
然后提出问题:“你们知道什么是轴对称吗?”,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT展示轴对称的定义和性质,让学生初步了解轴对称的概念。
同时,教师可以举例说明轴对称在实际生活中的应用,如衣服的对称设计、建筑的对称结构等。
3.操练(10分钟)教师分发对称图形和剪刀,让学生亲自动手剪出对称图形。
苏科版数学八年级上册《2.2 轴对称的性质》教学设计一. 教材分析苏科版数学八年级上册《2.2 轴对称的性质》这一节的内容是在学生已经掌握了轴对称的概念和性质的基础上进行进一步的深入学习。
本节课的主要内容是引导学生探究轴对称图形的性质,并通过实例来加深学生对轴对称图形性质的理解和应用。
教材中提供了丰富的素材和例题,以及相应的练习题,有助于学生通过观察、操作、思考、交流和归纳等活动,自主探索和学习轴对称图形的性质。
二. 学情分析学生在学习这一节内容时,已经具备了一定的数学基础,包括对轴对称概念的理解和对一些基本性质的认知。
但是,学生对轴对称图形的性质的理解还可能存在一些模糊的地方,需要通过实例和操作来进一步明确。
同时,学生可能对如何运用轴对称图形的性质来解决实际问题还不够熟练,需要通过练习来加强。
三. 教学目标1.知识与技能:使学生掌握轴对称图形的性质,并能运用性质来解决实际问题。
2.过程与方法:通过观察、操作、思考、交流和归纳等活动,培养学生的动手能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.重点:轴对称图形的性质。
2.难点:如何运用轴对称图形的性质来解决实际问题。
五. 教学方法采用问题驱动法、合作学习法和实例教学法。
通过提出问题,引导学生观察、操作、思考和交流,从而发现和总结轴对称图形的性质。
同时,通过实例来展示轴对称图形的性质在解决实际问题中的应用。
六. 教学准备1.准备一些轴对称图形的实例,如剪纸、图片等。
2.准备一些练习题,包括基础题和拓展题。
七. 教学过程1.导入(5分钟)通过展示一些轴对称图形的实例,如剪纸、图片等,引导学生回顾轴对称的概念和性质。
然后提出问题:“你们认为轴对称图形有哪些性质呢?”让学生思考并发表自己的看法。
2.呈现(10分钟)通过多媒体展示一些轴对称图形的性质,如对称轴上的点关于对称轴对称,对称轴两侧的图形完全重合等。
什么是翻折变换?难易度:★★★★关键词:折叠问题答案:翻折变换(折叠问题)实质上就是轴对称变换.【举一反三】典例:如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个()A B C D思路导引:根据长方形的轴对称性作答.标准答案:C。
尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
轴对称总复习【知识梳理】1、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。
2、轴对称的性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;3、线段的垂直平分线:①性质定理:②判定定理:拓展:三角形三条边的垂直平分线的交点到三个顶点....的距离相等4、角的角平分线:①性质定理:②判定定理:拓展:三角形三个角的角平分线的交点到三条边...的距离相等。
5、等腰三角形:①性质定理:等边对等角;三线合一。
②判断定理:等角对等边。
6、等边三角形:①性质定理:拓展:等边三角形每条边都能运用三线合一....这性质。
②判断定理:⑴三条边都相等的三角形是等边三角形;⑵三个角都相等的三角形是等边三角形;有两个角是60°的三角形是等边三角形;⑶有一个角是60°的等腰三角形是等边三角形。
7、直角三角形推论:⑴直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半。
⑵直角三角形中,斜边上的中线等于斜边的一半。
拓展:直角三角形常用面积法...求斜边上的高。
【例题精讲】题型一:线段的轴对称例1:如图,在△ABC中,DE是AC的垂直平分线.(1)若AC=6,△ABD的周长是13,则△ABC的周长是_______;(2)若△ABC的周长是30,△ABD的周长是25,则AC=_______.变式:如图,在△ABC中,边AB、AC的垂直平分线分别交BC于点E、点D.(1)若BC=8,则△ADE的周长是_______;(2) 若∠BAC=110°,那么∠EAD=______(3) 若∠EAD=100°,那么∠BAC=______题型二:角的轴对称例2:如图,在△ABC中,∠C=90°,AD平分∠BAC.(1)若CD=5,则点D到AB的距离为.(2) 若BD:DC=3:2,点D到AB的距离为6,则BC的长是.变式:如图,OP平分∠AOB,PA OA,PB OB,垂足分别为A、B.下列结论中,不一定成立的是( )A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP题型三:作图题例3:请你先在图的BC上找一点P,使点P到AB、AC的距离相等,再在射线AP上找一点Q,使QB=QC.例4:如图,求作点P,使点P同时满足:①PA=PB;②到直线m,n的距离相等.题型四:等腰三角形例5:(1)等腰三角形的一边长为5,另一边长为11,则该等腰三角形的周长为(2)等腰三角形的两边长分别为4、5.则该等腰三角形的周长为(3)已知等腰三角形的一个外角为100°,则这个等腰三角形的顶角为__________.(4)等腰△ABC中,若∠A=30°,则∠B=变式:(1)如图①,在Rt△ABC中,若AB=AC,AD=AE,∠BAD=40°,则∠EDC=_______.(2)如图②,∠ACB=90°,E、F为AB上的点,AE=AC,BC=BF,则∠ECF=___ __.(3)如图③,AB=AC=DC,且BD=AD,则∠B=___ __.例6:如图,∠ABC、∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点E.试说明BD+EC=DE.例7:如图,已知AB=AC,AD=AE.求证:BD=CE.题型五:等边三角形例8:(1)如图①,在等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE=____.(2)如图②,正方形ABCD,△EAD为等边三角形,则∠EBC=_______.(3)如图③,已知等边△ABC,AC=AD,且AC⊥AD,垂足为A,则∠BEC=_______.例9:如图,C为线段AE上一动点(点C不与点A、E重合),在AE的同侧分别作等边△ABC和等边△CDE,AD与BE相交于点O,AD与BC相交于点P,BE与CD相交于点Q,连接PQ.下列五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°,其中恒成立的有__________(填序号).例10:如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.题型六:等边三角形例11:(1)在Rt△ABC中,∠C=90°,CD是斜边AB的中线,且CD=4 cm,则AB=_______.(2)在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则AC=_______.(3)在Rt△ABC中,∠C=90°,AC=8,BC=6,则AB边上的高CD= .例12:如图,在△ABC中,BD、CE是高,G、F分别是BC、DE的中点,连接GF,求证:GF⊥DE.【课堂练习】1.画图、证明:如图,∠AOB=90°,点C、D分别在OA、OB上.(1)尺规作图(不写作法,保留作图痕迹):作∠AOB的平分线OP;作线段CD的垂直平分线EF,分别与CD、OP相交于E、F;连接OE、CF、DF.(2)在所画图中,①线段OE与CD之间有怎样的数量关系,并说明理由.②求证:△CDF为等腰直角三角形2.如图,设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第一根小棒,且A1A2=AA1 .(1)小棒能无限摆下去吗?答: .(填“能”或“不能”)(2)若已经摆放了3根小棒,则θ1 =___________,θ2 =__________,θ3=__________;(用含θ的式子表示)(3)若只能摆放4根小棒,求θ的范围.3.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_______.4.若直角三角形斜边上的高和中线分别为10 cm、12 cm,则它的面积为__________cm2.5.如图,某市把一块形状为直角三角形的废地开辟为生物园,∠ACB=90o.AC=80 m.BC=60m.(1)若入口E在边AB上,且与A、B距离相等,求从人口E到出口C的最短路线的长;(2)若线段CD是一条水渠,且点D在AB边上,已知水渠造价约为10元/m,则点D在距点A多远处,此水渠的造价最低?最低造价是多少?1、Be honest rather clever 20.7.157.15.202017:4817:48:50Jul-2017:482、By reading we enrich the mind; by conversation we polish it.二〇二〇年七月十五日2020年7月15日星期三3、All things are difficult before they areeasy.17:487.15.202017:487.15.202017:4817:48:507.15.202017:487.15.20204、By other's faults, wise men correct theirown.7.15.20207.15.202017:4817:4817:48:5017:48:505、Our destiny offers not the cup of despair, but the chalice of opportunity. So let us seize it, not in fear, but in gladness. Wednesday, July 15, 2020July 20Wednesday, July 15, 20207/15/20206、I have no trouble being taken seriously as a woman and a diplomat [in Ghana].。