最新2020高考数学《立体几何初步》专题考核题完整版(含参考答案)
- 格式:doc
- 大小:620.50 KB
- 文档页数:9
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.关于直线,m n 与平面,αβ,有以下四个命题:①若//,//m n αβ且//αβ,则//m n ;②若,m n αβ⊥⊥且αβ⊥,则m n ⊥; ③若,//m n αβ⊥且//αβ,则m n ⊥;④若//,m n αβ⊥且αβ⊥,则//m n ; 其中正确命题的序号是 .2.给出下列四个命题:①垂直于同一直线的两条直线互相平行 ②垂直于同一平面的两个平面互相平行③若直线12l l ,与同一平面所成的角相等,则12l l ,互相平行 ④若直线12l l ,是异面直线,则与12l l ,都相交的两条直线是异面直线 其中假命题的个数是(D ) A.1 B.2C.3D.4(2006辽宁文)3.直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于A .30°B .45°C .60°D .90°(2010全国1文)4.已知矩形ABCD ,AB =1,BC 将∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直(2012浙江理) 5.如果用a 记某三角形两边中点的连线,用α记过该三角形第三边的一个平面,那么必有( )(A)a α∥ (B)a α⊂ (C)a α⊄ (D)a a αα⊂∥或 二、填空题6. 长方体1111D C B A ABCD -中,底面ABCD 是边长为2的正方形,高为4,则顶点1A 到截面11D AB 的距离为 ▲ .7.如图, 在空间四边形SABC 中, SA ⊥平面ABC , ∠ABC = 90︒, AN ⊥SB 于N , AM ⊥SC 于M 。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是 ( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版)) 2.下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行3.空间四点中,有且仅有三点共线是这四点共面的-----------------------------------------------( )(A)充分条件 (B)必要条件 (C)充要条件 (D)以上都不对4.若对任意的长方体A ,都存在一个与A 等高的长方体B ,使得B 与A 的侧面积之比和体积之比都等于k ,则k 的取值范围是( ) A .0k > B .01k <≤C .1k >D .1k ≥5.用一个平面截一个正方体,对于{三角形,四边形,五边形,六边形}四种形状中,借口可能出现的形状有( ) A .1种 B .2种C .3种D .4种二、填空题6.圆柱的底面半径为3cm ,体积为π18cm 3,则其侧面积为 cm 27.已知l ,m ,n 是三条不同的直线,γβα,, 是三个不同的平面,下列命题: ①若l ∥m ,n ⊥m ,则n ⊥l ; ②若l ∥m ,m ⊂α,则l ∥α;③若l ⊂α,m ⊂β,α∥β,则l ∥m ;④若α⊥γ,β⊥γ,α∩β=l ,则l ⊥γ。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( ) A. S 1<S 2 B. S 1>S 2 C. S 1=S 2 D. S 1,S 2的大小关系不能确定(2006江西理)C2.如图1,已知正方体1111ABCD A B C D -中,E F 、分别是1AB AA 、的中点,则平面1CEB 与平面11D FB 所成二面角的平面角的正弦值为( )A .12B.2C .2D .1二、填空题3.棱长为1的正方体外接球的表面积为 .4. 已知,a b 是两条不重合的直线,,,αβγ是三个两两不重合的平面,给出下列四个命题:①若a α⊥,a β⊥,则βα// ②若βαγβγα//,,则⊥⊥ ③若b a b a //,,,//则βαβα⊂⊂ ④若b a b a //,,,//则=⋂=⋂γβγαβα其中正确命题的序号有____________。
EFD 1C 1B 1A 1ACBD5.过两条异面直线中的一条可作_______个平面与另一条直线平行。
6.设E 、F 、G 、H 为空间四点,命题甲:点E 、F 、G 、H 不共面;命题乙:直线EF 和GH 不相交,那么甲是乙的_________________条件7.ABCD -A 1B 1C 1D 1是正方体,过A 、C 、B 1三点的平面与底面A 1B 1C 1D 1的交线为l ,则l 与AC 的位置关系是 。
8.将一个半圆面围成圆锥的侧面,则其任意两条母线间夹角的最大值为_________.9.如图所示,已知E 、F 分别为正四面体ABCD 所在棱的中点,则 异面直线AC 与EF 所成的角为________.解析:取BC 中点G ,连结EG ,FG ,则∠GEF 为异面直线所成 角,∵EG =12AC =12BD =GF ,又可证AC ⊥BD ,∴∠EGF =90°,则∠GEF =45°.CB 1A 1 C 1D 1ABD10.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列命题:①若m ∥β,n ∥β,m 、n ⊂α,则α∥β;②若α⊥γ,β⊥γ,α∩β=m ,n ⊂γ,则m ⊥n ; ③若m ⊥α,α⊥β,m ∥n ,则n ∥β; ④若n ∥α,n ∥β,α∩β=m ,那么m ∥n ;其中所有正确命题的序号是 .11.给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题: ①若,,,m lA A m l m αα⊂=∉点则与不共面;②若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ③若m l m l //,//,//,//则βαβα; ④若,,,//,//,//.l m lm A l m ααββαβ⊂⊂=点则其中为真命题的是 .12.有一个各条棱长均为a 的正四棱锥形礼品(如图所示),现用一张正方形包装纸将其完全包住,要求包装时不能剪裁,但可以折叠,则包装纸的最小边长应为 ▲ .13.已知m 、n 为两条不同的直线,βα,为两个不同的平面,下列四个命题中,其中正确的命题是▲ .(填写正确命题的序号) ①n m n m //,,,//则βαβα⊂⊂;②若βαββαα//,//,//,,则且n m n m ⊂⊂;③βαβα⊥⊂⊥m m 则若,,;④ααββα//,,,m m m 则若⊄⊥⊥14.已知正三棱锥的底面边长是6,侧棱与底面所成角为60°,则此三棱锥的体积为 ▲ .15.已知一个正三棱台的两个底面的边长分别为8和18,侧棱长为13,则这个棱台的侧面积为__________.16.长方体的长、宽、高分别为3cm 、2cm 、1cm ,若该长方体的各顶点都在球O 的表面上,则球O 的体积为17. 若三条直线两两相交,由这三条直线中任意两条所确定的平面有 ▲ 个. 18.空间四个点P 、A 、B 、C 在同一球面上,PA 、PB 、PC 两两垂直,且PA=PB=PC=a ,那么这个球的表面积是 ▲ .19.在长方体1111D C B A ABCD -中,2,4==BC AB ,61=DD ,则AC 与1BD 所成角的余弦值为 。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.关于直线a 、b 、l 及平面M 、N ,下列命题中正确的是( ) A .若a ∥M ,b ∥M ,则a ∥b B .若a ∥M ,b ⊥a ,则b ⊥MC .若a M ,b M ,且l ⊥a ,l ⊥b ,则l ⊥MD .若a ⊥M ,a ∥N ,则M ⊥N (2003上海春13) 二、填空题2.已知正四棱锥的底面边长是6,这个正四棱锥的侧面积是 ▲ .3.判断下列命题的真假:(1)若直线a 和平面α内直线b 平行,则a α∥;( )(2)如果两条平行线中的一条直线与一个平面平行,那么另一条也与这个平面平行;( )(3)一条直线平行于一个平面,这条直线就和这个平面内任何直线不相交;( ) (4)过平面外一点有且只有1条直线和这个平面平行;( )(5)平行于四面体一条棱的平面截此四面体得到一个多边形的截面,这个截面可能是三角形、梯形或平行四边形。
4.若两条直线a b 、分别在两个平行平面内,则a b 、的位置关系是_______________ 5.(1)直线,a b 相交于点P ,夹角为60,过点P 作直线,该直线与,a b 的夹角均为60,这样的直线可作_____条;(2)异面直线,a b 成60角,P 为空间一点,过点P 且与,a b 所成的角都是60的直线可作_____条;6.有一种多面体的饰品,其表面由6个正方形和8个正三角形组成(如图),AB 与CD 所成角的大小是 .7.一个圆锥的侧面展开图是圆心角为43π,半径为18 cm 的扇形,则圆锥母线与底面所成角的余弦值为________.8.设a ,b ,g 是三个不重合的平面,l 是直线,给出下列命题 ①若a b ^,b g ^,则γα⊥; ②若l 上两点到α的距离相等,则α//l ;③若l a ^,//l b ,则a b ^;④若//a b ,l b Ë,且//l a ,则//l b .其中正确的命题是 ▲ .9.如图,在单位正方体1111ABCD A B C D -中,M N 、分别为11D C AB 、的中点,则C 到平面1MB ND 的距离为_________________10.已知直线m 、n ,平面α、β,给出下列命题:①若,m n αβ⊥⊥,且m n ⊥,则αβ⊥ ②若//,//m n αβ,且//m n ,则//αβ ③若,//m n αβ⊥,且m n ⊥,则αβ⊥ ④若,//m n αβ⊥,且//m n ,则//αβ 其中正确的命题的个数为 _▲_.DBCAA 1B 1C 1D 1NM11.棱长为1的正方体的八个顶点都在同一个球面上,则此球的表面积为 . 12. 下列说法不正确的....是______________ A. 空间中,一组对边平行且相等的四边形是一定是平行四边形; B .同一平面的两条垂线一定共面;C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D. 过一条直线有且只有一个平面与已知平面垂直.13.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个三棱柱的体积是,则这个球的体积是 .14.如图,在等腰梯形ABCD 中,22AB DC ==,060DAB ∠=,E 为AB 的中点.将ADE ∆与BEC ∆分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则三棱锥P DCE -的外接球的体积为________.15.如果OA ‖11O A , OB ‖11O B ,那么AOB ∠与111AO B ∠ (填关系)16.如图所示,四棱锥P —ABCD 的底面ABCD 是边长为a 的正方形,侧棱PA=a, ,则它的5个面中互相垂直的面有__________对.17.如图,一个圆锥形容器的高为a ,内装有一定量的水,如果将容器倒置,这时所形成的圆锥的高恰为2a(如图2-②),则图2-①中的水面高度为 .18.长方体1111ABCD A B C D -中,13,2AB BC AA ===,则四面体11A BC D 的体积为 19.已知α、β是两个不同的平面,下列四个条件: ①存在一条直线a ,a α⊥,a β⊥; ②存在一个平面γ,,γαγβ⊥⊥;③存在两条平行直线a 、b ,,a b αβ⊂⊂,a ∥β,b ∥α; ④存在两条异面直线a 、b ,,a b αβ⊂⊂,a ∥β,b ∥α。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设四面体的六条棱的长分别为和a 且长为a 的棱异面,则a 的取值范围是( )A .B .C .D .(2012重庆文)2.设γβα、、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是( ) A . l m l ⊥=⋂⊥,,βαβαB . γβγαγα⊥⊥=⋂,,mC . αγβγα⊥⊥⊥m ,,D . αβα⊥⊥⊥m n n ,,(2005天津)3.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各连接中点,已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是 ( )A .4B .5C .6D .7(2005重庆文)4.若二面角l αβ--为1200,直线m α⊥,则β所在平面内的直线与m 所成角的取值范围是( )(A )0(0,90] (B )[300,600] (C )[600,900] (D )[300,900] (2004安徽春季理7) 5.1.一条直线和直线外的三点所能确定的平面的个数是-------------------------------------------( )(A) 1或3个 (B) 1或4个 (C) 1个、3个或4个 (D) 1个、2个或46.若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是( ) A .64 B .66C .68D .70二、填空题7.下列命题中正确命题的个数是①一条直线和另一条直线平行,那么它和经过另一条直线的任何平面平行;②一条直线平行于一个平面,则这条直线与这个平面内所有直线都没有公共点,因此这条直线与这个平面内的所有直线都平行;③若直线与平面不平行,则直线与平面内任一直线都不平行;④与一平面内无数条直线都平行的直线必与此平面平行。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设有直线m 、n 和平面α、β。
下列四个命题中,正确的是 A.若m ∥α,n ∥α,则m ∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m ∥α(2008湖南理)(D )2.设γβα、、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是( ) A . l m l ⊥=⋂⊥,,βαβαB . γβγαγα⊥⊥=⋂,,mC . αγβγα⊥⊥⊥m ,,D . αβα⊥⊥⊥m n n ,,(2005天津)3.正三棱柱的底面边长为2,侧面均为直角三角形,则此三棱柱的体积为( )C.3D.2004全国3理9) 二、填空题4.半径为1的半球的表面积为 ▲ .5.如图,空间四边形ABCD 中,6,8AC BD ==,点,E F 分别为,AB CD 的中点,且5EF =,试求AC 与BD 所成的角。
6.已知线段AB 在平面α外,A 、B 两点到平面α的距离分别为1和3,则线段AB 的中点到平面α的距离为 .7.正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为8.在直三棱柱ABC -A 1B 1C 1中,AC =4,CB =2,AA 1=2,∠ACB =60°,E 、F 分别是A 1C 1、BC 的中点.(图见答卷纸相应题号处) ⑴证明C 1F//平面ABE ; ⑵ 若P 是线段BE 上的点,证明:平面A 1B 1C ⊥平面C 1FP ;⑶ 若P 在E 点位置,求三棱锥P -B 1C 1F 的体积. (本题满分16分)9.已知正四棱锥的高为4cm ,一个侧面三角形的面积是15cm 2,则该四棱锥的体积是____________cm 3.10.将边长为2的正方形ABCD 沿对角线BD 折成直二面角A-BD-C ,若点A 、B 、C 、D 都在一个以O 为球心的球面上,则球O 的体积为11.某圆锥体的侧面展开图是半圆,当侧面积是32π时,则该圆锥体的体积是 .12.在正方体1111ABCD A B C D -中,E 分为1DD 的中点,则1BD 与平面AEC 的位置关系是13.三棱锥ABC P -中,︒=∠90ABC ,PA ⊥平面ABC ,且︒=∠30CPB ,则=∠PCB ▲ .14.已知正六棱锥的底面边长是3,侧棱长为5,则该正六棱锥的体积是 。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于 ( )A .23 B .3C .3D .13(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))2.设m 、n 是两条不同的直线,α、β是两个不同的平面.考查下列命题,其中正确的命题是( )A .βαβα⊥⇒⊥⊂⊥n m n m ,,B .n m n m ⊥⇒⊥βαβα//,,//C .n m n m ⊥⇒⊥⊥βαβα//,,D .ββαβα⊥⇒⊥=⊥n m n m ,, (2006天津卷)3.过直线外一点与直线平行的平面有----------------------------------------------------------------( ) (A) 1个 (B)无数个 (C)不存在 (D)以上均不对 二、填空题4.,且对角线与底面所成角的余弦值为3,则该正四棱柱的体积等于______________。
5.已知圆柱Ω的母线长为l ,底面半径为r ,O 是上地面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为π6,则1r=________.(2013年上海高考数学试题(文科))6.已知正三棱锥的底面边长是6,侧棱与底面所成角为60°,则此三棱锥的体积为 ▲ .7.正方体1111ABCD A B C D -中,与对角线1AC 异面的棱有 条. 8.已知直线,l m ,平面,αβ,且l α⊥,m β⊂,给出下列四个命题: ①若α∥β,则l m ⊥; ②若l m ⊥,则α∥β;③若αβ⊥,则l ∥m ; ④若l ∥m ,则αβ⊥; 其中正确命题的序号是 .9.若圆锥的母线长)(5cm l =,高)(4cm h =,则这个圆锥的体积等于____________10.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; ②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; ④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题的序号________(写出所有真命题的序号). 解析:考查立体几何中的直线、平面的垂直与平行判定的相关定理.11.在正方体1111ABCD A B C D -中,M 为1BB 的中点,AC 、BD 交于点O ,则1D O 与平面AMC 成的角为 度.12.如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线PA 垂直于圆O 所在的平面,点M 位线段PB 的中点。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( ) A. S 1<S 2 B. S 1>S 2 C. S 1=S 2 D. S 1,S 2的大小关系不能确定(2006江西理)C2.直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于A .30°B .45°C .60°D .90°(2010全国1文)3.如图,在体积为1的三棱锥A —BCD 侧棱AB 、AC 、AD 上分别取点E 、F 、G , 使AE : EB=AF : FC=AG : GD=2 : 1,记O 为三平面BCG 、CDE 、DBF 的交点,则三棱锥O —BCD 的体积等于 ( )A .91 B .81 C . 71 D .41(2005重庆理)4.空间四点A B C D 、、、共面而不共线,那么这四点中----------------------------------------( )(A)必有三点共线 (B)必有三点不共线 (C)至少有三点共线 (D)不可能有三点共 二、填空题5.正方体1111D C B A ABCD -的棱长为1,E 在棱1CC 上,CE E C 31=,设平面DE A 1与正方体的侧面C C BB 11交于线段EF ,则线段EF 的长为 ▲ .6. 已知,a b 是两条不重合的直线,,,αβγ是三个两两不重合的平面,给出下列四个命题:①若a α⊥,a β⊥,则βα// ②若βαγβγα//,,则⊥⊥ ③若b a b a //,,,//则βαβα⊂⊂ ④若b a b a //,,,//则=⋂=⋂γβγαβα其中正确命题的序号有____________。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( ) A. S 1<S 2 B. S 1>S 2 C. S 1=S 2 D. S 1,S 2的大小关系不能确定(2006江西理)C2.不共面的四个定点到平面α的距离都相等,这样的平面α共有( )个 A.3 B.4 C.6 D.7(2005全国3理) 3.如图1,已知正方体1111ABCD A B C D -中,E F 、分别是1AB AA 、的中点,则平面1CEB 与平面11D FB 所成二面角的平面角的正弦值为()A .12B.2C .2D .1二、填空题4.已知正六棱柱的侧面积为72cm 2,高为6 cm ,那么它的体积为__cm 25.在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为 ▲ cm 3.6.对于直线m 、 n 和平面 α、β、γ,有如下四个命题:EFD 1C 1B 1A 1AC BD βαβαγαβγβααααα⊥⊂⊥⊥⊥⊥⊥⊥⊥则若则若则若则若,,)4(,//,,)3(//,,)2(,,,//)1(m m n n m m n n m m其中正确的命题的个数是7.已知正四棱柱1111ABCD A B C D -中,12AA AB =,E 为1AA 的中点,则异面直线BE 与1CD 所成角的正切值为 .8.点P 是四面体A BCD -的底面BCD 上的点,且1123AP xAB AC AD =++,则x = . 9.将圆锥的侧面展开恰为一个半径为2的半圆,则圆锥的体积是 . 10.用符号表示“点A 在直线l 上,l 在平面α外”为11. 若AB 的中点M 到平面α的距离为cm 4,点A 到平面α的距离为cm 6,则点B 到平面α的距离为 __ ☆___cm .12.一个正四棱柱的各个顶点在一个直径为4cm 的球面上.如果正四棱柱的底面边长为2cm ,那么该棱柱的表面积为 ▲ cm 2.13.已知某四面体的六条棱长分别为,,,则两条较长棱所在直线所成 角的余弦值为 ▲ .14.已知集合{M P =|P 是棱长为1的正方体1111ABCD A B C D -表面上的点,且}AP =,则集合M 中所有点的轨迹的长度是___▲___.15.一个圆锥的侧面展开图是圆心角为43π,半径为18 cm 的扇形,则圆锥母线与底面所成角的余弦值为________.16.棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的 中点,则直线EF 被球O 截得的线段长为17.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120°,底面圆的半径为1,则该圆锥的体积为__________.(第9题)18.已知直线a b 、、,,.a b ab A a b A a '''''==、与b 所成的锐角(或直角)为θ,a '与b '所成的锐角(或直角)为θ',则//a a '且//b b '是θθ'=的_________________条件 三、解答题19.如图,在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD,且PA PD AD =,若E 、F 分别为PC 、BD 的中点. 求证:(1)EF // 侧面PAD ;(2)平面PAD ⊥平面PDC .20.如题(19)图,四棱锥P ABCD -中,PA ⊥底面ABCD,PA =,2BC CD ==,3ACB ACD π∠=∠=.zhangwlx(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若侧棱PC 上的点F 满足7PF FC =,求三棱锥P BDF -的体积. (2013年高考重庆卷(文))(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)BA21.如图所示,在三棱锥P ABQ -中,PB ⊥平面ABQ ,BA BP BQ ==,,,,D C E F 分别是,,,AQ BQ AP BP 的中点, 2AQ BD =,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(Ⅰ)求证:AB GH ; (Ⅱ)求二面角D GH E --的余弦值. (2013年普通高等学校招生统一考试山东数学(理)试题(含答案))22.如图,四棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==∆,与PAD ∆都是等边三角形.(I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小. (2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))23.如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.(本小题满分14分)证:(1)因为SA =AB 且AF ⊥SB , 所以F 为SB 的中点.又E ,G 分别为SA ,SC 的中点, 所以,EF ∥AB ,EG ∥AC .又AB ∩AC =A ,AB ⊂面SBC ,AC ⊂面ABC , 所以,平面//EFG 平面ABC .(2)因为平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =BC , AF ⊂平面ASB ,AF ⊥SB . 所以,AF ⊥平面SBC . 又BC ⊂平面SBC , 所以,AF ⊥BC .又AB ⊥BC ,AF ∩AB =A , 所以,BC ⊥平面SAB . 又SA ⊂平面SAB , 所以,SA BC ⊥.24.四棱锥P -ABCD 中,底面ABCD 是边长为8的菱形,∠BAD=3π,若PA =PD =5, ACSGFE平面PAD ⊥平面ABCD. (1)求四棱锥P -ABCD 的体积; (2)求证:AD ⊥PB;(3)若E 为BC 的中点,能否在棱PC 上找到一点F ,使平面 DEF ⊥平面ABCD ,并证明你的结论?25.如图,已知△ABC 是正三角形,EA 、CD 都垂直于平面ABC ,且EA=AB=2a,DC=a,F 是BE 的中点,求证: (1) FD ∥平面ABC; (2) AF ⊥平面EDB.26.如图,在四棱锥P-ABCD 中,底面ABCD 是直角梯形,AD//BC ,PB ⊥平面ABCD ,CD ⊥BD ,PB=AB=AD=1,点E 在线段PA 上,且满足PE=2EA . (1)求三棱锥E-BAD 的体积; (2)求证:PC//平面BDE .(本小题满分14分)27.如图,直三棱柱111ABC A B C -中,D 、E 分别是棱BC 、AB 的中点,点F 在棱1CC 上,已知AB AC =,13AA =,2BC CF ==.(1)求证:1//C E 平面ADF ;(2)设点M 在棱1BB 上,当BM 为何值时,平面CAM ⊥平面ADF ?关键字:证明线面平行;寻找线线平行;证明面面垂直;28.如图,α∩β=BC ,A ∈α,D ∈β,E 、F 、G 、H分别是AB 、AC 、DB 、CD 上的点,求证:若EF ∩GH =P ,则P 点必在直线BC 上. 证明:∵α∩β=BC ,A ∈α, 又∵E 、F 分别是AB 和AC 上的点, ∴E ∈α,F ∈α.∴EF ⊂α.又∵EF ∩GH =P , ∴P ∈EF ,∴P ∈α.同理,P ∈β,又∵α∩β=BC ,∴P ∈BC ,即P 点必在BC 上.29.如图,等腰梯形ABCD 中CD ∥,AB DE AB ⊥于1,3E CD DE AB ===,,将该梯形沿DE 折叠,使得平面BCDE ⊥平面DEA ,设,M N 分别是线段,AD BE 的中点, (1) 求CM 与DN 所成的角的余弦值,(2) 求BM 与平面ABC 所成角的正弦值。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( ) A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖(2008安徽理)2.对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l ( ) (A )平行 (B )相交 (C )垂直 (D )互为异面直线(2006年高考重庆理) 3.到两互相垂直的异面的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 (A ) 直线(B ) 椭圆(C ) 抛物线(D ) 双曲线(2010重庆理)4.正三棱柱的底面边长为2,侧面均为直角三角形,则此三棱柱的体积为( )D.2004全国3理9) 5.以下命题(其中a ,b 表示直线,α表示平面)①若a ∥b ,b ⊂α,则a ∥α ②若a ∥α,b ∥α,则a ∥b ③若a ∥b ,b ∥α,则a ∥α ④若a ∥α,b ⊂α,则a ∥b 其中正确命题的个数是( )(A )0个(B )1个(C )2个(D )3个6.空间四边形ABCD 的两条对角线AC 和BD 的长分别为6和4,它们所成的角为60,则这四边形两组对边中点的距离等于----------------------------------------------------------------------( )以上都不 二、填空题7.已知直线l ⊥平面α,直线m ⊂平面β.给出下列命题: ①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α∥β. 其中正确的命题是 ▲ . (填序号)8.如图,在正三棱锥A BCD -中,底面BCD ∆,点,E F 分别是CD 和AD 的中点,且EF BF ⊥,则正三棱锥A BCD -的外接球的表面积为 ▲ .9.如果一条直线l 与平面α的一条垂线垂直,那么直线l 与平面α的位置关系是__________;10.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使 平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .第11题11.如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明. (2013年高考湖北卷(文))12.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于______.(2013年高考大纲卷(文))13.点P 在平面ABC 上的射影为O ,且PA 、PB 、PC 两两垂直,那么O 是△ABC 的 .(填:外心,内心,重心,垂心)14.把半径为10的圆形纸板等分为5个扇形,用一个扇形围成圆锥的侧面(纸的厚度忽略不计),则圆锥的体积为_______.15.如图,在正方体ABCD -A 1B 1C 1D 1中,M 是DD 1的中点, 则下列结论正确的是 ▲ (填序号) ①线段A 1M 与B 1C 所在直线为异面直线; ②对角线BD 1⊥平面AB 1C ; ③平面AMC ⊥平面AB 1C ; ④直线A 1M//平面AB 1C.16.若AB 的中点M 到平面α的距离为cm 4,点A 到平面α的距离为cm 6,则点B 到平面α的距离为 __ ☆___cm 。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题...是( B ) A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补 C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上(2006江西文)2.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为 ( )A .26B . 6C .66 D .36(2004全国4文3)3.正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为A B C .23D 全国I )文 4.已知直线l ∥平面α,P α∈,那么过点P 且平行于l 的直线 A 只有一条,不在平面α内 B 只有一条,在平面α内C 有两条,不一定都在平面α内D 有无数条,不一定都在平面α内5.过空间任一点和两条异面直线都平行的平面有-----------------------------------------------( ) (A) 1个 (B) 无数个 (C)至多一个 (D)不存6.空间两直线平行是指它们--------------------------------------------------( )(A)无交点 (B)共面且无交点 (C)和同一直线垂直 (D)以上都不对 二、填空题7.用一个平行于圆锥底面的平面截该圆锥,截得圆台的上、下底面半径之比是 1 : 4,截去的小圆锥的母线长是3 cm ,则圆台的母线长 ▲ cm .8.在四棱锥P -ABCD 中,∠ABC =∠ACD =90°,∠BAC =∠CAD =60°,PA ⊥平面ABCD ,E 为PD 的中点,PA =2AB =2. (Ⅰ)求四棱锥P -ABCD 的体积V ;(Ⅱ)若F 为PC 的中点,求证PC ⊥平面AEF ; (Ⅲ)求证CE ∥平面PAB .(本小题满分15分)9.下列命题中正确命题的个数是①一条直线和另一条直线平行,那么它和经过另一条直线的任何平面平行;②一条直线平行于一个平面,则这条直线与这个平面内所有直线都没有公共点,因此这条直线与这个平面内的所有直线都平行;③若直线与平面不平行,则直线与平面内任一直线都不平行;④与一平面内无数条直线都平行的直线必与此平面平行。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.等边三角形ABC 的边长为4,M 、N 分别为AB 、AC 的中点,沿MN 将△AMN 折起,使得面AMN 与面MNCB 所处的二面角为300,则四棱锥A -MNCB 的体积为( ) (A )23(B )23 (C )3 (D )3(2004安徽春季理)(5)2.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( ) A .,,m n m n αα若则‖‖‖ B .,,αγβγαβ⊥⊥若则‖ C .,,m m αβαβ若则‖‖‖ D .,,m n m n αα⊥⊥若则‖二、填空题3.已知圆柱Ω的母线长为l ,底面半径为r ,O 是上地面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为π6,则1r=________.(2013年上海高考数学试题(文科))4.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)。
若AM ⊥MP ,则P 点形成的轨迹的长度为 ▲ .5.空间四边形ABCD 中,E 、H 分别是AB 、AD 的中点,F 、G 分别是CB 、CD 上的点,且32==CD CG CB CF ,若BD =6cm,梯形EFGH 的面积为28cm 2。
则平行线EH 、FG 间的距离为6. 已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:①一条直线;②整个平面;③一个点;④空集.其中正确命题的序号是 .7.如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线PA 垂直于圆O 所在的平面,点M 位线段PB 的中点。
有以下四个命题:① PA //平面MOB ; ② MO //平面PAC ; ③ OC ⊥平面PAC ; ④ 平面PAC ⊥平面PBC . 其中正确的是 .(填上所有正确命题的序号)8.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面平行; ②若两个平面都垂直于同一条直线,则这两个平面平行;③若两个平面互相垂直,则在其中一个平面内的直线垂直另外一个平面; ④若两个平面互相平行,则在其中一个平面内的直线平行另外一个平面.其中为真命题的是 ②和④(北京市东城区2011年第二学期综合练习一文科)9.已知菱形ABCD 在平面α内,PC α⊥,那么PA 与对角线BD 的位置关系是异面且_____。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为,m n ,那么m n +=( )A .8B .9C .10D .11(2013年高考江西卷(理))2.如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( ) A. S 1<S 2 B. S 1>S 2 C. S 1=S 2 D. S 1,S 2的大小关系不能确定(2006江西理)C3.若对任意的长方体A ,都存在一个与A 等高的长方体B ,使得B 与A 的侧面积之比和体积之比都等于k ,则k 的取值范围是( ) A .0k >B .01k <≤C .1k >D .1k ≥二、填空题4.若圆锥底面半径为1,高为2,则圆锥的侧面积为 ▲ .5.已知n m ,为两条不同的直线,βα,为两个不同的平面,给出如下命题: (1)若ββαα//,//,,n m n m ⊂⊂,则βα//;(2)若n m m ⊥⊥,α,则α//n ; (3)若βαβα⊂⊂n m ,,//,则n m //; (4)若,,//α⊥n n m 则α⊥m 。
其中正确命题的序号是6.若正三棱锥的底面边长为1,则此三棱锥的体积为 ▲ . 7.如图,用半径为2的半圆形铁皮卷成一个圆锥筒, 那么这个圆锥筒的容积是 ▲ ____.8.设m 、n 是两条不同的直线α,、β是两个不同的平面,则下列命题中正确的是___________(填序号).①m n m n αβαβ⊥,⊂,⊥⇒⊥ ②α∥m n βα,⊥,∥m n β⇒⊥ ③m n αβα⊥,⊥,∥m n β⇒⊥(第9题图)④m n m n αβαββ⊥,⋂=,⊥⇒⊥⑤若m 不垂直于α,则m 不可能垂直于α内无数条直线.9.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断: ①m ⊥n②α⊥β③n ⊥β④m ⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..命题: _________________________.10.如图BC 是Rt ⊿ABC 的斜边,过A 作⊿ABC 所在平面 α垂线AP ,连PB 、PC ,过A 作AD ⊥BC 于D ,连PD ,那么图中直角三角形的个数 个11.体积为8的一个正方体,其表面积与球O 的表面积相等,则球O 的体积等于________.12.如图,倒置的顶角为60°的圆锥形容器,有一个实心铁球浸没于容器的水中,水面恰好与球相切,若取出这个铁球,测得容器的水面深度为315cm ,则这个铁球的表面积为 ▲ cm 2.13. 设α、β、γ为三个不同的平面,给出下列条件:①,a b 为异面直线,,,//,//a b b αβαβα⊂⊂;②α内有三个不共线的点到β的距离相等;③,αγβγ⊥⊥;④//,//αλβλ。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( )A .6πB .43πC .46πD .63π(2012课标文)2.高为4的四棱锥S-ABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为(2011年高考重庆卷理科9)(A )4 (B )2(C )1 (D3.下列命题中,不正确的命题是---------------------------------------------------------------------( ) (A)空间四边形两组对边都是异面直线 (B)空间四边形的两条对角线是异面直线 (C)空间四边形各边中点的连线构成平行四边形 (D)空间四边形各边中点的连线构成空间四边4.空间三条直线a b c 、、,若,a b b c ∥∥,则由直线a b c 、、确定的平面个数为----( )(A) 1 (B) 2 (C) 3 (D) 1或5.下列命题中,正确结论有---------------------------------------------------------------------------( ) ①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④如果两条直线同平行于第三条直线,那么这两条直线互相平行 (A) 1个 (B) 2个 (C) 3个 (D) 46.若对任意的长方体A ,都存在一个与A 等高的长方体B ,使得B 与A 的侧面积之比和体积之比都等于k ,则k 的取值范围是( ) A .0k > B .01k <≤C .1k >D .1k ≥7.正四棱锥S ABCD -中,侧棱与底面所成的角为α,侧面与底面所成的角为β,侧面等腰三角形的底角为γ,相邻两侧面所成的二面角为θ,则αβγθ、、、的大小关系是( )A .αβγθ<<<B .αβθγ<<<C .θαγβ<<<D .αγβθ<<< 二、填空题8.设C B A P ,,,是球O 表面上的四个点,PC PB PA ,,两两垂直,且1PA =,2PB =,3PC =,则该球的表面积为 .9.长方体1111ABCD A B C D -中,13,2AB BC AA ===,则四面体11A BC D 的体积为 10.已知圆锥的底面半径为2cm ,高为1cm ,则圆锥的侧面积是 2cm . 11.线n m ,和平面βα、,能得出βα⊥的一个条件是__________; A βα//n ,//m ,n m ⊥ B αβα⊆=⊥n ,m ,n m C αβ⊆⊥m n n m ,,// D βα⊥⊥n m n m ,,//12.若m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列命题中的真命题是 . ①若m 、n 都平行于平面α,则m 、n 一定不是相交直线; ②若m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知α、β互相垂直,m 、n 互相垂直,若α⊥m ,则β⊥n ;④m 、n 在平面α内的射影互相垂直,则m 、n 互相垂直.13.棱长为3的正方体的顶点都在同一球面上,则该球的表面积为________.14.如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A,P,Q 的平面截该正方体所得的截面记为S.则下列命题正确的是__①②③⑤___(写出所有正确命题的编号). (2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足1113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S的面积为215. 已知三棱台111ABC A B C -中,三棱锥111B A B C -、1A ABC -的体积分别为2、18,则此三棱台的体积的值等于______________.16.已知正四棱锥的底面边长为23,侧棱长为5,则此四棱锥的体积是 ▲ ;17.已知两条不同的直线n m 、和平面α.给出下面三个命题:①α⊥m ,α⊥n n m //⇒;②α//m ,α//n n m //⇒;③α//m ,α⊥n n m ⊥⇒.其中真命题的序号有 .(写出你认为所有真命题的序号)18.两条异面直线的所成角的取值范围是_________________19.已知n m ,是两条不同的直线,βα,为两个不同的平面,有下列四个命题: ①若βα⊥⊥n m ,,m ⊥n ,则βα⊥;②若n m n m ⊥,//,//βα,则βα//; ③若n m n m ⊥⊥,//,βα,则βα//;④若βαβα//,//,n m ⊥,则n m ⊥. 其中正确的命题是(填上所有正确命题的序号)_______________5 1 1 2 4 46 723 第6题三、解答题20.(本题满分14分)在三棱柱ABC -A 1B 1C 1中,已知平面BB 1C 1C ⊥平面ABC ,AB =AC ,D 是BC 中点,且B 1D ⊥BC 1。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.一个圆锥的侧面积是其底面积的2倍,则该圆锥的母线与底面所成的角为( ) A. 30︒B. 45︒C. 60︒D. 75︒(2004北京春季理)(4)二、填空题2. 设m ,n 是空间两条不同直线,α,β是两个不同的平面,下面四个命题:①若α⊥m ,β//n ,βα//,则n m ⊥;②若n m ⊥,βα//,α⊥m ,则β//n ;③若n m ⊥,βα//,α//m ,则β⊥n ;④若α⊥m ,n m //,βα//,则β⊥n .其中正确命题的编号是 .3.如图,在正方体ABCD -A 1B 1C 1D 1中,点E 在A 1D 上且A 1E =2ED ,点F 在AC 上且CF =2FA ,则EF 与BD 1的位置关系是______4.长方体1111ABCD A B C D -中,已知111130BAB B A C ∠=∠=,则AB 和11A C 所成的角是_____;1AA 和1B C 所成的角是___________;1AB 和1A C 所成的角的余弦值是_____________5.直线a b 、不在平面α内,a b 、在平面α内的射影是两条平行直线,则a b 、的位置关系是________________________6.在三棱锥S ABC -中,已知2ABC π∠=,SA ⊥底面ABC ,则该几何体的表面直角三角形的个数为 ▲ .7.如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,底面各边都相等,M 是PC 上的一个动点,当点M 满足 时,平面M BD ⊥平面PCD .8.设αβ,是空间两个不同的平面,m ,n 是平面α及β外的两条不同直线.从“①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题: ▲ (用代号表示).①③④⇒②(或②③④⇒①)9.如图,设平面α∩β=EF ,AB ⊥α,CD ⊥α,垂足分别为B 、D . 若增加一个条件,就能推出BD ⊥EF ,现有:①AC ⊥β;②AC 与α,β所成的角相等;③AC 与CD 在β内的射影在同一条直线 上;④AC ∥EF ,那么上述几个条件中能成为增加条件的是________. (填上你认为正确的序号)解析:对于①AC ⊥β,知AC ⊥EF , ∴EF ⊥平面ABDC ,∴EF ⊥BD ,对于②④不能得到BD ⊥EF ; 对于③知平面ABCD ⊥平面β,又平面ABCD ⊥α, ∴EF ⊥平面ABDC , ∴EF ⊥BD ,填①③.10.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 ( ) A. 23 B. 76 C. 45 D. 56(2004广东理)11.在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 与1B C 所成角的大小为_______(2013年上海市春季高考数学试卷(含答案))CBAP12.如图,直角ABC △所在平面外一点S ,且SA SB SC ==,点D 为斜边AC 的中点.(1) 求证:SD ⊥平面ABC ;(2) 若AB BC =,求证:BD ⊥面SAC .13. 若三条直线两两相交,由这三条直线中任意两条所确定的平面有 ▲ 个. 14.如图,已知 PA ⊥Rt △ABC 所在的平面,且AB ⊥BC ,连结PB 、PC ,则图中直角三角形的个数是__________个.15.已知正四棱柱1111ABCD A B C D -中,12AA AB =,E 为1AA 的中点,则异面直线BE 与1CD 所成角的正切值为 .16.将圆面22(1)(1)3x y ++-≤绕直线y=1旋转一周所形成的几何体的体积与该几何体的内接正方体的体积的比值是 .17.如图,有一圆柱形的开口容器(下表面密封),其轴截面是边长为2的正方形,P 是BC 中点,现有一只蚂蚁位于外壁A 处,内壁P 处有一米粒,则这只蚂蚁取得米粒所需经过的最短路程为 .D 1 C 1B 1A 1D C AB A18.下列命题中正确命题的个数是①一条直线和另一条直线平行,那么它和经过另一条直线的任何平面平行;②一条直线平行于一个平面,则这条直线与这个平面内所有直线都没有公共点,因此这条直线与这个平面内的所有直线都平行;③若直线与平面不平行,则直线与平面内任一直线都不平行;④与一平面内无数条直线都平行的直线必与此平面平行。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为,m n ,那么m n +=( )A .8B .9C .10D .11(2013年高考江西卷(理)) 2.如图,l A B A B αβαβαβ⊥=∈∈,,,,,到l 的距离分别是a 和b ,AB 与αβ,所成的角分别是θ和ϕ,AB 在αβ,内的射影分别是m 和n ,若a b >,则( )A .m n θϕ>>,B .m n θϕ><,C .m n θϕ<<,D .m n θϕ<>,(2008陕西理)3.如图,正三棱柱111ABC A B C -的各棱长都2,E ,F 分别是11,AB A C 的中点,则EF 的长是( C )A Ba bl αβC1C(2006浙江文)4.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于27、43,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N ③MN 的最大值为5 ④MN 的最小值为l 其中真命题的个数为A .1个B .2个C .3个D .4个(2008江西理)5.在正方体1111ABCD A B C D -中,,E F 分别为棱11,AA CC 的中点,则在空间中与三条直线11,,A D EF CD 都相交的直线( )A.不存在B.有且只有两条C.有且只有三条D.有无数条(2008辽宁理) 6.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是( ) A .1B .2C .3D .4(2005湖北文)7.空间四边形ABCD 中,A B B C C D 、、的中点分别是P Q R 、、,且2,,3P Q Q P R ==,那么异面直线AC 和BD 所成的角是________________8.若点E F G H 、、、顺次为空间四边形ABCD 四边AB BC CD DA 、、、的中点,且3,4EG FH ==,则22AC BD +等于---------------------------------------------------------------( )(A) 25 (B) 50 (C) 100 (D) 209.如图,点,,E F G 分别是四面体ABCD 的棱,,BC CD DA 的中点,此四面体中与过,,E F G 的截面平行的棱的条数有( )A .0条B .1条C .2条D .3条二、填空题10.若,,l m n 是三条互不相同的空间直线,,αβ是两个不重合的平面, 则下列命题中为真命题的是 ▲ (填所有正确答案的序号). ①若//,,,l n αβαβ⊂⊂则//l n ; ②若,,l αβα⊥⊂则l β⊥; ③若,,l n m n ⊥⊥则//l m ; ④若,//,l l αβ⊥则αβ⊥.11.Rt ABC ∆在平面α内的射影是111A B C ∆,设直角边AB α,则111A B C ∆的形状是 三角形.12.已知圆锥的底面半径为2cm ,高为1cm ,则圆锥的侧面积是 2cm . 13.如图,在正三棱锥A BCD -中,底面BCD ∆的边长为,点,E F 分别是CD 和AD 的中点,且EF BF ⊥,则正三棱锥A BCD -的外接球的表面积为 ▲ .第11题14.圆柱形容器内盛有高度为3cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是____cm.15.在正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1中点,则异面直线BE 与CD 1所成角的余弦值为__ ____。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列四个命题正确的是A 两两相交的三条直线必在同一平面内B 若四点不共面,则其中任意三点都不共线C 在空间中,四边相等的四边形是菱形D 在空间中,有三个角是直角的四边形是矩形2.下列命题中,不正确的命题是---------------------------------------------------------------------( ) (A)空间四边形两组对边都是异面直线 (B)空间四边形的两条对角线是异面直线 (C)空间四边形各边中点的连线构成平行四边形 (D)空间四边形各边中点的连线构成空间四边3.正方体的两条对角线相交所成角的正弦值等于------( )(A)2 (B)13(C)34.过正方体1111ABCD A B C D 的对角线1BD 的截面面积为S ,max S 和min S 分别为S 的最大值和最小值,则maxminS S 的值为( ) ABCD二、填空题5.已知长方体的长,宽,高为5,4,3,若用一个平面将此长方体截成两个三棱柱,则这两个三棱柱表面积之和的最大为 ▲6.正方体的内切球与其外接球的体积之比为( C )(A)1∶3 (B)1∶3 (C)1∶33 (D)1∶9(2006山东文)7.一个半径为6的球内切于一个正方体 ,则这个正方体的对角线长为8.设E 、F 、G 、H 为空间四点,命题甲:点E 、F 、G 、H 不共面;命题乙:直线EF 和GH 不相交,那么甲是乙的_________________条件9.下列几个命题:①过直线外一点只有一条直线与已知直线垂直;②过平面外一点有无数条直线与已知平面平行;③平行于同一条直线的两个平面平行;④垂直于同一条直线的两条直线平行;⑤垂直于同一个平面的两个平面平行。
2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.给出下列四个命题:①垂直于同一直线的两条直线互相平行 ②垂直于同一平面的两个平面互相平行③若直线12l l ,与同一平面所成的角相等,则12l l ,互相平行 ④若直线12l l ,是异面直线,则与12l l ,都相交的两条直线是异面直线 其中假命题的个数是(D ) A.1 B.2 C.3 D.4(2006辽宁文)2.设,m n 是平面α内的两条不同直线,1l ,2l 是平面β内的两条相交直线,则α//β的一个充分而不必要条件是A .m //β且//l αB . 1//m l 且2//n lC .//m β且//n βD . //m β且2//n l (2009福建理)3.已知直线a 与平面β,则在平面β内必存在直线与直线a ------------------------------------------------------------------------( )(A)平行 (B)相交 (C)异面 (D)垂直4.过直线外一点与直线平行的平面有----------------------------------------------------------------( ) (A) 1个 (B)无数个 (C)不存在 (D)以上均不对 二、填空题5.正方体1111ABCD A B C D -中,与对角线1AC 异面的棱有 条.6. 已知,a b 是两条不重合的直线,,,αβγ是三个两两不重合的平面,给出下列四个命题:①若a α⊥,a β⊥,则βα// ②若βαγβγα//,,则⊥⊥ ③若b a b a //,,,//则βαβα⊂⊂ ④若b a b a //,,,//则=⋂=⋂γβγαβα其中正确命题的序号有____________。
7.如图,AB 是圆O 的直径,C 是异于A 、B 的圆周上的任意一点,P A 垂直于圆O 所在的 平面,则BC 和PC ________.解析:∵ P A ⊥平面ABC ,而BC ⊂面ABC ,∴P A ⊥BC . 又∵AB 为圆O 的直径,∴AC ⊥BC .又∵P A ∩AC =A ,∴BC ⊥面P AC ,且PC ⊂面P AC . ∴BC ⊥PC ,即BC 和PC 垂直.8. 下面四个命题:①“直线a ∥直线b ”的充要条件是“a 平行于b 所在的平面”; ②“直线l ⊥平面α内所有直线”的充要条件是“l ⊥平面α”; ③“直线a 、b 为异面直线”的充分不必要条件是“直线a 、b 不相交”;④“平面α∥平面β”的必要不充分条件是“α内存在不共线三点到β的距离相等”;其中正确命题的序号是 .9.设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: (1)若βα//,β⊂m ,α⊂n ,则n m //; (2)若βα//,β⊥m ,α//n ,则n m ⊥; (3)若βα⊥,α⊥m ,β//n ,则n m //; (4)若βα⊥,α⊥m ,β⊥n ,则n m ⊥. 上面命题中,所有真命题的序号为 .10.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥D D BB A 11-的体积为 cm 3.DABC1C1D 1A1B11. 已知ABC ∆中,AB=2,BC =1,120ABC ∠=,平面ABC 外一点P 满足PA=PB=PC=2,则三棱锥P —ABC 的体积等于 .12.给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题: ①若,,,m lA A m l m αα⊂=∉点则与不共面;②若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ③若m l m l //,//,//,//则βαβα; ④若,,,//,//,//.l m lm A l m ααββαβ⊂⊂=点则其中为真命题的是 .13.已知两条直线,m n ,两个平面,αβ,给出下面四个命题: ①//,m n m n αα⊥⇒⊥ ②//,,//m n m n αβαβ⊂⊂⇒ ③//,////m n m n αα⇒ ④//,//,m n m n αβαβ⊥⇒⊥ 其中正确命题的序号是14.如图,P 是棱长为4的正方体ABCD —A 1B 1C 1D 1对角线AC 1上一动点, 若平面PBD ⊥平面A B C ,则三棱锥P A B -的体积为▲ .15.长方体三个面的面积分别为2、6和9,则长方体的体积是 .16.如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是 .x′17.棱长为3的正方体的顶点都在同一球面上,则该球的表面积为________. 18.已知n m ,是两条不同的直线,α为两个不同的平面,有下列四个命题: ① 若//,//m n αα,则//m n ; ② 若,m n αα⊥⊥,则//m n ; ③ 若//,m n αα⊥,则n m ⊥;④ 若,m m n α⊥⊥,则//n α. 其中真命题的序号有 ▲ .(请将真命题的序号都填上) 19.给出下列三个命题,其中真命题是 ▲___ (填序号). ①若直线l 垂直于平面α内两条直线,则α⊥l ;②若直线m 与n 是异面直线,直线n 与l 是异面直线,则直线m 与l 也是异面直线; ③若m 是一条直线,βα,是两个平面,且α∥βα⊂m ,,则m ∥β20.在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=,侧棱PA ⊥底面ABCD ,2PA =,E 为AB 的中点,则四面体PBCE 的体积为 .21.设直线n 和平面α,不管直线n 和平面α的位置关系如何,在平面α内总存在直线m ,使得它与直线n ▲ ;(在“平行”、 “相交”、 “异面”、 “垂直”中选择一个填空)三、解答题22.【题文】直三棱柱111C B A ABC -中,a BC BB AB ===211,︒=∠90ABC ,N 、F 分别为11C A 、11C B 的中点.(Ⅰ)求证:⊥CF 平面NFB ; (Ⅱ)求四面体BCN F -的体积.∴AB∥A1B1∥NF.【结束】23.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AD//BC,PB⊥平面ABCD,CD⊥BD,PB=AB=AD=1,点E在线段PA上,且满足PE=2EA.(1)求三棱锥E-BAD的体积;(2)求证:PC//平面BDE.(本小题满分14分)24.如图,三棱锥A —BCD ,BC =3,BD =4,CD =5,AD ⊥BC ,E 、F 分别是棱AB 、CD 的中点,连结CE ,G 为CE 上一点. (1)求证:平面CBD ⊥平面ABD ; (2)若 GF ∥平面ABD ,求CGGE 的值.25.在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90 ,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE; (Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.(2011年高考山东卷理科19)(本小题满分12分)26.如图,在直三棱柱ABC —A 1B 1C 1中,∠BAC=90°,AB=BB 1=a ,直线B 1C 与平面ABC 成30°角. (1)求证:平面B 1AC ⊥平面ABB 1A 1;ABCDFEG(2)求C 1到平面B 1AC 的距离; (3)求三棱锥A 1—A B 1C 的体积.27.如图,在直角梯形ABCD 中,90=∠=∠C B ,2=AB ,22=CD ,1=BC .将ABCD (及其内部)绕AB 所在的直线旋转一周,形成一个几何体.(1)求该几何体的体积V ;(2)设直角梯形A B CD 绕底边AB 所在的直线旋转角θ(),0('πθ∈=∠CBC )至''D A B C ,问:是否存在θ,使得''DC AD ⊥.若存在,求角θ的值,若不存在,请说明理由.(满分15分)本题有2小题,第1小题6分,第2小题9分.⇒28.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB=2EF=2,EF ∥AB,EF ⊥FB,∠BFC=90°,BF=FC,H 为BC 的中点,(Ⅰ)求证:FH ∥平面EDB; (Ⅱ)求证:AC ⊥平面EDB; (Ⅲ)求四面体B —DEF 的体积;【命题意图】本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查体积的计算等基础知识,同时考查空间想象能力、推理论证能力和运算能力.【解题指导】(1)设底面对角线交点为G ,则可以通过证明EG ∥FH ,得FH ∥平面EDB ;(2)利用线线、线面的平行与垂直关系,证明FH ⊥平面ABCD ,得FH ⊥BC ,FH ⊥AC ,进而得EG ⊥AC ,AC ⊥平面EDB ;(3)证明BF ⊥平面CDEF ,得BF 为四面体B-DEFABCDEFH的高,进而求体积.(1),1//,21//,2////AC BD G G AC EG GH H BC GH AB EF AB EFGH EG FH EG EDB FH EDB ∴∴⊂∴证:设与交于点,则为的中点,连,由于为的中点,故又四边形为平行四边形,而平面,平面0,.,..//,,90,.FB BFG FH FH BF FG H BC FH BC FH ABCD FH AC FH EG AC EG AC BD EG BD G AC EDBFB BFC BF CDEF BF B DEF BC A ∏⊥∴⊥⊥∴⊥∴⊥∴⊥=∴⊥∴⊥∴⊥∴⊥⊥⋂=∴⊥⊥∠=∴⊥∴-=()证:由四边形ABCD 为正方形,有AB BC 。
又EF//AB ,EF BC 。
而EF ,EF 平面EF AB 又为的中点,。
平面又,又,平面(Ⅲ)解:EF 平面为四面体的高,又2,111*.323B DEF B BF FC V BF-=∴====∴【规律总结】本题是典型的空间几何问题,图形不是规则的空间几何体,所求的结论是线面平行与垂直以及体积,考查平行关系的判断与性质.解决这类问题,通常利用线线平行证明线面平行,利用线线垂直证明线面垂直,通过求高和底面积求四面体体积.29.已知直线a 和b 是异面直线,直线c a ∥,直线b 与c 不相交,求证:b 和c 是异面直线。
30.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PA D⊥底面ABCD,PA=PD,且PD与底面ABCD所成的角为45,(Ⅰ)求证:P A⊥平面PDC;(Ⅱ)已知E为棱AB的中点,问在棱PD上是否存在一点Q,使E Q∥平面PBC?若存在,写出点Q的位置,并证明你的结论;若不存在,说明理由。