一元二次方程的实际应用精讲精练(含答案)-
- 格式:doc
- 大小:133.51 KB
- 文档页数:4
一元二次方程应题精讲精练1.(2014•衡阳)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.2.(2014•咸宁)随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2011年销售烟花爆竹20万箱,到2013年烟花爆竹销售量为9.8万箱.求咸宁市2011年到2013年烟花爆竹年销售量的平均下降率.3,某公司计划经过两年把某种商品的生产成本降低19%,那么平均每年需降低百分之几?4,农场去年种植了10亩地的南瓜,亩产量为2000kg,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.5.(2013•襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?6.(2014•南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为______万元,(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x7,参加一次聚会的每两人都握了一次手,所有人共握手66次,有多少人参加聚会?8初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?作业1.(2015•酒泉)今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=35002.(2015•安徽)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.5 3.(2015•日照)某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20% B.40% C.-220% D.30% 4.(2015•广州)某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元. (1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.5.(2015•十堰)已知关于x 的一元二次方程22(23)20x m x m -+++=.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为12x x 、,且满足221212x x 31|x x |+=+,求实数m 的值.6.(8分) 如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m ),另三边用木栏围成,木栏长35m .①鸡场的面积能达到150m 2吗?②鸡场的面积能达到180m 2吗? 如果能,请你给出设计方案;如果不能,请说明理由.7.(2014•新疆)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?8.(2014•淮安)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.。
一、基础知识(一)韦达定理对于一元二次方程,当鉴别式△=时,其求根公式为:;若两根为,当△≥ 0 时,则两根的关系为:;,根与系数的这类关系又称为韦达定理。
分析:它的逆定理也是建立的,即当,时,那么则是的两根。
二、重难点分析本课教课要点:韦达定理应用一元二次方程的根与系数的关系,综合性强,应用极为宽泛,在中学数学中据有深重要的地位,也是数学学习中的要点。
学习中,老师除了要求同学们应用韦达定理解答一些变式题目外,还经常要求同学们熟记一元二次方程根的鉴别式存在的三种状况,以及应用求根公式求出方程的两个根,从而分解因式,即。
此题教课难点:韦达定理逆定理依据韦达定理逆定理推测推测一元二次方程的系数,是学习难点,需要在学习过程中,依据,,判断则是的两根。
典例精析:例 1.已知对于的方程(1)有两个不相等的实数根,且对于的方程( 2)没有实数根,问取什么整数时,方程(1)有整数解?在同时知足方程(1),( 2)条件的的取值范围中挑选切合条件的的整数值。
【答案】解:∵方程( 1)有两个不相等的实数根,【考点】人教新课标九年级上册?21 章一元二次方程?根与系数的关系例 2.不解方程,鉴别方程两根的符号。
【考点】人教新课标九年级上册?21 章一元二次方程?根与系数的关系三、感悟中考1.( 2014 年甘肃白银)已知、是方程的两个实数根,求的值。
【考点】人教新课标九年级上册?21 章一元二次方程?根与系数的关系2.( 2014 年黑龙江大庆)已知双方程和起码有一个同样的实数根,求这两个方程的四个实数根的乘积。
【答案】解:设双方程的同样根为,依据根的意义,有【考点】人教新课标九年级上册?21 章一元二次方程?根与系数的关系四、专项训练。
(一)基础练习1. 假如对于的方程的两根之差为2,那么。
2.已知对于的一元二次方程两根互为倒数,则。
【答案】2【分析】3.已知对于的方程的两根为,且,则。
4.已知是方程的两个根,那么:;;。
第二章 一元二次方程专题1 一元二次方程的定义1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 要点诠释: 识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,都能化成形如02=++c bx ax ,(0≠a )这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx 是一次项,b是一次项系数;c 是常数项.要点诠释:(1)只有当时,方程02=++c bx ax 才是一元二次方程; (2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.【例题精选】例1 方程5x 2﹣2=﹣3x 的二次项系数、一次项系数、常数项分别是( )A .5、3、﹣2B .5、﹣3、﹣2C .5、3、2D .5、﹣3、2【分析】直接利用一元二次方程中各部分的名称分析得出答案.【解答】解:5x 2﹣2=﹣3x 整理得:5x 2+3x ﹣2=0,则二次项系数、一次项系数、常数项分别是:5、3、﹣2.故选:A .例2(2019秋•兰州期末)下列方程是关于x的一元二次方程的是()A.x=B.ax2+c=0C.a2x﹣3x=x(1﹣x)D.x(x2﹣1)=0【分析】根据一元二次方程的定义逐个判断即可.【解答】解:A、不是关于x的一元二次方程,故本选项不符合题意;B、不是关于x的一元二次方程,故本选项不符合题意;C、是关于x的一元二次方程,故本选项符合题意;D、不是关于x的一元二次方程,故本选项不符合题意;故选:C.例3 (2019秋•襄阳期末)已知x=1是一元二次方程2x2﹣cx=0的一个根,则c的值是()A.﹣1B.2C.3D.﹣2【分析】将x=1代入方程可得关于c的方程,解之可得.【解答】解:将x=1代入方程2x2﹣cx=0,得:2﹣c=0,解得c=2,故选:B.【随堂练习】1.(2021•潜江模拟)下列是一元二次方程的是()A.﹣5x+2=1B.2x2﹣y+1=0C.x2+2x=0D.x2﹣=0【解答】解:A、含有一个未知数,不是一元二次方程,故此选项不符合题意;B、含有两个未知数,不是一元二次方程,故此选项不符合题意;C、是一元二次方程,故此选项符合题意;D、含有分式,不是一元二次方程,故此选项不符合题意.故选:C.2.(2020秋•姜堰区期末)已知关于x的方程(a﹣1)x2﹣2x+1=0是一元二次方程,则a满足的条件是()A.a≠0B.a≠1C.a>1D.a≤2【解答】解:∵方程(a﹣1)x2+x﹣2=0是关于x的一元二次方程,∴a﹣1≠0,解得a≠1.故选:B.3.(2021•武汉模拟)方程3x2﹣2x﹣1=0的二次项系数和一次项系数分别为()A.3和2B.3和﹣2C.3和﹣1D.3和1【解答】解:方程3x2﹣2x﹣1=0的二次项系数和一次项系数分别为3和﹣2,故选:B.2 直接开平方法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.【例题精选】例1(2020•颍州区一模)解方程:(x﹣3)2=4.【分析】根据直接开方法即可求出答案.【解答】解:∵(x﹣3)2=4,∴x﹣3=±2,∴x=5或x=1;例2(2020•宿松县模拟)解方程:4(2x﹣1)2﹣36=0.【分析】根据直接开方法即可求出答案.【解答】解:∵4(2x﹣1)2﹣36=0,∴(2x﹣1)2=9,∴2x﹣1=±3,∴x=2或﹣1【随堂练习】1.(2020秋•南京期末)方程(x+3)2=4的根是()A.x1=﹣1,x2=﹣5B.x1=1,x2=﹣5C.x1=x2=﹣1D.x1=﹣1,x2=5【解答】解:(x+3)2=4,∴x+3=±2,∴x1=﹣1,x2=﹣5,故选:A.2.(2020秋•市中区期末)方程x2=4的解是()A.x1=4,x2=﹣4B.x1=x2=2C.x1=2,x2=﹣2D.x1=1,x2=4【解答】解:∵x2=4,∴x=2或x=﹣2,故选:C.3 配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.【例题精选】例1(2020•闽侯县模拟)解方程:x2﹣6x﹣8=0.【分析】利用配方法得到(x﹣3)2=17,然后利用直接开平方法解方程.【解答】解:x2‒6x=8,x2‒6x+9=17,(x﹣3)2=17,x﹣3=±,所以x1=3+,x2=3﹣.例2(2019秋•天门期末)解方程:x2﹣2x﹣5=0.【分析】先利用配方法得到(x﹣1)2=6,然后利用直接开平方法解方程.【解答】解:x2﹣2x=5,x2﹣2x+1=6,(x﹣1)2=6,x﹣1=±,所以x1=1+,x2=1﹣.【随堂练习】1.(2021•泸县模拟)将一元二次方程x2﹣2x=1配方,其正确的结果是()A.(x+1)2=2B.(x﹣2)2=5C.(x﹣1)2=1D.(x﹣1)2=2【解答】解:x2﹣2x=1,配方得:x2﹣2x+1=1+1,即(x﹣1)2=2.故选:D.2.(2020秋•郁南县期末)一元二次方程x2+4x=2配方后化为()A.(x+2)2=6B.(x﹣2)2=6C.(x+2)2=﹣6D.(x+2)2=﹣2【解答】解:∵x2+4x=2,∴x2+4x+4=2+4,∴(x+2)2=6.故选:A.3.(2020秋•兰陵县期末)用配方法解方程x2﹣6x+1=0,方程应变形为()A.(x﹣3)2=8B.(x﹣3)2=10C.(x﹣6)2=10D.(x﹣6)2=8【解答】解:∵x2﹣6x+1=0,∴x2﹣6x+9=8,∴(x﹣3)2=8,故选:A.4.(2020秋•费县期末)用配方法解方程x2﹣4x﹣7=0,可变形为()A.(x+2)2=3B.(x+2)2=11C.(x﹣2)2=3D.(x﹣2)2=11【解答】解:∵x2﹣4x﹣7=0,∴x2﹣4x+4=11,∴(x﹣2)2=11,故选:D.4 公式法1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:.①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a、b、c的值(要注意符号);③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.【例题精选】例1(2019秋•玉田县期中)一元二次方程ax2+bx+c=0(c≠0)的求根公式是()A.B.C.D.【分析】根据求根公式即可求出答案.【解答】解:一元二次方程的求根公式为x=,故选:A.例2(2019秋•行唐县期末)解方程.(1)2x2﹣6x﹣1=0;(2)2y(y+2)﹣y=2.【分析】(1)根据配方法即可求出答案;(2)根据因式分解法即可求出答案;【解答】解:(1)∵2x2﹣6x﹣1=0,∴x2﹣3x=,∴(x﹣)2=,∴x=;(2)∵2y(y+2)﹣y=2,∴2y(y+2)﹣y﹣2=0,∴(y+2)(2y﹣1)=0,∴y=﹣2或y=;【随堂练习】1.(2020秋•北海期末)用公式法解方程x2﹣6x+1=0所得的解正确的是()A.B.C.D.【解答】解:∵a=1,b=﹣6,c=1,∴△=(﹣6)2﹣4×1×1=32>0,则x===3±2,故选:D.2.(2020秋•普宁市期末)用公式法解方程3x2+5x+1=0,正确的是()A.B.C.D.【解答】解:这里a=3,b=5,c=1,∵△=25﹣12=13,∴x=,故选:A.3.(2020秋•市北区期末)解方程:4x2﹣6x﹣3=0.【解答】解:△=(﹣6)2﹣4×4×(﹣3)=84,x==,所以x1=,x2=.4.(2021春•三水区校级月考)解方程:2x2﹣10x=3.【解答】解:2x2﹣10x﹣3=0,△=(﹣10)2﹣4×2×(﹣3)=124,x==,所以x1=,x2=.5 因式分解法1.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【例题精选】例1 (2019春•浏阳市期中)计算:选择适当方法解下列方程(1)x2﹣2x﹣3=0(2)3x(x﹣1)=2﹣2x【分析】(1)利用因式分解法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x=3或x=﹣1;(2)3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0或3x+2=0,所以x1=1,x2=﹣.例2(2019秋•罗湖区校级期中)解方程(1)x2+x﹣3=0(2)(2x+1)2=3(2x+1)【分析】(1)先写出a,b,c的值,再计算△,然后用公式法求解即可;(2)先将原方程右边的移到左边,然后利用因式分解法进行分解即可.【解答】解:(1)∵x2+x﹣3=0∴a=1,b=1,c=﹣3∴△=b2﹣4ac=1﹣4×1×(﹣3)=1+12=13>0∴x==∴x1=,x2=.(2)∵(2x+1)2=3(2x+1)∴(2x+1)2﹣3(2x+1)=0∴(2x+1)(2x+1﹣3)=0∴(2x+1)(2x﹣2)=0∴2x+1=0或2x﹣2=0∴x1=﹣,x2=1.【点评】本题考查了利用公式法和因式分解法解一元二次方程,属于基本计算能力的考查,难度不大.【随堂练习】1.(2020秋•南京期末)方程x2﹣x=0的根为()A.x1=x2=0B.x1=1,x2=0C.x1=x2=﹣1D.x1=﹣1,x2=0【解答】解:x2﹣x=0,x(x﹣1)=0,x﹣1=0或x=0,解得:x1=1,x2=0,故选:B.2.(2020秋•南充期末)方程(x﹣1)(x﹣2)=0的解是()A.1B.2C.1和2D.﹣1和﹣2【解答】解:∵(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,解得x1=1,x2=2,故选:C.3.(2020秋•鼓楼区期末)方程x2﹣x=0的解是()A.x1=x2=0B.x1=0,x2=﹣1C.x1=x2=1D.x1=0,x2=1【解答】解:x2﹣x=0,x(x﹣1)=0,解得:x1=0,x2=1.故选:D.4.(2020秋•濮阳期末)方程x(x+3)=0的解是()A.x1=x2=﹣3B.x1=0,x2=﹣2C.x1=0,x2=﹣3D.x1=1,x2=3【解答】解:∵x(x+3)=0,∴x=0或x+3=0,解得x1=0,x2=﹣3,故选:C.综合练习一.选择题(共3小题)1.一元二次方程﹣x2+2x=0的根为()A.﹣2B.0,2C.0,﹣2D.2【解答】解:﹣x(x﹣2)=0,﹣x=0或x﹣2=0,所以x1=0,x2=2.故选:B.2.下列一元二次方程中,两实数根之和为2的是()A.x2+2x+1=0B.x2﹣x﹣=0C.﹣x2﹣2x+3=0D.x2﹣2=0【解答】解:A.方程x2+2x+1=0的两根之和为﹣2,不符合题意;B.方程x2﹣x﹣=0的两根之和为2,符合题意;C.方程﹣x2﹣2x+3=0的两根之和为﹣2,不符合题意;D.方程x2﹣2=0的两根之和为0,不符合题意;故选:B.3.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5B.a≥1C.a>1且a≠5D.a≥1且a≠5【解答】解:由题意知,△=(﹣4)2﹣4×(a﹣5)×(﹣1)≥0,且a﹣5≠0,解得:a≥1且a≠5,故选:D.二.解答题(共4小题)4.解方程(1)3x2﹣8x+4=0;(2)(2x﹣1)2=(x﹣3)2【解答】解:(1)3x2﹣8x+4=0,(3x﹣2)(x﹣2)=0,∴3x﹣2=0或x﹣2=0,∴x1=,x2=2;(2)(2x﹣1)2=(x﹣3)2,(2x﹣1)2﹣(x﹣3)2=0,(2x﹣1+x﹣3)(2x﹣1﹣x+3)=0,∴3x﹣4=0或x+2=0,∴x1=,x2=﹣2.5.已知a是方程x2﹣2x﹣4=0的根,求代数式a(a+1)2﹣a(a2+a)﹣3a﹣2的值.【解答】解:a(a+1)2﹣a(a2+a)﹣3a﹣2=a3+2a2+a﹣a3﹣a2﹣3a﹣2=a2﹣2a﹣2∵a是方程x2﹣2x﹣4=0的根,∴a2﹣2a﹣4=0,∴a2﹣2a=4,∴原式=4﹣2=2.6.已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)若m是方程的一个实数根,求m的值.【解答】(1)证明:∵△=(m+3)2﹣4(m+1)=(m+1)2+4,∵无论m取何值,(m+1)2+4恒大于0,∴原方程总有两个不相等的实数根.(2)解:∵m是方程的一个实数根,∴m2+(m+3)m+m+1=0.整理得:2m2+4m+1=0解得:m=.7.用适当的方法解方程:(1)3x2﹣2x=0;(2)(x﹣1)2=4;(3)x2+2x﹣5=0;(4)(3x+2)(x+3)=8x+15【解答】解:(1)3x2﹣2x=0;分解因式得:x(3x﹣2)=0,解得:x1=0,x2=;(2)(x﹣1)2=4;开方得:x﹣1=±2,解得:x1=3,x2=﹣1;(3)x2+2x﹣5=0,配方得:x2+2x+1=6,即(x+1)2=6,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣;方程整理得:x(2x﹣5)﹣2(2x﹣5)=0,分解因式得:(x﹣2)(2x﹣5)=0,解得:x1=2,x2=2.5;(4)(3x+2)(x+3)=8x+15方程整理得:x2+x﹣3=0,a=1,b=1,c=﹣3∴b2﹣4ac=12﹣4×1×(﹣3)=13,∴x=;解得:x1=,x2=.6 根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程的根的判别式正反都成立.利用其可以解决以下问题: (1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 【例题精选】例 1 (2020•鼓楼区一模)已知方程2x 2+4x ﹣3=0的两根分别为x 1、x 2,则x 1+x 2=________,x 1x 2=__________.【分析】根据方程的系数结合根与系数的关系,即可得出x 1+x 2和x 1x 2的值.【解答】解:∵x 1、x 2是方程2x 2+4x ﹣3=0的两根,∴x 1+x 2=﹣=﹣2,x 1x 2==﹣.故答案为:﹣2;﹣.例2(2020•泰兴市一模)一元二次方程x 2﹣4x +2=0根的情况是( )A .无实数根B .有两个正根C .有一个正根,一个负根D .有两个负根【分析】先求出“△”的值,再根据根的判别式的内容得出即可.【解答】解:x 2﹣4x +2=0,∵△=(﹣4)2﹣4×1×2=8>0,且x 1+x 2=4>0,x 1•x 2=2>0,∴有两个正根,故选:B .【随堂练习】1.(2020秋•鄂州期末)一元二次方程2x2+4x+1=0的两根为x1、x2,则x1+x2的值是()A.4B.﹣4C.﹣2D.2【解答】解:根据题意得x1+x2=﹣=﹣2.故选:C.2.(2020秋•遂宁期末)若一元二次方程5x﹣1=4x2的两根为x1和x2,则x1•x2的值等于()A.1B.C.D.【解答】解:方程化为4x2﹣5x+1=0,根据题意得x1•x2=.故选:B.3.(2020秋•东台市期末)方程x2﹣5x﹣6=0的两根之和为()A.﹣6B.5C.﹣5D.1【解答】解:设方程的两根是x1、x2,那么有x1+x2=﹣=﹣(﹣5)=5.故选:B.7增长率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.(1)增长率问题:平均增长率公式为(1)na xb += (a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后的量.)(2)降低率问题:平均降低率公式为(1)n a x b -= (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后的量.) 【例题精选】例1 (2020•铁西区二模)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口1万人,通过各方面的共同努力,2018年底该地区贫困人口减少到0.25万人,求该地区2016年底至2018年底贫困人口年平均下降的百分率.【分析】等量关系为:2016年贫困人口×(1﹣下降率)2=2018年贫困人口,把相关数值代入计算即可.【解答】解:设这两年全省贫困人口的年平均下降率为x ,根据题意得:(1﹣x )2=0.25,解得:x =0.5=50%或x =1.5(舍去)答:该地区2016年底至2018年底贫困人口年平均下降的百分率为50%.【点评】本题考查一元二次方程的应用,得到2年内变化情况的等量关系是解决本题的关键.例2(2019秋•薛城区期末)某药品原价为100元,连续两次降价a %后,售价为64元,则a 的值为( )A .10B .20C .23D .36【分析】可先用x 表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,然后根据已知条件得到关于x 的方程.【解答】解:当药品第一次降价%时,其售价为100﹣100a %=100(1﹣a %);当药品第二次降价x 后,其售价为100(1﹣a %)2.∴100(1﹣a %)2=64.解得:a =20或a =﹣180(舍去),故选:B .【点评】本题主要考查一元二次方程的应用,要根据题意列出第一次降价后商品的售价,再根据题意列出第二次降价后售价的方程,令其等于64即可.【随堂练习】1.(2021•长丰县模拟)一种商品原价100元,经过两次降价后的售价是60元,设平均每次降价的百分率为x,那么所列方程正确的是()A.60(1+x)2=100B.60(1+2x)=100C.100(1﹣x)2=60D.100(1﹣2x)=60【解答】解:设平均每次降价的百分率为x,根据题意,得100(1﹣x)2=60.故选:C.2.(2020秋•孟津县期末)某超市一月份的营业额为36万元,由于受疫情影响,二月份营业额有所下降,三月份开始复苏,营业额为48万元,设从一月到三月平均每月的增长率为x.则下面所列方程正确的是()A.36(1﹣x)2=48B.36(1+x)2=48C.36(1﹣x)2=48﹣36D.48(1﹣x)2=36【解答】解:依题意得:36(1+x)2=48.故选:B.3.(2020秋•金台区期末)某市为解决当地教育“大班额”问题,计划用三年时间完成对相关学校的扩建,2019年市政府已投资5亿人民币,若每年投资的增长率相同,预计2021年投资额达到y亿元人民币,设每年投资的增长率为x,则可得()A.y=5(1+2x)B.y=5x2C.y=5(1+x)2D.y=5(1+x2)【解答】解:依题意,得y=5(1+x)2.故选:C.8、利润问题利润(销售)问题中常用的等量关系:利润=售价-进价(成本)总利润=每件的利润×总件数【例题精选】例1 (2020•谷城县校级模拟)某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?【分析】关系式为:每件服装的盈利×(原来的销售量+增加的销售量)=1600,为了减少库存,计算得到降价多的数量即可.【解答】解:设每件服装应降价x元,根据题意,得:(44﹣x)(20+5x)=1600解方程得x=4或x=36,∵在降价幅度不超过10元的情况下,∴x=36不合题意舍去,答:每件服装应降价4元.【点评】此题主要考查了一元二次方程的应用,得到现在的销售量是解决本题的难点;根据每天盈利得到相应的等量关系是解决本题的关键.例2 (2019秋•平江县期末)某商场销售一批衬衫,平均每天可销售出20件,每件盈利40元,为扩大销售盈利,商场决定采取适当的降价措施,但要求每件盈利不少于20元,经调查发现.若每件衬衫每降价1元,则商场每天可多销售2件.(1)若每件衬衫降价4元,则每天可盈利多少元?(2)若商场平均每天盈利1200元.则每件衬衫应降价多少元?【分析】(1)可直接根据每件的利润×销售量=总利润,求出结果;(2)此题首先根据盈利1200元,列出一元二次方程:(20+2×x)×(40﹣x)=1200,然后解出即可.【解答】解:(1)(20+2×4)×(40﹣4)=1008元.答:商场每天销售这种衬衫可以盈利1008元.(2)设每件衬衫降价x元时,商场每天销售这种衬衫可以盈利1200元,根据题意得:(20+2x)×(40﹣x)=1200,整理得:x2﹣30x+200=0,(x﹣10)(x﹣20)=0,解得:x1=10,x2=20,答:每件衬衫降价10元或20元时,商场每天销售这种衬衫可以盈利1200元.【点评】本题主要考查一元二次方程的应用,解题的关键是读懂题意找出题中的等量关系每件的利润×销售量=总利润.【随堂练习】1.(2020秋•福州期末)某餐厅主营盒饭业务,每份盒饭的成本为12元.若每份盒饭的售价为16元,每天可卖出360份.市场调查反映:如调整价格,每涨价1元,每天要少卖出40份.若该餐厅想让每天盒饭业务的利润达到1680元,设每份盒饭涨价x元,则符合题意的方程是()A.(16+x﹣12)(360﹣40x)=1680B.(x﹣12)(360﹣40x)=1680C.(x﹣12)[360﹣40(x﹣16)]=1680D.(16+x﹣12)[360﹣40(x﹣16)]=1680【解答】解:设售价应涨价x元,则:(16+x﹣12)(360﹣40x)=1680,故选:A.2.(2020秋•宁德期末)某商场将进货价为20元的玩具以30元售出,平均每天可售出300件,调查发现,该玩具的单价每上涨1元,平均每天就少售出10件.若商场要想平均每天获得3750元利润,则每件玩具应涨价多少元?设每件玩具应涨价x元,则下列说法错误的是()A.涨价后每件玩具的售价是(30+x)元B.涨价后平均每天少售出玩具的数量是10x件C.涨价后平均每天销售玩具的数量是(300﹣10x)件D.根据题意可列方程为:(30+x)(300﹣10x)=3750【解答】解:设涨价x元,根据题意可得:A、∵(30+x)表示涨价后玩具的单价,∴A选项正确,不符合题意;B、∵10x表示涨价后少售出玩具的数量,∴B选项正确,不符合题意;C、∵(300﹣10x)表示涨价后销售玩具的数量,∴C选项正确,不符合题意;D、∵可列方程(30+x﹣20)(300﹣10x)=3750,故D选项错误,符合题意,故选:D.3.(2020秋•鼓楼区期末)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?设衬衫的单价降了x元,则可列方程为.【解答】解:由题意可得,(40﹣x)(20+2x)=1250,故答案为:(40﹣x)(20+2x)=1250.4.(2021春•长兴县月考)某商场销售一批衬衣,每件衬衣的进价为80元,平均每天可售出30件,每件衬衣盈利50元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衣降价10元,商场平均每天可多售出20件.若商场平均每天盈利2000元,则每件衬衣的售价应为多少元?【解答】解:设每件衬衣降价x元,则每件衬衣的售价为(80+50﹣x)元,每件衬衣盈利(50﹣x)元,平均每天可售出(30+)=(30+2x)件,依题意得:(50﹣x)(30+2x)=2000,整理得:x2﹣35x+250=0,解得:x1=10,x2=25,又∵为了扩大销售,增加盈利,尽快减少库存,∴x=25,∴80+50﹣x=105(元).答:每件衬衣的售价应为105元.9 其他问题1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).【例题精选】例1 (2019秋•斗门区期末)学校打算用长16米的篱笆围成一个长方形的生物园饲养小兔,生物园的一面靠在长为8米的墙上(如图).(1)若生物园的面积为30平方米,求生物园的长和宽.(2)能否围成面积为35平方米的生物园?若能,求出长和宽;若不能,请说明理由.【分析】(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(16﹣2x)米,根据长方形的面积公式结合生物园的面积为30平方米,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;(2)设垂直于墙的一边长为y米,则平行于墙的一边长为(16﹣2y)米,根据长方形的面积公式结合生物园的面积为35平方米,即可得出关于y的一元二次方程,由根的判别式△<0可得出该方程无解,进而可得出不能围成面积为35平方米的生物园.【解答】解:(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(16﹣2x)米,依题意,得:x(16﹣2x)=30,整理,得:x2﹣8x+15=0,解得:x1=3,x2=5.当x=3时,16﹣2x=10>8,不合题意,舍去;当x=5时,16﹣2x=6.答:生物园的长为6米,宽为5米.(2)不能,理由如下:设垂直于墙的一边长为y米,则平行于墙的一边长为(16﹣2y)米,依题意,得:y(16﹣2y)=35,整理,得:2y2﹣16y+35=0.∵△=(﹣16)2﹣4×2×35=﹣24<0,∴原方程无解,∴不能围成面积为35平方米的生物园.【点评】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.例2 (2020•德阳模拟)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035B.x(x﹣1)=1035C.x(x+1)=1035D.x(x﹣1)=1035【分析】如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.【解答】解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:B.【点评】本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.【随堂练习】1.(2021春•上城区校级期中)在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm2,设边框的宽为xcm,那么x满足的方程是()A.(50﹣2x)(40﹣2x)=3000B.(50+2x)(40+2x)=3000C.(50﹣x)(40﹣x)=3000D.(50+x)(40+x)=3000【解答】解:设边框的宽为xcm,所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,根据题意,得:(50+2x)(40+2x)=3000,故选:B.2.(2020秋•大余县期末)如图,学校课外生物小组的试验园地是长20米,宽15米的长方形.为了便于管理,现要在中间开辟一横两纵等宽的小道(如图),要使种植面积为252平方米,则小道的宽为()A.5米B.1米C.2米D.3米【解答】解:设该小道的宽为x米,依题意得(20﹣2x)(15﹣x)=252,整理得x2﹣25x+24=0,即:(x﹣24)(x﹣1)=0,解得x1=24(舍去),x2=1.即:该小道的宽为1米.故选:B.3.(2020秋•官渡区期末)《生物多样性公约》第十五次缔约方大会(COP15)将于2021年5月17日至30日在云南省昆明市举办、昆明某景观园林公司为迎接大会召开,计划在一个长为32m,宽为20m的矩形场地ABCD(如图所示)上修建三条同样宽的道路,使其中两条与AB平行、另一条与AD平行,其余部分种草坪,若使每一块草坪的面积为95m2,求道路的宽度、若设道路的宽度为xm,则x满足的方程为()A.(32﹣x)(20﹣x)=95B.(32﹣2x)(20﹣x)=95C.(32﹣x)(20﹣x)=95×6D.(32﹣2x)(20﹣x)=95×6【解答】解:设道路的宽度为xm,则六块草坪可合成长(32﹣2x)m,宽(20﹣x)m的矩形,依题意得:(32﹣2x)(20﹣x)=95×6.故选:D.综合练习一.解答题(共7小题)1.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染,每轮感染中平均一台电脑会感染多少台电脑?【解答】解:设每轮感染中平均一台电脑感染x台,依题意,得:(1+x)2=144,解得:x1=11,x2=﹣13(不合题意,舍去).答:每轮感染中平均一台电脑感染11台.2.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位,当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?【解答】解:(1)设甬道的宽为x米,根据题意得:(52﹣2x)(28﹣2x)=640解得:x=34(舍去)或x=6,答:甬道的宽为6米;(2)设月租金上涨a元,停车场的月租金收入为14400元,根据题意得:(200+a)(64﹣)=14400整理,得a2﹣440a+16000=0解得:a1=400(舍去),a2=40答:每个车位的月租金上涨40元时,停车场的月租金收入为14400元.3.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元,问第一次降价后至少要售出该种商品多少件?【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100﹣m)=36m+2400≥3210,解得:m≥22.5.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.4.某公园要在一块长40m,宽30m的长方形空地上建成一个矩形花园,要求在花园中修三条纵向平行和两条横向平行的宽度相同的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为500m2,那么小道进出口的宽度应为多少米?【解答】解:设小道进出口的宽度为x米,依题意得(40﹣3x)(30﹣2x)=500.整理,得3x2﹣85x+350=0.解得,x1=5,x2=.∵>30(不合题意,舍去),∴x=5.答:小道进出口的宽度应为5米.5.某公司2016年的生产成本是100万元,由于改进技术,生产成本逐年下降,2018年的生产成本是81万元,若该公司2017、2018年每年生产成本下降的百分率都相同.(1)求平均每年生产成本下降的百分率;(2)假设2019年该公司生产成本下降的百分率与前两次相同,请你预测2019年该公司的生产成本.【解答】解:(1)设每年生产成本的下降率为x,根据题意得:100(1﹣x)2=81,解得:x1=0.1=10%,x2=1.1(不合题意,舍去).答:每年生产成本的下降率为10%.(2)81×(1﹣10%)=72.9(万元).答:预测2019该公司的生产成本为72.9万元.6.如图,要利用一面墙(墙长为15米)建羊圈,用30米的围栏围成两个大小相同的矩形羊圈,设羊圈的一边AB为xm,总面积为ym2.(1)求y与x的函数关系式.(2)如果要围成总面积为63m2的羊圈,AB的长是多少?【解答】解:(1)y=x(30﹣3x),=﹣3x2+30x;(2)当y=63时﹣3x2+30x=63,解得x1=7,x2=3,当x=7时30﹣3x=9<15当x=3时30﹣3x=21>15 (不合题意,舍去)答:AB为7m.7.已知长方形硬纸板ABCD的长BC为40cm,宽CD为30cm,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),剩余部分恰好能折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm.(纸板的厚度忽略不计)(1)EF=(30﹣2x)cm,GH=(20﹣x)cm;(用含x的代数式表示)(2)若折成的长方体盒子底面M的面积为300cm2,求剪掉的小正方形的边长.。
人教版数学一元二次方程及其应用精讲精练一、一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.它的一般形式为20ax bx c ++=(a ≠0).例1.下列是一元二次方程的有( )个. ①240x =;②()200++=≠ax bx c a ;③223(1)32x x x -=+;④2120x -=. A .1 B .2 C .3 D .4二、一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x =m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解. (3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为x =. (4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.注意:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.例2.关于x 的一元二次方程21x =的根是( )A .1x =B .11x =,21x =-C .1x =-D .121x x ==三、一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆.△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边.注意: △≥0⇔方程有实数根.例3.一元二次方程2310x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根四、一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么a cx x a b x x 2121=⋅-=+,.例4.方程22x -5x +m =0没有实数根,则m 的取值范围是()A .m >258B .m <258C .m ≤258D .m ≥2581.方程()50x x -=的根是( )A .5B .-5,5C .0,-5D .0,52.若0x =是一元二次方程2240x b ++-=的一个根,则b 的值是( )A .2B .2-C .2±D .43.国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x .则可列方程为( )A .()5000127500x +=B .()5000217500x ⨯+=C .()2500017500x +=D .()()2 500050001500017500x x ++++=4.判断关于x 的方程()2110kx k x -++=(k 是常数,1k <)的根的情况( )A .存在一个k ,使得方程只有一个实数根B .无实数根C .一定有两个不相等的实数根D .一定有两个相等的实数根5.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,某市今年第一季度进行宣传准备工作,从第二季度开始到今年年底全市全面实现垃圾分类.已知该市一共有285个社区,第二季度已有60个社区实现垃圾分类,第三、四季度实现垃圾分类的社区个数较前一季度平均增长率均为x ,则下面所列方程正确的是( )A .()2601285x +=B .()2601285x -=C .()()2601601285x x +++=D .()()260601601285x x ++++=6.已知关于x 的一元二次方程230x x c +-=没有实数根,即实数c 的取值范围是________.7.已知关于x的一元二次方程2(21)20+++-=有两个不相等的实ax a x a数根,则a的取值范围是______.8.解下列方程:(1)2x2+7x+3=0(用配方法).(2)5(x+3)2=x2﹣9.10.某玩具商店以每件50元为成本购进一批新型玩具,以每件80元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价1元,则每天可多卖2件.(1)若商店打算每天盈利750元,同时又要使顾客得到更多的实惠,那么每件玩具的售价应定为多少元?(2)若商店为追求效益最大化,每件玩具的售价定为多少元时,商店每天盈利最多?最多盈利多少元?。
一元二次方程综合运用1.已知关于x 的一元二次方程有两个不相等的实数根.(1)若a 为正整数,求a 的值;(2)若满足,求a 的值. 解:(1)∵关于x 的一元二次方程x 2-2(a-1)x+a 2-a-2=0有两个不相等的实数根,∴△=[-2(a-1)]2-4(a 2-a-2)>0,解得:a <3,∵a 为正整数,∴a=1,2;(2)∵x 1+x 2=2(a-1),x 1x 2=a 2-a-2,∵x 12+x 22-x 1x 2=16,∴(x 1+x 2)2-x 1x 2=16,∴[-2(a-1)]2-3(a 2-a-2)=16,解得:a 1=-1,a 2=6,∵a <3,∴a=-1.2.已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值. 解:(1)证明:∵,∴,.∴无论取何值此方程总有两个实数根.(2)由(1)知:原方程可化为,∴,, 02)1(222=--+--a a x a x 21,x x 21,x x 16-212221=+x x x x x (3)(2)(1)x x p p --=+p 1x 2x 222121231x x x x p +-=+p (3)(2)(1)x x p p --=+22560x x p p -+--=22(5)4(6)p p ∆=----22252444441p p p p =-++=++22(21)0p =+≥p 22560x x p p -+--=125x x +=2126x x p p =--又,∴,∴, ,∴,∴.3.已知关于x 的一元二次方程x 2﹣6x+m+4=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)若x 1•x 2满足3x 1=|x 2|+2,求m 的值.解:(1)∵关于x 的一元二次方程x 2﹣6x+m+4=0有两个实数根x 1,x 2,∴△=(﹣6)2﹣4(m+4)=20﹣4m ≥0,解得:m ≤5,∴m 的取值范围为m ≤5.(2)∵关于x 的一元二次方程x 2﹣6x+m+4=0有两个实数根x 1,x 2,∴x 1+x 2=6①,x 1•x 2=m+4②.∵3x 1=|x 2|+2,当x 2≥0时,有3x 1=x 2+2③,联立①③解得:x 1=2,x 2=4,∴8=m+4,m=4;当x 2<0时,有3x 1=﹣x 2+2④,联立①④解得:x 1=﹣2,x 2=8(不合题意,舍去).∴符合条件的m 的值为4.4.已知关于x 的一元二次方程x 2﹣2x+m ﹣1=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)当x 12+x 22=6x 1x 2时,求m 的值.解:(1)∵原方程有两个实数根,∴△=(﹣2)2﹣4(m ﹣1)≥0,整理得:4﹣4m+4≥0,解得:m ≤2;(2)∵x 1+x 2=2,x 1•x 2=m ﹣1,x 12+x 22=6x 1x 2,∴(x 1+x 2)2﹣2x 1•x 2=6x 1•x 2, 222121231x x x x p +-=+221212()331x x x x p +-=+22253(6)31p p p ---=+2225183331p p p -++=+36p =-2p =-即4=8(m﹣1),解得:m=.∵m=<2,∴符合条件的m的值为.5.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B 两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,△(m﹣1)2≥0,△△=(m﹣1)2+8>0,△原方程有两个不等实数根;(2)存在,由题意知x1,x2是原方程的两根,△x1+x2=m﹣3 x1•x2=﹣m△AB=|x1﹣x2,△AB2=(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,△当m=1时,AB2有最小值8,△AB有最小值,即AB==26.已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.(1)求k的取值范围;(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.解:(1)①方程有两个不相等的实数根,①①=(2k+1)2﹣4k2=4k+1>0,解得:k>﹣;(2)当k=1时,方程为x2+3x+1=0,①x1+x2=﹣3,x1x2=1,①x12+x22=(x1+x2)2﹣2x1x2=9﹣2=7.7.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.8.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.解:(1)∵关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根,∴△≥0,即[﹣(2k﹣1)]2﹣4×1×(k2+k﹣1)=﹣8k+5≥0,解得k≤.(2)由根与系数的关系可得x1+x2=2k﹣1,x1x2=k2+k﹣1,∴x12+x22=(x1+x2)2﹣2x1x2=(2k﹣1)2﹣2(k2+k﹣1)=2k2﹣6k+3,∵x12+x22=11,∴2k2﹣6k+3=11,解得k=4,或k=﹣1,∵k≤,∴k=4(舍去),∴k=﹣1.9.已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.解:(1)由题意可知:△=(2m ﹣2)2﹣4(m 2﹣2m )=4>0,∴方程有两个不相等的实数根.(2)∵x 1+x 2=2m ﹣2,x 1x 2=m 2﹣2m ,∴+=(x 1+x 2)2﹣2x 1x 2=10, ∴(2m ﹣2)2﹣2(m 2﹣2m )=10,∴m 2﹣2m ﹣3=0,∴m=﹣1或m=310.关于x 的一元二次方程01)12(22=++++k x k x 有两个不等实根1x 、2x .(1)求实数k 的取值范围;(2)若方程两实根1x 、2x 满足2121x x x x ⋅-=+,求k 的值. 解:(1)∵原方程有两个不相等的实数根,∴034)1(4)12(22>-=+-+=∆k k k , 解得:43>k . (2)由根与系数的关系,得)12(21+-=+k x x ,1221+=⋅k x x . ∵2121x x x x ⋅-=+,∴)1()12(2+-=+-k k ,解得:0=k 或2=k , 又∵43>k , ∴2=k .。
一元二次方程根与系数关系及应用题(讲义)➢ 课前预习1. 已知关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根x 1,x 2,请你用配方法探索有实数根的条件,并推导出求根公式.2. 已知x 1+x 2=5,x 1·x 2=6,请利用完全平方公式及分式运算知识求解下列各式的值.(1)x 1-x 2; (2)1211x x +;(3)x 12-x 22.➢ 知识点睛1. 从求根公式中我们发现x 1+x 2=________,x 1·x 2=__________,这两个式子称为_____________,数学史上称为___________. 注:使用___________________的前提是____________. 2. 一元二次方程应用题的常见类型有:①__________;②__________;③_________;④_________. 增长率型 例如:原价某元,经过两次连续降价(涨价);1人患了流感,经过两轮传染.双循环制 例如:每两队之间都进行两场比赛 经济型 例如:“每涨价××元,则销量减少××件”. 3. 应用题的处理思路:①理解题意,梳理信息; ②建立数学模型; ③求解验证,回归实际.➢ 精讲精练1. 若x 1,x 2是一元二次方程2x 2-7x =4的两根,则x 1+x 2与x 1·x 2的值分别是( )A .7,4B .72-,2C .72,2D .72,-22.若12x =x 2+ax +1=0的一个根,则该方程的另一个根x 2=_________,a =________.3. 若关于x 的方程x 2+2x +a -1=0有两个负根,则a 的取值范围是____________________.4. 已知关于x 的一元二次方程x 2-2x +a =0的两实数根x 1,x 2满足x 1·x 2+x 1+x 2>0,则a 的取值范围为__________.5. 若x 1,x 2是方程2x 2+4x -3=0的两个根,不解方程,求下列各式的值.(1)1211x x +; (2)x 12+x 22;解:由原方程知a =_____,b =_____,c =_____, ∵Δ=b 2-4ac= =______0∴x 1+x 2= ,x 1·x 2= .(1)原式= (2)原式= = = = =(3)|x 1-x 2|.6.已知关于x的方程(m-1)x2-x-2=0.(1)若该方程有两个不相等的实数根,求m的取值范围;(2)若x1,x2是该方程的两个根,且2212121 8x x x x+=-,求实数m的值.7.某商品原售价为289元,经过连续两次降价后售价为256元.设平均每次降价的百分率为x,则下面所列方程正确的是()A.289(1-x)2=256 B.256(1-x)2=289C.289(1-2x)=256D.256(1-2x)=2898.为了做好“精准扶贫”,某市2016年投入资金1 200万元用于异地安置,此后投入资金逐年增加,2016年到2018年,该市投入异地安置资金的总金额达5 700万元.设该市投入异地安置资金的年平均增长率为x,根据题意所列方程正确的是()A.1 200(1+x)2=5 700B.1 200(1+2x)=5 700C.1 200(1+x)+1 200(1+x)2=5 700D.1 200+1 200(1+x)+1 200(1+x)2=5 7009.有一人患了流感,经过两轮传染后共有121人患了流感,则每轮传染中平均一个人传染了________个人.10.2017-2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场.若设参赛队伍有x支,则可列方程为()A.1(1)3802x x-=B.x(x-1)=380C.1(1)3802x x+=D.x(x+1)=38011.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人12.如图,有一张矩形纸片,长10 cm,宽6 cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32 cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6-4×6x=32 B.(10-2x)(6-2x)=32=32C.(10-x)(6-x)=32 D.10×6-4x213.如图,在一块长92 m,宽60 m的矩形耕地上挖三条水渠(水渠的宽都相等),若水渠把耕地分成面积均为885 m2的6个矩形小块,则水渠应挖多宽?14.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元,据此规律,请回答:(1)商场日销售量增加______件,每件商品盈利_______元(用含x的代数式表示);(2)在上述条件不变、销售正常的情况下,每件商品降价多少元时,商场日盈利可达到2 100元?【分析】解:15. 某商店将进价为8元/件的商品按10元/件售出,每天可销售200件.现在采用提高商品售价减少销售量的办法增加利润,并尽量使顾客得到实惠,如果这种商品的售价每提高0.5元,其销售量就减少10件,则将每件售价定为多少元时,才能使每天的利润达到640元? 【分析】16. 宾馆有50间房供游客居住,当每间房每天定价为180元时宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为x 元时宾馆当天的利润为10 890元,则有( )A .(18020)501089010x x ⎛⎫+--= ⎪⎝⎭B .1805050201089010x x -⎛⎫--⨯= ⎪⎝⎭C .180(20)501089010x x -⎛⎫--= ⎪⎝⎭D .(180)5050201089010x x ⎛⎫+--⨯= ⎪⎝⎭【参考答案】 ➢ 课前预习1. 有实数根的条件:b 2-4ac ≥0;求根公式:2b x a-±=(b 2-4ac ≥0)2. (1)原式=±1;(2)原式=56;(3)原式=±5.➢ 知识点睛1. b a -;ca;根与系数的关系;韦达定理;韦达定理;Δ≥02. ①增长率型;②双循环制;③面积型;④经济型➢ 精讲精练1. D2.2;-4 3. 1<a ≤2 4. -2<a ≤15. 解:由原方程知:a =2,b =4,c =-3, ∵Δ=b 2-4ac =42-4×2×(-3) =40 >0∴x 1+x 2=-2,1232x x ⋅=-.1212123243x xx x +=-=-=()原式(2)7;(36. (1)78m >且m ≠1; (2)m =5. 7. A 8. D9.1010.B11.C12.B13.水渠应挖1 m宽.14.(2)每件商品降价20元时,商场日盈利可达到2 100元.15.每件售价定为12元时,才能使每天的利润达到640元.16.C。
2019-2020学年中考复习:一元二次方程专题精讲精练(含答案解析)1如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm (0)x >其中.求这两段铁丝的总长.【答案】解: 由已知得,正五边形周长为5(217x +)cm ,正六边形周长为6(22x x +)cm .…2分因为正五边形和正六边形的周长相等,所以22517=2x x x ++()6(). ………………3分 整理得212850x x +-=, 配方得2+6=121x (),解得12=5=x x ,-17(舍去).………6分 故正五边形的周长为25517=⨯+()210(cm ). …………………………………………7分 又因为两段铁丝等长,所以这两段铁丝的总长为420cm .答:这两段铁丝的总长为420cm . ……………………………………………8分2. 关于的一元二次方程x 2+2x +k +1=0的实数解是x 1和x 2。
(1)求k 的取值范围;(2)如果x 1+x 2-x 1x 2<-1且k 为整数,求k 的值。
【答案】解:∵(1)方程有实数根 ∴⊿=22-4(k +1)≥0 解得 k ≤0K 的取值范围是k ≤0(2)根据一元二次方程根与系数的关系,得x 1+x 2=-2, x 1x 2=k +1x 1+x 2-x 1x 2=-2,+ k +1由已知,得 -2,+ k +1<-1 解得 k >-2 又由(1)k ≤0∴ -2<k ≤0∵ k 为整数 ∴k 的值为-1和0.3. 某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3圆;以同样的栽培条件,若每盆没增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株? 小明的解法如下:解:设每盆花苗增加x 株,则每盆花苗有()3x +株,平均单株盈利为()30.5x -元,由题意,得()()330.510x x +-=.化简,整理,的2320x x -+=. 解这个方程,得121, 2.x x ==答:要使得每盆的盈利达到10元,每盆应该植入4株或5株.本题涉及的主要数量有每盆花苗株数,平均单株盈利,每盆花苗的盈利等,请写出两个不同的等量关系: 请用一种与小明不相同的方法求解上述问题。
专题训练(五) 一元二次方程的实际应用类型1 增长率问题1.为防治雾霾,保护环境,某市掀起“爱绿护绿”热潮,经过两年时间,绿地面积增加了21%,设这两年的绿地面积的平均增长率是x,则列出关于x的一元二次方程为( )A.x2=21% B.(x-1)2=21%C.(1+x)2=21% D.(1-x)2=21%2.(珠海中考)白溪镇有绿地面积57.5公顷,该镇近几年不断增加绿地面积,达到82.8公顷.(1)求该镇至绿地面积的年平均增长率;(2)若年增长率保持不变,该镇绿地面积能否达到100公顷?A.21 cm2 B.16 cm2C.24 cm2 D.9 cm2A.5米 B.3米C.2米 D.2米或5米5.如图是我市将要开发的一块长方形的土地,长为,建筑开发商将这块土地分为甲、乙、丙三部分,其中甲和乙均为正方形,现计划甲地建住宅区,乙地建商业区,丙地开辟成小区公园,若已知丙地的面积为2 km2,则x的值为________.6.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1,在温室内,沿前侧内墙保留3 m宽的空地,其他三侧内墙保留1 m宽的通道,当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288 m2?类型3 销售利润问题7.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1 200元,设每件衬衫应降价x元,则所列方程为________________________________________________________________________.9.(淮安中考)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是____________斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降至多少元?10.毕业在即,某商店抓住商机,准备购进一批纪念品,若商店花440元可以购进50本学生纪念品和10本教师纪念品,其中教师纪念品的成本比学生纪念品的成本多8元.(1)请问这两种不同纪念品的成本分别是多少?(2)如果商店购进1 200个学生纪念品,第一周以每个10元的价格售出400个,第二周若按每个10元的价格仍可售出400个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出100个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余学生纪念品清仓处理,以每个4元的价格全部售出,如果这批纪念品共获利2 500元,问第二周每个纪念品的销售价格为多少元?参考答案1.C2.(1)设至绿地面积的年平均增长率为x ,依题意有57.5(x +1)2=82.8.解得x 1=-2.2(舍去),x 2=0.2=20%.3.B4.C5.4或56.设矩形温室的宽为,根据题意,得(2.7.(40-x)(20+2x)=1 2008.39.(1)(100+200x)(2)设这种水果每斤的售价降价x 元,则(2-x)(100+200x)=300.解得x 1=1,x 2=12. 当x =1时,每天的销量为300斤;当x =12时,每天的销量为200斤. 因为为保证每天至少售出260斤,所以x 2=12不合题意,应舍去. 此时每斤的售价为4-1=3(元).答:销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降至3元.10.(1)设学生纪念品的成本为x 元,根据题意,得50x +10(x +8)=440.解得x =6.∴x +8=6+8=14.答:学生纪念品的成本为6元,教师纪念品的成本为14元.(2)第二周单价降低x 元后,这周销售的销量为(400+100x)个,由题意得400×(10-6)+(10-x -6)(400+100x)+(4-6)[1 200-400-(400+100x)]=2 500. 整理,得x 2-2x +1=0.解得x 1=x 2=1.则10-1=9(元).答:第二周每个纪念品的销售价格为9元.不用注册,!。
4.分解因式法[学习目标]1.能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.2.会用分解因式法(提取公因式法,公式法)解某些简单系数的一元二次方程. [预习导引]对于方程3(x -2)2=2-x,张明的解法如下: 解:方程整理得:3(x -2)2=-(x -2) 方程两边同时除以(x -2)得:3(x -2)=-1 去括号得:3x -6=-1移项并合并同类项得,3x=5 ∴35x 你认为张明解方程的过程有错误吗?如果有,请指出错在哪一步?并说明错误的原因.你能解这个方程吗?并与同伴交流自己的心得.[点拔]张明在解方程的过程中,在方程两边同时除以一个含有未知数的代数式(x -2),这样得到的方程与原方程不一定是同解方程.因为含有未知数的代数式的值可能是0,这时变形的过程就是在方程左右两边同时除以0了,正确的解法应是:3(x -2)2+(x -2)=0,∴(x -2)[3(x -2)+1]=0 ∴(x -2)(3x -5)=0 ∴x -2=0或3x -5=0 ∴x 1=2,x 2=35.这也就是本节学习的一元二次方程的一种解法——分解因式法. [知能互动]1.因式分解法解一元二次方程的根据:如果两个因式的积等于0,那么这两个因式至少有一个为0,反过来,如果两个因式中有一个因式为0那么它们之积为0.例如:(2x -1)(3-x)=0,则2x -1=0或3-x=0 (2-7x)(5x -3)=0,则 或 (2-7x=0 5x -3=0)2.因式分解法解一元二次方程的方法及步骤:解方程或方程组的思想方法是:消元和降次,解一元二次方程不存在消元的问题,而是需要降次,将二次转化为一次,因式分解法能帮助我们实现这一目标.用因式分解法解一元二次方程,一定要把方程化为右边为0,而左边为两个关于未知数的一次因式之积的形式.例如:一元二次方程(2x -1)(3x -3)=0可转化为 , 两个一元一次方程.如方程(2x -1)(3x -3)=2化为2x -1=1或233=-x 是错误的.分解因式法解一元二次方程的步骤为: (1)将方程的右边化为0;(2)把方程的左边分解为两个一次因式的积; (3)令每个因式为0,得到两个一元一次方程; (4)解这两个一元一次方程得原方程的解. (2x -1=0,3x -3=0)3.选择适当的方法解一元二次方程.根据方程的不同特点,选择合适的方法解方程,可以使计算简便,效率提高.选择解法的思路是:先特殊后一般.选择解法的顺序是:直接开平方法—因式分解法—公式法或配方法. 配方法是普遍适用的方法,但不够简便,一般不常用.不过对于二次项系数为1,一次项系数为偶数的一元二次方程,用配方法可能比用公式法要简单些.[名题探究]例1.用因式分解法解下列方程:(1)(2x -1)2+3(1-2x)=0 (2)(1-3x)2=16(2x+3)2 (3)x 2+6x -7=0[解析](1)经过变形可以用提取公因式法;(2)经过变形可以用平方差公式分解法因式;(3)方程为一般形式,尝试用十字相乘法.解: (1)原方程变形为:(2x -1)2-3(2x -1)=0 (2x -1)[(2x -1)-3]=0 , ∴2x -1=0或(2x -1)-3=0。
2.3二次函数与一元二次方程、不等式(精讲)一.一元二次不等式的概念一元二次不等式定义只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式一般形式ax 2+bx +c >0或ax 2+bx +c <0,其中a ,b ,c 均为常数,a ≠0解集ax 2+bx +c >0(a ≠0)解集是使y =ax 2+bx +c 的函数值为正数的自变量x 的取值集合ax 2+bx +c <0(a ≠0)解集是使y =ax 2+bx +c 的函数值为负数的自变量x 的取值集合ax 2+bx +c ≥0(a ≠0)解集是使y =ax 2+bx +c 的函数值大于或等于0的自变量x 的取值集合ax 2+bx +c ≤0(a ≠0)解集是使y =ax 2+bx +c 的函数值小于或等于0的自变量x 的取值集合注意事项:(1)一元二次不等式中的“一元”是指不等式中所要求解的未知数,并且这个未知数是唯一的,但这并不意味着不等式中不能含有其他字母,若含有其他字母,则把其他字母看成常数.(2)一元二次不等式中的“二次”是指所要求解的未知数的最高次数必须是2,且最高次项的系数不为0.二.“三个二次”的关系一元二次不等式,a 为正值来定形;对应方程根求好,心中想想抛物线;大于异根取两边,小于异根夹中间;大于等根根去掉,小于等根空集成;大于无根取全体,小于无根不可能!注意事项:“大于”“小于”指的是当二次项系数转化为正数后的不等号.因此,为了避免出现错误,在求解一元二次不等式时,通常是将二次项系数变为正数(即将不等式两边同时乘以-1,不等号也随之改变方向).四.一元二次不等式恒成立问题1.当未说明不等式为一元二次不等式时,有①不等式ax 2+bx +c >0对任意实数x 恒成立=b =0,>0>0,<0;②不等式ax 2+bx +c <0对任意实数x 恒成立=b =0,<0<0,<0.2.一元二次不等式ax 2+bx +c >0在x ∈{x |m ≤x ≤n }时恒成立,等价于当m ≤x ≤n 时,函数y =ax 2+bx +c 的图象恒在x >0,<0.3.分离参数,将恒成立问题转化为求最值问题.一.解不含参数的一元二次不等式的方法1.若不等式对应的一元二次方程能够分解因式,即能够转化为两个一次因式的乘积形式,则可以直接由因式分解法或不等式的性质得到不等式的解集.2.若不等式对应的一元二次方程不能分解因式,则可对式子进行配方,化为完全平方式,再开根号求解.二.解含参数的一元二次不等式的方法1.讨论二次项系数:二次项系数若含有参数,应讨论是小于0,还是大于0,若小于0,则将不等式转化为二次项系数为正的形式;2.判断方程的个数:判断方程根的个数,讨论判别式Δ与0的关系;3.写出解集:确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式注意事项:对应方程的根优先考虑用因式分解确定,分解不开时再求判别式Δ,用求根公式计算.考点一解不含参数的一元二次不等式【例1】(2023·湖南)解下列不等式:(1)2362x x -+≤(2)29610x x -+>(3)2610x x <-(4)21212x x -<+-≤【答案】(1)⎛⎫-∞+∞ ⎪ ⎪⎝⎦⎣⎭(2)11,,33⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭.(3)∅(4)[3,2)(0,1]-- 【解析】(1)2362x x -+≤,即2223620203x x x x -+≥⇔-+≥,配方可得21(1)3x -≥,解得33,,33x ⎛⎡⎫∈-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭(2)29610x x -+>,即2(31)0x ->,解得11,,33x ⎛⎫⎛⎫∈-∞+∞ ⎪ ⎪⎝⎭⎝⎭;(3)2610x x <-,即26100x x -+<,而220610(3)11x x x >-+=-+≥,从而不等式无解,即解集为∅;(4)22121220x x x x -<+-≤⇔+>且2230x x +-≤同时成立.由220x x +>解得()(),20,x ∈-∞-⋃+∞,由2230x x +-≤,即(1)(3)0x x -+≤,解得[3,1]x ∈-.于是[3,2)(0,1]x ∈--【一隅三反】(2023·内蒙古赤峰)解下列不等式:(1)22530x x +-<;(2)2362x x -+≤;(3)5132x x +≤-;(4)()()()12253x x x x --<-+(5)2230x x +->(6)24410x x -+-≥(7)2440x x -+>;(8)23520x x +-->;(9)22730x x ++>;(10)221x x <-.【答案】(1)13,2⎛⎫- ⎪⎝⎭(2),11⎛⎡⎫-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭(3)[)13,3-(4)()(),11,-∞+∞ (5)()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭(6)12⎧⎫⎨⎬⎩⎭(7)()(),22,-∞+∞ (8)2,13⎛⎫ ⎪⎝⎭(9)()1,3,2⎛⎫-∞-⋃-+∞ ⎪⎝⎭(10)∅【解析】(1)22530x x +-< ,()()2130x x ∴-+<,132x ∴-<<,即不等式的解集为13,2⎛⎫- ⎪⎝⎭;(2)2362x x -+≤ ,23620x x -∴+≥,解得13x ≤-或13x ≥+;即不等式的解集为33,1133⎛⎡⎫-∞++∞ ⎪⎢ ⎪⎝⎦⎣⎭;(3)5132x x +≤- ,()153230x x x ⎧+≤-⎪∴⎨⎪->⎩或()153230x x x ⎧+≥-⎪⎨⎪-<⎩解得133x -≤<,即不等式的解集为[)13,3-;(4)()()()12253x x x x --<-+ ,整理得2210x x -+>,解得1x ≠,即不等式的解集为()(),11,-∞+∞ .(5)由2230x x +->可得()()2310x x +->,所以1x >或32x <-,即解集为()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭;(6)由24410x x -+-≥可得()2210x -≤,所以12x =,即解集为12⎧⎫⎨⎬⎩⎭;(7)2440x x -+>可化为()220x ->,解得2x ≠,所以不等式的解集为()(),22,-∞+∞ .(8)23520x x +-->可化为23520x x +<-,即()()3210x x --<,解得213x <<,所以不等式的解集为2,13⎛⎫⎪⎝⎭.(9)22730x x ++>可化为()()2130x x ++>,解得3x <-或12x >-,所以不等式的解集为()1,3,2⎛⎫-∞-⋃-+∞ ⎪⎝⎭.(10)221x x <-可化为2210x x -+<,因为不等式对应的方程的判别式()214270∆=--⨯=-<,所以不等式的解集为∅.考点二解含参数的一元二次不等式【例2-1】(2023·河北)解下列关于x 的不等式()()20x x a --≤【答案】答案见解析【解析】由()()20x x a --=,可得2x =或x a =,则:当2a <时,原不等式解集为{|2}x a x ≤≤;当2a =时,原不等式解集为{2};当2a >时,原不等式解集为{|2}x x a ≤≤;【例2-2】(2023·安徽)解关于x 的不等式2(1)10(R)ax a x a -++<∈.【答案】答案见解析【解析】原不等式变为(1)(1)0ax x --<,①当0a >时,原不等式可化为1(1)0x x a ⎛⎫--< ⎪⎝⎭,所以当1a >时,解得11x a <<;当1a =时,解集为∅;当01a <<时,解得11x a<<②当0a =时,原不等式等价于10x -+<,即1x >.③当0a <时,11a <,原不等式可化为1(1)0x x a ⎛⎫--> ⎪⎝⎭,解得1x >或1x a <.综上,当01a <<时,不等式的解集为11x x a ⎧⎫<<⎨⎩⎭∣,当1a =时,不等式的解集为∅,当1a >时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭∣,当0a =时,不等式的解集为{1}x x >∣,当a<0时,不等式的解集为{1xx a<∣或1}x >.【例2-3】(2023·广东深圳)解关于x 的不等式2210x mx m -++>.【答案】答案见解析【解析】不等式对应方程2210x mx m -++=的判别式22(24141()())m m m m ∆--=-=+-,(1)当0∆>,即m >m <由于方程2210x mx m -++=的根是x m =,所以不等式的解集是{|x x m <或x m >;(2)当Δ0=,即m ={|R x x ∈且}x m ≠;(3)当Δ0<m <R ,故12m >或12m <时,不等式的解集是{|x x m <x m >;12m ±=时,不等式的解集为{|R x x ∈且}x m ≠;m <<时,不等式的解集为R .【例2-4】(2023·湖南长沙)若关于x 的不等式2242ax x ax -<-只有一个整数解,则实数a 的取值范围是()A .112a <≤B .12a <<C .12a ≤<D .11a -<<【答案】C【解析】不等式2242ax x ax -<-化为()22420ax a x -++<,即()()2120x ax --<,当0a =时,不等式化为()()2120x --<,得12x >,有无数个整数解,不符合题意;当0a >时,由关于x 的不等式2242ax x ax -<-只有一个整数解,可知122a<,不等式()()2120x ax --<的解为122x a <<,由题意,212a<≤,解得12a ≤<;当a<0时,不等式()()2120x ax --<的解为12x >或2x a<,有无数个整数解,不符合题意.综上,实数a 的取值范围是12a ≤<.故选:C 【一隅三反】1.(2022秋·四川阿坝·高一校考期中)关于x 的不等式2(1)0x a x a -++<的解集中恰有2个整数,则实数a 的取值范围()A .(1,0][2,3)-⋃B .[2,1)(3,4]--C .()(]2,13,4--⋃D .[1,0)(2,3]- 【答案】B【解析】不等式2(1)0x a x a -++<化为(1)()0x x a --<,当1a =时,不等式无解,当1a <时,不等式解为1<<a x ,这里有且只有2个整数,则21a -≤<-,当1a >时,不等式解为1x a <<,这里有且只有2个整数,则34a <≤,综上a 的取值范围是[2,1)(3,4]-- .故选:B .2.(2023·江苏·高一假期作业)解关于x 的不等式()()2231220x a x a --+->【答案】答案见解析【解析】原不等式可化为[(1)][2(1)]0x a x a -+-->.当12(1)a a +>-,即3a <时,1x a >+或2(1)x a <-;当12(1)a a +=-,即3a =时,4x ≠;当12(1)a a +<-,即3a >时,2(1)x a >-或1x a <+.综上,当3a <时,解集为{1x x a >+∣或2(1)}x a <-;当3a =时,解集为{4}xx ≠∣;当3a >时,解集为{2(1)xx a >-∣或1}x a <+.3.(2023·全国·高一专题练习)解下列关于x 的不等式()22210ax a x -++>.【答案】答案见解析【解析】当a<0时,原不等式为()2221(21)(1)0ax a x x ax -++-=--+<,解集为11{|}2x x a <<;当0a =时,原不等式为210x -+>,解集为1{|}2x x <;当0a >时,原不等式为()2221(21)(1)0ax a x x ax -++=-->,若112a >,即02a <<时,解集为1{|2x x <或1}x a>;若112a =,即2a =时,解集为1{|}2x x ≠;若112a <,即2a >时,解集为1{|x x a<或1}2x >;综上,a<0解集为11{|}2x x a <<;0a =解集为1{|}2x x <;02a <<解集为1{|2x x <或1}x a>;2a =解集为1{|}2x x ≠;2a >解集为1{|x x a<或1}2x >.4.(2023·上海)解关于x 的不等式210x ax -+≤.【答案】答案见解析【解析】由题意知24a ∆=-,①当240a ->,即2a >或2a <-时,方程210x ax -+=的两根为2a x =,所以解集为x ⎧⎪≤≤⎨⎪⎪⎩⎭;②若240a -=,即2a =±时,当2a =时,原不等式可化为2210x x -+≤,即()210x -≤,所以1x =,当2a =-时,原不等式可化为2210x x ++≤,即()210x +≤,所以=1x -;③当240a -<,即22a -<<时,原不等式的解集为∅;综上,当2a >或2a <-时,原不等式的解集为2a x ⎧⎪≤≤⎨⎪⎪⎩⎭;当2a =时,原不等式的解集为{1};当2a =-时,原不等式的解集为{}1-;当22a -<<时,原不等式的解集为∅.考点三三个“二次”之间的关系【例3-1】(2023春·河南)已知,,a b c ∈R ,且0a ≠,关于x 的不等式20ax bx c ++>的解集为(3,2)-,则关于x 的不等式20cx ax b ++>的解集为()A .11,32⎛⎫- ⎪⎝⎭B .11,23⎛⎫- ⎪⎝⎭C .11,,32∞∞⎛⎫⎛⎫--⋃+ ⎪ ⎪⎝⎭⎝⎭D .11,,23⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】C【解析】因为不等式20ax bx c ++>,0a ≠的解集为(3,2)-,所以a<0且321326bac a⎧-=-+=-⎪⎪⎨⎪=-⨯=-⎪⎩即6b a c a =⎧⎨=-⎩,不等式20cx ax b ++>等价于260ax ax a -++>,即2610x x -->,()()21310x x -+>,解得13x <-或12x >,所以不等式20cx ax b ++>的解集为:11,,32∞∞⎛⎫⎛⎫--⋃+ ⎪ ⎪⎝⎭⎝⎭,故选:C .【一隅三反】1.(2023·全国·高一假期作业)若一元二次不等式20ax bx c ++>的解集是{}|12x x -<<,则一元二次不等式20cx bx a ++>的解集是()A .1|12x x x ⎧⎫<->⎨⎬⎩⎭或B .1|12x x ⎧⎫-<<⎨⎬⎩⎭C .1|12x x x ⎧⎫<->⎨⎬⎩⎭或D .1|12x x ⎧⎫-<<⎨⎬⎩⎭【答案】C【解析】由一元二次不等式20ax bx c ++>的解集是{}|12x x -<<可得1,2-是20ax bx c ++=的两个根,且0,a <所以2,1b c a a -==-,所以20cx bx a ++>可化为210c bx x a a++<,即2210x x --+<,解得1x <-或12x >.故选:C 2.(2023·湖南)若不等式20ax x c -->的解集为{}32x x -<<,则函数2y ax x c =+-的图象与x 轴的交点为()A .()3,0和()2,0-B .()2,0-C .()3,0D .2-和3【答案】A【解析】若不等式20ax x c -->的解集为{}32x x -<<,则方程20ax x c --=的两个根为123,2x x =-=且0a <,13232a c a ⎧-+=⎪⎪∴⎨⎪-⨯=-⎪⎩,解得16a c =-⎧⎨=-⎩,则函数226y ax x c x x =+-=-++,令260y x x =-++=,解得2x =-或3x =,故函数2y ax x c =+-的图象与x 轴的交点为()2,0-和()3,0.故选:A.3.(2022秋·天津)已知不等式897x +<和不等式22ax bx +>的解集相同,则实数a b 、的值分别为()A .810--、B .49--、C .19-、D .12-、【答案】B【解析】8977897x x +<⇒-<+<,解得124x -<<-,因为,不等式897x +<和不等式22ax bx +>的解集相同,故220ax bx +-=的两根为-2或14-,且a<0,由韦达定理得:()1241224b a a ⎧⎛⎫-+-=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪-⨯-=- ⎪⎪⎝⎭⎩,解得:49a b =-⎧⎨=-⎩,故选:B.考点四一元二次不等式恒成立【例4-1】(2023贵州省安顺市)若命题“0x ∃∈R ,20020x x a --<”是假命题,则实数a 的取值范围是()A .(],1-∞-B .(],1-∞C .[)1,+∞D .[)1,-+∞【答案】A【解析】命题“0x ∃∈R ,20020x x a --<”的否定为:“x ∀∈R ,220x x a --≥”,该命题为真命题.所以,应有()()2Δ241440a a =--⨯⨯-=+≤,所以1a ≤-.故选:A.【例4-2】(2023·云南红河)不等式210ax ax a -++>对R x ∀∈恒成立,则实数a 的取值范围为()A .()0,∞+B .[)0,∞+C .()4,0,3⎛⎫-∞-⋃+∞ ⎪⎝⎭D .[4,0,)3∞∞⎛⎫--⋃+ ⎪⎝⎭【答案】B【解析】①当0a =时,10>成立,②当0a ≠时,只需()2Δ410a a a a >⎧⎨=-+<⎩,解得0a >,综上可得0a ≥,即实数a 的取值范围为[)0,∞+.故选:B .【例4-3】(2023·河南)若不等式2(1)3a x x +≤+对于[0,)x ∈+∞恒成立,则实数a 的取值范围是()A .[0,3]B .[0,2]C .(,2]-∞D .(,3]-∞【答案】C 【解析】原不等式可化为231x a x +≤+,设()231x f x x +=+,则()()212124f x x x x +-=-++412221x x =++-≥=+,当且仅当411x x +=+,且0x ≥,即1x =时,函数()f x 有最小值为2.因为()a f x ≤恒成立,所以2a ≤.故选:C.【一隅三反】1.(2023·广东肇庆·高一广东肇庆中学校考期中)若命题“2(1,1),20x x x a ∀∈--->”为真命题,则实数a 的取值范围是()A .1a ≤-B .1a <-C .3a ≤D .3a <【答案】A【解析】由命题“2(1,1),20x x x a ∀∈--->”为真命题,即不等式22a x x <-在(1,1-上恒成立,设()22,(1,1)f x x x x =-∈-,根据二次函数的性质,可得()min (1)1f x f <=-,所以1a ≤-.故选:A.2.(2023·西藏)命题()0:0,p x ∃∈+∞,使得20010x x λ-+<成立.若p 是假命题,则实数λ的取值范围是()A .(],2-∞B .[)2,+∞C .[]22-,D .(][),22,-∞-+∞U 【答案】A【解析】因为命题()0:0,p x ∃∈+∞,使得20010x x λ-+<成立,所以命题p 的否定为:()0,x ∀∈+∞,210x x λ-+≥成立,而p 是假命题,故命题p 的否定为真命题.所以1x x λ≤+在()0,x ∈+∞上恒成立,因为12x x +≥=,当且仅当11x x x =⇒=时,等号成立,所以2λ≤,即(],2λ∈-∞.故选:A.3.(2022秋·高一校考单元测试)任意[]1,1x ∈-,使得不等式212x x m -+≥恒成立.则实数m 取值范围是()A .14m ≥B .14m ≤C .14⎧⎫⎨⎬⎩⎭D .2m ≤【答案】B【解析】因为对任意[]1,1x ∈-,不等式212x x m -+≥恒成立.所以2min 12x x m ⎛⎫-+≥ ⎪⎝⎭,其中[]1,1x ∈-,设212y x x =-+,[]1,1x ∈-,因为22111224y x x x ⎛⎫=-+=-+ ⎪⎝⎭,所以当12x =时,函数212y x x =-+,[]1,1x ∈-取最小值,最小值为14,所以14m ≤,故选:B.4.(2023春·湖南长沙·高一长沙市明德中学校考期中)若[]04x ∃∈,,使得不等式220x x a -+>成立,则实数a 的取值范围()A .1a >-B .1a >C .8a >D .8a >-【答案】D 【解析】因为[]04x ∃∈,,使得不等式220x x a -+>成立,所以[]04x ∃∈,,使得不等式2+2a x x >-成立,令2()2f x x x =-+,[]0,4x ∈,因为对称轴为1x =,[]0,4x ∈,所以min ()(4)8f x f ==-,所以8a >-,所以实数a 的取值范围为()8,-+∞.故选:D.考点五一元二次不等式的实际应用【例5】(2022秋·江苏连云港·高一校考阶段练习)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速50km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事后现场勘查测得甲车的刹车距离小于12m ,乙车的刹车距离略超过10m ,又知甲、乙两种车的刹车距离s (单位:m )与车速x (单位:km/h )之间分别有如下关系:20.010.1s x x =-甲,20.0050.05s x x =-乙,问:甲、乙两车有无超速现象?【答案】甲车未超过规定限速,乙车超过规定限速.【解析】由题意得,对于甲车,20.010.112x x -<,即21012000x x --<,而0x >,解得040x <<,甲车未超过规定限速,同理对于乙车,20.0050.0510x x ->,21020000x x -->,而0x >,解得50x >,乙车超过规定限速.答:甲车未超过规定限速,乙车超过规定限速.【一隅三反】1.(2023·陕西)某小型服装厂生产一种风衣,日销售量x (件)与单价P (元)之间的关系为1602P x =-,生产x 件所需成本为C (元),其中50030C x =+元,若要求每天获利不少于1300元,则日销量x 的取值范围是()A .20≤x ≤30B .20≤x ≤45C .15≤x ≤30D .15≤x ≤45【答案】B【解析】设该厂每天获得的利润为y 元,则y =(160-2x )x -(500+30x )=-2x 2+130x -500(0<x <80).由题意,知-2x 2+130x -500≥1300,即x 2-65x +900≤0,解得:20≤x ≤45,所以日销量x 的取值范围是20≤x ≤45.故选:B .2.(2023·浙江温州)某种汽车在水泥路面上的刹车距离s (单位:m )和汽车刹车前的车速v (单位:km /h )之间有如下关系:21120160s v v =+,在一次交通事故中,测得这种车刹车距离大于40m ,则这辆汽车刹车前的车速至少为()(精确到1km /h )A .76km /hB .77km /hC .78km /hD .80km /h【答案】B【解析】设这辆汽车刹车前的车速为km /h v ,根据题意,有2114020160s v v =+>,移项整理,得28401600v v -⨯>+,0v >解得476.09v >-+≈.所以这辆汽车刹车前的速度至少为77km /h .故选:B3.(2022秋·天津滨海新·高一校考期中)某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x (单位:元)的取值范围是()A .{1520}xx <<∣B .{1218}x x ≤<∣C .{1020}xx ≤<∣D .{}|1016x x ≤<【答案】A 【解析】结合题意易知,[302(15)]400x x --⋅>,即2302000x x -+<,解得1020x <<,因为15x >,所以1520x <<,这批台灯的销隹单价x 的取值范围是{1520}xx <<∣,故选:A.考点六根的分布【例6】(2023·湖北)关于x 的方程2(3)0x m x m +-+=满足下列条件,求m 的取值范围.(1)有两个正根;(2)一个根大于1,一个根小于1;(3)一个根在(2,0)-内,另一个根在(0,4)内;(4)一个根小于2,一个根大于4;(5)两个根都在(0,2)内.【答案】(1)01m <≤(2)1m <(3)405m -<<(4)45<-m (5)213m <≤【解析】(1)令2()(3)f x x m x m =+-+,设()0f x =的两个根为12,x x .由题得()12122300Δ340x x m x x m m m ⎧+=->⎪⎪=>⎨⎪=--≥⎪⎩,解得01m <≤.(2)若方程2(3)0x m x m +-+=的一个根大于1,一个根小于1,则(1)220f m =-<,解得1m <(3)若方程2(3)0x m x m +-+=一个根在(2,0)-内,另一个根在(0,4)内,则(2)100(0)0(4)540f m f m f m -=->⎧⎪=<⎨⎪=+>⎩,解得405m -<<(4)若方程2(3)0x m x m +-+=的一个根小于2,一个根大于4,则(2)320(4)540f m f m =-<⎧⎨=+<⎩,解得45<-m (5)若方程2(3)0x m x m +-+=的两个根都在(0,2)内,则()()()22320003022Δ340f m f m m m m ⎧=->⎪=>⎪⎪-⎨<-<⎪⎪=--≥⎪⎩,解得213m <≤【一隅三反】1.(2023·江苏南京)(多选)设m 为实数,已知关于x 的方程()2310mx m x +-+=,则下列说法正确的是()A .当3m =时,方程的两个实数根之和为0B .方程无实数根的一个必要条件是1m >C .方程有两个不相等的正根的充要条件是01m <<D .方程有一个正根和一个负根的充要条件是0m <【答案】BCD【解析】对于A 选项,3m =时2310x +=无实根,A 错误;对于B 选项,当0m =时方程有实根,当0m ≠时,方程无实根则2(3)40m m --<,解得19m <<,一个必要条件是1m >,B 正确;对于C 选项,方程有两个不等正根,则0m ≠,0∆>,30m m ->,10m >,解得01m <<;对于D 选项,方程有一个正根和一个负根,则0m ≠,10m<,解得0m <,D 正确;故选:BCD.2.(2022秋·湖北武汉·高一校考期中)已知一元二次方程2210ax x ++=.(1)写出“方程2210(0)ax x a ++=≠有一个正根和一个负根”的充要条件;(2)写出“方程2210(0)ax x a ++=≠有一个正根和一个负根”的一个必要而不充分条件,并给予证明.【答案】(1)a<0(2)方程2210(0)ax x a ++=≠有一个正根和一个负根的一个必要而不充分条件可以是1a <,证明见解析【解析】(1)若方程2210(0)ax x a ++=≠有一个正根和一个负根,则Δ44010a a =->⎧⎪⎨<⎪⎩,即10a a <⎧⎨<⎩,<0a ∴.∴方程2210(0)ax x a ++=≠有一个正根和一个负根的充要条件是a<0.(2)方程2210(0)ax x a ++=≠有一个正根和一个负根的一个必要而不充分条件是1a <,证明:若方程2210(0)ax x a ++=≠有一个正根和一个负根,则由(1)知其充要条件为0<a ,从而1a <,故必要性成立.若01a <<,则方程2210ax x ++=中,440a ∆=->,1210x x a⋅=>,∴方程2210ax x ++=有两个同号根,∴充分性不成立,故1a <是方程2210(0)ax x a ++=≠有一个正根和一个负根的一个必要而不充分条件.3.(2022秋·江西·高一统考阶段练习)若关于x 的不等式240x mx m -+<的解集为()12,x x .(1)当=1m 时,求121144x x +--的值;(2)若10x >,20x >,求1211x x +的值;(3)在(2)的条件下,求124x x +的最小值.【答案】(1)4-;(2)4;(3)94.【解析】(1)由题意,关于x 的方程2410x x -+=有两个根1x ,2x ,所以1212Δ=12>0+=4=1x x x x ⎧⎪⎨⎪⎩,故()12121212811444441611616x x x x x x x x +--+===----++-+.(2)由题意,关于x 方程240x mx m -+=有两个正根,由韦达定理知21212Δ=1640+=4>0=>0m m x x m x x m -≥⎧⎪⎨⎪⎩,解得14m ≥,所以1212121144x x m x x x x m ++===.(3)由(2),12114x x +=,且10x >,20x >,所以()211212121241111441444x x x x x x x x x x ⎛⎫⎛⎫+=++=+++ ⎪ ⎪⎝⎭⎝⎭,而21x x 、120x x >,所以211244x x x x +=≥,当且仅当122x x =,且12124x x x x +=,即134x =,238x =取等号,此时实数91324m =>符合条件,故12944x x +≥,且当932m =时,取得最小值94.。
一元二次方程应用题(含答案)整理版第一篇:一元二次方程应用题(含答案)整理版一元二次方程应用题1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600 展开后化简得:x²-44x+144=0 即(x-36)(x-4)=0 ∴x=4或x=36(舍)即每件降价4元2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加了多少行多少列?解:设增加x(8+x)(12+x)=96+69 x=3 增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价关系式解:(1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得: y=(x-30)[60+2(70-x)]-500 =-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500 元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?解:设边长x 则(19-2x)(15-2x)=77 4x^2-68x+208=0 x^2-17x+52=0 (x-13)(x-4)=0,当x=13时19-2x<0不合题意,舍去故x=4 5.某商品进价为每件40元,如果售价为每件50元,每个月可卖出210件,如果售价超过50元,但不超过80元,每件商品的售价每上涨10元,每个月少卖1件,如果售价超过80元后,若再涨价,每件商品的售价每涨1元,每个月少卖3件。
专题05 一元二次方程的解法(知识点考点串编)【思维导图】例.(2022·重庆涪陵·九年级期末)方程29x =的解是( )A .3x =B .3x =-C .10x =,23x =-D .13x =,23x =- 【答案】D 【解析】 【分析】直接利用开方法求解即可. 【详解】©知识点一:直接开平方法技巧:把方程ax 2+c =0(a ≠这解一元二次方程的方法叫做直接开平方法。
解:29x =,解得:13x =,23x =-, 故选:D . 【点睛】本题考查了一元二次方程的求解,解题的关键是掌握直接开方法求解.练习1.(2022·北京丰台·九年级期末)若关于x 的一元二次方程()22110m x x m -++-=有一个解为0x =,那么m 的值是( ) A .-1 B .0 C .1 D .1或-1【答案】A 【解析】 【分析】将0x =代入方程,得到关于m 的一元二次方程,解方程求解即可,注意二次项系数不为0. 【详解】解:∵关于x 的一元二次方程()22110m x x m -++-=有一个解为0x =,∵210,10m m -=-≠1m ∴=- 故选A 【点睛】本题考查了一元二次方程的解的定义,一元二次方程的定义,解一元二次方程,掌握一元二次方程解的定义是解题的关键.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.练习2.(2021·四川南充·一模)方程(9x ﹣1)2=1的解是( )A .1213x x == B .1229x x == C .1220,9x x == D .1220,9x x ==-【答案】C 【解析】 【分析】利用直接开平方法求解即可.【详解】解:2(91)1x-=,911x∴-=或911x-=-,解得10x=,22 9x=,故选:C.【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.练习3.(2021·北京师范大学附属实验中学分校八年级期中)已知三角形的两边长是4和6,第三边的长是方程(x﹣3)2=4的根,则此三角形的周长为()A.17B.11C.15D.11或15【答案】C【解析】【分析】先求出方程的解,然后根据三角形三边关系利用三角形的两边之和大于第三边判断能否构成三角形,选择满足题意的第三边,即可求出三角形的周长.【详解】解:(x﹣3)2=4,x﹣3=±2,解得x1=5,x2=1.若x=5,则三角形的三边分别为4,5,6,其周长为4+5+6=15;若x=1时,6﹣4=2>1,不能构成三角形,则此三角形的周长是15.故选:C.【点睛】本题考查一元二次方程的解法,三角形三边关系,三角形的周长,掌握一元二次方程的解法,三角形三边关系,三角形的周长是解题关键.练习4.(2022·广东白云·九年级期末)解方程:()23250x+-=【答案】x 1=2,x 2=-8 【解析】 【分析】先把方程变形为解(x +3)2=25,然后利用直接开平方法解方程. 【详解】 解:(x +3)2=25, ∵x +3=±5,解得:x 1=2,x 2=-8. 【点睛】本题考查了解一元二次方程-直接开平方法:形如x 2=p 或(nx +m )2=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.例.(2022·甘肃麦积·九年级期末)将一元二次方程2850x x +-=化成()2x a b+=(,a b 为常数)的形式,则a ,b 的值分别是( ) A .-4,21 B .-4,11C .4,21D .-8,6【答案】C 【解析】 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.©知识点二 配方法技巧:将一元二次方程化成一般形式,如ax 2+bx+c =0(a ≠0);把常数项移到方程的右边,如ax 2+bx =-c ;方程的两边都除以二次项系数,使二次项系数为1,如X ²+解:∵x 2+8x -5=0, ∵x 2+8x =5,则x 2+8x +16=5+16,即(x +4)2=21, ∵a =4,b =21, 故选:C . 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.练习1.(2022·海南海口·九年级期末)用配方法解方程2430x x --=,下列配方正确的是( ) A .()227x -= B .()227x +=C .()223x -=D .()221x -=【答案】A 【解析】 【分析】方程移项后,两边同时加上4,变形即可得到结果. 【详解】方程移项得 243x x -=方程两边同时加上4,得 24434x x -+=+ 即2(2)7x -= 故选:A . 【点睛】本题考查了配方法解一元二次方程,熟练掌握完全平方公式是解题的关键.练习2.(2022·山西山阴·九年级期末)用配方法解方程2650x x --=时,配方后的方程是( ) A .2(3)4x -= B .2(3)14x -= C .2(3)31-=x D .2(3)14x +=【答案】B 【解析】 【分析】直接利用配方法进行配方即可.解:2650--=x x移项得:265-=,x x配方得:26914-+=,x xx-=合并得:()2314故选:B.【点睛】本题考查了配方法,解决本题的关键是牢记配方法的步骤,本题较基础,考查了学生对基础知识的掌握与基本功等.练习3.(2022·广东禅城·九年级期末)一元二次方程x2﹣8x+5=0配方后可化为()A.(x﹣4)=19B.(x+4)=﹣19C.(x﹣4)2=11D.(x+4)2=16【答案】C【解析】【分析】利用配方法求解即可.【详解】解:∵2850-+=x x∵281611-+=x x∵()2411x-=故选C.【点睛】本题考查了配方法.解题的关键在于熟练使用配方法.练习4.(2020·湖南·娄底市第三中学九年级阶段练习)选择合适的方法解方程:(1)x2﹣4x=2;(2)3(x﹣5)=x2﹣25.【答案】(1)x1=6,x2=26(2)x1=5,x2=﹣2【解析】(1)利用配方法直接求解即可; (2)先移项,利用因式分解法求解即可. (1) ∵x 2﹣4x =2∵x 2﹣4x +4=2+4,即(x ﹣2)2=6 ∵x ﹣2=6∵x 1=6x 2=26 (2)∵3(x ﹣5)=x 2﹣25, ∵3(x ﹣5)﹣(x +5)(x ﹣5)=0, ∵(x ﹣5)(3﹣x ﹣5)=0, ∵x ﹣5=0或﹣x ﹣2=0, ∵x 1=5,x 2=﹣2. 【点睛】本题考查了一元二次方程的解法,一元二次方程的解法主要有开平方法、配方法、公式法、因式分解法.例.(2021·河北·金华中学九年级阶段练习)将一元二次方程2850x x --=化成()2x a b +=(a ,b 为常数)的形式,则a ,b 的值分别是( )A .4-,21B .4-,69C .4,21D .8-,11【答案】A 【解析】 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案. 【详解】©知识点三:配方法的应用解:∵2850x x --=, ∵285x x -=, 则2816516x x +=+-, 即2()421x -=, ∵4a =-,21b =, 故选A . 【点睛】本题考查了配方法求解一元二次方程,解题的关键是熟练掌握配方法的求解过程. 练习1.(2021·贵州六盘水·九年级阶段练习)代数式x 2﹣4x +5的值( ) A .恒为正 B .恒为负 C .可能为0 D .不能确定【答案】A 【解析】 【分析】直接利用配方法将原式变形,进而得出答案. 【详解】解:2245(2)1x x x -+=-+,2(2)0x -, 2(2)10x ∴-+>,∴代数式245x x -+的值恒为正.故选:A . 【点睛】本题主要考查了配方法的应用,解题的关键是正确配方.练习2.(2021·广东·深圳市龙岗区宏扬学校九年级期中)已知m 是有理数,则m 2﹣2m +4的最小值是( ) A .3 B .5 C .6 D .8【答案】A 【解析】 【分析】根据配方法对式子进行配方,利用非负性求解最小值即可.【详解】解:2224(1)3m m m -+=-+∵2(1)0m -≥,当1m =时,2(1)0m -= ∵2(1)33m -+≥,当1m =时,2(1)33m -+= 1m =,为有理数,224m m -+的最小值为3故选A 【点睛】本题考查了配方法的应用,然后根据非负性求出最小值,解题的关键是掌握配方法.练习3.(2021·湖北省水果湖第一中学九年级阶段练习)已知关于x 的多项式24x mx -++的最大值为5,则m 的值可能为( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】先把多项式配方,从而得244m +=5,进而即可得到结论. 【详解】解:∵24x mx -++=22424m m x ⎛⎫--++ ⎪⎝⎭,又∵关于x 的多项式24x mx -++的最大值为5, ∵244m +=5,解得:m =±2, ∵m 的值可能为2. 故选B . 【点睛】本题主要考查多项式的最值问题,掌握配方法是解题的关键.练习4.(2021·甘肃会宁·九年级期中) “a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∵(x +2)2+1≥1,∵x 2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:因为x 2-4x +6=(x _____)2+______,所以当x =_____时,代数式x 2-4x +6有最_____(填“大”或“小”)值,这个最值为_______; (2)比较代数式x 2-1与2x -3的大小.【答案】(1)-2;2;2;小;2;(2)2123x x ->- 【解析】 【分析】(1)根据题干的例子配方即可;(2)通过作差法比较大小,根据偶次方的非负性即可. 【详解】解:(1)246x x -+ 2442x x =-++ 2(2)2x =-+,当2x =时,代数式246x x -+有最小值, 这个最值为2.故答案为:2-;2;2;小; (2)2(1)(23)x x --- 2123x x =--+2211x x =-++ 2(1)1x =-+,2(1)0x -,2(1)10x ∴-+>,2123x x ->-∴.【点睛】本题考查了配方法的应用,解题的关键是利用作差法比较大小.例.(2022·上海市建平实验中学八年级期末)下列方程中,有实数解的是( ) A .430x += B .333x x x --= C 130x -= D .222310x y ++=【答案】B 【解析】 【分析】判断方程有无实数解,就是看方程的解是否是能满足方程的左右两边相等的实数. 【详解】A 、∵430x +>,故A 错误,不符合题意;B 、333x x x --=, ()2333x x x -=-,2333x x x -=-, 2630x x -+=,627x ±=,1633x +=2633x -=,经检验,1633x +=,2633x -=均是原方程的解,故B 正确,符合题意; C 130x ->,故无实数解,故C 错误,不符合题意; D 、222310x y ++>,故无实数解,故D 错误,不符合题意; 故选:B . 【点睛】本题考查了无理方程、高次方程、分式方程的解法,二次根式的性质,解题的关键是掌握方程的解的概念,是能满足方程的左右两边相等的实数.练习1.(2021·广东·深圳市龙岗区宏扬学校九年级期中)用公式法解方程4y 2﹣12y ﹣3=0,得到( )©知识点四:公式法技巧:一元二次方程ax 2+bx+c =0(a ≠0,用配方法所求出的两个根x =−b±√b 2−4ac2a(b ²-4ac ≥0)只要是有实数根的一元二次方程,均可将a ,b ,c 的值代入两根公式中直接解出,所以把这种方法称为公式法,而把x =−b±√b 2−4ac2a(b ²-4ac ≥0)叫做一元二次方程ax ²+bx +c =0(a ≠0)的求根公式。
一元二次方程实际应用共三套含解析答案2021年九年级数学中考复习——方程专题:一元二次方程实际应用(一)1.某网店销售一款羽绒服,每件售价900元,每天可卖2件.为迎接“双11”抢购活动,该网店决定降价销售,市场调查反映:售价每降低50元,每天可多卖1件.已知该款羽绒服每件进价400元,设该款羽绒服每件售价x元,每天的销售量为y件.(1)求y与x之间的函数关系式;(2)求网店每天盈利1600元,且销售量最大时,该款羽绒服的售价.2.万州物产丰富,新田水柿子香甜多汁回味无穷,深秋时节正是品尝新田水柿子的最佳时机.某水果摊贩看准商机,购进并销售新田水柿子和外地柿饼,11月中旬,新田水柿子和外地柿饼的销售单价分别为6元/千克、20元/千克,水柿子比柿饼多售出150千克,两种柿子的销售总金额为10000元.(1)11月中旬新田水柿子和外地柿饼各销售了多少千克?(2)11月下旬新田水柿子开始过季,其他水果开始上市,该水果摊贩准备将外地柿饼的销售单价在11中旬的基础上下调a%,新田水柿子的单价在11月中旬的基础上上调a%,价格的变动导致销售量的变化,其中,预计外地柿饼的销售量将在11中旬的基础上上涨a%,新田水柿子的销售量在11月中旬的基础上减少a%,最终预计11月下旬水果摊两种柿子的销售总金额将与中旬持平,求a的值.3.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?4.口罩在疫情防控中起着非常重要的防护作用,主要是保护呼吸道,预防呼吸道飞沫的传播,减少病毒或细菌的侵袭,预防感染的作用,同时还可以预防有害物质的入侵,极大地减少交叉感染的几率.某药店新购进一批口罩进行销售,平均每天可售出500个,每个盈利0.6元,为了让利于民,药店决定采取适当的降价措施,根据以往的经验,如果每个口眾的售价每降价0.1元,那么平均每天多售出100个.(1)若每个口罩的售价降价0.2元,则平均每天可售出个;若每个口罩的售价降价x元,则平均每天可售出个;(2)该药店要想通过销售这种口罩,每天盈利达到240元,每个口罩的售价应降价多少元?5.某水果店批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售将减少20千克.(1)现要保证每天盈利5520元,同时又要让顾客得到实惠,那么每千克应涨价多少元?(2)要使每天获利不少于6000元,求涨价x的范围.6.某公司一月份营业额为10万元,若二、三月份增长率相同,到三月份时,营业额达到12.1万元.求二、三月份的平均增长率.7.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度为10m)围成中间隔有一道篱笆的长方形花圃,如果要围成面积为45m2的花圃,求AB的长度.8.如图,某小区有一块长为22.5m,宽为18m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为270m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?9.如图,某中学准备在校园里利用围墙的一段MN,再砌三面墙,围成一个矩形花园ABCD (围墙MN最长可利用25m),现在已备足可以砌40m长的墙的材料.(1)当AB长度是多少时,矩形花园的面积为150m2;(2)能否围成矩形花园面积为210m2,为什么?10.2020年12月,宝应高铁站即将开通运营,宝应将迈入高铁时代.建设部门打算对高铁站广场前一块长为20m,宽为8m的矩形空地进行绿化,计划在其中间修建两块相同的矩形绿地(图中阴影部分).(1)若他们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道,问人行通道的宽度是多少米?(2)为使修建两块相同的矩形绿地更美一点,设计部门打算修建的两块相同的矩形绿地与原矩形空地相似,两块绿地之间及周边仍然留有宽度相等的人行通道,问人行通道的宽度应改为多少米?参考答案1.解:(1)依题意,得:y=2+=20﹣.(2)依题意,得:(x﹣400)(20﹣)=1600,解得:x1=600,x2=800,∵销售量最大,∴x=600.答:当每件售价定为600元时,该网店每天盈利1600元.2.(1)设新田水柿子销售了x千克,外地柿饼销售了y千克,由题意得:解得答:新田水柿子销售了500千克,外地柿饼销售了350千克;(2)由题意得,令a%=t,则原方程整理得5t2﹣t=0,解得:(舍去),∵,答:a的值为20.3.解:(1)1+(14﹣10)÷2=3(档).故答案为:3.(2)设该烘焙店生产的是第x档次的产品,则每件利润为10+2×(x﹣1)=(2x+8)元,每天的产量为76﹣4(x﹣1)=(80﹣4x)件,依题意得:(2x+8)(80﹣4x)=1080,整理得:x2﹣16x+55=0,解得:x1=5,x2=11.又∵该烘焙店生产的蛋糕礼盒分为六个档次,∴x=5.答:该烘焙店生产的是第5档次的产品.4.解:(1)若每个口罩的售价降价0.2元,则平均每天可售出500+×100=700个;若每个口罩的售价降价x元,则平均每天可售出(500+1000x)个;故答案为:700;(500+1000x);(2)解设每个口罩可降价x元,由题意,得:(0.6﹣x)(500+1000x)=240,解得x1=0.3,x2=﹣0.2(不合题意,舍去).答:每个口罩可降价0.3元.5.解:(1)设每千克应涨价x元,由题意列方程得:(10+x)(500﹣20x)=5520,解得:x=2或x=13,为了使顾客得到实惠,那么每千克应涨价2元;答:每千克水果应涨价2元.(2)根据题意得:(10+x)(500﹣20x)≥6000,解得:5≤x≤10,答:每千克水果涨价x的范围是5≤x≤10.6.解:设这两个月营业额的平均增长率是x,由题意可得:10(1+x)2=12.1,解得x1=0.1;x2=﹣2.1(不合题意舍去).答:这两个月营业额的平均增长率是10%.7.解:设AB长为xm,则BC长为(24﹣3x)m.依题意得:x(24﹣3x)=45,整理得:x2﹣8x+15=0,解得:x1=3,x2=5.当x=3时,BC=24﹣9=15>10不成立,当x=5时,BC=24﹣15=9<10成立.答:AB的长为5m.8.解:设人行通道的宽度为x米,则两块矩形绿地合在一起长为(22.5﹣3x)m,宽为(18﹣2x)m,依题意得:(22.5﹣3x)(18﹣2x)=270,整理得:2x2﹣33x+45=0,解得:x1=1.5,x2=15,当x=15时,22.5﹣3x=﹣22.5<0,不合题意,舍去.答:人行通道的宽度为1.5米.9.解:(1)设BC=xm,则AB=CD=(40﹣x)m,x≤25,则(40﹣x)x=150,解得:x=10或30(舍去30),故x=10(m);∴AB=15(m).答:当AB长度是15m时,矩形花园的面积为150m2;(2)由题意得:则(40﹣x)x=210,化简得:x2﹣40x+420=0,△=1600﹣4×420<0,故不能围成矩形花园面积为210m2.10.解:(1)设人行道的宽度为a米,根据题意得,(20﹣3a)(8﹣2a)=56,解得:a=2或a=(不合题意,舍去).答:人行道的宽为2米;(2)设人行通道的宽度应改为x米,根据题意得,=,解得:x=,答:人行通道的宽度应改为米.2021年九年级数学中考复习——方程专题:一元二次方程实际应用(二)1.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)设每件商品降价x元,则商场日销售量增加件,每件商品,盈利元(用含x的代数式表示);(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?2.国家统计局统计数据显示,我国快递业务收入逐年增加.由2017年的5000亿元增加到2019年的7500亿元.求我国2017年至2019年快递业务收入的年平均增长率.(参考数值:≈2.45)3.某商场购进一批每盒40元的月饼销售,根据销售经验,应季销售每盒月饼的售价为60元时,每天可售出400盒.当售价每提高1元时,销量就相应减少10盒.(1)若商场要每天获得9000元的利润,每盒月饼的售价应定为多少元?(2)过季处理时,经过两次打折商品每盒售价为29.4元,商场平均每次打几折?4.某商场销售一种商品,每件进货价为190元.调查发现,当每件销售价为210元时,平均每天能销售8件;当销售价每降低2元时,平均每天就能多销售4件.商场要想使这种商品平均每天的销售利润达到280元,且尽量减少库存,求每件商品的销售价应定为多少元?5.2020年以来,受疫情影响,一些传统商家向线上转型发展,某商家通过“直播带货”,商品网上零售额得以逆势增长.若该商家销售一种进价为每件40元的商品,当销售单价为80元时,平均每天可销售100件;经数据分析发现,该商品单价每降1元,每天销售量增加10件.(1)当销售单价为65元时,每天的销售量为件;(2)该商家想在每天获得6000元利润的前提下,最大程度让利于顾客,应将销售单价定为多少元?6.某商店进了一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,使库存减少最快,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,当每件衬衫降价多少元时,商场平均每天盈利达到1200元?7.为贯彻落实党的十九大关于实施健康中国战略的要求,满足职工群众对美好生活的新期待,促进城乡加速融合,我市总工会决定对开展职工春秋(乡村)游活动予以推进.据统计,我市某农庄今年7月接待了1280人参观游玩,后几月每月都有增加,若9月份该农庄接待了2880人参观游玩,且进入该农庄参观游玩人数的月平均增长率相同.(1)求该农庄游玩人数的月平均增长率;(2)因条件限制,该农庄每月接待能力不超过5000人,在进入该农庄参观游玩人数的月平均增长率不变的条件下,该农庄能否全部接待10月份的参观游玩人数?并说明理由.8.某超市1月份的营业额为20万元,3月份的营业额为28.8万元,如果每月比上月增长的百分数相同,求平均每月的增长率为多少?9.研究所在研究某种流感病毒发现,若一人携带此病毒,未进行有效隔离,经过两轮传染后共有169人患病(假设每轮每人传染的人数相同),求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?10.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,某快递公司今年三月份完成投递的快递总件数为10万件,五月份完成投递的快递总件数12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名业务员能否完成今年6月份的投递任务?为什么?参考答案1.解:(1)设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50﹣x)元,故答案为:2x,(50﹣x).(2)由题意得:(50﹣x)(30+2x)=2000,化简得:x2﹣35x+250=0,解得:x1=10,x2=25,∵该商场为了尽快减少库存,则x=10不合题意,舍去,∴x=25,答:每件商品降价25元,商场日盈利可达2000元;2.解:设年平均增长率为x,依题意,得5000(1+x)2=7500,整理,得x2+2x﹣=0,解得x1=﹣1+,x2=﹣1﹣(不合题意,舍去),∴x=﹣1+≈﹣1+=0.225=22.5%.答:我国2017年至2019年快递业务收入的年平均增长率约为22.5%.3.解:(1)设每盒月饼的售价应提高x元,每天获得9000元的利可润,根据题意得:(60+x﹣40)(400﹣10x)=9000,解得:x=10,∴60+x=70.答:每盒月饼的售价应定为70元,每天获得9000元的利可润.(2)设每次打y折,根据题意可得:60=29.4,解得:y1=7,y2=﹣7(不合题意舍去).答:商场平均每次打七折.4.解:设每件商品降价x元销售,则每件商品的利润为(210﹣190﹣x)元,平均每天的销售量为8+×4=(8+2x)件,依题意,得:(210﹣190﹣x)(8+2x)=280,整理,得:x2﹣16x+60=0,解得:x1=6,x2=10.当x=6时,8+2x=20,当x=10时,8+2x=28.∵要尽量减少库存,∴x=10,∴210﹣x=200.答:每件商品的销售价应定为200元.5.解:(1)100+10×(80﹣65)=250(件).故答案为:250.(2)设将销售单价定为x元,则销售每件商品的利润为(x﹣40)元,平均每天的销售量为100+10(80﹣x)=(900﹣10x)件,依题意,得:(x﹣40)(900﹣10x)=6000,整理,得:x2﹣130x+4200=0,解得:x1=60,x2=70,又∵要最大程度让利于顾客,∴x=60.答:销售单价定为60元.6.解:设每件衬衫应降价x元,则销售每件衬衫的利润为(40﹣x)元,平均每天的销售量为(20+2x)件,依题意,得:(40﹣x)(20+2x)=1200,解得:x1=10,x2=20.当x=10时,20+2x=40;当x=20时,20+2x=60.∵要使库存减少最快,∴x=20.答:当每件衬衫应降价20元时,商场平均每天盈利达到1200元.7.解:(1)设该农庄游玩人数的月平均增长率为x,依题意,得:1280(1+x)2=2880,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).答:该农庄游玩人数的月平均增长率为50%.(2)2880×(1+50%)=4320(人),∵4320<5000,∴该农庄能全部接待10月份的参观游玩人数.8.解:设平均每月的增长率为x,依题意,得:20(1+x)2=28.8,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:平均每月的增长率为20%.9.解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(x+1)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.10.解:(1)设该快递公司投递总件数的月平均增长率为x,依题意,得:10(1+x)2=12.1,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:该快递公司投递总件数的月平均增长率为10%.(2)12.1×(1+10%)=13.31(万件),0.6×21=12.6(万件).∵13.31>12.6,∴该公司现有的21名业务员不能完成今年6月份的投递任务.2021年九年级数学中考复习——方程专题:一元二次方程实际应用(三)1.如图是一张长10dm,宽6dm矩形纸板,将纸板四个角各剪去一个相同边长的正方形,然后将四周突出部分折起,可制成一个无盖方盒.若要制作一个底面积是32dm2的一个无盖长方体纸盒,求剪去的正方形边长.2.火锅是重庆人民钟爱的美食之一;解放碑某老火锅店为抓住“十一黄金周”这个商机,通过网上广告宣传和实地派发传单等一系列促销手段吸引了不少本地以及外地游客,火锅店门庭若市.据店员统计;仅“十一黄金周”前来店内就餐选择红汤火锅和清汤火锅的游客共2500人,其中红汤火锅和清汤火锅的人均消费分别为80元和60元.(1)“十一”期间,若选择红汤火锅的人数不超过清汤火锅人数的1.5倍,求至少有多少人选择清汤火锅?(2)随着“十一”的结束,前来店内就餐的人数逐渐减少,据接下来的第二周统计数据显示,与(1)选择清汤火锅的人数最少时相比,选择红汤火锅的人数下降了a%,选择清汤火锅的人数不变,但选择红汤火锅的人均消费增长了a%,选择清汤火锅的人均消费增长了,最终第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等,求a的值.3.某商店销售甲、乙两种零食,甲零食每袋成本为5元,乙零食每袋成本为7元.甲零食现在的售价为10元,每天卖出30袋;售价每提高1元,每天少卖出2袋.乙零食现在的售价为14元,每天卖出6袋;售价每降低1元,每天多卖出4袋.假定甲、乙两种零食每天卖出的袋数的和不变(和为36袋),且售价均为整数.(1)当甲零食的售价提高2元,则甲零食每天卖出袋,乙零食的售价为元;(2)当甲零食的售价提高多少元时,销售这两种零食当天的总利润是268元?4.如图,利用长20米的一段围墙,用篱笆围一个长方形的场地,中间用篱笆分割出2个小长方形,与墙平行的一边上各开一扇宽为1米的门,总共用去篱笆34米,为了使这个长方形ABCD的面积为96平方米,求AB、BC边各为多少米?5.光明村下辖一组、二组共500户村民,1户村民有且只有1户房屋.在精准扶贫工作中,该村率先在一组开展蔬菜大棚升级和房屋外立面改造项目试点工作.已知该村平均1户居民有1.25个蔬菜大棚参与升级,1个蔬菜大棚升级费用比1户房屋外立面改造费用的2倍还多40元.经统计,光明村一组共100户村民,光明村一组蔬菜大棚升级和房屋外立面改造的总费用不低于68000元.(1)1个蔬菜大棚升级费用最少多少元?(2)光明村一组蔬菜大棚升级和房屋外立面改造成功完成后,光明村二组计划按(1)中取得最小值时蔬菜大棚升级和房屋外立面改造的价格开展上述两项精准扶贫工作.但由于各方面因素的影响,施工方将蔬菜大棚升级和房屋外立面改造的报价分别上涨了a%和a%.在实际施工中,为了降低总费用,村民们积极参与劳动,节约了部分人力成本与运输成本,使得1个蔬菜大棚升级费用与1户房屋外立面改造费用在施工方报价的基础上分别下降了2a%和(30+a)元.这样,光明村二组蔬菜大棚升级和房屋外立面的实际总费用为251000元,求a的值.6.为做好开学前后新冠肺炎疫情防控工作,保障广大师生员工生命安全和身体健康,重庆实验外国语学校决定向某医药生产厂家购买防疫物资,学校原计划订购84消毒液和医用酒精共5000瓶,已知消毒液每瓶单价24元,酒精每瓶单价20元.(1)据悉,学校计划购买防疫物资的总资金不超过112000元,那么原计划最多购买消毒液多少瓶?(2)后来,学校决定就以112000元的总资金,按照(1)中消毒液的最大数量进行购买,但学校后勤处通过调查统计发现医用酒精的需求量更大,于是学校接受了后勤处的建议,在原计划的基础上消毒液少订购了10a瓶,医用酒精多订购了原计划的,医药生产厂家决定对医用酒精给予优惠,单价降低元,消毒液单价不变,最终学校比原计划只多花费了10a元就完成了订购,求a(a≠0)的值.7.一根长8m的绳子能否围成一个面积为3m2的矩形?若能,请求出矩形的长和宽;若不能,请说明理由.8.一批发市场某服装批发价为240元/件.为拉动消费,该批发市场规定:当批发数量超过10件时,给予降价优惠,但批发价不得低于150元/件.经市场调查发现,优惠时批发价y(元/件)与x(件)之间成一次函数关系,当批发数量为15件时,批发价为210元/件;当批发数量为22件时,批发价为168元/件.(1)求批发价y(元/件)与x(件)之间的一次函数表达式;(2)在该市场降价优惠期间,某顾客一次性支付了3600元,求该顾客批发了多少件服装?9.2018年,某市某楼准备以每平方米5000元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金的周转,决定进行降价促销,经过连续两年的下调后,2020年的均价为每平方米4050元.(1)求平均每年下调的百分率;(2)假设2021年的均价仍然下调相同的百分率,则购买一套100平方米的房子需要多少万元?10.某商场销售一批名牌衬衣,平均每天可售出20件,每件衬衣盈利40元,为了扩大销售,增加盈利,尽快减少库存.商场决定采取适当的降价措施,经调查发现,如果每件衬衣降价1元,商场平均每天可多售出2件,若商场平均每天盈利1200元,每件衬衣降价多少元?参考答案1.解:设剪去的正方形边长为xdm,则做成的长方形纸盒的底面长为(10﹣2x)dm,宽为(6﹣2x)dm,依题意,得:(10﹣2x)(6﹣2x)=32,整理,得:x2﹣8x+7=0,解得:x1=1,x2=7.∵6﹣2x>0,∴x<3,∴x=1.答:剪去的正方形边长为1dm.2.解:(1)设有x人选择清汤火锅,则有(2500﹣x)人选择红汤火锅,依题意,得:2500﹣x≤1.5x,解得:x≥1000.答:至少有1000人选择清汤火锅.(2)依题意,得:80(1+a%)×(2500﹣1000)(1﹣a%)+60(1+a%)×1000=80×(2500﹣1000)+60×1000,整理,得:12a2﹣120a=0,解得:a1=10,a2=0(不合题意,舍去).答:a的值为10.3.解:(1)甲零食的售价提高2元,则甲零食每天卖出30﹣2×2=26(袋),则乙销售了10袋,乙零食的售价为14﹣1=13(元).故答案为:26,13;(2)设甲零食的售价提高x元时,销售这两种零食当天的总利润是268元,由题意得,(5+x)(30﹣2x)+(6+2x)(14﹣﹣7)=268,∴3x2﹣31x+76=0,解得x1=4,x2=,∵售价均为整数,∴x=4.答:甲零食的售价提高4元时,销售这两种零食当天的总利润是268元.4.解:设AB为x米,则BC为(36﹣3x)米,x(36﹣3x)=96,解得:x1=4,x2=8,当x=4时,36﹣3x=24>20(不合题意,舍去),当x=8时,36﹣3x=12.答:AB=8米,BC=12米.5.解:(1)设1户房屋外立面改造费用为x元,则1个蔬菜大棚升级费用为(2x+40)元,依题意,得:100x+100×1.25(2x+40)≥68000,解得:x≥180,∴2x+40≥400.答:1个蔬菜大棚升级费用最少为400元.(2)依题意,得:400(1+a%)(1﹣2a%)×(500﹣100)×1.25+[180(1+a%)﹣(30+a)]×(500﹣100)=251000,整理,得:4a2﹣900=0,解得:a1=15,a2=﹣15(不合题意,舍去).答:a的值为15.6.解:(1)设原计划购买消毒液x瓶,则原计划购买医用酒精(5000﹣x)瓶,依题意,得:24x+20(5000﹣x)≤112000,解得:x≤3000.答:原计划最多购买消毒液3000瓶.(2)依题意,得:24×(3000﹣10a)+(20﹣)×(5000﹣3000)(1+)=112000+10a,整理,得:a2﹣50a=0,解得:a1=60,a2=0(不合题意,舍去).答:a的值为50.7.解:设矩形的长为xm,则宽为(﹣x)m,依题意,得:x(﹣x)=3,整理,得:x2﹣4x+3=0,解得:x1=3,x2=1,当x=3时,﹣x=1<3,符合题意;当x=1时,﹣x=3>1,不符合题意,舍去.答:一根长8m的绳子能围成一个面积为3m2的矩形,围成矩形的长为3m,宽为1m.8.解:(1)设批发价y(元/件)与x(件)之间的一次函数表达式为y=kx+b(k≠0),将(15,210),(22,168)代入y=kx+b,得:,解得:.当y=150时,﹣6x+300=150,解得:x=25.∴批发价y(元/件)与x(件)之间的一次函数表达式为y=.(2)240×10=2400(元),150×25=37500(元),∵2400<3600<37500,∴10<x<25.依题意,得:x(﹣6x+300)=3600,整理,得:x2﹣50x+600=0,解得:x1=20,x2=30(不合题意,舍去).答:该顾客批发了20件服装.9.解:(1)设平均每年下调的百分率为x,根据题意得:5000(1﹣x)2=4050,解得:x1=10%,x2=190%(舍去).答:平均每年下调的百分率为10%.(2)如果下调的百分率相同,2021年的房价每平方米为:4050×(1﹣10%)=3645(元),买100平方米的住房需3645×100=364500(元)=36.45(万元),答:购买一套100平方米的房子需要36.45万元.10.解:设每件衬衣降价x元,则平均每天可售出(20+2x)件,依题意,得:(40﹣x)(20+2x)=1200,整理,得:x2﹣30x+200=0,解得:x1=10,x2=20.又∵要尽快减少库存,∴x=20.答:每件衬衣降价20元.。
一、基础知识(一)用一元二次方程解应用题的步骤审:读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系;设:设元,也就是设未知数;列:列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程;解:解方程,求出未知数的值;验:检验方程的解能否保证实际问题有意义;答:写出答语.相等关系的寻找应从以下几方面入手:).①分清本题属于哪一类型的应用题,如行程问题,则其基本数量关系应明确(v t s②注意总结各类应用题中常用的等量关系.如工作量(工程)问题.常常是以工作量为基础得到相等关系(如各部分工作量之和等于整体1等).③注意语言与代数式之间的转化.题目中多数条件是通过语言给出的,我们要善于将这些语言转化为我们列方程所需要的代数式.④从语言叙述中寻找相等关系.如甲比乙大5应理解为“甲=乙+5”等.⑤在寻找相等关系时,还应从基本的生活常识中得出相等关系.总之,找出相等关系的关键是审题,审题是列方程的基础,找相等关系是列方程解应用题的关键.(二)常见的实际问题数字问题、行程问题、工程量问题、利润问题等等。
每种不同的实际问题都有自己的相等关系,我们要根据不同的题设,找到不同的相等关系进而列出方程解答。
二、重难点分析本课教学重点:相等关系的判定本题教学难点:相等关系的判定方法1. 文字译式法:将题目中的关键性语言或数量及各数量间的关系译成代数式,然后根据代数式之间的内在联系找出等量关系.2.线段表示法:用同一直线的线段表示应用题中的数量关系,然后根据线段的长度的内在联系,找出等量关系.3. 罗列表格法:将已知条件和所求的未知量纳入表格,从而找出各种量之间的关系.4. 图例演示法:利用图表示题中的数量关系,它可以使量之间的关系更为直观,更方便找出其中的等量关系.典例精析:例1.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒。
2022-2023学年九年级数学上学期复习备考高分秘籍专题1.1一元二次方程九大考点精讲精练(知识梳理+典例剖析+变式训练)【知识梳理】1.一元二次方程的有关概念:(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.(2)一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax²叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(3)一元二次方程的根:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.2.一元二次方程的解法:(1)直接开平方法:形如x2=p或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.(2)配方法解一元二次方程的步骤:①把原方程化为20++=(a≠0)的形式;ax bx c②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.(3)公式法:把x b2-4ac≥0)叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值(注意符号);②求出b2-4ac的值(若b2-4ac<0,方程无实数根);③在b2-4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2-4ac≥0.(4)因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.3.一元二次方程根的判别式:利用一元二次方程根的判别式(△=b2-4ac)判断方程的根的情况.一元二次方程a x2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4.一元二次方程根与系数的关系:(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+ x2=-p,x1x2=q反过来可得p=-(x1+ x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程a x2+bx+c=0(a≠0)的两根时,,反过来也成立,x1+ x2=—ba ,x1x2=ca(3)常用根与系数的关系解决以下问题:①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.【典例剖析】【考点1】一元二次方程的定义【例1】(2022·安徽·滁州市第六中学八年级阶段练习)若(m+3)x|m|−1−(m−3)x−5=0是关于x的一元二次方程,则m的值为( )A.3B.﹣3C.±3D.±2【答案】A【分析】根据一元二次方程的定义得出方程即可求出答案.【详解】解:由题意可知:|m|−1=2m+3≠0,解得:m=3,故选:A.【点睛】本题考查一元二次方程的定义,解题的关键是正确理解一元二次方程的定义,本题属于基础题型.【变式1.1】(2021·天津市晟楷中学九年级阶段练习)下列关于x的方程中,一定是一元二次方程的为()A.a x2+bx+c=0B.x2−4=(x+3)2C.x2+3x−5=0D.3x(x−4)=0【变式1.2】(2022·新疆·和硕县第二中学九年级期末)关于x的方程(a+2)x a2−2−3x−1=0是一元二次方程,则a的值是( )A.a=±2B.a=−2C.a=2D.a为任意实数【答案】C【分析】根据一元二次方程的定义得a2−2=2且a+2≠0,求解即可.【详解】解:由题意,得a2−2=2且a+2≠0,解得:a=2,故选:C.【点睛】本题考查一元二次方程的定义,只含有一个未知数,并且未知数的最高次数是2次的方程叫做一元二次方程.【变式1.3】(2022·江苏南通·八年级期末)若关于x的方程(a−1)x2+x=0是一元二次方程,则a的范围是()A.a=1B.a>1C.a≠1D.a<1【答案】C【分析】根据一元二次方程的定义,结合“关于x的方程(a-1)x2+2x-1=0是一元二次方程”,得到关于a的不等式,解之即可.【详解】解:∵关于x的方程(a-1)x2+x=0是一元二次方程,∴a-1≠0,解得:a≠1.故选:C.【点睛】本题考查了一元二次方程的定义,正确掌握一元二次方程的定义是解题的关键.【考点2】一元二次方程的一般形式【例2】(2022·浙江温州·八年级期末)把一元二次方程x(2x−1)=x−3化为一般形式,正确的是()A.2x2+3=0B.2x2−2x−3=0C.2x2−x+2=0D.2x2−2x+3=0【答案】D【分析】将方程整理为一般式即可.【详解】解:x(2x−1)=x−3,2x2−x=x−3,即2x2−2x+3=0.故选:D.【点睛】本题考查一元二次方程的一般式,掌握一元二次方程的一般式的形式为a x2+bx+c=0(a≠0)是解题的关键.【变式2.1】(2022·全国·九年级单元测试)将一元二次方程(x+1)(x+2)=0化成一般形式后的常数项是___.【答案】2【分析】首先利用多项式乘法计算方程的左边,可化为x2+3x+2=0,进而可得到常数项.【详解】解:(x+1)(x+2)=0,x2+3x+2=0,常数项为2,故答案为:2.【点睛】此题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式.【变式2.2】(2022·全国·九年级单元测试)一元二次方程(2+x)(3x−4)=5化为一般形式为______,它的二次项是_______,一次项是_______,常数项是_______.【答案】3x2+2x−13=03x22x−13【分析】先利用多项式乘以多项式法则计算方程等号的左边,再移项、合并同类项即可化为一般形式,由此即可得出答案.【详解】解:(2+x)(3x−4)=5,去括号,得6x−8+3x2−4x=5,移项、合并同类项,得3x2+2x−13=0,则一元二次方程(2+x)(3x−4)=5化为一般形式为3x2+2x−13=0,它的二次项是3x2,一次项是2x,常数项是−13,故答案为:3x2+2x−13=0,3x2,2x,−13.【点睛】本题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式是a x2+bx+c=0(a,b,c都是常数且a≠0).在一般形式中a x2是二次项,bx是一次项,c是常数项.【变式2.3】(2022·山东淄博·八年级期末)关于x的一元二次方程(m−3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为__.【答案】-3【分析】先将一元二次方程化为一般式,再根据一元二次方程的定义和不含一次项得出m−3≠0且m2−9=0,继而求解即可.【详解】解:(m−3)x2+m2x=9x+5,(m−3)x2+m2x−9x−5=0,(m−3)x2+(m2−9)x−5=0,∵一元二次方程(m−3)x2+m2x=9x+5化为一般形式后不含一次项,∴m−3≠0且m2−9=0,解得:m=−3,故答案为:−3.【点睛】本题考查了一元二次方程化为一般式和一元二次方程的定义,熟练掌握知识点是解题的关键.【考点3】一元二次方程的根【例3】(2022·河北保定师范附属学校九年级期末)若x=﹣1是关于x的一元二次方程ax2+bx﹣1=0的一个根,则2022﹣2a+2b的值为_____.【答案】2020【分析】把x=−1代入方程a x2+bx−1=0(a≠0)得a−b=1,再把2022−2a+2b变形为2022−2(a−b),然后利用整体代入的方法计算.【详解】解:把x=−1代入方程a x2+bx−1=0(a≠0)得a−b−1=0,∴a−b=1,∴2022−2a+2b=2022−2(a−b)=2022−2×1=2022−2=2020.故答案为:2020.【点睛】本题考查了一元二次方程的解,解题的关键是理解能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.【变式3.1】(2022·广西崇左·八年级期末)已知x=1是一元二次方程x2+ax−2=0的一个根,则a的值为_________.【答案】1【分析】根据一元二次方程根的定义,将x=1代入x2+ax−2=0,得到关于a的一元一次方程,解方程即可求解.【详解】将x=1代入该方程,得:1+a−2=0,解得:a=1.故答案为:1.【点睛】本题考查一元二次方程的解的定义.掌握方程的解就是使等式成立的未知数的值是解题关键.【变式3.2】(2022·浙江绍兴·八年级期末)若a是方程2x2−x−5=0的一个根,则代数式2a−4a2+1的值是_________.【答案】-9【分析】由题意可得2a2-a=5,再由2a-4a2+1=-2(2a2-a)+1,即可求解.【详解】解:∵a是方程2x2-x-5=0的一个根,∴2a2-a-5=0,∴2a2-a=5,∴4a2-2a=10,∴2a-4a2+1=-10+1=-9,故答案为:-9.【点睛】本题考查一元二次方程的解,代数式求值,恰当的变形是解题的关键.【变式3.3】(2022·福建·莆田哲理中学九年级期末)关于x的方程x2+bx+2a=0(a、b为实数且a≠0),a恰好是该方程的根,则a+b的值为_____.【答案】-2【分析】将x=a代入原方程,再整理,即可求出a+b的值.【详解】∵a是该方程的根,∴a2+ab+2a=0.∵a≠0,∴a+b+2=0,即a+b=−2.故答案为:-2.【点睛】本题考查一元二次方程的解.掌握方程的解就是使等式成立的未知数的值是解题关键.【考点4】一元二次方程的解法—配方法选填题【例4】(2022·西藏·江达县第二初级中学校九年级期末)将一元二次方程x2−6x−6=0配方后可写为________.【答案】(x−3)2=15【分析】根据配方法要求即可变形.【详解】解:x2−6x−6=0,x2−6x+9=15,(x−3)2=15.故答案为:(x−3)2=15.【点睛】本题考查了一元二次方程的变形,属于简单题,熟悉完全平方公式是解题关键.【变式4.1】(2022·山东烟台·八年级期末)把一元二次方程x2−4x−8=0化成(x−m)2=n的形式,则m+n的值为________.【答案】14【分析】将一元二次方程进行配方,即可对应得到m和n的值.【详解】解:x2−4x−8=0,即x2−4x=8,∴x2−4x+4=12,即(x−2)2=12,∴m=2,n=12,∴m+n=14,故答案为:14.【点睛】本题考查配方法,利用完全平方公式对方程进行配方时,注意运算准确.【变式4.2】(2022·四川宜宾·九年级期末)将方程x2−mx+8=0用配方法化为(x−3)2=n,则m+n的值是_______.【答案】7【分析】将方程(x−3)2=n化成一般式得x2-6x+9-n=0,根据两方程对应项系数相等求出m、n的值,即可求解.【详解】解:∵(x−3)2=n,∴x2-6x+9-n=0,∵x2−mx+8=0,∴-m=-6,9-n=8,则m=6,n=1.∴m+n=6+1=7故答案为:7.【点睛】本题考查了用配方法解一元二次方程和求代数式的值,能够把完全平方式化成一般式是解此题的关键.【变式4.3】(2022·山东威海·八年级期中)对于二次三项式x2+6x+3,若x取值为m,则二次三项式的最小值为n,那么m+n的值为_________.【答案】-9【分析】先将原式进行配方后即可得出m,n的值,再代入计算即可.【详解】解:x2+6x+3=x2+6x+9−6=(x+3)2−6,∵(x+3)2≥0,∴x2+6x+3≥−6,即当x=−3时,二次三项式x2+6x+3的最小值为-6,∴m=−3,n=−6,∴m+n=−3−6=−9,故答案为:-9.【点睛】本题主要考查了完全平方公式的应用,正确进行配方是解答本题的关键.【考点5】一元二次方程的解法—因式分解法选填题【例5】(2022·甘肃·张掖育才中学九年级期末)一元二次方程(2x−3)2=9(x+1)2的根为x1=_____,x2=_____.【答案】 0 ﹣6【分析】先移项,再用因式分解法求解即可.【详解】解:(2x−3)2=9(x+1)2,(2x−3)2﹣[3(x+1)]2=0,[(2x﹣3)+3(x+1)][(2x﹣3)﹣3(x+1)]=0,﹣5x(x+6)=0,﹣5x=0或x+6=0,解得x1=0,x2=﹣6.故答案为:0;﹣6.【点睛】本题考查解一元二次方程,熟练掌握用因式分解法解一元二次方程是解题的关键.【变式5.1】(2021·四川·荣县一中九年级阶段练习)x2=2x的根为_____.【答案】x1=0,x2=2【分析】移项后利用因式分解法求解可得.【详解】解:∵x2=2x∴x2−2x=0,∴x(x−2)=0,∴x=0或x−2=0,解得x1=0,x2=2,故答案为:x1=0,x2=2【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.【变式5.2】(2021·黑龙江哈尔滨·八年级期末)若一个一元二次方程x2−5x+6=0的两个根分别是Rt△ABC的两条直角边长,则Rt△ABC斜边长为___.公式是解题的关键.【变式5.3】(2021·河南·邓州市城区第五初级中学校.九年级阶段练习)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2−(a−b)2.若(m+2)◎(m﹣3)=24,则m=_____.【答案】﹣3或4【分析】利用新定义得到[(m+2)+(m−3)]2−[(m+2)−(m−3)]2=24,整理得到(2m−1)2−49=0,然后利用因式分解法解方程.【详解】解:根据题意得[(m+2)+(m−3)]2−[(m+2)−(m−3)]2=24,∴(2m−1)2−52−24=0,∴(2m−1)2−49=0,∴(2m﹣1+7)(2m﹣1﹣7)=0,∴2m﹣1+7=0或2m﹣1﹣7=0,解得m1=﹣3,m2=4.故答案为:﹣3或4.【点睛】本题主要考查了新定义下的实数运算,解一元二次方程,正确理解题意是解题的关键.【考点6】一元二次方程的解法—解答题【例6】(2022·山东省泰安南关中学八年级期中)解下列方程(1)2x2−4x+1=0(用配方法);(2)3x2−4x−1=0(公式法);程:(1)x2+4x+1=13(配方法);(2)3x2﹣4x﹣1=0(公式法);(3)(x+1)2=3(x+1)(4)(x﹣3)(x+2)=6(1)2x2+2x=1(2)2x2−3x−5=0材料:解含绝对值的方程:x2−3|x|−10=0.解:分两种情况:(1)当x≥0时,原方程化为x2−3x−10=0,解得x1=5,x2=﹣2(舍去);(2)当x<0时,原方程化为x2+3x−10=0,解得x1=﹣5,x2=2(舍去);综上所述,原方程的解是x1=5,x2=﹣5.问题:仿照上面的方法,解方程:x2−2|2x+3|+9=0.【例7】(2022·江苏扬州·八年级期末)已知关于x的一元二次方程x(x−2)=k.(1)若k=3,求此方程的解;(2)当k≥−1时,试判断方程的根的情况.【答案】(1)x1=3,x2=−1(2)此时该方程总有两个实数根【分析】(1)将k=3代入,然后利用直接开方法求解即可;(2)将方程化简为一般式,然后利用根的判别式求解即可.(1)解:当k=3时,方程为x(x−2)=3∴x2−2x=3∴x2−2x+1=3+1∴(x−1)2=4∴x−1=±2∴x1=3,x2=−1;(2)由一元二次方程x(x−2)=k得x2−2x−k=0,∴Δ=(−2)2−4×1×(−k)=4+4k∵k≥−1∴4+4k≥0,∴此时该方程总有两个实数根.【点睛】题目主要考查利用直接开方法求解一元二次方程及其根的判别式,熟练掌握运用一元二次方程的相关知识点是解题关键.【变式7.1】(2022·江苏南通·八年级期末)已知关于x的一元二次方程(a−1)x2+(2a+1) x+2=0.(1)求证:此方程一定有两个不相等的实数根;(2)如果这个方程根的判别式的值等于9,求a的值.【答案】(1)见解析(2)a=0【分析】(1)表示出根的判别式,判断其值大于0即可得证;(2)表示出根的判别式,让其值为9求出a的值即可.(1)∵Δ=(2a+1)2−4×(a−1)×2=(2a−1)2+8,∵(2a−1)2≥0,∴Δ=(2a−1)2+8>0,∴此方程一定有两个不相等的实数根;(2)Δ=(2a−1)2+8=9,∴(2a−1)2=1,∴a1=0,a2=1,∵a≠1,∴a=0,【点睛】此题考查了根的判别式,以及一元二次方程的定义,熟练掌握根的判别式与根的情况之间的关系是解本题的关键.【变式7.2】(2022·全国·九年级单元测试)已知关于x的方程p x2+(2p+1)x+(p−1)=0有两个不相等的实根,判断关于x的方程x2−3x−2p=0的根的情况.x+2k+2=0(k≠0).(1)求证:无论x取何值,此方程总有两个实数根;(2)若该方程的两根都是整数,求整数k的值.【例8】(2022·广西玉林·二模)关于x的一元二次方程x2−(k−3)x−2k+2=0.(1)求证:方程总有两个实数根;(2)若方程的两根分为x1、x2,且x2+x22+x1x2=19,求k的值.1【答案】(1)见解析;(2)k=6或k=-2.【分析】(1)根据方程的系数结合根的判别式可得出Δ=(k+1)2≥0,由此可证出方程总有两个实数根;(2)根据一元二次方程的根与系数的关系可以得到x1+x2=k-3,x1x2=-2k+2,再将它们代入x21+x22+x1x2=19,即可求出k的值.(1)∵b2-4ac=[-(k-3)]2-4×1×(-2k+2)=k2+2k+1=(k+1)2≥0,∴方程总有两个实数根;(2)由根与系数关系得x1+x2=k-3,x1x2=-2k+2,∵x21+x22+x1x2=19,∴(x1+x2)2−x1x2=19,∴(k−3)2−(−2k+2)=19,即k2−4k−12=0,解得:k=6或k=-2.9=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两根x1,x2满足x1+x2=12,请求出方程的两根.=0.【变式8.2】(2022·山东淄博·八年级期末)已知关于x的一元二次方程x2−2kx+k−2(1)判断该方程根的情况,并说明理由;(2)若方程的两个实数根之和等于两根之积,求k的值.【答案】(1)方程有两个不相等的实数根,理由见解析x+m=0,(1)求证:无论m取何值,原方程总有两个不相等的实数根.(2)若x1,x2是原方程的两根,且1x1+1x2=−2,求m的值.【点睛】此题考查了一元二次方程中根的判别式,根与系数的关系,熟练掌握一元二次方程中根的判别式,根与系数的关系是本题的关键.【考点9】配方法的综合应用【例9】(2022·福建·福州十八中八年级期末)请阅读下列材料:我们可以通过以下方法求代数式x2+6x+5的最小值.x2+6x+5=x2+2•x•3+32﹣32+5=(x+3)2﹣4∵(x+3)2≥0∴当x=﹣3时,x2+6x+5有最小值﹣4.请根据上述方法,解答下列问题:(1)x2+5x﹣1=(x+a)2+b,则ab的值是_______.(2)求证:无论x取何值,代数式x2+7的值都是正数;(3)若代数式2x2+kx+7的最小值为2,求k的值.解如下:x2−6x−7=x2−6x+9−9−7=(x−3)2−16=(x−3+4)(x−3−4)=(x+1)(x−7)(1)探究:请你仿照上面的方法,把代数式x2−8x+7因式分解.(2)拓展:当代数式x2+2xy−3y2=0时,求x的值.y【答案】(1)(x−1)(x−7)(2)1或-3【分析】(1)仿照例题的计算方法先配方,再利用平方差公式进行分解;(2)将方程左边因式分式后求出x与y的关系,求出结果即可.(1)解:x2−8x+7=x2−8x+16−16+7=(x−4)2−9=(x−4+3)(x−4−3)=(x−1)(x−7);(2)我们可以通过以下方法求代数式的x2+2x−3最小值.x2+2x−3=x2+2x⋅1+12−12−3=(x+1)2−4∵(x+1)2≥0∴当x=-1时,x2+2x−3有最小值-4请根据上述方法,解答下列问题:(1)x2+5=x2+2+2+2=(x+a)2+b,则a=__________,b=__________;(2)若代数式x2−2kx+7的最小值为3,求k的值.=(x−k)2−k2+7,∵(x−k)2≥0,∴(x−k)2−k2+7的最小值是−k2+7,∵代数式x2−2kx+7有最小值3,∴−k2+7=3,即k2=4,∴k=±2.【点睛】此题考查了配方法的应用,以及平方的非负性,熟练掌握完全平方公式是解本题的关键..【变式9.3】(2022·全国·九年级课时练习)先阅读,后解题.已知m2+2m+n2−6n+10=0,求m和n的值.解:将左边分组配方:(m2+2m+1)+(n2−6n+9)=0.即(m+1)2+(n−3)2=0.∵(m+1)2≥0,(n−3)2≥0,且和为0,∴(m+1)2=0且(n−3)2=0,∴m=-1,n=-3.利用以上解法,解下列问题:(1)已知:x2+4x+y2−2y+5=0,求x和y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=8a+6b−25且△ABC为直角三角形,求c.。
九年级数学中考复习—方程专题:一元二次方程实际应用1.“绿水青山就是金山银山”,为加快城乡绿化建设,某市2018年绿化面积约1000万平方米,预计2020年绿化面积约为1210万平方米.假设每年绿化面积的平均增长率相同.(1)求每年绿化面积的平均增长率;(2)已知每平方米绿化面积的投资成本为60元,若2021年的绿化面积继续保持相同的增长率,那么2021年的绿化投资成本需要多少元?2.为了创建国家级卫生城区,某社区在九月份购买了甲、乙两种绿色植物共1100盆,共花费了27000元.已知甲种绿色植物每盆20元,乙种绿色植物每盆30元.(1)该社区九月份购买甲、乙两种绿色植物各多少盆?(2)十月份,该社区决定再次购买甲、乙两种绿色植物.已知十月份甲种绿色植物每盆的价格比九月份的价格优惠元(a>0),十月份乙种绿色植物每盆的价格比九月份的价格优惠a%.因创卫需要,该社区十月份购买甲种绿色植物的数量比九月份的数量增加了a%,十月份购买乙种绿色植物的数量比九月份的数量增加a%.若该社区十月份的总花费与九月份的总花费恰好相同,求a的值.3.疫情未退,学生到校仍需随身携带口罩等个人防护用品,某商家推出了“经济型”和“豪华型”两种便携式防疫包,“经济型”的售价是“豪华型”的.(1)六月第一周该商家两种防疫包的总销售额为3600元,“豪华型”的销售额是“经济型”的2倍,销售量比“经济型”多40个,求“经济型”防疫包销售了多少个?(2)为增加销量,该商家第二周决定将“豪华型”的售价下调a%,“经济型”的售价保持不变,结果与第一周相比,“豪华型”便携式防疫包的销量增加了2a%,“经济型“的销量增加了a%,最终第二周的销售额比第一周的销售额增加了a%,求a的值.4.书籍是人类宝贵的精神财富.读书则是传承优秀文化的通道.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次.若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过450人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.5.某社区“百果园”水果店一直销售的是沙漠蜜瓜,1月份新引进一种金美人蜜瓜,其中金美人蜜瓜的销售单价是沙漠蜜瓜的倍,1月份,沙漠蜜瓜和金美人蜜瓜总计销售400kg,金美人蜜瓜的销售额为8640元,沙漠蜜瓜的销售额为4320元.(1)求金美人蜜瓜,沙漠蜜瓜的销售单价各为多少;(2)受疫情影响,水果销量急剧下降,于是百果园在4月推出“心享会员”活动,充值金额后不仅返还现金券,所有水果还可享受降价a%的折扣,非心享会员则需按原价购买,就金美人蜜瓜而言,4月销量比1月销量增加了a%,其中遇过心享会员购买的销量占4月金美人蜜瓜总销量的,不计会员充值费用以及返还的现金券,4月金美人蜜瓜的销售总额比1月金美人蜜瓜的销售总额提高了a%,求a的值.6.新冠疫情以来,口罩成为了生活和工作的必需品.某口罩生产企业主要生产过滤式和供气式两种口罩.有过滤式口罩机和供气式口罩机各10台,统计发现,去年每台过滤式口罩机的产量比每台供气式口罩机多60万个,过滤式口罩的出厂价为0.2元/个,供气式口罩的出厂价为4元/个,两种口罩全部售出,总销售额为10200万元.(1)去年每台供气式口罩机的产量为多少万个?(2)今年,为了加大口罩供应量,该企业优化了生产方法,在保持口罩机数量不变的情况下,预计每台过滤式口罩机和供气式口罩机的产量将在去年基础上分别增加2a%和a%.由于过滤式口罩更受市场欢迎,出厂价将在去年的基础上上涨a%,而供气式口罩的出厂价保持不变,两种口罩全部售出后总销售额将增加a%,求a的值.7.某水果店购进一批优质水果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该水果在一天内的销售量y(千克)与该天的售价x(元/千克)之间的数量满足如表所示的一次函数关系.…32.53535.538…销售量y(千克)售价x(元/…27.52524.522…千克)(1)某天这种水果售价为28元/千克,求当天该水果的销售量;(2)如果水果店该天获利400元,那么这天水果的售价为多少元?8.“新冠“疫情蔓延全球,口罩成了人们的生活必需品.某药店销售普通口罩和N95口罩,今年8月份的进价如表:普通口罩N95口罩进价(元/包)820(1)计划N95口罩每包售价比普通口罩贵16元,7包普通口罩和3包N95口罩总售价相同,求普通口罩和N95口罩每包售价.(2)按(1)中售价销售一段时间后,发现普通口罩的日均销售量为120包,当每包售价降价1元时,日均销售量增加20包.该药店秉承让利于民的原则,对普通口罩进行降价销售,但要保证当天的利润为320元,求此时普通口罩每包售价.(3)疫情期间,该药店进货2万包N95口罩,进价不变,店长向当地医院捐赠了a包(6000≤a≤7000)该款口罩,剩余的N95口罩向市民销售.若这2万包口罩的利润率等于10%,则N95口罩每包售价是元.求慕美人葡萄和夏音葡萄的销售单价;(2)根据这两周的统计可以发现,该水果店的慕美人葡萄更受欢迎.为了促销,第三周该水果店决定将两种葡萄打包(慕美人葡萄和夏音葡萄各1千克)一起出售,打包价格在两种葡萄原销售单价之和的基础上打八折,如果单独购买一种,则为原价,没有折扣.在该促销活动下,第三周一共卖出了260千克慕美人葡萄,240千克夏音葡萄.第三周所获利润为6800元;第四周该水果店进一步扩大了促销力度,单独购买慕美人葡萄的在原价基础上降低2a元,结果单独购买慕美人葡萄的销售数量比上一周增加了5a%,而单独购买夏音葡萄的在原价基础上下降了2a%,结果单独购买夏音葡萄的销售数量比上一周增加了10a千克,而打包购买的折扣不变,销售数量下降了3a%.最后,第四周该水果店所获利润比第三周减少了528元,求a的值.10.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m,墙对面有一个2m宽的门,另三边用竹篱笆围成,篱笆总长33m,围成长方形的养鸡场除门之外四周不能有空隙.(1)要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到200m2?请说明理由.参考答案1.解:(1)设每年绿化面积的平均增长率为x.可列方程:1000(1+x)2=1210.解方程,得x1=0.1 x2=﹣2.1(不合题意,舍去).所以每年绿化面积的平均增长率为10%.(2)1210×(1+10%)=1331(万平方米)1331000×60=798600000(元)答:2021年的绿化投资成本需要798600000元.2.解:(1)设该社区九月份购买甲种绿色植物x盆,购买乙种绿色植物y盆,依题意,得:,解得:.答:该社区九月份购买甲种绿色植物600盆,购买乙种绿色植物500盆.(2)依题意,得:(20﹣)×600(1+a%)+30(1﹣a%)×500(1+a%)=27000,整理,得:1.2a2﹣30a=0,解得:a1=25,a2=0(不合题意,舍去).答:a的值为25.3.解:(1)第一周“经济型”防疫包的销售额为3600÷(1+2)=1200(元),第一周“豪华型”防疫包的销售额为1200×2=2400(元).设“经济型”防疫包销售了x个,则“豪华型”防疫包销售了(x+40)个,依题意,得:=×,解得:x=80,经检验,x=80是原方程的解,且符合题意.答:“经济型”防疫包销售了80个.(2)第一周“经济型”防疫包的销售单价为1200÷80=15(元),第一周“豪华型”防疫包的销售单价为2400×(80+40)=20(元).依题意,得:20(1﹣a%)×(80+40)(1+2a%)+15×80(1+a%)=3600(1+a%),整理,得:0.24a2﹣9.6a=0,解得:a1=40,a2=0(不合题意,舍去).答:a的值为40.4.解:(1)设进馆人次的月平均增长率为x,则由题意得:128+128(1+x)+128(1+x)2=608.化简得:4x2+12x﹣7=0.∴(2x﹣1)(2x+7)=0,∴x=0.5=50%或x=﹣3.5(舍).答:进馆人次的月平均增长率为50%.(2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为:128(1+50%)3=128×=432<450.答:校图书馆能接纳第四个月的进馆人次.5.解:(1)设沙漠蜜瓜的销售单价为x元,则金美人蜜瓜的销售单价为x元,依题意,得:+=400,解得:x=27,经检验,x=27是原方程的解,且符合题意,∴x=36.答:金美人蜜瓜的销售单价为36元,沙漠蜜瓜的销售单价为27元.(2)1月份金美人蜜瓜的销售数量为8640÷36=240(千克).依题意,得:36(1﹣a%)××240(1+a%)+36×(1﹣)×240(1+a%)=8640(1+a%),整理,得:a2﹣20a=0,解得:a1=20,a2=0(不合题意,舍去).答:a的值为20.6.解:(1)设去年每台供气式口罩机的产量为x万个,则每台过滤式口罩机的产量为(x+60)万个,依题意,得:4×10x+0.2×10(x+60)=10200,解得:x=240.答:去年每台供气式口罩机的产量为240万个.(2)240+60=300(万个).依题意,得:4×10×240(1+a%)+0.2(1+a%)×10×300(1+2a%)=10200(1+ a%),整理,得:a2﹣50a=0,解得:a1=50,a2=0(不合题意,舍去).答:a的值为50.7.解:(1)设该一次函数解析式为y=kx+b(k≠0),将(25,35),(22,38)代入y=kx+b,得:,解得:,∴y=﹣x+60(15≤x≤40).当x=28时,y=﹣28+60=32.答:当水果售价为28元/千克时,当天该水果的销售量为32千克.(2)依题意,得:(x﹣10)(﹣x+60)=400,整理,得:x2﹣70x+1000=0,解得:x1=20,x2=50(不合题意,舍去).答:这天水果的售价为20元.8.解:(1)设普通口罩每包的售价为x元,N95口罩每包的售价为y元,依题意,得:,解得:.答:普通口罩每包的售价为12元,N95口罩每包的售价为28元.(2)设普通口罩每包的售价降低m元,则此时普通口罩每包的售价为(12﹣m)元,日均销售量为(120+20m)包,依题意,得:(12﹣m﹣8)(120+20m)=320,整理,得:m2+2m﹣8=0,解得:m1=2,m2=﹣4(不合题意,舍去),∴12﹣m=10.答:此时普通口罩每包的售价为10元.(3)设N95口罩每包售价是n元,依题意,得:(20000﹣a)n﹣20×20000=20×20000×10%,∴a=20000﹣.∵6000≤a≤7000,∴6000≤20000﹣≤7000,∴≤n≤.又∵a和n均为正整数,∴n=32.故答案为:32.9.解:(1)设慕美人葡萄的销售单价为x元,夏音葡萄的销售单价为y元,依题意,得:,解得:.答:慕美人葡萄的销售单价为60元,夏音葡萄的销售单价为80元.(2)设打包销售了慕美人葡萄和夏音葡萄各m千克,则单独售出慕美人葡萄(260﹣m)千克,单独售出夏音葡萄(240﹣m)千克,依题意,得:(60+80)×0.8m+60×(260﹣m)+80×(240﹣m)﹣40×260﹣50×240=6800,解得:m=200,∴260﹣m=60,240﹣m=40.又∵第四周该水果店所获利润比第三周减少了528元,∴(60﹣2a﹣40)×60(1+5a%)+[80(1﹣2a%)﹣50]×(40+10a)+[(60+80)×0.8﹣40﹣50]×200(1﹣3a%)=6800﹣528,整理,得:a2﹣2a﹣24=0,解得:a1=6,a2=﹣4.答:a的值为6.10.解:(1)设养鸡场的宽为xm,根据题意得:x(33﹣2x+2)=150,解得:x1=10,x2=7.5,当x1=10时,33﹣2x+2=15<18,当x2=7.5时33﹣2x+2=20>18,(舍去),则养鸡场的宽是10m,长为15m.(2)设养鸡场的宽为xm,根据题意得:x(33﹣2x+2)=200,整理得:2x2﹣35x+200=0,△=(﹣35)2﹣4×2×200=1225﹣1600=﹣375<0,因为方程没有实数根,所以围成养鸡场的面积不能达到200m2.11。
一、基础知识(一)因式分解公式1.因式分解法若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如, x2-9=0,这个方程可变形为( x+ 3)(x-3)=0,要( x+3)(x-3)等于0,一定而且只要( x+ 3) 等于0 或 ( x-3) 等于0,所以,解方程( x+3)(x-3)=0就相当于解方程x+3=0或x-3=0了,经过解这两个一次方程便可获得原方程的解.这类解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的要点是将一元二次方程分解降次为一元一次方程.其理论依据是:若A·B=0, A=0或B=0。
二、重难点剖析本课教课要点:因式分解法的灵巧应用在一元二次方程的四种解法中,公式法是主要的,公式法能够说是通法,即能解任何一个一元二次方程.但对某些特别形式的一元二次方程,有的用直接开平方法简易,有的用因式分解法简易.所以,在碰到一道题时,应选择适合的方法去解.配方法解一元二次方程是比较麻烦的,在实质解一元二次方程时,一般不用配方法.而在此后的学习中,会经常用到因式分解法,所以要掌握这个重要的数学方法.此题教课难点:因式分解法中的公式公式的特色:左侧为二项式,是两个数的完整平方的差,右侧是这两个数的和与差的积,运用这个公式能够把形式是平方差的二项式分解因式。
公式的特色:左侧为三项式,此中首末两项是两个数的平方和的形式,中间一项为哪一项这两个数的积的 2 倍(加上相应的符号),右侧是这两个数之和(或差)的平方,运用完整平方公式可将切合公式左侧特色的三项式分解因式。
典例精析:例 1. 用因式分解法解以下方程:(1) y2+ 7y+ 6= 0;(2)t (2 t -1)=3(2 t -1);(3)(2x-1)( x-1)=1.例 2. 用适合方法解以下方程:(1) 3 (1- x)2=27 ;(2) x2-6x-19=0;(3)3 x2=4x+ 1; (4) y2- 15=2y;(5)5 x( x- 3) - ( x- 3)( x+ 1) = 0;(6)4(3 x+ 1) 2= 25( x- 2) 2.【考点】人教新课标九年级上册?21 章一元二次方程?因式分解法例 3. 解对于x的方程: ( a2-b2) x2- 4abx=a2-b2.【考点】人教新课标九年级上册?21章一元二次方程?因式分解法三、感悟中考1.( 2013 年天津)对于x 的一元二次方程x2﹣5x+p=0 的两实根都是整数,则整数p 的取值能够有()A.2个B.4个C.6个D.无数个【答案】 D【考点】人教新课标九年级上册?21 章一元二次方程?因式分解法2. ( 2013 年甘肃)经计算整式x+1 与x﹣ 4 的积为x2﹣ 3x﹣ 4,则一元二次方程x2﹣3x﹣4=0 的全部根是()A.x1=﹣ 1, x2=﹣ 4B. x1=﹣ 1, x2=4C. x1=1, x2=4D.x1=1, x2=﹣ 4四、专项训练(一)基础练习1.方程 x( x﹣2) =x 的根是.解得: x1=0, x2=3.【考点】人教新课标九年级上册?21 章一元二次方程?因式分解法2.小华在解一元二次方程 x2﹣ 4x=0 时,只得出一个根是 x=4,则被他遗漏的一个根x=.3.假如方程ax2﹣bx﹣ 6=0 与方程 ax2+2bx﹣ 15=0 有一个公共根是3,求 a、b 的值,并分别求两个方程的此外一个根.【答案】解:把x=3 分别代入两个方程,【考点】人教新课标九年级上册?21 章一元二次方程?因式分解法(二)提高练习4.已知x2-xy- 2y2= 0,且x≠ 0,y≠0,求代数式x22 xy5y 2的值.x2 2 xy 5 y2【答案】解:由 x2- xy-2y2=0,得( x-2y)( x+ y)=0,∴ x-2y=0或 x+ y=0,∴ x =2y或x=-y.当 x=2y 时,x22xy5y 2(2y) 222y y5y 25y 2 5 .x 22xy5y 2(2y) 222y y5y 213y 213【考点】人教新课标九年级上册?21 章一元二次方程? 21.2.3 因式分解法5. 对于 x 的一元二次方程x2﹣5x+p=0 的两实根都是整数,则整数 p 的取值能够有()A. 2个B.4个C.6个D.无数个【答案】 D【考点】人教新课标九年级上册?21 章一元二次方程?因式分解法6,.若对于x 的多项式x2﹣ px﹣ 6 含有因式x﹣ 3,则实数p 的值为()A.﹣5B. 5C.﹣1D. 1。
一元二次方程的实际应用1、随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区20XX 年底拥有家庭轿车64辆,20XX 年底家庭轿车的拥有量达到100辆。
(1)若该小区20XX 年底到20XX 年底家庭轿车拥有量的年平均增长率都相同,求该小区到20XX 年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案。
2、20XX 年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示. (1) 在5月17日至5月21日这5天中,日本新增甲型H1N1流感病例最多的是哪一天?该天增加了多少人?(2) 在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?(3) 甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天..传染后共有9人患了甲型H1N1流感,每天..传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?161718 192021 日本20XX 年5月16日至5月21日甲型H1N1流感疫情数据统计图人数(人) 日期3、如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长.4、由于受甲型H1N1流感(起初叫猪流感)的影响,4月初某地猪肉价格大幅度下调,下调后每斤猪肉价格是原价格的23,原来用60元买到的猪肉下调后可多买2斤.4月中旬,经专家研究证实,猪流感不是由猪传染,很快更名为甲型H1N1流感.因此,猪肉价格4月底开始回升,经过两个月后,猪肉价格上调为每斤14.4元.(1)求4月初猪肉价格下调后每斤多少元?(2)求5、6月份猪肉价格的月平均增长率.5、某企业20XX 年盈利1500万元,20XX 年克服全球金融危机的不利影响,仍实现盈利2160万元.从20XX 年到20XX 年,如果该企业每年盈利的年增长率相同,求: (1)该企业20XX 年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计20XX 年盈利多少万元?6、长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050 元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠?7.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,20XX年底全市汽车拥有量为180万辆,而截止到20XX 年底,全市的汽车拥有量已达216万辆.(1)求20XX年底至20XX年底该市汽车拥有量的年平均增长率;(2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到20XX年底全市汽车拥有量不超过231.96万辆;另据估计,从20XX年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆.8.在宏观调控下,某市的商品房成交价由今年3月分的14000元/2m 下降到5月分的12600元/2m ⑴问4、5两月平均每月降价的百分率是多少?(参考数据:95.09.0 )⑵如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破10000元/2m ?请说明理由。
5.实际问题与一元二次方程[学习目标]1.经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性,并总结运用方程解实际问题的重要性.2.通过列方程解应用题,进一步提高逻辑思维能力和分析问题,解决问题的能力.[预习导引]在一次数学检测中,赵亮对下道应用题的解答过程如下:试题:某商场销售一批名牌衬衫,平均每天可以售出20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?解:设每件衬衫应降价x元,则每件所获得的利润为(40-x)元,但每天可多销出2x件,每天可卖(20+2 x)件,根据题意可列方程:(40-x)(20+2x)=1200 方程化简整理为:x2-30x+200=0 解得:x1=20 x2=10答:若商场每天要盈利1200元,每件应降价10元或20元.当试卷发下时,赵亮发现本题被扣去1分,他百思不得其解,为什么要扣去1分呢?你能帮赵亮同学找找原因吗?与同伴交流自己的想法.[点拔]当降价20元或10元时,每天都能盈利1200元,因要尽量减少库存,在获利相同条件下,降价愈多,销售越快,才能满足题目选择每件降价20元.因而列方程解应用题时应认真审题,不能漏掉任何一个条件.[知能互动]1.列一元二次方程解应用题的特点:一元二次方程的应用是一元一次方程应用的继续和发展,能用一元一次方程解的应用题,一般可用算术方程解.而用一元二次方程解的应用题,一般不能用算术方法求解.由于一元二次方程的次数为二次,所以其应用相当广泛,其中面积问题,两次增长的平均增率和储蓄问题,经营问题,数字问题中涉及到积的一些问题,都是代表类型.(1)数字问题:要能正确地表示诸如多位数,奇偶数,连续整数的形式.如:一个三位数abc可表示为连续两个偶数可表示为连续两个整数可表示为这类问题常常间接设未知数,相等关系由题目的关键语句”译”出.(2)平均增长率(增长率或降低常)问题;在此例问题中,一般有变化前的基数(a),增长率(x)变化的次数(n),变化后的基数(b),这四者之间的关系可用公式___________表示.这类问题中等量关系通常由这个公式及由相关的词语”译”出.(3)经营问题,这也是近年来中考中出现频率高的应用问题.在这类问题中有进价(a)售价(b)利润(p)件数(n)等相关的量.这些量之间的关系可用公式表示,同时件数(n)又经常与售价(b)关联,在解答此类问题时,一定要准确地找到反映它们关系的代数式.(4)其它问题,在近年的中考中,常常出现一些贴进生活,生产的实际问题,如:规划、方案设计、测量统计、几何应用,与物理及其它学科之间的渗透的问题等.解答这些问题时,等量关系一般从已知公式或题目中的关键词句”译”出.(1.(1)100a+10b+c 2n 2n+2 nn+1 (2)a(1+x)n=b (3)p=(b-a)n)2.列一元二次方程解应用题的一般步骤:和列一元一次方程解应用题一样,列一元二次方程解应用题的步骤可归纳为”审,设,列,解,答”.(1)审:认真审题,分析题意,弄清已知和未知,寻找相等关系;(2)设:就是设未知数,分直接设未知数和间接设未知数,所谓直接设未知数就是问什么设什么,反之就是间接设未知数.到底选择何种方式设未知数,要以有利于列出方程为准则.(3)列:就是根据题目中的已知量与未知量之间的相(4)解:就求出所列方程的解. (5)答:书写答案,的解进行检验,舍去不符合实际意义的解.3.如何探求应用问题中的等量关系.列一元二次方程解应用题,关键是正确地找到等量关系.如何迅速地探求出相等关系列出方案呢?(1)要正确熟练地作语言与式子的互化.(2)充分运用题目中所给的条件.(3)要善于发现利用间接的,潜在的等量关系.(4)对一般应用题,可以从以下几个方面着手寻找相等关系.①利用题目中的关键语句作为相等关系.②利用公式、定理作为等量关系.③从生活、生产实际经验中发现等量关系.[名题探究]例1.已知一直角三角形三边长为三个连续偶数,试求这个直角三角形三边长及面积.[命题意图]本例考查列一元二次方程解答有关的数字问题.[解析]用含未知数的代数式表示出三个连续的偶数,再根据勾股定理列出方程求解.解:设直角三角形三边长分别为n,n+2,n+4,(n为偶数:n2+(n+2)2=(n+4)2。
化简,整理,得:n2-4n-12=0 解得: n1=6,n2=-2 由于三角形的边长不能为负数,所以取n=6∴n+2=8,n+4=10即,两直角边为6,8,斜边为10. 三角形面积为248621=⨯⨯.答:直角三角形三边长为6,8,10,面积为24.[思路探究]几何中的定理是我们列方程的等量关系的重要来源.例2.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为12万元,求该校这两年在实验器材投资上的平均增长率是多少?[命题意图]本题主要考查平均增长率问题.[解析]本例属于平均增长率问题,若设平均增长率为x,则今年的投资额为2(x+1)万元,明年的投资额为2(x+1)2万元,由今明两年的投资总额为12万元可列方程.解:设这两年在实验器材投资上的平均增长率为x,根据题意可列方程:2(1+x)+2(1+x)2=12化简整理得:x 2+3x -4=0 解这个方程得:x 1=1,x 2=-4(负值不合题意,应舍去)答:该校这两年在实验器材投资上的平均增长率为100%.[思路探究]在本例中,12万元是两年的投资总额,不是最后一年的投资额,不能错误地列出方程2(1+x)2=12;另外在解这个方程时,还可把(1+x)当作一个整体,用换元法解.例3.如图所示,△ABC 中,∠B=90°,点P 从 A 点开始沿AB 边向点B 以2厘米/秒的速度移动,点Q 从B 点开始沿BC 边向点C 以2厘米/秒的速度移动.(1)如果P,Q 分别从A,B 同时出发,经几秒钟,使△PDQ 的面积等于8厘米2?(2)如果P,Q,分别从A,B 同时出发,并且P 到B 点又继续在BC 边上前进,Q 点到达C 点后又继续在CA 边上前进,经过几秒钟,使△PCQ 的面积等于12.6厘米2?[命题意图]本例主要考查一元二次方程知识与几何知识的综合运用,培养学生分析问题解决问题的能力.[解析]先用含未知数的代数式表示出三角形的底和高,再根据三角形的面积公式列方程.解(1)如图所示,设经过x 秒,使得△PBQ 的面积为8厘米2,则PB 的长度为(6-x)cm,BQ 的长度为2xcm,根据题意可列方程得:82)6(21=⋅-x x , 解之得:x 1=2,x 2=4 经过 2秒,点P 到离B 点4cm 处,点Q 到离B 点的4cm 处;经过4秒,点P 距离B 点2cm 处,点Q 到距离B 点8cm 处.即经过2秒或4秒,△PBQ 面积为8cm 2. (2)设经过y 秒,点P 移到BC 上,且有CP=(14-y) cm,点Q 移到CA 上,且有CQ=(2y -8) cm,作PD ⊥AC 于D.(如图) AC=10862222=+=+BC AB 由△CPD ∽△CAB 得10614==-AC AB y PD ∴PD=10)14(6y -. 根据题意可列方程:6.1210)14(6)82(21=-⋅-y y 解这个方程得:y 1=7,y 2=11当y=7时,点P 在BC 上距C 点7cm 处,点Q 在CA 上距离C 点6cm 处,使△PCQ 面积为12.62。
当y=11时,点P 在BC 上距离C 点3cm 处,点Q 在CA 上距离C 点14cm 处,14>10,点Q 已不在CA 上,即此解不存在 ∴y=7 即经过7秒钟,△PCQ 的面积为12.6厘米2.[思路探究]象本例这一类动点问题一般要考查代数知识与几何知识的综合运用.解题的关键是要有动态观点,弄清点的运动特征.动态问题,作静态分析,分类讨论,列出方程.例4.某儿童玩具商店将进货价为30元的一种玩具以40元售出,平均每月能售出600个.调查表明:这种玩具售价每上涨1元,其销售量将减少10个,为了实现平均每月12000元的销售利润,这种玩具的售价应定为多少?这时进这种玩具多少个?[命题意图]本例考查经营销售问题.[解析]设每玩具涨价x 元,则售价为(40-x)元,每一只玩具的利润为(40+x -30)元,销售的件数为(600-10x)件,根据总利润为12000元列出方程.[思路探究]每一只玩具利润和销售总量均与上涨的价格有关,因而设上涨的价格为未知数较合适,用含未知数的代数式表示每一只玩具的利润和销售量..解:设每件玩具涨价x 元,根据题意可列方程:(40+x -30)(600-10x)=12000解之,得:x 1=20,x 2=30 检验知x 1=20,x 2=30均符合题意所以,每只玩具售价应定为60元或70元,进货量应为400只或300只。
[中考链接]例5.某农户1988年承包荒山若干亩,投资7800元改造后种果树2000棵,其成活率为90%,在2010年夏季全部结果时,随意摘下10棵果树的水果,称得重量如下(单位:千克):8,9,12,13,8,9,10,11,12,8(1)根据样本平均数估计该农户2001年水果的总产量是多少?(2)此水果在市场出售每千克售1.3元,在果园每千克售 1.1元,该农户用农用车将水果拉到市场出售,平均每天出售1000千克,需8人帮助,每人每天付工资25元,若两种出售方式都在相同的时间内售完全部水果,选择哪 种出售方式合理?为什么?(3)该农户加强果园管理,力争到2013年三年合计纯收入达57000元,求2012年,2013年平均每年增长率是多少?[命题意图]本例考查平均数意义及应用,方案的选择,平均增长率等知识.[解析](1)中由样本平均数估计出总体平均数,进而估计出2001年水果的总产量,(2)通过计算,比较哪种销售方式所获收入多,(3)根据2001,2002,2003年纯收入的和为57000元,列方程求解.解(1)10100101)812111098131298(101_=⨯=+++++++++=x (千克)∴2001年水果总产量为2000×90%×10=18000(千克) (2)在果园出售时收入为1.1×18000=19800元送到市场销售收入为23400元,用人工费为3600元,实际收入19800元,因市场销售还有运输费等费用,故在果园出售合理.(3)设平均每年的增长率为x,根据题意可列方程:(19800-7800)[1+(1+x)+(1+x)2]=57000解得:x 1=-3.5(不合题意,应舍去)x 2=0.5=50%答(1)2001年的水果总产量为18000千克.(2)在果园销售合算.(3)年平均增长率为50%.[达标训练]一、选择题:1.某商品两次价格下调后,单价从5元变为 4.05元,则平均每次调价的百分率为A.9%B.10%C.11%D.12%2.容器里装满纯酒精,倒出一半后用水加满,再倒出41,再用水加满,此时容器内酒精浓度为A.15%B.12.5%C.37.5%D.25%3.某超市一月份的营业额为200万元,一,二,三月份的营业额为1000万元,设平均每月的营业额为增长率为x,则 A.200+200×2x=1000 B.200(1+x)2=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10004.从正方形的铁片上,截去5cm宽的一个长方形铁皮,余下的面积为84cm2,则原来正方形面积最大可能为cm2.A.84 B.109 C.144 D.420 5.一个数字和为10的两位数,把个位与十位数字对调下得到一个两位数,这两个数之积是2296,则这个两位数为 A.28 B.82 C.28或82 D.不确定6.元旦期间,一个小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,则这个小组共有人.A.11B.12C.13D.147.北京市政府为迎接2008年奥运会,决定改善城市面貌,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均每年绿地面积的增长率是A.19%B.20%C.21%D.25%二、填空题:8.两个连续奇数的平方和为202,则这两个奇数是9.直角三角形的面积为6,两直角边的和为7,则斜边长为10.某工厂第一季度平均每月增产10%,一月份产值a元,那么三月份产值为.三、解答题:11.一块耕地大小尺寸如图所示,要在这块耕地上沿东西和南北方向分别挖二条和四条水渠,如果水渠的宽相等,而且要保证余下的可耕地面积为9600平方米,那么水渠应挖多宽?12.某网络公司2000年各项经营收入中,经营电脑配件收入600万元,占全部经营总收入的40%,该公司预计2002年经营总收入达到2160万元,且计划从2000到2002年每年经营总收入的年增长率相同,问2001年的预计经营总收入为多少万元?13.用篱笆围成一个长方形花坛,其中一面靠墙,且在与墙平行的一边开一个2米宽的门,现有能围成91米长的篱笆,墙长为50米,花坛的面积要达到1080平方米,你能设计出符合要求的方案吗?不妨试试看.14.我国由水蚀和风蚀造成的水土流失面积达356万平方公里,其中风蚀造成水土流失面积比水蚀造成的水土流失面积多26万平方公里.(1)问水蚀,风蚀造成的水土流失面积各是多少平方公里?(2)西北某省重视水土流失问题,2010年治理了水土流失面积400平方公里,该省逐年加大治理力度,计划今明两年治理水土流失面积都比前一年增长一个相同的百分数,到2013年底,使这三年治理水土流失面积达到1324平方公里,求该省今明两年治理水土流失面积每年增长的百分数.15.生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x只玩具熊猫的成本为R(元),售价为每只P(元),且R,P与x的关系式为R=500+30x,P=170-2x,当日产量为多少时,每日获得的利润为1750元?16.已知直角三角形周长为62 ,斜边上的中线长为1,求这个直角三角形的面积.17.某公司向银行贷款20万元资金,约定两年到期时一次性还本付息,利息是本金的12%,该公司利用这笔贷款经营,两年到期时除还清贷款的本金及利息外,还盈余6.4万元,若在经营期间每一年比前一年资金增长百分数相同,试求出这个百分数.18.某电厂规定,该厂家属区每户居民如果一个月的用电量不超过A度,那么这居民这个月只须交10元电费;如果超过A度,则这个月除了仍要交10元的用电费以外,超过的部份还要每度按100A交费.(1)该厂某户居民2月份用电90度,超过了规定的A 度,则超过的部份应交电费多少元(用A表示)(2)下表是这户居民3月、4月用电情况和交费情况:月份用电量(度) 交电费总数(元)3 80 254 45 10值吗?试试看.19.如图所示,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AB于D,已知AB=4 cm,你能求出底边BC吗?试试看.20.如图所示,客轮沿折线A---B---C从A点出发经B再到C匀速航行,货轮从AC的中点D出发沿某一方向匀速度直线航行,将一批货物送达客轮,两船同时起航,并且同时到达折线A--B-C的某点E处,已知AB=BC=200海里,∠ABC=90°,客轮是货轮速度的2倍. (1)选择:两船相遇之处E点A.在线段AB上B.在线段BC上C.可以在线段AB上,也可以在线段BC上(2)求货轮从出发到两船相遇共航行了多少海里?21.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品售价为a元,则可卖出(350-10a)件,但物价局限定每件商品加价不能超过进价的20%,商店计划要赚400元,需要卖出多少件商品?每件商品售价多少元?22.汽车租货公司共有出租车120辆,每辆汽车的日租金为160元,出租业务天\天供不应求,为适应市场需求,经有关部门批准,公司准备适当提高日租金,经市场调查发现,一辆汽车日租金每增加10元,每天出租的汽车相应地减少6辆.若不考虑其它因素,公司将每辆汽车的日租金提高几个10元?(1)能使公司的日租金总收入达到19380元?(2)使公司的日租金总收入最高?最高是多少?[达标训练]答案提示1.B 2.C 3.D 4.C 5.A 6.B 7.B 8.-11,-9或9,11 9.5 10.1.21a 元11.解:如图所示,把这六条路移到靠边的部位,设路宽为x 米,根据题意可列方程(162-2x)(64-4x)=9600, 整理为:x 2-97x+96=0 解之:x 1=1 x 2=96 . 而x 2=96不符合题意 ∴ x=1答:路宽为1米.12.解:2000年的经营总收入为600÷40%=1500(万元)设年增长率为x,则1500(1+x)2=2160 (1+x)2=1.44 1+x=±1.2(舍去1+x=-1.2)∴1500(1+x)=1500×1.2=1800(万元) 答:2001年预计经营总收入为1800万元.13.解:设垂直于墙的边长为x 米,则平行于墙的长为(91+2-2x)米,根据题意,得x(91+2-2x)=1080解之:x 1=24,x 2=22.5 经检验均符合题意.当x 1=24时,91+2-2x=45;当x 2=22.5时,91+2-2x=48米答:花坛的长和宽分别为45米,24米或48米,22.5米. 14.解(1)设水蚀造成的水土流失面积为x 平方公里,则风蚀造成的水土流失面积为(x+26)万平方公里,根据题意有:x+(x+26)=356, 解之:x=165, ∴x+26=191. 故水蚀与风蚀造成的水土流失面积分别为165万平方公里和191万平方公里.(2)设该省今明两年治理水土流失面积每年增长的百分数为x,依题意,得400+400(1+x)+400(1+x)2=1324 解得:x 1=0.1 x 2=-3.1(不符合题意,应舍去)故平均每年增长的百分数为10%15.解:依据题意有(170-2x)x -(500+30x)=1750, 解之得x 1=25,x 2=45(不符合题意应舍去),即日产量为25只时,每月获得利润为1750元.16.解:设直角边分别为a,b,根据题意有:a+b=6①,422=+b a ②,①2-②2得:2ab=1.∴2121=ab .答:此三角形面积为21.17.解:设这个百分数为x,根据题意有:20(1+x)2=6.4+20(1+12%).解得x 1=0.2,x 2=-2.2(不合题意应舍去). 答:这个百分数为20%. 18.解(1))90(100A A- (2)根据题意有2510)80(100=+-A A, 解之:A 1=50,A 2=30(不符合题意应舍去).故电厂规定的A 值为50度. 19.解:∵∠A=36°,AB=AC, ∴∠ABC=∠C=72°. 又∵BD 平分∠ABC, ∴∠DBC=36°,在△CBD 与△CAB 中,∠C=∠C=72°,∠CBD=∠A=36° ∴△CBD ∽△CAB ∴BCCDAC CB =. ∴BC 2=AB·CD. 又∵BC=BD=AD, ∴AD 2=AC·CD,设AD=x, 则CD=(4-x) ∴x 2=4(4-x) 即x 2+4x -16=0. 解之: x 1=-2+52 5222--=x (不合题意应舍去)∴BC 的长为(252-)cm.20.(1)B (2)货轮从出发到两船相遇共航行了)63100200(-海里 提示:设货船从出发到两船相遇共航行了x 海里,过D 作DF ⊥CB 于F,连结DE,则DE=x AB+BE=2x ∵D 是AC 中点 ∴DF=100 ,EF=300-2x, ∴ x 2=1002+(300-2x)2. 21.解:设每件商品应售x 元,才能使商店赚400元, 根据题意,得(x -21)(350-10x)=400 解之得:x 1=25 x 2=31(不合题意应舍去). 当x 1=25时,350-10x=350-250=100.答:该商店需要卖出100件商品,每件商品应售25元,才使商品赚400元.22.解 1)设公司将每辆汽车日租金提高x 个10元,才能使公司的日租金总收入达到19380元,根据题意有(160+10x)(120-6x)=19380 即x 2-4x+3=0 解之得x 1=1 x 2=3 检验知x 1=1 x 2=3均符合题意.故公司将每辆汽车租金提高10元或30元,公司的日租金总收入达到19380元.(2)设公司的将每辆汽车日租金提高x 个10元,则公司每天出租的汽车为(120-6x)辆,则每天的租金总收入为(160+10x)(120-6x)=-60(x+16)(x -20)=-60(x 2-4x -320)=-60[x 2-4x+4-324] =-60(x -2)2+19440∴当x=2时,此时有最大值19440即公司将每辆汽车的日租金提高2个10元时,公司的日租金收入最高,最高租金收入为19440元.。