当前位置:文档之家› 测井技术及应用

测井技术及应用

测井技术及应用
测井技术及应用

浅谈测井技术及应用

中图分类号:p631.8+18

摘要:通过对测井数据的每次对比及分析,从而建设起详细的数据库。在测井归位和测井数据标准化基础上,本次采用测井新技术与测井分析仪器进行全面统计分析建立测井模型。以常规物性分析测井为依据,回归前将测井分析检测在测井曲线上进行准确归位后,再通过测井分析方法而建立,测井资料与测井分析结果保存。关键词:测井;分析;依据

测井技术是钻井地质导向技术的关键部分,它主要包括浅度测井、深度测井、极深度测井、近钻头测井等,与常规测井技术相比,随着测井资料更为客观真实地反映了所测地区的实际情况特征。当比较困难的测井出现时,或者在某些特殊地质条件下测井困难,测井所需要的时间过多,就可以采用较为先进的测量模式。该测井程序解决了较多有难度的测井问题,可以通过测井现场的实际地质情况输入程序,使得测井工作者可以通过输入的所有数据得到想要的测井参数,提高了测井工作的效率和可操作性。最重要的是它在满足测井需要的同时,还能在整个工作过程中充分考虑到生产安全的问题,使得测井工作者可以将该程序测井成果应用到实际的工作中去。采用较为先进探测器技术提高了测井系统的准确性,通过不但完善程序提高了测井工作者测井工作的效率。根据较为先进探测器技术所测量出来的结果建立了比较简单的测井模型,通过较为先进探测器技术有效的消除了测井工作中的不良效应,结果是大幅度的

2006-考试题(测井原理与综合解释)答案

2006 一、名称解释(每题3分,共15分) 康普顿效应:康普顿效应:在康普顿效应中,伽马光子与原子的核外电子发生非弹性碰撞,一部分能量转移给电子,使它脱离原子成为反冲电子,而散射光子的能量和运动方向发生变化。 挖掘效应:具有相同含氢指数的岩石,由于含有天然气而使得用中子测井测得的孔隙度比实际的含氢指数要小的现象。 地层因素:岩石电阻率与该岩石中所含水的电阻率的比值就是岩石的地层因素(或相对电阻率)。该比值只与岩样的孔隙度、胶结情况和孔隙形状有关,而与孔隙中所含水的电阻率无关。 电极系互换原理:把电极系中的电极和地面电极功能互换(原供电电极改为测量电极,原测量电极改为供电电极),各电极相对位置不变,所测得的视电阻率和原来的完全相同,这就叫电极系互换原理。 含油气孔隙度:油气体积占岩石体积的百分数(V油气/V岩石)。 体积物理模型:见参考书46 周波跳跃:周波跳跃是指声波时差比邻近的值高出一个或几个波长,而出现周期性增大的现象。 横向各项异性:是指在沿井轴方向和与井轴垂直方向(水平方向)上,地层的声波速度、弹性力学性质有差异,而在与该轴垂直的平面(水平面)上,在各个方向上的声波速度和弹性力学性质相同,就是横向各项异性。 二、选择题(每题1分,共12分):下面每题有4个答案,选择正确的答案填入括号中。 1、岩性密度测井主要利用伽马射线与地层之间的(B)作用来进行测量的。 A:电子对效应与康普顿效应B:光电效应与康普顿效应C:康普顿效应与俘获效应 D:光电效应与弹性散射 2、对于普通电阻率测井,电极系的电极距增大,(B) A:其探测深度会增大,纵向分辨率会增高。 B:其探测深度会增大,纵向分辨率会降低。 C:其探测深度会减小,纵向分辨率会增高。 D:其探测深度会减小,纵向分辨率会降低。 3、利用中子测井曲线进行读值,下面哪句话表述不正确( D )。 A:砂岩的孔隙度总是大于它的真孔隙度。 B:白云岩的孔隙度总是小于它的真孔隙度。 C:石灰岩的孔隙度总是等于它的真孔隙度。 D:中子测井读值受岩性的影响较大,不同岩性的地层均需校正才能得到较准确的地层孔隙度值。 4、在相同情况下,含泥质地层的自然电位负异常幅度( A ) A:低于纯砂岩地层的自然电位负异常幅度。 B:高于纯砂岩地层的自然电位负异常幅度。 C:与纯砂岩地层的自然电位负异常幅度相等。 D:可能高于、也可能低于纯砂岩地层的自然电位负异常幅度。 5、自然伽马能谱测井是根据(A)的特征伽马射线的强度测定地层中铀的含量的。 A:214Bi B:235U C:214Pb D:208TI

(完整word版)测井方法原理及应用分类

测井方法的主要分类 1. 电法测井,又分自然电位测井、普通电阻率测井、侧向(聚焦电阻率)测井、感应测井、介电测井、电磁波测井、地层微电阻率扫描测井、阵列感应测井、方位侧向测井、地层倾角测井、过套管电阻率测井等(频率:从直流0~1.1GHZ)。 2. 声波测井,又分声速测井、声幅测井、长源距声波全波列测井、水泥胶结评价测井、偶极(多极子)声波测井、反射式声波井壁成像测井、井下声波电视、噪声测井等(频率由高向低发展,20KHZ~1.5KHZ)。 3. 核测井,种类繁多,主要分三大类:伽马测井、中子测井和核磁共振测井,伽马测井具体如下:自然伽马测井、自然伽马能谱测井、密度测井、岩性密度测井、同位素示踪测井等。 中子测井具体包括:超热中子测井、热中子测井、中子寿命测井、中子伽马测井、C/O比测井、PND-S测井、中子活化测井等。 发展趋势:中子源-记录伽马谱类(非弹性散射、俘获伽马、活化伽马等不同时间测量)。 4. 生产测井,主要分为三大类:生产动态测井、工程测井、产层评价测井。 1

生产动态测井方法主要有:流量计、流体密度计、持水率计、温度计、压力计、井下终身监测器等。 工程测井方法主要有:声幅、变密度测井仪、水泥胶结评价测井仪、磁定位测井仪、多臂微井径仪、井下超声电视、温度计、放射性示踪等。 产层评价方法测井:硼中子寿命、C/O比测井、脉冲中子能谱(PNDS)、过套管电阻率、地层测试器、其它常规测井方法组合等。 5. 随钻测井,大部分实现原理与常规电缆测井相同,实现方式上有许多特殊性。 2

测井方法主要特征总结归类表 3

4

5

测井解释原理

测井解释原理 一: 储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。 必须具备两个条件: (1)孔隙性(孔隙、洞穴、裂缝) 具有储存油气的孔隙、孔洞和裂缝等空间场所。 (2)渗透性(孔隙连通成渗滤通道) 孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。 储集层的分类 ?按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。 ?按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。 碎屑岩储集层 ?1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。 ?2、组成:–矿物碎屑(石英、长石、云母) –岩石碎屑(由母岩类型决定) –胶结物(泥质、钙质、硅质) ?3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。 ?4、有关的几个概念 –砂岩:骨架由硅石组成的岩石都称为砂岩。骨架成份主要为SiO 2 –泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。 –砂泥岩剖面:由砂岩和泥岩构成的剖面。 碳酸盐岩储集层

?1、定义:–由碳酸盐岩石构成的储集层。 ?2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩 ?3、特点:–储集空间复杂 有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等) 次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等) –物性变化大:横向纵向都变化大 ?4 、分类 按孔隙结构: ?孔隙型:与碎屑岩储集层类似。 ?裂缝型:孔隙空间以裂缝为主。裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。 ?孔洞型:孔隙空间以溶蚀孔洞为主。孔隙度可能较大、但渗透率很小。 ?洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。 ?裂缝-孔洞型:裂缝、孔洞同时存在。 碳酸盐岩储集空间的基本类型 砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主; 碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。 碳酸盐岩储集层孔隙空间的基本形态有三种:孔隙及吼道、裂缝和洞穴。 碳酸盐岩储集层孔隙结构类型有:孔隙型、裂缝型、裂缝- 孔隙型、及裂缝- 洞穴型 常规测井在孔隙型/裂缝型碳酸盐岩中的特征(简答): 孔隙型储集层:在曲线形状方面表现为圆滑的“U”字形,如电阻率呈“U”字形降低,这与裂缝发育段的尖刺状电阻率起伏形成强烈的反差;在测井值方面表现为二高两低,即时差、中子孔隙度增高,电阻率和岩石体积密度降低。特点:曲线光滑,单层明显是以小孔为主的储层的主要特征,分层明显,表面看较好。 裂缝型储集层: 电阻率测井响应:微电极测井曲线在裂缝发育段呈现明显的正幅度差,且常伴有显著的锯齿

测井曲线的识别及应用

第一讲测井曲线的识别及应用 钻井取芯、岩屑录井、地球物理测井是目前比较普及的三种认识了解地层的方法。钻井获取的岩芯资料直观、准确,但成本高、效率低。岩屑录井简便、及时,但干扰因素多,深度有误差,岩屑易失真。测井是一种间接的录井手段,它是应用地球物理方法,连续地测定岩石的物理参数,以不同的岩石存在着一定物性差别,在测井曲线上有不同的变化特征为基础,利用各种测井曲线显示的特征、变化规律来划分钻井地质剖面、认识研究储层的一种录井方法;具有经济实用、收获率高、易保存的优势,是目前我们认识地层的主要途径。 鄂尔多斯盆地常规测井系列分为综合测井和标准测井两种。 综合测井系列:重点反映目的层段钻井剖面的地层特征。测量井段由井底到直罗组底部,比例尺1:200。由感应、八侧向、四米电阻、微电极、声速、井径、自然电位、自然咖玛八种测井方法组成。探井、评价井为了提高储层物性解释精度,加测密度和补偿中子两条曲线。 标准测井系列:全面反映钻井剖面地层特征,测量井段由井底到井口(黄土层底部),比例尺1:500,多用于盆地宏观地质研究。过去标准测井系列较单一,仅有视电阻率、自然咖玛测井等两三条曲线。近几年完钻井的标准测井系列曲线较完善,只比综合测井系列少了微电极测井一项。 一、测井曲线的识别 微电极系测井、四米电阻测井、感应—八侧向测井、都是以测定岩石的电阻率为物理前提,但曲线的指向意义各异。微电极常用于判断砂岩渗透性和薄层划分。感应—八侧向测井用于判定砂岩的含油水层性能。四米电阻、声速、井径、自然电位、自然咖玛

用于砂泥岩性划分。它们各有特定含义,又互相印证,互为补充,所以,我们使用时必须综合考虑。 1、微电极测井 大家知道,油井完钻后由井眼向外围依次是:泥饼、冲洗带、侵入带、地层。泥饼是泥浆中的水分进入地层后,吸附、残留在砂岩壁上的泥浆颗粒物。冲洗带是紧靠井壁附近,地层中的流体几乎被钻井液全部赶走了的部分;其深入地层的范围一般约7—8 厘米。侵入带是钻井液与地层中流体的混合部分。 微电极测井是一种探测井壁周围泥饼和冲洗带电阻率的测井方法。由三个微电极系测得的微梯度和微电位两条曲线组成。微梯度探测范围(横向深度)4—5 厘米,显示的是泥饼的电阻值(泥饼的厚度一般在3—5 厘米之间,泥饼的电阻率通常为泥浆滤液电阻率的1—2 倍);微电位探测深度8—10 厘米,显示的是冲洗带的电阻值。当地层为非渗透性的泥岩、页岩时井壁无泥饼和冲洗带,梯度电阻值等于或接近电位电阻值,曲线重合或叠置;当地层为渗透性的砂岩时,梯度电阻值小于电位电阻值,两条曲线分离,出现差异,差异越大说明砂岩渗透性能越好。所以,主要用来判断储层的渗透性能。 微电极系由于电极距短,反应灵敏,极板紧贴井壁受泥浆影响小对层界面反映清晰,划分2?5米薄层时使用较多,曲线的拐点处为小层界面。 2、感应测井 感应测井是利用电磁感应的原理来测量地层的导电性能。双感应—八侧向综合井下仪器,测量的是地层深、中、浅三个不同位置上的电阻率值。深感应探测深度约为中感应的二倍(距井筒四米左右),反映的是原始地层的电阻率。中感应反映的是距井筒1?2 米范围内地层的电阻率。八侧向反映的是井壁附近的电阻率。这种由近到远的三组合比

关于测井技术应用与发展探讨

关于测井技术应用与发展探讨 随着石油勘探开发的需要,测井技术发展已愈来愈迅速,高分辨阵列感应、三分量感应和正交偶极声波等新型成像测井仪为研究地层各向异性提供了强有力的手段;新的测井仪器,如电阻率、新型脉冲中子类测井仪、电缆地层测试及永久监测等现代测井技术可以在井中确定地层参数,精细描述油藏动态变化;随钻测井系列也不断增加。通过介绍测井技术的测量原理和部分仪器结构,寻求我国测井技术的差距和不足,这对于我国当前的科研和生产具有指导和借鉴作用。 标签:测井技术地质测试 根据地质和地球物理条件,合理地选用综合测井方法,可以详细研究钻孔地质剖面、探测有用矿产、详细提供计算储量所必需的数据,如油层的有效厚度、孔隙度、含油气饱和度和渗透率等,以及研究钻孔技术情况等任务。此外,井中磁测、井中激发激化、井中无线电波透视和重力测井等方法还可以发现和研究钻孔附近的盲矿体。测井方法在石油、煤、金属与非金属矿产及水文地质、工程地质的钻孔中,都得到广泛的应用。特别在油气田、煤田及水文地质勘探工作中,已成为不可缺少的勘探方法之一[1]。应用测井方法可以减少钻井取心工作量,提高勘探速度,降低勘探成本。在油田有时把测井称为矿场地球物理勘探、油矿地球物理或地球物理测井。按照传统的观点,测井技术在油气勘探与开发中,仅仅对油气层做些储层储集性能和含油气性能(孔隙度、渗透率、含油气饱和度和油水的可动性)定量或半定量的评价工作,这已远远跟不上油气工业迅猛发展的需要。而当今测井工作中评价油气藏的理论、方法技术有了长足的发展,解决地质问题的领域也在逐步扩大。 1电阻率测井技术 电阻率成像测井把由岩性、物性变化以及裂缝、孔洞、层理等引起的电阻率的变化转化为伪色度,直观看到地层的岩性及几何界面的变化,识别岩性、孔洞、裂缝等。电阻率成像有FMI、AIT及ARI等。斯伦贝谢的FMI有四个臂,每个臂上有一个主极板和一个折页极板,主极板与折页极板阵列电极间的垂直距离为5.7in,8个极板上共有192个传感器,都是由直径为0.16in的金属纽扣外加0.24in的绝缘环组成,有利于信号聚焦,使得钮扣电极的分辨率达0.2in,测量时极板被推靠在井壁岩石上,小电极主要反映井壁附近地层的微电阻率。斯伦贝谢或阿特拉斯的AIT是基于DOLL几何因子的电磁感应原理,通过对单一发射线圈供三种不同频率交流使其在周围的介质中产生电磁场,用共用一个发射线圈的8对接收线圈检测感应电流,从而可以求出介质的电导率。ARI是斯伦贝谢基于侧向测井技术推出的,可以有效的进行薄层、裂缝、储层饱和度等地层评价。长庆近年来均采用四米电阻率测井系。主要用于定性划分岩石类型和判定砂岩的含油、含水性能。 2声波测井技术

测井原理与应用

测井原理与应用 测井技术:应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找并监测油气层开发的一门应用技术。Well drilling 测井:矿场地球物理物探:地面地球物理 地层地球物理特性:1、电化学特性2、导电特性3、介电特性4、声学特性5、核特性6、磁特性7、热特性 特性随岩层的岩性、物性及所含流体特性的不同而变化。 测井方法:物理方法:1、电法测井2、声波测井3、核测井4、生产测井 测井用途: 一、评价油气层;(1)定性分析,划分渗透层、裂缝带,地层对比 地层对比:在横向上进行地层追踪的过程 (2)定量计算参数,储集层是具有一定的孔隙度和渗透率的地层(3)确定油气层的有效厚度(4)预测产能(5)研究构造和沉积环境 二、油藏描述;研究油气藏的生储盖条件,储量计算; 三、油气田开发的问题;(1)剩余油的确定及分布预测(2)开发井网调整措施研究(3)水淹层识别及水淹级别的判别 四、油气井工程中的问题;(1)地层压力,岩石强度,井壁稳定,固井质量(2)评价压裂酸化和封堵效果(3)注采井的流体动态监测(4)随钻实现了地质导向,消除了以往的盲目钻井(5)检查套管损伤 五、其他作用 电法测井:以研究岩石及其孔隙流体的导电性,介电特性及电化学特性为基础的一大类测井方法。 电化学特性:自然电位测井(SP) 介电特性:电磁波传播测井(EPT) 导电特性:双侧向电阻率测井(DLL)=聚焦测井、微球开聚焦电阻率测井(MSFL)、感应测井(DIL)、阵列感应式成像测井(AIT)、随钻电阻率测井(LWD)、套管电阻率测井(CHFR)、方位电阻率测井(ARI)、地层倾角测井(SHDT)、地层微电阻率扫描测井(FMS)井径曲线(CAL)钻头直径(BITS) 自然电位:井中自然电场产生的电位

油田测井方法及应用研究

油田测井方法及应用研究 这是中国油气勘探早期使用的测井技术,这一时期主要分为半自动测井技术和全自动测 井技术两个阶段。最初的测井技术出现在上个世纪50年代末期,当时所使用的测井技术较 为落后,技术手段主要是采用电法测井,并具有一定的危险性。解放前,玉门油田应用半自动 测井技术勘探油气获得了成功,解放后,克拉玛依油田第1口油气发现井也是应用半自动测井 技术进行了测井作业,发现了油层和气层。从上世纪六十年代起,开始用全自动测井技术勘探 石油。大港油田油气发现井港3井、四川盆地石炭系气藏发现井相18井等都是采用全自动 测井技术勘探油气,并且获得了成功。因此,全自动测井技术在中国油气勘探史上贡献巨大。 1.2数字、数控测井时期 第二时期测井技术诞生于上个世纪60年代初期,也就是数字测井技术,其运作原理就 是运用计算机对采集到的数字信息进行分析与处理。数字测井技术实现了系列化、数字化和 标准化,提高了砂岩和泥质砂岩油气藏的勘探效益。数字测井技术中的仪器系列配套全,采集 的测井信息多,经过计算处理解释,能对砂岩和泥质砂岩油气层做出正确评价。数字测井技术 还开辟了在油田开发中应用的新领域,用数字测井技术探测水驱油田产层剩余油动态变化,评 价水淹层和原油采出程度,现已成为中国水驱油田动态监测技术的基本手段。中国使用数控测 井技术勘探石油始于80年代初期,数控测井技术中有先进的裂缝识别测井技术,对评估裂缝 性碳酸盐岩油藏储量有利,由于数控测井技术中的仪器系列全、精度高、并有测井质量控制 和处理解释功能,提高了勘探深层天然气的分辨率。 1.3高清成像测井时期 高清成像测井技术出现是在90年代末期,即将所需要的数据和信息进行处理后,以图 像的方式经过工作站并运用电缆进行数据传输,该项技术不但传输速度快,成像质量好,操 作上也更加便捷。美国首先推出成像测井技术,用于提高复杂油气藏的勘探效益,效果显著。 中国从美国引进成像测井技术,在大庆、胜利、新疆、四川、海上等油田应用,发现了许多勘 探难度极大的油田。成像测井技术开始成为中国非均质、复杂油田勘探的关键技术。辽河油 田应用成像测井技术和钻进式井壁取心技术探测非均质严重的裂缝性石灰岩油藏,获得成功。 成像测井技术能发现裂缝,但不能判断裂缝性地层流体性质;钻进式井壁取心技术能从裂缝性 石灰岩硬地层中取出岩心,岩心上有油迹显示,评价为裂缝性油层,经测试,获得了高产。这一成 功的实践经验,为今后勘探类似的非均质复杂油藏提供了范例。 2.测井新方法及应用分析 2.1声、电成像测井技术 利用声、电成像测井技术,对研究井下的岩性特性及物性参数提供依据,是寻找和评价 油田的井下测试技术措施。例如,在井下利用传感器的阵列扫描技术措施,也可以实施扫描 测量,采集井筒的数据信息资料,传输到地面后,经过成像处理,得到井壁的二维影像资料,或者井筒周围的三维影像资料,为地质分析提供测井信息。大庆油田汪902井进行了成像测井,主要解决识别低孔隙和低渗透致密气层难题。根据阵列感应和地层微电阻率扫描成像测井 图以及核孔隙度-岩性组合测井图,准确地提供了地层岩性、构造和沉积环境信息,在井深2937.6~3052.2m的侏罗系地层中,测井解释4层低孔隙孔隙度约为5%,经射孔和压裂后测试, 获天然气产量140000m3/d,不含水。这个范例为今后勘探类似的低孔隙和低渗透气藏提供了 实践经验。 2.2产出剖面测井技术 随着油田开发的深入和要求的逐步提高,各种新的技术问题不断出现,老式产出剖面测井 仪器难以适应新的应用需求,由此近些年来相继开发出以阻抗式仪器为代表的一些新型产出剖

测井方法及应用

测井方法及应用

什么是测井测井技术的发展 石油地球物理测井是一门应用性的边缘科学,是应用地球物 理学(包括重、磁、电、震、测井)的一个分支,它用物理 学的原理解决地质学的问题。 所谓测井,就是用一些专门的仪器设备放入井中对地层的某一 方面特性(电化学特性、导电特性、声学特性、放射性等) 进行测量,结合钻井资料、录井和地质等资料,分析、确定地层的 地质特性和各种地质参数,寻找地下的油气资源,解决油气田勘探、 开发过程中的具体问题,例如分析地层的岩性、沉积相、沉积环境、 地层的地质构造,以及油、气、水的分布规律,油气层水淹情况及 状态,储集层性能评价、油气藏描述、以及固井、试油等工程作业。 同时,测井资料也为固井、试油、开发方案编制及进一步的各种措 施提供依据。 可以说测井资料是一种重要的地质信息。

测井资料的主要应用测井技术的发展 在油气勘探开发中,测井资料的应用主要包括以下三个方面: 1、地层评价:主要内容有岩性分析、计算储层参数、储层综合评价、划分油、气、水层并评价产能。 2、油矿地质:编制钻井地质综合柱状图、岩芯归位、地层对比;研究地层、构造、断层及沉积相;研究油气藏和油气水分布规律,计算储量,制定开发方案。 3、钻井、采油工程: 在钻井工程中,测井斜方位和井径等几何形态的变化、估计地层孔隙流体压力和岩石的破裂压力梯度,确定下套管深度和水泥上返高度,计算平均井径,检查固井质量。 在采油工程中,测量生产剖面和吸水剖面,确定水淹层位、压力枯竭层位、出水层位、出砂层位、窜槽层位,检查射孔质量和酸化压裂效果。

测井技术的发展我国测井技术的发展现状 一、测井仪器的发展 60年代以来,我国测井仪器经历了五次更新换代,即:半自动 模拟测井仪、全自动模拟测井仪(60-70年代)、数字测井仪 (80年代初期)、数控测井仪(80年代中期)和成像测井仪(90 年代末期)。 通过测量仪器不断的更新换代,提高测量仪器的稳定性和一致 性,提高测量精度;通过提高采集数据量和计算机处理能力来获取 更多的地质信息。目前,测井技术正向着多学科相互渗透的综合评 价方向发展。

复杂井况测井工艺技术研究及应用

复杂井况测井工艺技术研究及应用 随着油田增储上产的需求和钻井技术的发展,井筒结构越来越复杂,特别是水平井完井技术在各油田被广泛推广应用。因地质或工程原因,出现了波浪形水平井、井壁台阶水平井、大位移水平井、浅储层水平井、小井眼水平井等复杂井筒结构。针对各种复杂井筒,以科学合理的测井工艺进行施工,能够有效提高测井效率、测井成功率和测井质量。 标签:波浪形水平井;井壁台阶水平井;大位移水平井;浅储层水平井;小井眼水平井 1、波浪形水平井测井技术 波浪形水平井一般采用钻具输送湿接头对接测井技术,因水平段呈波浪形变化,首先要解决组合仪器适应波浪形井眼问题,防止仪器刚性长度过长引起遇阻,同时要保证高成功率的湿接头对接,湿接头对接位置的选择直接影响对接成功率和测井成功率,特别是需要多次对接输送的井,提高对接成功率是输送测井的关键。 研究及实际应用表明,依据井筒工程数据增加柔性短节数量,将组合仪器分为刚性长度均匀的若干段,使仪器可呈柔性变化,适应波浪形井眼,同时仪器尾部加装导向胶锥,避免组合仪器刚性长度过长在波浪形井眼段的遇阻。 泵下枪在波浪井眼的扭方位段、井斜突变段实施湿接头对接,公母枪轴心不在一条直线上;在增斜段,泵下枪速度降低。受各种因素的影响,一次对接成功率只有30%。 研究及实践说明,对接位置选择在方位稳定的降斜段或水平段时,泵下槍速度不会降低,不会出现泵下枪横向或纵向摆动,避免了泵下枪蛇形前行,且母枪与公枪轴心处于一条直线上,一次对接成功率达95%,可大幅度提高一次对接成功率,保证测井成功率。 2、井壁台阶水平井测井技术 水平井钻进过程因井壁坍塌,在大斜度段、水平段出现台阶状井眼,引起输送测井过程中严重遇阻。 所有的井壁坍塌都会形成不同程度的井壁台阶。水平井钻具输送测井过程中,组合测井仪器依靠钻具推力向前移动,因受自身重力作用,测井仪器总是沿下井壁运动,遇到井壁台阶后,测井仪器尾端顶在台阶上产生遇阻,如果没有措施使仪器尾部离开台阶,则无法解除遇阻。 测井过程关键问题是如何让让仪器尾部通过台阶以解除遇阻。在井壁存在较

测井解释方法及应用

72 1?测井解释方法 目前常用的地球物理测井方法主要有电阻率测井、自然电位测井、自然伽马测井、孔隙度测井等。 电阻率测井可分为普通电阻率测井、侧向测井以及微电阻率测井技术。普通电阻率电极包括一对供电电极A、B和一对测量电极M、N。可以用于划分高阻层;微电阻率测井也包括微电位和微梯度两种,可用于划分渗透性层位与非渗透率性层位[1] 。 自然电位曲线基本上可以算是“渗透性曲线”,可以将渗透层同非渗透性泥岩层区分开来,但不是渗透性强度曲线。用于区分比较厚的砂泥岩层系中的渗透性砂岩层与泥岩层比较理想;自然伽马曲线可以划分泥质和非泥质地层,估计地层中的泥质含量;密度测井可以估算孔隙度,而且在砂泥岩中特别有效;声速测井通过测量声波穿过岩层的走时来估算孔隙度[2-4]。 2?测井方法应用 利用电测资料可反映电性与沉积相的相互关系。本文以鄂尔多斯盆地K区为例,在研究区取心资料不多的情况下,通过电测资料分析其沉积相特征。研究区在总结前人对测井相研究的基础上,分析其建立的测井模式,依据不同区域电测资料的差别及对应沉积相的改变,结合研究区的实际电测资料,建立起研究区的测井相模式较好的识别研究区的三角洲体系的各个沉积微相。 电测识别沉积相的主要曲线为自然电位和自然伽马,由于两曲线对不同的沉积微相类型表现出来的形状差别较大,故通常根据二者形态来指示沉积微相。研究区长6储层主要的测井相模式可分为5种,具体的模式分析如下: 1)箱形、钟形测井相,该类测井相类型在研究区较为常见,多以中高幅出现,可作为分流河道、水下分流河道及河道侧翼沉积微相的典型代表,其中箱形模式是主河道的代表。箱形模式上下多为钟形模式,其上多为天然堤沉积,且厚度较大,表现出明显的正韵律,两箱形之间可见间湾沉积,其曲线幅度较小。 2)漏斗形测井相,该类测井相在研究区河道末端可见,多以中高幅形态出现,常出现在厚度较大,平面连通 性差的砂体中,是河口坝沉积微相的特有形态,部分区域与分流河道形态较难区分,但其具有一个明显的沉积特征即呈上粗下细的反韵律,幅度与分流河道相比稍微偏低一点。 3)指状测井相模式,该类测井相一般出现在区域为泥岩的沉积环境中,呈一个单独的小砂体,曲线幅度以中低幅形态,多以低幅度出现,呈指状,是远砂坝沉积微相和决口扇特有的形态特征,因二者曲线形态相似,故可根据其出现的位置及区域结合其它划分标识来共同判断属于哪类沉积微相。 4)齿形测井相模式,该类测井相模式多呈低幅度形态出现,可很好的指示水下天然堤及河道间沉积,常出现在两河道间或河道与河口坝之间,可根据其齿状出现的频率而判断砂体的厚薄,当砂体厚度较薄时,曲线幅度相对很小。 5)直线测井相模式,该类测井相模式曲线表现为两根平滑的直线,几乎无幅度起伏,自然电位曲线几乎与泥岩基线重合,是前三角洲沉积相的典型形态,区域无砂体或很薄,多以泥岩为主。 3?结束语 1)目前常用的地球物理测井方法主要有电阻率测井、自然电位测井、自然伽马测井、孔隙度测井等,不同测井方法可用于识别不同的储层特征,可综合利用各类测井方法掌握储层地质信息。 2)自然电位曲线和自然伽马曲线可用于识别沉积相特征,由于两曲线对不同的沉积微相类型表现出来的形状差别较大,故通常根据二者形态来指示沉积微相。本文利用自然电位曲线和自然伽马曲线分析了鄂尔多斯盆地K区沉积相特征。 参考文献 [1]谢灏辰,于炳松,曾秋楠,等. 鄂尔多斯盆地延长组页岩有机碳测井解释方法与应用[J]. 石油与天然气地质,2013(6):731-736. [2]唐海燕. 乌尔逊凹陷火山碎屑岩储层测井解释方法研究[D].吉林大学,2010. [3]李英. 川东飞仙关组地层压力测井解释方法研究[D].西南石油学院,2003. [4]李国平,石强,王树寅. 储盖组合测井解释方法研究[J]. 测井技术,1997(2):22-28. 测井解释方法及应用 刘二虎1,2 1. 西安石油大学 陕西 西安 7100652 .油气勘探公司 陕西 延安 716000 摘要:测井解释是综合利用地球物理学方法对储层岩性、物性以及含油气性等特征进行认识方法,是利用测井曲线认识地质信息的重要技术。本文对目前常用的地球物理测井技术进行了分析应用。 关键词:测井解释 地球物理测井 地质信息 Method?of?logging?interpretation?and?its?application Liu?Erhu 1,2 1. Xi ’an Shiyou University ,Xi'an 710065,China Abstract:Logging interpretation is a method to comprehensively apply geophysical methods to understand reservoir lithology,physical properties and oil-gas-bearing properties. Also,it is an important technique to understand geological information by logging curve. This paper mainly analyses commonly used geophysical logging technology. Keywords:logging interpretation; geophysical logging; geological information

(完整版)石油测井技术服务方案

七、技术服务方案 1.投标人应根据招标文件和对现场的勘察情况,采用文字并结合图表形式,参考以下要点编制本工程的技术服务方案: (1)测井、射孔工程技术服务方案及技术措施; (2)质量管理体系与措施; (3)技术服务总进度计划及保证措施(包括以横道图或标明关键线路的网络进度计划、保障进度计划需要的主要技术服务机械设备、劳动力需求计划及保证措施、材料设备进场计划及其他保证措施等); (4)技术服务安全管理体系与措施; (5)技术服务文明措施计划; (6)技术服务场地治安保卫管理计划; (7)技术服务环保管理体系与措施; (8)冬季和雨季技术服务方案; (9)施工现场总平面布置(投标人应递交一份施工现场总平面图,绘出现场布置图表并附文字说明,说明相关设施的情况和布置); (10)施工组织机构(若技术服务方案采用“暗标”方式评审,则在任何情况下,“施工组织机构”不得涉及人员姓名、简历、公司名称等暴露投标人身份的内容); (11)投标人技术服务范围内拟分包的工作(按第二章“投标人须知”第1.11款的规定)、材料计划和劳动力计划; (12)任何可能的紧急情况的处理措施、预案以及抵抗风险(包括测井、射孔工程技术服务过程中可能遇到的各种风险)的措施; (13)对专业分包工程的配合、协调、管理、服务方案; (14)招标文件规定的其他内容。 2.若投标人须知规定技术服务方案采用技术“暗标”方式评审,则技术服务方案的编制和装订应按附表七“技术服务方案(技术暗标部分)编制及装订要求”编制和装订技术服务方案。 3.技术服务方案除采用文字表述外可附下列图表,图表及格式要求附后。若采用技术暗标评审,则下述表格应按照章节内容,严格按给定的格式附在相应的章节中。

水平井生产测井技术的发展情况及应用前景

水平井生产测井技术的发展情况及应用前景 进入到新世纪以来,全球经济一体化的加剧趋势越来越明显,各个行业的竞争也日益激烈,尤其是石油行业也面临着巨大的挑战。现阶段,我国石油行业中的钻井技术得到了非常快速的发展,这主要是由于我国已经充分的认识到了油田勘察探索工作的重要性,并且也加大了在这方面的投入力度,因此,在提高原油的生产数量以及增强石油开采的技术水平等工作中也取得了一定的成绩。水平井的开发以及管理对于提高油田产量以及促进油田发展有着非常关键的影响,而要想进一步的得到油田各方面的情况,就应真正的做好水平井测井技术的研究工作,以油田的实际情况为基础不断的提升水平井生产测井的技术水平。文章便对我国水平井生产测井技术的发展情况、水平井生产测井技术的工艺原理和注意事项以及水平井生产测井技术的常用设备三个方面的内容进行了详细的分析和探讨,从而详细的讨论了我国石油行业中水平井生产测井技术的发展及应用情况。 标签:水平井生产;测井技术;发展及应用 1 我国水平井生产测井技术的发展情况 与传统类型的油井相比,水平井在结构构造上有着明显的复杂性,工作人员在开采水平井的过程中,常规的电缆测井的方式通常都无法使用,而这就大大的增加了测井的难度,所以,要想较好的完成水平井的测井工作也有一定困难。现阶段我国石油行业的油田开采工作,本身就比以前更加困难,随着油田含水量的不断增加,井下的复杂情况很难被准确的分析和预测到。因此,要想更加高效的利用油田资源,并且更加清晰的掌握水平井井下的具体情况,那么就必须充分的做好水平井生产测井技术的研究工作,最大限度的开发出测井工艺的应用价值,从而为我国的油田勘察和探索工作打下一个坚实的基础。 2 水平井生产测井技术的工艺原理和注意事项 2.1 水平井生产测井技术的工艺原理 通常情况下,在应用水平井生产测井技术时,我们主要采用保护套式和湿接头式两种方式,其中,后者的应用范围最为广泛。虽然两种应用方式的应用范围有着一定区别,但是它们的工作原理却基本相同,其工艺原理具体为:在一个的大型的仪器设备之中,配上所有的辅助设备和工具,经过渡短节与钻具的底部进行相互的连接,这样仪器设备就能够与待测底层的顶部良好的接触,当到达我们想要测量的位置时,电缆就会穿过旁通短节,并且将他与泵的下接头一起向下放置,这就是泵下接头与井下接头有效结合的过程,同时在泥浆里,电气与机械之间也能够良好的联接到一起。当完成这一系列的操作后,就应给予仪器电力,同时详细的检查仪器设备的运行性能,确保所有细节都准确无误后,就可以下放所有可能应用到的电缆和钻具了,之后再同时提起以完成测井的作业,位置是从旁通达到井口,而这就是整个水平井生产测井的工艺过程。

测井解释-原理与应用

绪论 电法测井被引入石油工业已经超过半个多世纪。从那时起,就有许多新的和改良的测井仪器被开发出来并投入使用。 随着测井技术的发展,测井资料解释技巧也取得了很大的发展。目前,详细分析由精心选择的配套电缆测井服务的测量结果,提供了一种用来导出或推断含油气和含水饱和度、孔隙度、渗透率指数和储集层岩石岩性的精确数值的方法。 已经有数百篇描述各种测井方法及其应用和解释的论文被发表,这些文献在内容上足够丰富,但通常情况下对于测井的普通用户却不适用。 因此,本书将对这些测井方法和解释技术做一个总的回顾,并对由斯伦贝谢公司提供的裸眼井测井项目做一些详细的讨论,包括测井解释的基本方法和基本应用。讨论过程尽可能的保持简洁、清晰,最大限度的减少数学推导。 希望本书能够成为任何一位对测井感兴趣的人的实用手册。某些可能对更详细资料感兴趣的人,可以查阅每章后列出的参考文献和其他测井文献。 1.1测井历史 世界上第一条电法测井曲线是于1927年在法国东北部阿尔萨斯省的佩彻布朗的一个小油田的油井内被记录到的。这条测井曲线,使用“点测”方法记录井眼穿过的岩层的单条电阻率曲线。井下测量设备(叫做探头或电极系)按照固定的间隔在井眼内停下来进行测量,然后计算出电阻率并通过手工绘制在曲线图上。逐点继续完成这个过程,直到整条测井曲线被记录下来。第一条测井曲线的一部分如图1-1所示。

图1-1 第一条测井曲线:由亨利-道尔点绘手工绘制在坐标纸上1929年,电阻率测井作为商业性服务被引入委内瑞拉、美国和前苏联,很快又进入荷属东印度(今天的印度尼西亚)。电阻率测量结果的对比功能和识别潜在油气层方面的用途很快被石油工业所承认。

测井考试小结(测井原理与综合解释)

一、名词解释 1、测井:油气田地球物理测井,简称测井well logging ,是应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找油气层并监测油气层开发的一门应用技术。 2、电法测井:是指以研究岩石及其孔隙流体的导电性、电化学性质及介电性为基础的一大类测井方法,包括以测量岩层电化学特性、导电特性和介电特性为基础的三小类测井方法。 3、声波测井:是通过研究声波在井下岩层和介质中的传播特性,来了解岩层的地质特性和井的技术状况的一类测井方法。 4、核测井:是根据岩石及其孔隙流体的核物理性质,研究钻井地质剖面,勘探石油、天然气、煤以及铀等有用矿藏的地球物理方法,是地球物理测井的重要组成部分。 5、储集层:在石油工业中,储集层是指具有一定孔隙性和渗透性的岩层。例如油气水层。 6、高侵:当地层孔隙中原来含有的流体电阻率较低时,电阻率较高的钻井液滤液侵入后,侵入带岩石电阻率升高,这种钻井液滤液侵入称为钻井液高侵,R XO

测井方法

测井项目符 号 单位物理意义理论基础测量方式主要应用影响因素 井径测井CAL in/c m 井眼直径 井径直径的 变化反映岩 石性质 了解井眼状 况;辅助区分 岩性;其他测 井曲线的环境 校正;估算固 井所需水泥 量;检查套管 变形或破裂情 况 裂缝、岩 性 自然伽马测井GR API 地层天然 伽马放射 性强度 岩石的自然 放射性、放 射性元素的 衰变特性 探测器使用 NaI(TI)闪 烁计数器, 其输出脉冲 的幅度与入 射伽马射线 能量呈正比 区分岩性;划 分储集层;计 算Vsh;计算 粒度中值;判 断放射性矿 物;地层对比 钻井液的 放射性 (套管水 泥环的放 射性)、仪 器是否偏 心 自然伽马能谱测井NGS API、 mg/l 、% U、Th、K 含有不同 的放射性 强度 不同岩石含 有的化学成 分不同,其 放射性物质 成分也不 同。 探测器使用 NaI(TI)闪 烁计数器, 其输出脉冲 的幅度与入 射伽马射线 能量呈正 比,且增加 了多道脉冲 幅度分析 器, 划分岩性;利 用Th/U研究 沉积环境;区 分粘土矿物; 寻找放射性矿 物 围岩影 响,钻井 液放射性 (套管水 泥环放射 性) 放射性同位素测井J 脉冲 /分 同一井段 前后放射 性强度不 同 利用放射性 元素做示踪 剂,通过测 量,比较前 后射线强度 来研究油井 技术状况和 采油注水动 态 探测器使用 NaI(TI)闪 烁计数器, 其输出脉冲 的幅度与入 射伽马射线 能量呈正比 找窜槽位置; 检查封堵状 况;检查压裂 效果;测定吸 水剖面,计算 相对吸水量 示踪剂选 择,钻井 液放射性 (套管水 泥环放射 性)

常规测井简单原理与应用

常规测井原理与应用 第一节:概述 地球物理测井的分类:分为电法测井和非电法测井两种。 1、电法测井: a:视电阻率、b:微电极、c:自然电位、d:微球型聚焦、e:感应测井。 2、非电法测井: a:声速测井、b:自然伽玛测井、c:中子测井、d:密度测井,e:井径、f:井斜、g:井温、h:地层倾角(HDT)、I:地层压力(RFT)、j:垂直地震测井(VSP) 第二节:电法测井 一、视电阻率曲线: 测井时将电极系放入井下,在上提过程中测量记录一条△Vmn(电位差)随井深变化的曲线,称为视电阻率曲线。 梯度电极系:成对电极间的距离小于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。 电位电极系:成对电极间的距离大于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。 底部梯度电极系在高阻层测井曲线的形状特点如下: (1)对着高阻层视电阻率升高,但曲线不对称于地层中点,高阻层顶界面、底界面分别在极小值、极大值的1/2mn处。 (2)对于厚层、地层中部附近曲线出现平直或变化平缓,随地层减薄平直段缩短直至消失,该处视电阻率值接近地层真电阻率。 (3)对于薄层,在高阻层底界面以下一个电极处,在视电阻率曲线上出现一个“假极大”,极小也比原层上移。 视电阻率曲线的应用: 1、划分岩层界面: 利用底部梯度电极系视电阻率曲线划分岩层界面的原理是高阻层顶界面(底界面)

位于视电阻率曲线极小值(极大值以下1/2MN处。 2、判断岩性: 在砂泥岩剖面中,当地层水含盐浓度不是很大时,砂岩电阻率大于泥岩的电阻率,粉砂岩泥质砂岩、砂质泥岩介于它们之间。但视电阻率曲线无法区分灰岩和拉拉扯扯云岩,它们的电阻都非常大。 3、地层对比和定性判断油水层: 对于同一储层,如果0.45m底部梯度幅度高于4m底部梯度梯度测井曲线幅度该层可能为水层,反之则为水层。 二:微电极测井 微电极测井:利用特制的短电极系帖附井壁,测量井壁附近的岩层电阻率的一种测井方法叫微电极测井。 微电极测井曲线的应用: 1、详细划分地层:地层界面一般在曲线的转折点或半幅点 2、划分渗透层,判断岩性:微电极曲线在渗层上显示正幅度差,数值中等,地层渗透率越好,二者的幅度差越大,因此可以根据微电极曲线的幅度差判断地层的渗透性好坏。各种岩性的微电极曲线特征如下: (1) 泥岩和粘土,为非渗生地层,没有幅度差,值很低。 (2) 渗透性砂岩:渗透性砂岩在微电极曲线上显示中等幅度和较大正异常,对于含油砂岩,由于冲洗带孔隙中有残余油存在,在其它条件相同的条件下,含油砂岩比含水砂岩有较高的幅度和幅度差。 (3) 致密砂岩:渗透性很差,在微电砐曲线上读数很高,曲线呈剧齿状钙质砂岩薄层在曲线上呈“刺刀状”的突起。 (4) 渗透性灰岩:渗性灰岩与渗透性砂岩相近,但曲线幅度更高。 (5) 致密灰岩:与致密砂岩相近,曲线幅度高,呈锯齿状,并有正负不定的差异。 (6) 石膏或硬石膏:石膏或硬石膏地层电阻率高,井壁无泥饼,曲线与石灰岩相似。 (7) 盐岩:盐岩地层易溶于泥浆,使井径扩大,微电极曲线幅度低。 (8) 油面岩:油面岩处微电极曲线呈锯齿状,并且大多数为负差异,曲线幅度高

自然伽马能谱测井原理及其应用

班级资工11101班学号 201107964 姓名陈强

目录 自然伽马能谱测井原理 (3) 自然伽马能谱测井分析与应用 (5) 关于自然伽玛能谱的几点认识与总结 (9)

自然伽马能谱测井原理及其应用 The Principle and Application of Natural Gamma Ray Spectrometry Logging 1 自然伽马能谱测井原理 1.1 自然伽马能谱测井的理论基础 地层中存在的放射性核素,主要是天然放射性核素,这些核素又分放射系和非放射系的天然放射性核素。放射系为钍系、铀系和锕铀系,但锕铀系的头一个核素235U在自然界中的丰度很低,其放射性贡献甚微,不予考虑。非放射系的天然放射性核素如表1所列。从表中可见,主要是87Rb和40K,但是87Rb无伽马辐射。所以,在研究地层中的自然伽马能谱主要是238U、232Th放射系和40K放射的伽马射线能谱。

因为地层岩石的自然伽马射线主要是由铀系和钍系中的放射性核素及40K产生的。而铀系和钍系所发射的伽马射线是由许多种核素共同发射的伽马射线的总和,但每种核素所发射的伽马射线的能量和强度不同,因而伽马射线的能量分布是复杂的。而40K只能发射一种伽马射线,其能量1.46Mev的单能。如果我们把横座标表示为伽马射线的能量,纵座标表示为相应的该能量的伽马射线的强度。把这些粒子发射的伽马射线的能量画在座标系中,那么就得到了伽马射线的能量和强度的关系图,这个图称为自然伽马的能谱图。铀系和钍系在放射性平衡状态下系内核素的原子核数的比例关系是确定的,因此不同能量伽马的相对强度也是确定的,因此我们可以分别在这两个系中选出某种核素的特征核素伽马射线的能量来分别识别铀和钍。这种被选定的某种核素称为特征核素,它发射的伽射线的能量称为特征能量,在自然伽马能谱测井中,通常选用铀系中的214Bi发射的1.76MeV 的伽马射线来识别铀,选用钍系中的208Tl发射的2. 62MeV的伽马射线来识别钍,用1.46MeV的伽马射线来识别钾。当我们把伽马射线按我们所选定的特征能量分别计数,那么这就叫测谱。测谱测出的结果打印成数据表或绘成能谱图。因而将测得的自然伽马能谱转换成地层的铀、钍、钾的含量,并计录在磁带上或以连续测井曲线的形式输出,这就是自然伽马能谱测井。要用自然伽马能谱测井,必须满足两个条件:(1)地层岩石中必须存在具有7辐射的放射性核素,或者说,岩石中的放射性核素必须具有7辐射;(2)放射性核素在地层岩石中的分布必须具有特异性。

相关主题
文本预览
相关文档 最新文档