当前位置:文档之家› 高介电聚合物

高介电聚合物

高介电聚合物
高介电聚合物

高分子物理

结课作业

题目:高介电常数聚合物基复合材料

班级:

学号:

姓名:

学科、专业:

高介电材料具有良好的储能和均匀电场作用,拥有非常广阔的应用空间,在埋入式电容元件、高能存储器、电缆、电活性物质等领域有着极为重要的应用,

开发易加工、介电常数(D

k)高、介电损耗(D

)低等综合性能优越的新型电子

材料成为研究的热点。

聚合物在外场(包括电,力温度等)作用下,电介质分子或者其中某些基团中电荷分布发生相应变化,可以产生极化现象。在外电场作用下,由于分子极化将引起电能的储存盒损耗,这种性能称为介电性。电介质的特征是以正、负电荷重心不重合的电极化方式传递、存储和记录电的作用和影响。电介质在电场下最主要的电特性是电导和极化,极化是电介质中电荷(束缚在分子或局部空间中不能完全自由运动的电荷及自由电荷) 在电场中作微小位移(自由电荷移至界面与电极表面) 或受限的大尺度位移,而在电介质表面(或界面) 产生束缚电荷的物理过程[1]。

在微观上,电介质的极化主要有 3 种基本形式:(1) 材料中原子核外电子云畸变产生的电子极化; (2)分子中正负离子相对位移造成的离子极化; (3) 分子固有电矩在外电场作用下转动导致的转向极化[1]。此外,还有空间电荷极化、带有电矩的基团极化以及界面极化。

高介电材料制备的器件尺寸仅为传统振荡器和介质相的1/ DK[ 2 ],因此,高介电常数(DK) 材料的发展将成为制约电子器件微型化、高速化的关键因素, 传统的某些无机材料(如陶瓷)介电性能非常突出,但难加工、Df值大;有机类介电材料,如PET、PPS、PC、PDFE等,具有良好的加工性和柔韧性,但Dk值低。高介电聚合物基复合材料(HDPCs)结合了无机材料和高聚物材料的优点,形成了Dk高、易加工和Df低等性能优异的新型功能材料。导电粒子填充的聚合物在一定条件下也可以形成性能优异的高介电材料。HDPCs在其性能研究和应用开发方面已经成为工程电介质物理研究的一大课题,是工程电介质材料研究的热点和重点。

1.高介电聚合物基复合材料的应用

1.1在无源电容器中的应用

随着集成电路朝着超大规模、超高速、高密度、大功率、高精度多功能的方向迅速发展,被动元件的嵌入化是提高系统集成度和小型化的一种有效途径和研究热点。被动原件中电容器约占电路板组装无源器件总数的40%~70%,因

而埋容技术受到更加特别的关注[3]。图1为被动原件埋入示意图。

图1 电路板中无源器件的埋入[4]

埋容技术要求材料具有高D

k值、低D

值、低加工温度、低的渗漏电流以及高

的击穿电压等。制备高介电聚合物基复合材料(HDPCs)是一种很有前景的方法,也被认为是埋入电容器应用中最有前途的材料之一。

1.2 在高储能电容器中的应用

在高储能电容器中的应用HDPCs在高储能电容器上有非常重要的应用。在交流电压作用下,电介质要消耗部分电能将其转化为热能而产生损耗,这种能量损耗叫作电介质的损耗,即介质损耗角正切(tanδ) 。电容器的发热主要是由介电损耗引起的,在电压的作用下,电容器的温度逐步升高,一段时间后,当产品的发热量与其散热量相等时,便达到了热平衡状态[5] 即:

P = 2πf CU/tanδ

在相同的交流电压频率f、电压U、电容C下,电容器的散热性决定于介质损耗tanδ,所以,高储能电容器要求介电常数尽量高,而其介电损耗要尽量低。

1.3在电缆行业中的应用

在电缆行业中的应用电缆中间接头和终端的电场具有极不均匀性,由于高D

值材料在外电场的作用下可以产生很强的与外电场方向相反的附加电场,该附加电场的电场强度会随着外电场的增大而增大,从而具有极佳的均匀电场的作用,在电缆终端和接头中具有广泛的应用。另外,电缆接头和终端也要求散热性好,因此要求这种材料的介质损耗也要尽可能低。

此外,由于HDPCs综合性能优异,在微波吸收隐身材料、生物工程研究等领域也得到了广泛的研究。

2.高介电聚合物基复合材料的介电机理

精确求解复合体系介电常数是一件非常困难的事情,各个部分的介电常数、填料分散性、界面之间的作用等都会影响复合材料的介电常数。基于经验结果和理论,研究人员提出了大量的模型来预测聚合物-填料体系的介电常数。

2.1串并联模型

Newnham等[6]对双组元复合材料的微观机制提出了两种理想模型:并联和串联排列模型,如图2所示。串联排列和并联排列模型的介电常数如式(1)、(2)所示。

ε=vp/εp+vf/εf(1)

ε=vpεp+vfεf(2)

式中:ε、ε

p、ε

分别为复合材料、聚合物、填料的介电常数;v

、v

分别为聚合物、填料的体积分数。

串联排列和并联排列为复合材料的两种极端情况,大多情况下可认为是两相的混联排列,如式(3)所示。

εn=vpεpn+vfεfn(3)

式中:n为常数,串联时为-1,并联时为+1。

图2 串联(a)和并联(b)模型[6]

2.2 Lichtenecker对数模型

对于混联排列,当n 趋于零时,ε

xn趋于1+nlogε

(x 代表p或f),

由此可得Lichtenecker对数方程[7,8],如式(4)所示。

logε=v

plogε

+v

logε

(4)

式中:ε、ε

p、ε

分别为复合材料、聚合物、填料的介电常数;v

、v

分别为聚合物、填料的体积分数。

Lichtenecker对数方程将复合体系作为一个近球形的随机混合来考虑,没

有考虑相界面之间的作用,在低含量条件下预测介电常数是有效的。随着填料含量的增加,分散性变差、空隙增多,预测结果偏差增大。修正的Lichtenecker 方程(式(5))引入了相界面作用的拟合常数k(Fitting Factor,0.3左右[9]),但高填充条件下,仍旧没有解决空隙和分散性问题,且拟合常数k对不同的聚合物、填料很敏感。

logε=logε

p+v

(1-k)log(ε

) (5)

三相复合模型

2.3 Maxwell 介质方程

对于由球形颗粒(分散相) 均匀分散在另一相(基相) 的两相混合体系,其复合介电常数与各相的介电常数及体积分数有关。Maxwell[10]导出了一个计算混合介质介电常数ε的公式:

ε = ε1 { 1+3vd (ε2 -ε1)/[2 ε1 + ε2–vd(ε2 -ε1)]} (6)式中: ε为混合介质的介电常数, ε 1 、ε 2 分别为基相和分散相的介电常数, ;v

为分散相的体积分数。该式适用于低填充且两相介电常数相差不大的情形。

Maxwell 介质方程建立后, Rayleigh ( 1892) 、Clausius (1894) 、Maxwell-Garnett (1904) 、Wiener (1912) 、Lorentz (1916) 、Wagner (1924) 等发展了Maxwell 的理论,扩展了Maxwell 介质方程的应用范围。

基于Maxwell理论,Vo和Shi[11]提出了一个填充物-界面-基体三相模型,认为复合体系的介电常数不但与分散相和基相的尺寸、浓度有关,还与界面相的相互作用程度有关,如式(7)所示。

(ε-1)/(ε+2)= [(ε

m -1)/(ε

m

+2)j-(2ε

m

+1)mb3/(εm+2)(2εm+ε

i

c3]1/h (7)

式中:ε、ε

m 、ε

i

分别为复合材料、基相、界面相的的介电常数,j、m 和

h 与复合材料本身的性质有关,b、c分别为分散相被包裹后的界面相、基相半径。Vo-Shi模型及方程的物理意义清楚,但是参数较多且不易确定。

通过研究对数混合法则中的正负偏差,王庭慰等[12]也认为基相-分散相形成的相界层会影响复合材料的介电常数,根据对数混合法则,得到式(8)。

lnε=v

p lnε

p

+v

i

lnε

i

+v

f

lnε

f

(8)

式中:ε、ε

p 、ε

i

、ε

f

分别为复合材料、高聚物、相界层和填料的介电常

数;v

p 、v

i

、v

f

分别为高聚物、相界层和填料的体积分数。

2.3有效介质模型

1935年Bruuggeman提出了对称有效介质模型[13],把对称有效介质看成是由球形颗粒无规混合并充满整个空间、各相拓扑等价的体系,其模型为一种均匀有效的介质理论,根据3个基本假设推导出其模型的自洽条件(式(9))

f(ε

1-ε)/(ε

1

+2ε)+(1-f)(ε

2

-ε)/(ε

2

+2ε)=0 (9)

式中:ε1是第一相球形颗粒的介电常数,ε2是第二相的介电常数,f 是第一相的体积分数。

2.4金属颗粒提高介电常数的相关理论

许多绝缘材料中填入导电粒子后,其介电常数会明显提高,当导电粒子加入量达到一定值时,相应的集结簇增多,材料由介电体变为导电体,此时填料颗粒的加入量为渗流阈值[14],如图3、图4所示。

图3 填料各向同性分布时渗流体系形成的示意图[15]

图4 填料各向异性分布时渗流体系形成的示意图[15]通过引入“排斥体积”的概念,渗流阈值f

c

如式(10)所示。

f c =1-exp(-B

c

V/〈V

ex

〉) (10)

式中:v是颗粒的体积,〈V

ex 〉是颗粒平均排斥体积,B

c

是每个位置上平均

的键数(对于球形颗粒(3D)B

c =2.7,对于碟形颗粒(2D)B

c

=4.5)。渗流阈值

与填料颗粒的形状和尺寸有密切的关系[15]。

3.高介电聚合物基复合材料的研究现况

HDPCs所使用的基体包括通用高分子和特种高分子,如环氧树脂(EP)、聚偏氟乙烯(PVDF)、聚苯乙烯、聚酰亚胺(PI)等,使用的纳米颗粒包括高介电陶瓷、导电粒子,如钛酸钡(BTO)粒子、Ag粒子、炭黑、碳纳米管(CNT)等。

高介电聚合物/ 陶瓷复合材料

目前很多高介电材料是聚合物/ 铁电陶瓷复合介电材料。通常这类复合材料所用的聚合物有很好的耐高温特性,软化温度要高于100 ℃;具有高温绝缘电阻大、介电常数温度稳定性好、高温收缩率小、高温时介质的损耗低等特性。如由联苯二酐和对苯二胺合成的PI ,热分解温度可达600 ℃,可以在333 ℃以下长期使用,在- 269 ℃下仍不会脆裂;机械强度高,联苯型PI 薄膜的抗拉强度可以达

到400MPa ,介电性能优异。常用的此类聚合物有聚酰胺、PI、PVDF、PVC、聚酯

(PET) 、PMMA、PIFE、TMPTA、环氧树脂及用极性基团修饰过的聚硅氧烷等[ 16 ]。

复合材料中所选用的无机介电相主要有:BaTiO

3、PZT(锆钛酸铅) 、TiO

2

、金属

粉末、碳黑、碳纳米管、CdO 等。这些不同类型的填充料颗粒分散在聚合物基体中,彼此不连通,主要靠颗粒的分散特性来改善复合材料的介电性能。具有代表性的高介电复合材料有: CCTO/P(VDF-TrFE) [ 17 ] 、BTO-CCTO[ 18 ]、BaTiO

3

/ 聚合物[ 19 ]以及陶瓷粒子/ PTFE[ 20 ]复合材料等。

高介电值聚合物/ BaTiO

3

复合材料

BaTiO

3

(BT) 粒子具有较高的介电常数,是典型的铁电材料( Ferroelect ric material) ,属于钙钛矿型晶体结构(如图5所示) 。

图5 ABO

3 (BaTiO

3

) 型晶体结构

当温度升到居里温度Tc 以上时,晶体由正方相结构转变为立方相结构,此时介电常数迅速下降,其介电行为遵循居里-维斯定律(Curie-Weiss-Law) :

在制备BT 陶瓷体材料时需高温烧结,得到的材料孔隙率较高,机械性能差。聚合物具有优良的机械性能和加工性能,但介电常数较低,故可将钛酸钡陶瓷粉体与聚合物进行复合,使其优势互补,制备具有高介电常数且易加工的介电复合材料。近年来,这类以高介电常数的陶瓷粉末分散于三维连续的聚合物基体中形成的0~3 型两相高介电复合材料,在高储能电容器中的应用引起了广泛的关注。

Yang Rao 等[ 21 ] 用聚酰亚胺( PI) 作基体,环氧树脂作粘合剂,制备了介电常数达110 的纳米BT/ 聚合物复合材料,用于埋入式电容器。杨晓军等[ 22 ]选用

粒径100nm~1μm 的钛酸钡(BT) 粉末、环氧树脂( EP) ,采用溶液共混法制备了0~3 型两相高K 复合材料。党智敏等[ 23 ]在无水乙醇中,通过纳米BT 颗粒与PVDF 之间强烈的吸附作用以及合适的热压工艺,制备了均质高介电常数BT/PVDF 纳米复合材料(见图6) 。

图6 BT/ PVDF 纳米复合材料介电常数

高介电聚合物/ CCTO 复合材料

CaCu

3 Ti

4

O

12

(简称CCTO) 结构化合物早于1967 年被Deschanvres 等[ 24 ] 合

成,但其优异的介电性能是近几年才被Subramanian 等[ 25 ]首次报道,其室温介

电性能高达12000 。CCTO 因其巨介电常数(~105 ) 、极低的损耗(tgδ≈0. 03) 、在很宽的温区范围内(100~400K) 介电常数值几乎不变以及在较大范围内( - 173~330 ℃) 无相变产生等独特优势,在高储能电容器及微电子行业展露出巨

大的发展潜力。Bochu等[ 26 ] 在1979 年采用中子衍射的方法精确地测得ACu

3

-Ti

4O

12

族氧化合物为钙钛矿型晶体结构(如图7 (a) 、(b)所示) ,CCTO 为体心立

方类钙钛矿型晶体结构,属于Im3(No. 204)空间群,常温下的晶格常数为0.7391 nm。单胞中各原子坐标为:Ca (0 ,0 ,0) , Cu (0 ,1/ 2 ,1/ 2) , Ti (1/ 4 ,1/ 4 ,1/ 4) ,O(0. 3038 ,0. 1797 ,0) 。晶胞中Ti 原子处于氧八面体中心位置, Ca2+ 和Cu2 +分别以3 ∶1 的比例占据8 个角落,而Cu2+ 与近邻的4 个O2+形成

CuO

4的正方形平面配位,所以使TiO

6

八面体并未沿C 轴排列,而是发生了倾斜

(图3(c) ) ,Ti-O-Ti 键角为141°[ 27 ],Ca 与O 没有形成化学键。具有该结构的

物质是很好的高介电材料。

图7 CaCu

3Ti

4

O

12

的晶体结构示意图

然而CCTO 材料极高的介电损失以及泄漏电流成为其在应用领域里发展的极大障碍,另外,集成电路中所用的介电材料多为薄膜状[ 28 - 30 ] ,陶瓷相CCTO 薄膜的可加工性又普遍较差,因而,聚合物/ CCTO 复合介电材料将有效改善此类材料的这一缺点,成为新一代高介电材料的新秀。Milind Arbatti 等[ 31 ] 制备的高介电常数P (VDF-TrFE)-CCTO 复合材料,室温1kHz 下的介电常数达到了300 ,且在- 70 ℃下超过700 。R. J im′enez 等[ 32 ]采用溶胶-凝胶法,650 ℃下在Pt/TiO2 / Si (1 ,0 ,0) 基底上化学溶液沉积(CSD) CCTO 130 nm厚的薄膜,其较高的介电常数(图8) 以及经济的制备方法使其成为新一代DRAM 介电填充材料的首选材料。B. ShriPrakash 等[ 33 ] 研究了Al-CCTO/ 环氧树脂复合材料的介电性能,发现金属Al 的加入能有效改善CCTO/ 环氧树脂高介电复合材料的介电性能。

图8 相对介电常数( a) 和相对介电损耗( b) 与温度的关系

4.结语

高介电聚合物基复合材料是一类具有广阔应用前景的功能材料,在工程领域有着重要的应用,可以制成多种电子元件。但是从目前的研究现状来看,这种复合材料所需的填料粉体和聚合物的种类单一、介电常数提高与介电损耗降低之间的对立、高介电理论与复合界面理论研究的进一步发展和深入等问题都将成为今后科研人员关注的热点。同时随着纳米科技的成熟,如何发挥纳米材料显著的量子尺寸效应及其在电、光、磁等物理性质上新奇的特性和规律,制备这种先进的三相纳米高介电聚合物复合材料,开发多功能聚合物基高温高介纳米复合材料也将成为这一领域的研究热点。

参考文献

1.吴炯, 沈官秋. 电气材料及其应用[M] . 西安: 陕西科学技术出版社, 1983 :

1392150.

2.Kretly L C , Almeida A F L , Sombra A S B ,et al. Dielect ricpermittivity

and loss of CaCu

3 T

i4

O

12

(CCTO) subst rates for microwave devices and

antennas[J ] . J Mater Sci Mater Electron ,2004 ,15 :657

3.Ulrich R K . Integrated passive component technology [M] . NewYork:

Wiley-EEE Press , 2003

4.Lu J X , Wong C P . Recent advances in hight-K nanocomposite materials

for embedded capacitor applications [j] . IEEE Trans Dielectrics Electrical Insulation , 2008 , 15 : 1322

5.李晓和. 聚丙烯高频功率电容器[J ] . 电子元件与材料, 1995 , (10) :26

6.Newnham R E , Skinner D P , Cross L E . Connectivity and piezoelectric

-pyroeletric composites [J] . Mater Res Bull, 1978 , 13:525

7.Frost N E, McGrath P B, Burns C W. Effect of fillers on the dielectric

properties of polymers [C] / / Conference Record of the 1996 IEEE International Symposium on Electrical Insulation. Canada: Montreal, 1996

8.Lichtenecker K. Der elektrische leitungswiderstand kün-stlicher and

natürlicher aggregate [J]. Phys Z, 1924,25:225

9.Nalwa H S. Ferroelectric polymers: Chemistry, physics, and appli

-cations [M]. New York: M Dedder Corp, 1995

10.Brosseau C , Beroual A. Computational elect romagnetics and the

rational design of new dielect ric heterost ructures [ J ] . Prog Mater Sci ,2003 ,48 (5) :373

11.Vo H T, Shi F G. Towards model-based engineering of optoelectronic

packaging materials: Dielectric constant modeling [J]. Microelectron J, 2002,33:409

12.王庭慰,陈逸范.高介电性能的陶瓷-聚合物复合材料初探[J].高分子

材料科学与工程,1996,12(5):77

13.Bruggeman V D A G. Berechnung verschiedener physikalischer Konstanten

von heterogenen ubstanzen. I.Dielektrizit tskonstanten and leitf higkeiten der mischkrperaus isotropen substanzen [J]. Ann Phys, 1935 , 416:636

14.14 Pecharroman C, Fatima E B, Bartolome J F, et al. New percolative

BaTiO3-Ni composites with a high and frequencyindependent dielectric constant [J]. Adv Mater, 2001,13: 1541

15.Nan C. Physics of inhomogeneous inorganic materials [J]. Prog Mater

Sci, 1993,37:1

16.尚修勇,朱子康,印杰,等. 偶联剂对PI/ SiO2 纳米复合材料形态结构及性能

的影响[J ] . 复合材料学报, 2000 ,17 (4) :15

17.Roman Popielarz , Chiang C K. Polymer composites with the dielect ric

constant comparable to that of barium titanate ceramics[J ] . Mater Sci Eng B ,2007 ,139 :48

18.Fechine P B A , et al. Dielect ric relaxation of BatiO3 (BTO)-Cacu

3

Ti

4O

12

(CCTO) composite screen-printed thick films at low

temperatures[J ] . Mater Chem Phys ,2006 ,96 :402

19.刘泽,李永祥,吴冲若. 高介电常数有机复合介质功能材料[J ] . 电子元件

与材料,1998 ,2 :1

20.王亚明,贾德昌. Ba

2 Ti

9

O

2

/ PTFE 复合介电材料性能研究[J ] . 哈尔滨工

业大学学报,2003 ,35 (9) :1109

21.Rao Y, Ogitani S , Kohl P , et al. Novel polymer-ceramic nanocomposite

based on high dielect ric constant epoxyformula for embedded capacitor application [J ] . J App Polym Sci ,2002 ,83 (5) :1084

22.杨晓军,等. 高介电常数EP/ BT 复合材料介电性能的研究 [J ] . 化工新型

材料,2006 ,34 (12) :27

23.党智敏. 高介电常数的聚合物基纳米复合电介质材料[J ] . 中国电机工程

学报,2006 ,26 (15) :100

24.Deschanvres A , Raveau B , Tollemer F. Remplacementde metal bivalent

par lecuivre danslestitanatesde type Perowskite [J ] . Bulletin de la Socie te chimique de France ,1967 ,11 :4077

25.Subramanian M A , Li D , Duan N ,et al. High2dielect ric-constant in

ACu

3 TiO12 and ACu

3

TiFeO

12

phases [ J ] . J Solid State

Chem ,2000 ,151 :323

26.Bochu B , Deschhizeaux M N , Joibert J C. Synthèse et caractérisation

d’une série de titanates pérowskites isotypes de [CaCu

3 ] (Mn

4

) O

12

[J ] . J Solid State Chem ,1979 ,29 (2) :291

27.Subramanian M A , Sleight A W. CaCu

3Ti

4

O

12

and CaCu Ru

4

O

12

perovskites :

High dielectric constants and valence degeneracy[J ] . Solid State Sci ,2002 ,4 :347

28.Tselev A , et al . Evidence for power-law f requency dependence of

int rinsic dielect ric response in the CaCu

3 Ti

4

O

12

[J ] .Phys Rev B ,

2004 ,70 :144101

29.Fang L , Shen M R , Cao W W. Effect s of postanneal conditions on the

dielect ric properties of CaCu3 Ti4O12 thin films prepared on Pt/ Ti/ SiO

2

/ Si subst rates [ J ] . J Appl Phys ,2004 ,95 :6483

30.Liang Fang ,et al . Reduced dielect ric loss and leakage current in

CaCu

3 Ti

4

O

12

/ SiO

2

/ CaCu

3

Ti

4

O

12

multilayered films[J ] . Solid State

Commun ,2006 ,137 (7) :381

https://www.doczj.com/doc/ff8069805.html,ind Arbatti , Shan Xiaobing , Cheng Z Y. New high-dielect

ric-constant polymer-ceramic composites [ C ] ∥ClèmentSanchez , Ulrich Schubert , Richard M Laine , et al. Organic/inorgaric hybrid materials22004. (Mat Res Soc Symp

Proc.847 ,Warrendale ,PA ,2005) ,EE13. 58

32.J im′enez R , et al. Dielect ric properties of solgel derived Ca

2

Cu

3 Ti

4

O

12

thin films onto Pt/ TiO

2

/ Si (1 0 0) subst rates[J ] .J Euro

Ceram Soc ,2007 ,27 :3829

33.Shri Prakasha B , Varma K B R. Dielect ric behavior of CCTO/ epoxy

and Al

2

CCTO/ epoxy composites[J ] . Comp Sci Techn ,2007 ,67 (11) :2363

高K栅介质材料的研究进展

高K栅介质材料的研究进展 摘要:对于纳米线宽的集成电路, 需要高介电常数( 高k) 的栅极介质材料代替二氧化硅以保持一定的物理厚度和优良的漏电性能. 这些栅极候选材料必须有较高的介电常数, 合适的禁带宽度, 与硅衬底间有良好界面和高热稳定性. 此外, 其制备加工技术最好能与现行的硅集成电路工艺相兼容. 本文阐述了选择高k 栅介质材料的基本原则, 介绍了典型高k 栅介质材料性能, 并展现了引入高k 栅介质材料存在的问题. 关键词: 高k 栅介质金属氧化物 HfO2 1.传统晶体管结构及瓶颈 20世纪80年代以来,CMOS集成电路的快速发展大大促进了硅基微电子工业的发展,使其在市场的份额越来越大。而CMOS集成电路的快速发展又是得益于其电路基本单元——场效应管尺寸的缩小。场效应管尺寸缩小的关键因素就是作为栅介质层的二氧化硅(SiO2)膜厚的减小。二氧化硅的作用是隔离栅极和硅通道。作为栅介质层,二氧化硅有很多优点,如热和电学稳定性好,与硅的界面质量很好以及很好的电隔离性能等。但是随着器件尺寸的不断缩小,二氧化硅的厚度被要求减到2nm以下,随之产生了许多问题 例如:1、漏电流的增加,对于低功率器件,这将是不能忍受的,而事实上,现在低功率器件的市场需求却越来越大 2、杂质扩散。栅极、二氧化硅和硅衬底之间存在杂质的浓度梯度,所以杂质会从栅极中扩散到硅衬底中或者固定在二氧化硅中,这会影响器件的阈值电压,从而影响器件的性能。当二氧化硅的厚度减小时,杂质就更容易从栅极中扩散到硅衬底中。 所以,有必要寻求一种新的栅介质层来替代二氧化硅。从以上两个存在的问题可以看出,为了减小漏电流和降低杂质扩散,最直观的方法就是增加栅介质层的厚度,但是为了保持介质层的电容不变,新的栅介质层的介电常数必须比二氧化硅要大,而且介质层的介电常数越大,膜的厚度就可以越大,因此我们引入了高K介质。 2.高k 栅介质材料要求 ( 1) 高介电常数k.高介电常数k 能维持驱动电流, 减小漏电流密度. ( 2) 较大的禁带宽度. ( 3) 与Si 导带间的偏差大于1eV. ( 4) 在Si 衬底上有良好的热力学稳定性, 生产工艺过程中尽量不与Si 发生反应, 并且相互之间扩散要小. ( 5) 与Si 界面质量应较好.新型栅介质材料与Si 之间的界面, 界面态密度和缺陷密度要低, 尽量接近于SiO2 与Si 之间的界面质量, 以削弱界面电子俘获和载流子迁移率降低造成的影响。 ( 6) 非晶态结构.非晶结构栅介质材料是各向同性的, 不存在晶粒间界引起漏电流增大的现象,且较容易制备, 是新型栅介质材料的理想结构。 3 高k 材料的选择 最有希望取代SiO2 栅介质的高k 材料主要有两大类: 氮化物和金属氧化物. 3.1 氮化物 氮化物主要包括Si3N4, SiON 等.Si3N4 介电常数比SiO2 高, 作栅介质时漏电流比SiO2 小几个数量级, Si3N4 和Si 的界面状态良好, 不存在过渡层.但Si3N4 具有难以克服的硬度和脆性, 在硅基片上的界面态密度为1.2×1012eV- 1cm- 2, 因此Si3N4 并非理想的栅介质材料.超薄SiOxNy 可代替SiO2 作为栅介质, 这主要是由于SiOxNy 的介电常数比SiO2 要高, 在相同的 等效栅氧化层厚度下, SiOxNy 的物理厚度大于SiO2, 漏电流有所降低.在SiO2- Si 界面附近含有少量的氮, 这可以降低由热电子引起的界面退化, 而且氮可以阻挡硼的扩散. 东芝

介电常数

介电常数 求助编辑 介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数(permittivity),又称诱电率。如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。 目录 编辑本段简介 介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为相对介电常数(permittivity),又称相对电容率,以εr表示。如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。介电常数(又称电容率),以ε表示,ε=εr*ε0,ε0为真空绝对介电常数,ε0=8.85*e-12,F/m。 一个电容板中充入介电常数为ε的物质后电容变大ε倍。 介电常数 电介质有使空间比起实际尺寸变得更大或更小的属性。例如,当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移远了一样。 当电磁波穿过电介质,波的速度被减小,有更短的波长。 相对介电常数εr可以用静电场用如下方式测量:首先在其两块极板之间为空气的时候测试电容器的电容C0。然后,用同样的电容极板间距离但在极板间加入电介质后侧得电容Cx。然后相对介电常数可以用下式计算εr=Cx/C0

编辑本段相关解释 "介电常数" 在工具书中的解释 1.又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。介电常数愈小绝缘性愈好。空气和CS2的ε值分别为1.0006和 2.6左右,而水的ε值特别大,10℃时为 8 3.83,与温度t的关系是 介电常数 查看全文 2.介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。介电常数用ε表示,一些常用溶剂的介电常数见下表: "介电常数" 在学术文献中的解释

高聚物的介电性能

高聚物的介电性能 介电性是指高聚物在电场作用下,表现出对静电能的储存和损耗的性质,通常用介电常数和介电损耗来表示。 (1)介电极化 绝大多数高聚物是优良的电绝缘体,有高的电阻率,低介电损耗、高的耐高频性和高的击穿强度。但在外电场作用下,或多或少会引起价电子或原子核的相对位移,造成了电荷的重新分布,称为极化。主要有以下几种极化:(1)电子极化,(2)原子极化,(3)偶极极化。前两种产生的偶极矩称诱导偶极矩,后一种为永久偶极矩的取向极化。 极化偶极矩()的大小,与外电场强度(E)有关,比例系数称为分子极化率。 =E 按照极化机理不同,有电子极化率,原子极化率(上述两者合称变形极化率 =+)和取向极化率。 =(为永久偶极矩) 因而对于极性分子=++ 对于非极性分子=+ 根据高聚物中各种基团的有效偶极矩,可以把高聚物按极性大小分为四类: 非极性:PE、PP、PTFE 弱极性:PS、NR 极性:PVC、PA、PVAc、PMMA 强极性:PVA、PET、PAN、酚醛树脂、氨基树脂 高聚物的有效偶极矩与所带基团的偶极矩不完全一致,结构对称性会导致偶极矩部分或全部相互抵消。 介电常数是表示高聚物极化程度的宏观物理量,它定义为介质电容器的电容C比真空电容器C0的电容增加的倍数。

式中:为极板上的原有电荷,为感应电荷。 介电常数的大小决定于感应电荷的大小,所以它反映介质贮存电能的能力。 宏观物理量与微观物理量之间的关系可以用Clausius-Mosotti方程给出: 摩尔极化度P=(对非极性介质) =(对极性介质) (2)介电损耗 聚合物在交变电场中取向极化时,伴随着能量消耗,使介质本身发热,这种现象称为聚合物的介电损耗。 常用复数介电常数来同时表示介电常数和介电损耗两方面的性质: 为实部,即通常实验测得的; 为虚部,称介电损耗因素。 =+ = 式中:为静电介电系数;为光频介电系数;为偶极的松弛时间。 介电损耗为=,一般高聚物的介电损耗很少,=10-2~10-4,与的关系可用Debye方程描述:

High-K和Low-K电介质材料

High-K和Low-K电介质材料 不同电介质的介电常数k 相差很大,真空的k 值为1,在所有材料中最低;空气的k值为1.0006;橡胶的k值为2.5~3.5;纯净水的k值为81。工程上根据k值的不同,把电介质分为高k(high-k)电介质和低k(low-k)电介质两类。介电常数k >3.9 时,判定为high-k;而k≤3.9时则为low-k。IBM将low-k标准规定为k≤2.8,目前业界大多以2.8作为low-k电介质的k 值上限。 一、High-K电介质材料 随着集成电路的飞速发展,SiO2作为传统的栅介质将不能满足MOSFET,器件高集成度的要求,需要一种新型High-k材料来代替传统的SiO2。[1]所谓High-K电介质材料,是一种可取代二氧化硅作为栅介质的材料。它具备良好的绝缘属性,同时可在栅和硅底层通道之间产生较高的场效应(即高-K)。两者都是高性能晶体管的理想属性。 High-K电介质材料应满足的要求::(1) 高介电常数,≤50 nm CMOS 器件要求k >20;(2)与Si 有良好的热稳定性;(3)始终是非晶态,以减少泄漏电流; (4)有大的带隙和高的势垒高度,以降低隧穿电流;(5) 低缺陷态密度/ 固定电荷密度,以抑制器件表面迁移率退化。[2] 最有希望取代SiO2栅介质的高K材料主要有两大类:氮化物和金属氧化物。 1.氮化物 氮化物主要包括Si3N4,SiON等。Si3N4介电常数比SiO2高,作栅介质时漏电流比SiO2小几个数量级,Si3N4和Si的界面状态良好,不存在过渡层。但Si3N4具有难以克服的硬度和脆性,因此Si3N4并非理想的栅介质材料。 超薄SiOxNy可代替SiO2作为栅介质,这主要是由于SiOxNy的介电常数比SiO2要高,在相同的等效栅氧化层厚度下,SiOxNy的物理厚度大于SiO2,漏电流有所降低。在SiO2-Si界面附近含有少量的氮,这可以降低由热电子引起的界面退化,而且氮可以阻挡硼的扩散。东芝公司2004年采用SiO2作为栅介质,多晶硅为栅极,试制成功等效氧化层厚度(EOT)为1nm的符合22nm工艺要求的

介电常数

实 验 报 告 00系 2007级 姓名 宁盛嵩 日期 2008-11-24 台号 8号台 实验题目:简易介电常数测试仪的设计与制作 88 实验目的: (1)了解多种测量介电常数的方法及其特点和适用范围; (2)掌握替代法,比较法和谐振法测固体电介质介电常数的原理和方法; (3)用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理: 介质材料的介电常数一般采用相对介电常数ε r 来表示,通常采用 测量样品的电容量,经过计算求出εr ,它们满足如下关系: S Cd r 00εεεε== (1) 式中ε为绝对介电常数,ε0为真空介电常数,m F /10 85.812 0-?=ε,S 为样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 一、替代法 当实验室无专用测量电容的仪器,但有标准可变电容箱或标准可变电容器时,可采用替代法设计一简易的电容测试仪来测量电容。这种方法的优点是对仪器的要求不高,由于引线参数可以抵消,故测量精度只取决于标准可变电容箱或标准可变电容器读数的精度。若待测电容与标准可变电容的损耗相差不大,则该方法具有较高的测量精度。 替代法参考电路如图2.2.6-1(a)所示,将待测电容C x (图中R x 是待测电容的介电损耗电阻),限流电阻R 0(取1k Ω)、安培计与信号源组成一简单串联电路。合上开关K 1,调节信号源的频率和电压及限流电阻R 0,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数I x 。将开关K 2打到B 点,让标准电容箱C s 和交流电阻箱R s 替代C x 调节C s 和R s 值,使I s 接近I x 。多次变换开关K 2的位置(A,B 位),反复调节C s 和R s ,使X S I I =。假定C x 上的介电损耗电阻R x

Dielectric Constant(介电常数表)超全

ABS RESIN, LUMP 丙烯晴-丁二烯-苯乙烯树脂块 2.4-4.1 ABS RESIN, PELLET丙烯晴-丁二烯-苯乙烯树脂球 1.5-2.5 ACENAPHTHENE二氢苊21 3.0 ACETAL聚甲醛21 3.6 ACETAL BROMIDE溴代乙缩醛二乙醇16.5 ACETAL DOXIME乙二醛肟20 3.4 ACETALDEHYDE乙醛521.8 ACETAMIDE乙酰胺2041 ACETAMIDE乙酰胺8259 ACETANILIDE乙醛22 2.9 ACETIC ACID乙酸20 6.2 ACETIC ACID乙酸2 4.1 ACETIC ANHYDRIDE乙酸酐1921.0 ACETONE丙酮2520.7 ACETONE丙酮5317.7 ACETONE丙酮0 1.0159 ACETONITRILE乙睛 2137.5 ACETOPHENONE苯乙酮2417.3 ACETOXIME丙酮肟-43 ACETYL ACETONE乙酰丙酮2023.1 ACETYL BROMIDE乙酰溴2016.5 ACETYL CHLORIDE乙酰氯2015.8 ACETYLE ACETONE乙酰丙酮2025 ACETYLENE乙炔0 1.0217 ACETYLMETHYL HEXYL KETONE己基甲酮1927.9 ACRYLIC RESIN丙烯酸树脂 2.7 - 4.5 ACTEAL乙醛21.0-3.6 AIR空气1 AIR (DRY)空气(干燥)20 1.000536 ALCOHOL, INDUSTRIAL工业酒精16-31 ALKYD RESIN醇酸树脂 3.5-5 ALLYL ALCOHOL丙烯醇1422 ALLYL BROMIDE溴丙烯197.0 ALLYL CHLORIDE烯丙基氯208.2 ALLYL IODIDE碘丙烯19 6.1 ALLYL ISOTHIOCYANATE异硫氰酸丙烯酯1817.2 ALLYL RESIN (CAST)烯丙基脂(CAST) 3.6 - 4.5 ALUMINA氧化铝9.3-11.5 ALUMINA氧化铝 4.5 ALUMINA CHINA氧化铝瓷 3.1-3.9 ALUMINUM BROMIDE溴化铝100 3.4 ALUMINUM FLUORIDE氟化铝 2.2 ALUMINUM HYDROXIDE氢氧化铝 2.2 ALUMINUM OLEATE油酸铝20 2.4 ALUMINUM PHOSPHATE硷式磷酸铝-14 ALUMINUM POWDER铝粉 1.6-1.8 AMBER琥珀 2.8-2.9 AMINOALKYD RESIN酸硬化树脂 3.9-4.2 AMMONIA血氨-5925

材料的介电常数和磁导率的测量

无机材料的介电常数及磁导率的测定 一、实验目的 1. 掌握无机材料介电常数及磁导率的测试原理及测试方法。 2. 学会使用Agilent4991A 射频阻抗分析仪的各种功能及操作方法。 3. 分析影响介电常数和磁导率的的因素。 二、实验原理 1.介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化 (electronic polarization ,1015Hz),离子极化 (ionic polarization ,1012~1013Hz),转向极化 (orientation polarization ,1011~1012Hz)和空间电荷极化 (space charge polarization ,103Hz)。这些极化的基本形式又分为位移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立需要消耗一定的时间,也通常伴随有能量的消耗,如电子松弛极化和离子松弛极化。 相对介电常数(ε),简称为介电常数,是表征电介质材料介电性能的最重要的基本参数,它反映了电介质材料在电场作用下的极化程度。ε的数值等于以该材料为介质所作的电容器的电容量与以真空为介质所作的同样形状的电容器的电容量之比值。表达式如下: A Cd C C ?==001εε (1) 式中C 为含有电介质材料的电容器的电容量;C 0为相同情况下真空电容器的电容量;A 为电极极板面积;d 为电极间距离;ε0为真空介电常数,等于8.85×10-12 F/m 。 另外一个表征材料的介电性能的重要参数是介电损耗,一般用损耗角的正切(tanδ)表示。它是指材料在电场作用下,由于介质电导和介质极化的滞后效应

聚合物基复合材料在高介电材料方面的应用与发展

聚合物基复合材料在高介电材料方面的应用与发展 姓名:*** 班级:高分子化学与物理学号:**** 摘要:高介电常数聚合物具有优异的介电性和柔韧性,可以制备高容量有机薄膜电容器等无源器件,近年来受到广泛关注。本文概述了目前高介电聚合物基复合材料的主要问题,论述了铁电陶瓷-聚合物型、氧化物-聚合物型、碳纳米管-聚合物型、金属导电颗粒-聚合物型、全有机高分子聚合物型等高介电复合材料的国内外研究进展。并指出提高介电常数、储能密度,减小介电损耗,降低制备成本是未来发展的方向。 关键词:高介电常数复合材料聚合物填料介电损耗 正文: 随着信息技术的发展,作为金属氧化物半导体场效应晶体管(MOSFET)、动态随机存储器(DRAM)以及印刷线路板(PWB)上电容器的介质材料迅速减薄,逼近其物理极限。随着器件特征尺寸的不断缩小,当线宽小于0.1μm,栅氧化物层厚度开始逐渐接近原子间距。此时,受隧道效应的影响,栅极漏电流将随氧化层厚度的减小呈指数增长。漏电流的急剧增加造成MOS器件关态时的功耗增加,对器件的集成度、可靠性和寿命都有很大影响,因此研究新型高介电介质材料成为当今信息功能材料以及微电子领域的前沿课题。 介电材料按介电常数的高低分为高介电和低介电两个方向。高介电材料主要应用于栅极介质材料、储能材料等领域,低介电材料主要用来制备电子封装材料。笔者所在的课题组近年来在聚酰亚胺低介电复合材料方面取得了一系列研究成果。高介电常数材料根据用途主要分为钙钛矿相氧化物和金属或过渡金属氧化物,前者用于DRAM以及PWB上的电容介质材料,后者用于MOSFET栅极的绝缘介质材料。近年来,聚合物基高介电材料成为微电子行业研究的热点之一,选择合适的聚合物基体,可以在PWB上快速大规模地制备高电容嵌入式微电容器,这种微电容器可以保证集成电路的高速运行。此外,利用聚合物基高介电材料具备的特殊物理特性,可制备具有特殊性能的新型器件[1]。 1 电介质及其极化机理[2] 电介质是指在电场下能在电介质材料内部建立极化的一切物质。从广义上讲,电介质不仅包括绝缘体,还包括能够将力、热、光、温度、射线、化学及生物等非电量转化为电信息的各种功能材料,甚至还包括电解质和金属材料。电介质的特征是以正、负电荷重心不重合的电极化方式传递、存储和记录电的作用和影响。电介质在电场下最主要的电特性是电导和极化,极化是电介质中电荷(束缚在分子或局部空间中不能完全自由运动的电荷及自由电荷) 在电场中作微小

高k材料(精品文档)

高k栅介质材料研究 黄玲10092120107 摘要 在传统的MOSFET中,栅介质材料大部分采用二氧化硅,因为SiO2具有良好的绝缘性能及稳定的二氧化硅—硅衬底界面。然而对于纳米线宽的集成电路,需要高介电常数(高k)的栅极介质材料代替二氧化硅以保持优良的漏电性能。这些栅极候选材料必须有较高的介电常数,合适的禁带宽度,与硅衬底间有良好界面和高热稳定性。此外,其制备加工技术最好能与现行的硅集成电路工艺相兼容。 关键字:高介电常数;MOSFET; 1.引言 过去的几十年中,SiO2容易在硅表面氧化生长,工艺简,单热稳定性好,作为栅介质材料,是一种非常重要的绝缘材料。但随着集成电路规模的不断增大,需要减小器件的特征尺寸。对于给定的电压,增加电容量有两种途径:一种是减小栅绝缘层的厚度,一种是增加绝缘层的介电常数。对于SiO2来说,由于其介电常数较小,只有3. 9 ,当超大规模集成电路的特征尺寸小于0. 1μm时,SiO2绝缘层的厚度必须小于2nm ,这时,无法控制漏电流密度。而且,当SiO2薄膜的厚度小于7nm 时,很难控制这么薄SiO2薄膜的针孔密度。另外SiO2难以扩散一些电极掺杂物,比如硼。薄氧化层带来的另一个问题是,因为反型层量子化和多晶硅栅耗尽效应的存在,使等效电容减小,导致跨导下降。因此,有必要研究一种高介质材料(又叫高- k 材料)来代替传统的SiO2。 2.1传统晶体管结构的瓶颈及转变方向 进入21 世纪以来集成电路线宽进一步缩小,SiO2栅介质层厚度成为首个进入原子尺度的关键参数,由公式 C=ε *ε0* A/Tox, 为了保证CMOS 晶体管的功能特性,增大C,最直接的做法是降低二氧化硅的厚度Tox,然而当Tox很小时会产生以下问题: (1)漏电流增加,使MOSFET功耗增加。(2)杂质扩散更容易通过SiO2栅介质薄膜,从栅极扩散到衬底,影响MOSFET参数,如阈值电压(3)因为反型层量子化和多晶硅栅耗尽效应的存在,使等效电容减小,导致跨导下降。(4)当SiO2栅介质薄膜做到很薄时,难以控制SiO2薄膜的针孔密度。(5)制作如此薄的SiO2栅介质在工艺上很难做到。 于是,在不能再减小Tox的情况下,研究方向转为增大ε,由于SiO2介电常

低介电常数材料论文

低介电常数材料的特点、分类及应用 胡扬 摘要: 本文先介绍了低介电常数材料(Low k Materials)的特点、分类及其 在集成电路工艺中的应用。指出了应用低介电常数材料的必然性,举例说明了低介电常数材料依然是当前集成电路工艺研究的重要课题,并展望了其发展前景。正文部分综述了近年研究和开发的low k材料,如有机和无机低k材料,掺氟低k材料,多孔低k材料以及纳米低k材料等,评述了纳米尺度微电子器件对低k 薄膜材料的要求。最后特别的介绍了一种可能制造出目前最小介电常数材料的技术: Air-Gap。 关键词:低介电常数;聚合物;掺氟材料;多孔材料;纳米材 料 ;Air-Gap 1.引言 随着ULSI器件集成度的提高,纳米尺度器件内部金属连线的电阻和绝缘介质层的电容所形成的阻容造成的延时、串扰、功耗就成为限制器件性能的主要因素,微电子器件正经历着一场材料的重大变革:除用低电阻率金属(铜)替代铝,即用低介电常数材料取代普遍采用的SiO2(k:3.9~4.2)作介质层。对其工艺集成的研究,已成为半导体ULSI工艺的重要分支。 这些低k材料必须需要具备以下性质:在电性能方面:要有低损耗和低泄漏电流;在机械性能方面:要有高附着力和高硬度;在化学性能方面:要有耐腐蚀和低吸水性;在热性能方面:要有高稳定性和低收缩性。 2.背景知识 低介电常数材料大致可以分为无机和有机聚合物两类。目前的研究认为,降低材料的介电常数主要有两种方法: 其一是降低材料自身的极性,包括降低材料中电子极化率(electronic polarizability),离子极化率(ionic polarizability)以及分子极化率(dipolar polarizability)。在分子极性降低的研究中,人们发现单位体积中的分子密度对降低材料的介电常数起着重要作用。材料分子密度的降低有助于介电常数的降低。这就是第二种降低介电常数的方法:增加材料中的空隙密度,从而降低材料的分子密度。 针对降低材料自身极性的方法,目前在0.18mm技术工艺中广泛采用在二氧化硅中掺杂氟元素形成FSG(氟掺杂的氧化硅)来降低材料的介电常数。氟是具有强负电性的元素,当其掺杂到二氧化硅中后,可以降低材料中的电子与离子极化,

常见介电常数

Material物质名* 温度(°C) 介电常数 ABS RESIN, LUMP 丙烯晴-丁二烯-苯乙烯树脂块2.4-4.1 ABS RESIN, PELLET 丙烯晴-丁二烯-苯乙烯树脂球1.5-2.5 ACENAPHTHENE 二氢苊21 3.0 ACETAL 聚甲醛21 3.6 ACETAL BROMIDE 溴代乙缩醛二乙醇16.5 ACETAL DOXIME 乙二醛肟20 3.4 ACETALDEHYDE 乙醛5 21.8 ACETAMIDE 乙酰胺20 41 ACETAMIDE 乙酰胺82 59 ACETANILIDE 乙醛22 2.9 ACETIC ACID 乙酸20 6.2 ACETIC ACID 乙酸2 4.1 ACETIC ANHYDRIDE 乙酸酐19 21.0 ACETONE 丙酮25 20.7 ACETONE 丙酮53 17.7 ACETONE 丙酮0 1.0159 ACETONITRILE 乙睛21 37.5 ACETOPHENONE 苯乙酮24 17.3 ACETOXIME 丙酮肟-4 3 ACETYL ACETONE 乙酰丙酮20 23.1 ACETYL BROMIDE 乙酰溴20 16.5 ACETYL CHLORIDE 乙酰氯20 15.8 ACETYLE ACETONE 乙酰丙酮20 25 ACETYLENE 乙炔0 1.0217 ACETYLMETHYL HEXYL KETONE 己基甲酮19 27.9 ACRYLIC RESIN 丙烯酸树脂2.7 - 4.5 ACTEAL 乙醛21.0-3.6 AIR 空气1 AIR (DRY) 空气(干燥)20 1.000536 ALCOHOL, INDUSTRIAL 工业酒精16-31 ALKYD RESIN 醇酸树脂3.5-5 ALLYL ALCOHOL 丙烯醇14 22 ALLYL BROMIDE 溴丙烯19 7.0 ALLYL CHLORIDE 烯丙基氯20 8.2 ALLYL IODIDE 碘丙烯19 6.1 ALLYL ISOTHIOCYANATE 异硫氰酸丙烯酯18 17.2 ALLYL RESIN (CAST) 烯丙基脂(CAST) 3.6 - 4.5 ALUMINA 氧化铝9.3-11.5 ALUMINA 氧化铝4.5 ALUMINA CHINA 氧化铝瓷3.1-3.9 ALUMINUM BROMIDE 溴化铝100 3.4 ALUMINUM FLUORIDE 氟化铝2.2 ALUMINUM HYDROXIDE 氢氧化铝2.2 ALUMINUM OLEATE 油酸铝20 2.4 ALUMINUM PHOSPHATE 硷式磷酸铝-14 ALUMINUM POWDER 铝粉1.6-1.8 AMBER 琥珀2.8-2.9 AMINOALKYD RESIN 酸硬化树脂3.9-4.2 AMMONIA 血氨-59 25 DIELECTRIC CONSTANT REFERENCE GUIDE介电常数参考表Material 物质名* 温度(°C) 介电常数DIELECTRIC CONSTANT REFERENCE GUIDE介电常数参考表AMMONIA 血氨-34 22 AMMONIA 血氨4 18.9 AMMONIA 血氨21 16.5 AMMONIA (GAS? ) 血氨(气体)0 72 AMMONIUM BROMIDE 溴化铵7.2 AMMONIUM CHLORIDE 氯化铵7 AMYL ACETATE 醋酸戊酯20 5 AMYL ALCOHOL 戊醇-118 35.5 AMYL ALCOHOL 戊醇20 15.8 AMYL ALCOHOL 戊醇60 11.2 AMYL BENZOATE 苯甲酸戊酯20 5.1 AMYL BROMIDE 溴化环戊烷10 6.3 AMYL CHLORIDE 戊基氯11 6.6 AMYL ETHER 戊基醚16 3.1 AMYL FORMATE 甲酸戊基19 5.7 AMYL IODIDE 碘化戊基17 6.9 AMYL NITRATE 硝酸戊基17 9.1 AMYL THIOCYANATE 硫氰酸盐戊基20 17.4 AMYLAMINE 戊胺22 4.6 AMYLENE 戊烯21 2 AMYLENE BROMIDE 溴戊烯14 5.6 AMYLENETETRARARBOXYLATE 19 4.4 AMYLMERCAPTAN 戊基硫醇20 4.7 ANILINE 苯胺0 7.8 ANILINE 苯胺20 7.3 ANILINE 苯胺100 5.5 ANILINE FORMALDEHYDE RESIN 苯氨-甲醛树脂3.5 - 3.6 ANILINE RESIN 苯胺树脂3.4-3.8 ANISALDEHYDE 茴香醛20 15.8 ANISALDOXINE 茴香肟63 9.2 ANISOLE 苯甲醚20 4.3 ANITMONY TRICHLORIDE 三氯化锑5.3 ANTIMONY PENTACHLORIDE 五氯化锑20 3.2 ANTIMONY TRIBROMIDE 三溴化锑100 20.9 ANTIMONY TRICHLORIDE 三氯化锑5.3 ANTIMONY TRICHLORIDE 三溴化锑74 33 ANTIMONY TRICODIDE 三碘化锑175 13.9 APATITE 磷灰石7.4 ARGON 氩-227 1.5

高介电聚合物

高分子物理 结课作业 题目:高介电常数聚合物基复合材料 班级: 学号: 姓名: 学科、专业:

高介电材料具有良好的储能和均匀电场作用,拥有非常广阔的应用空间,在埋入式电容元件、高能存储器、电缆、电活性物质等领域有着极为重要的应用, 开发易加工、介电常数(D k)高、介电损耗(D f )低等综合性能优越的新型电子 材料成为研究的热点。 聚合物在外场(包括电,力温度等)作用下,电介质分子或者其中某些基团中电荷分布发生相应变化,可以产生极化现象。在外电场作用下,由于分子极化将引起电能的储存盒损耗,这种性能称为介电性。电介质的特征是以正、负电荷重心不重合的电极化方式传递、存储和记录电的作用和影响。电介质在电场下最主要的电特性是电导和极化,极化是电介质中电荷(束缚在分子或局部空间中不能完全自由运动的电荷及自由电荷) 在电场中作微小位移(自由电荷移至界面与电极表面) 或受限的大尺度位移,而在电介质表面(或界面) 产生束缚电荷的物理过程[1]。 在微观上,电介质的极化主要有 3 种基本形式:(1) 材料中原子核外电子云畸变产生的电子极化; (2)分子中正负离子相对位移造成的离子极化; (3) 分子固有电矩在外电场作用下转动导致的转向极化[1]。此外,还有空间电荷极化、带有电矩的基团极化以及界面极化。 高介电材料制备的器件尺寸仅为传统振荡器和介质相的1/ DK[ 2 ],因此,高介电常数(DK) 材料的发展将成为制约电子器件微型化、高速化的关键因素, 传统的某些无机材料(如陶瓷)介电性能非常突出,但难加工、Df值大;有机类介电材料,如PET、PPS、PC、PDFE等,具有良好的加工性和柔韧性,但Dk值低。高介电聚合物基复合材料(HDPCs)结合了无机材料和高聚物材料的优点,形成了Dk高、易加工和Df低等性能优异的新型功能材料。导电粒子填充的聚合物在一定条件下也可以形成性能优异的高介电材料。HDPCs在其性能研究和应用开发方面已经成为工程电介质物理研究的一大课题,是工程电介质材料研究的热点和重点。 1.高介电聚合物基复合材料的应用 1.1在无源电容器中的应用 随着集成电路朝着超大规模、超高速、高密度、大功率、高精度多功能的方向迅速发展,被动元件的嵌入化是提高系统集成度和小型化的一种有效途径和研究热点。被动原件中电容器约占电路板组装无源器件总数的40%~70%,因

折射率与介电常数之间的关系

折射率与介电常数之间的关系 1 可见光和金属间的相互作用 可见光入射金属时,其能是可被金属表层吸收,而激发自由电子,使之具有较高的能态。当电子由高能态回到较低能态时,发射光子。金属是不透光的,故吸收现象只发生在金属的厚约 100nm 的表层内,也即金属片在 100nm 以下时,才是“ 透明” 的。只有短波长的X -射线和γ -射线等能穿过一定厚度的金属。所以,金属和可见光间的作用主要是反射,从而产生金属的光泽。 2 可见光和非金属间的作用 1) 折射 当光线以一定角度入射透光材料时,发生弯折的现象就是折射 ( Refraction ),折射指数n 的定义是: 光从真空进入较致密的材料时,其速度降低。光在真空和材料中的速度之比即为材料的折射率。 如果光从材料 1 ,通过界面进入材料 2 时,与界面法向所形成的入射角、折射角与材料的折射率、有下述关系:

介质的折射率是永远大于 1 的正数。如空气的 n=1.0003 ,固体氧化物 n=1.3 ~ 2.7 ,硅酸盐玻璃 n=1.5 ~ 1.9 。不同组成、不同结构的介质,其折射率不同。 影响 n 值的因素有下列四方面: a) 构成材料元素的离子半径 根据 Maxwell 电磁波理论,光在介质中的传播速度应为: μ 为介质的导磁率, c 为真空中的光速,ε 为介质的介电常数,由此可得: 在无机材料这样的电介质中,μ = 1 ,故有 说明介质的折射率随其介电常数的增大而增大。而介电常数则与介质极化有关。由于电磁辐射和原子的电子体系的相互作用,光波被减速了。

当离子半径增大时,其介电常数也增大,因而 n 也随之增大。因此,可以用大离子得到高折射率的材料,如 PbS 的 n=3.912 ,用小离子得到低折射率的材料,如 SiCl 4 的 n=1.412 。 b) 材料的结构、晶型和非晶态 折射率还和离子的排列密切相关,各向同性的材料,如非晶态(无定型体)和立方晶体时,只有一个折射率 (n 0 ) 。而光进入非均质介质时,一般都要分为振动方向相互垂直、传播速度不等的两个波,它们分别有两条折射光线,构成所谓的双折射。这两条折射光线,平行于入射面的光线的折射率,称为常光折射率 (n 0 ) ,不论入射光的入射角如何变化,它始终为一常数,服从折射定律。另一条垂直于入射面的光线所构成的折射率,随入射光的方向而变化,称为非常光折射率 (n e ) ,它不遵守折射定律。当光沿晶体光轴方向入射时,只有 n 0 存在,与光轴方向垂直入射时, n e 达最大值,此值为材料的特性。 规律:沿着晶体密堆积程度较大的方向 n e 较大。 c) 材料所受的内应力 有内应力的透明材料,垂直于受拉主应力方向的 n 大,平行于受拉主应力方向的 n 小(提问:为什么?)。 规律:材料中粒子越致密,折射率越大。

常见物质介电常数汇总

Sir-20说明书普通材料的介电值和术语集材料介电值速度毫米/纳秒空气 1 300 水淡81 33 水咸81 33 极地雪 1.4 - 3 194 - 252 极地冰 3 - 3.15 168 温带冰 3.2 167 纯冰 3.2 167 淡水湖冰 4 150 海冰 2.5 - 8 78 - 157 永冻土 1 - 8 106 - 300 沿岸砂干燥10 95 砂干燥 3 - 6 120 - 170 砂湿的25 - 30 55 - 60 粉沙湿的10 95 粘土湿8 - 15 86 - 110 粘土土壤干 3 173 沼泽12 86 农业耕地15 77 畜牧土地13 83 土壤平均16 75 花岗岩 5 - 8 106 - 120 石灰岩7 - 9 100 - 113 白云岩 6.8 - 8 106 - 115 玄武岩湿8 106 泥岩湿7 113 砂岩湿 6 112 煤 4 - 5 134 - 150 石英 4.3 145 混凝土 6 - 8 55 - 112 沥青 3 - 5 134 - 173 聚氯乙烯pvc 3 173

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书)

------------------《探地雷达方法与应用》(李大心)

2007第二期勘察科学与技术

电磁波在部分常见介质中的传播参数 (The propagation parameters of the electromagnetic wave in the medium) 地球表面大部分无水的物质(如干燥的土壤和岩石等)的介电常数,实部一般介于1.7-6之间,水的介电常数一般为81,虚部很小,一般可以忽略不计。岩石和土壤的介电常数与其含水量几乎呈线形关系增长,且与水的介电常数特性相同。所以天然材料的电学特性的变化,一般都是由于含水量的变化所致。对于岩石和土壤含水量和介电常数的关系国内外进行了详细研究(P.Hoekstra, 1974; J.E.Hipp,1 974;J .L.Davis,1 976;G A.Poe,1 971;J .R.Wang,1 977;E .G.巧okue tal ,1 977)。在实验室内大量测量了不同粒度的土壤一水混合物介电常数,考虑到束缚水和游离水,提出了经验土壤介电常数混合模型(J.R.Wang, 1985)。实验室内用开路探头技术和自由空间天线技术测量干燥岩石的介电常数(F.TUlaby, 1990)。国内肖金凯等人(1984, 1988)测量了大量的岩石和土壤的介电常数,王湘云、郭华东(1999)研究了三大岩类中所含的矿物对其介电常数的影响。研究表明,土壤中

材料的介电常数测试

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的 介电特性是电介质材料极其重要的性质。在实际应用中,电介质材料的介电系数和介质损耗是非常重要的参数。例如,制造电容器的材料要求介电系数尽量大,而介质损耗尽量小。相反地,制造仪表绝缘器件的材料则要求介电系数和介质损耗都尽量小。而在某些特殊情况下,则要求材料的介质损耗较大。所以,通过测定介电常数(ε)及介质损耗角正切(tg δ),可进一步了解影响介质损耗和介电常数的各种因素,为提高材料的性能提供依据。 本实验的目的: 1、探讨介质极化与介电常数、介质损耗的关系; 2、了解高频Q 表的工作原理; 3、掌握室温下用高频Q 表测定材料的介电常数和介质损耗角正切值。 二、实验原理 按照物质电结构的观点,任何物质都是由不同的电荷构成,而在电介质中存在原子、分子和离子等。当固体电介质置于电场中后会显示出一定的极性,这个过程称为极化。对不同的材料、温度和频率,各种极化过程的影响不同。 1、介电常数(ε):某一电介质(如硅酸盐、高分子材料)组成的电容器在一定电压作用下所得到的电容量C x 与同样大小的介质为真空的电容器的电容量C o 之比值,被称为该电介质材料的相对介电常数。 o x C C = ε 式中:C x —电容器两极板充满介质时的电容; C ο —电容器两极板为真空时的电容; ε —电容量增加的倍数,即相对介电常数 介电常数的大小表示该介质中空间电荷互相作用减弱的程度。作为高频绝缘材料,ε要小,特别是用于高压绝缘时。在制造高电容器时,则要求ε要大,特别是小型电容器。 在绝缘技术中,特别是选择绝缘材料或介质贮能材料时,都需要考虑电介质的介电常数。此外,由于介电常数取决于极化,而极化又取决于电介质的分子结构和分子运动的形式。所以,通过介电常数随电场强度、频率和温度变化规律的研究,还可以推断绝缘材料的分子结构。 2.介电损耗(tg δ):指电介质材料在外电场作用下发热而损耗的那部分能量。在直流电场作用下,介质没有周期性损耗,基本上是稳态电流造成的损耗;在交流电场作用下,介质损耗除了稳态电流损耗外,还有各种交流损耗。由于电场的频繁转向,电介质中的损耗要比直流电场作用时大许多(有时达到几千倍),因此介质损耗通常是指交流损耗。 在工程中,常将介电损耗用介质损耗角正切tg δ来表示。tg δ是绝缘体的无效消耗

介电常数

介电常数 介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一个系数,以字母ε表示,单位为法/米(F/m) 定义为电位移D和电场强度E之比,ε=D/Ε。电位移D的单位是库/二次方米(C /m^2)。 某种电介质的介电常数ε与真空介电常数ε0之比称为该电介质的相对介电常数εr,εr=ε/ε0是无量纲的纯数,εr与电极化率χe的关系为εr=1+χe。 真空介电常数:ε0= 8.854187817×10^-12 F/m 介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为相对介电常数(permittivity), 如果有高相对介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。 电介质经常是绝缘体。其例子包括瓷器(陶器),云母,玻璃,塑料,和各种金属氧化物。有些液体和气体可以作为好的电介质材料。干空气是良好的电介质,并被用在可变电容器以及某些类型的传输线。蒸馏水如果保持没有杂质的话是好的电介质,其相对介电常数约为80。 一个电容板中充入相对介电常数为ε的物质后电容变大ε倍。故相对介电常数εr 可以用如下方式测量:首先在其两块极板之间为真空的时候测试电容器的电容C0。然后,用同样的电容极板间距离但在极板间加入电介质后侧得电容Cx。然后相对介电常数可以用下式计算 εr=Cx/C0 电介质有使空间比起实际尺寸变得更大或更小的属性。例如,当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移远了一样。 当电磁波穿过电介质,波的速度被减小,有更短的波长。 对于时变电磁场,物质的介电常数和频率相关,通常称为介电系数。 附常见溶剂的介电常数 H2O (水) 78.5 HCOOH (甲酸) 58.5 HCON(CH3)2 (N,N-二甲基甲酰胺)36.7 CH3OH (甲醇) 32.7 C2H5OH (乙醇) 24.5 CH3COCH3 (丙酮) 20.7 n-C6H13OH (正己醇)13.3 CH3COOH (乙酸或醋酸) 6.15 C6H6 (苯) 2.28 CCl4 (四氯化碳) 2.24 n-C6H14 (正己烷)1.88

介电常数与耗散因素间的关系

介电常数与耗散因数间的关系 介电常数又称电容率或相对电容率,是表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数。其表示电介质在电场中贮存静电能的相对能力,例如一个电容板中充入介电常数为ε的物质后可使其电容变大ε倍。介电常数愈小绝缘性愈好。如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。介电常数还用来表示介质的极化程度,宏观的介电常数的大小,反应了微观的极化现象的强弱。气体电介质的极化现象比较弱,各种气体的相对介电常数都接近1,液体、固体的介电常数则各不相同,而且介电常数还与温度、电源频率有关有些物质介电常数具有复数形式,其实部即为介电常数,虚数部分常称为耗散因数。 通常将耗散因数与介电常数之比称作耗散角正切,其可表示材料与微波的耦合能力,耗散角正切值越大,材料与微波的耦合能力就越强。例如当电磁波穿过电解质时,波的速度被减小,波长也变短了。 介质损耗是指置于交流电场中的介质,以内部发热的形式表现出来的能量损耗。介质损耗角是指对介质施加交流电压时,介质内部流过的电流相量与电压向量之间的夹角的余角。介质损耗角正切是对电介质施加正弦波电压时,外施电压与相同频率的电流之间相角的余角δ的正切值--tgδ. 其物理意义是:每个周期内介质损耗的能量//每个

周期内介质存储的能量。 介电损耗角正切常用来表征介质的介电损耗。介电损耗是指电介质在交变电场中,由于消耗部分电能而使电介质本身发热的现象。原因是电介质中含有能导电的载流子,在外加电场作用下,产生导电电流,消耗掉一部分电能,转为热能。任何电介质在电场作用下都有能量损耗,包括由电导引起的损耗和由某些极化过程引起的损耗。 用tgδ作为综合反应介质损耗特性优劣的指标,其是一个仅仅取决于材料本身的损耗特征而与其他因素无关的物理量,tgδ的增大意味着介质绝缘性能变差,实践中通常通过测量tgδ来判断设备绝缘性能的好坏。 由于介电损耗的作用电解质在交变电场作用下将长生热量,这些热会使电介质升温并可能引起热击穿,因此,在绝缘技术中,特别是当绝缘材料用于高电场强度或高频的场合,应尽量采用介质损耗因数,即电介质损耗角正切tgδ较低的材料。但是,电介质损耗也可用作一种电加热手段,即利用高频电场(一般为0.3--300兆赫兹)对介电常数大的材料(如木材、纸张、陶瓷等)进行加热。这种加热由于热量产生在介质内部,比外部加热速度更快、热效率更高,而且热均匀。频率高于300兆赫时,达到微波波段,即为微波加热(家用微波炉即据此原理)。 在绝缘设计时,必须注意材料的tgδ值。若tgδ过大则会引起严重发热,使绝缘材料加速老化,甚至导致热击穿。 一下例举一些材料的ε值:

相关主题
文本预览
相关文档 最新文档