当前位置:文档之家› 弹性力学第三章习题

弹性力学第三章习题

弹性力学第三章习题
弹性力学第三章习题

1.设有矩形截面的竖柱,其密度为ρ,在一边侧面上受均布剪力q ,如图1,试求应力分量。

解:采用半逆解法,设

0=x σ 。

导出?使其满足双调和方程:

0)

()(,00,0)

()()

()()(,04

14

44

42244

44144

44412

2=+=?=???=??+=??+==??=-??=dx

x f d dx x f d y

y x y dx x f d dx x f d y x x f x yf x f y Xx y x ??

?????σ

(1)

含待定常数的应力分量为:

??

??

??

????

?++-=???-=-+++=-??==-??=)23(26)26(0

2

22222C Bx Ax y x Py F Ex B Ax y Yy x Xx y

xy y x ?τ?σ?

σ (2)

x

1

取任意值时,上式都应成立,因而有:

y 23232

31

234

1444)()(,)(0)(,0)(Fx Ex Cx Bx Ax y Fx Ex x f Cx Bx Ax x f dx x f d dx x f d ++++=+=++===?式中, 中略去了常数项, 中略去了 的一次项及常数项,因为它们对应力无影响。

)(x f )(1x f x

利用边界条件确定常数,并求出应力解答:

,

0)(0

==x x σ

能自然满足:

,0)(0===C x yx τ,

0)(==h x x σ能自然满足: 0

,026,0)(23,)(2===+==--==F E F Ex q Bh Ah q h x yx στ

Cy

Bx y

x gy By Ax Yy x

Dy Cx Xx y xy

y x 2226622

2222--=???-=-+=-??=+=-??=?τρ?

σ?

σ

(3)

(4)

(5)

2.如图2(a ),三角形悬臂梁只受重力作用,梁的密度为,试用纯三次式应力函数求解该梁的应力分量。

,0)(0==y yx τ不能精确满足,只能近似满足: ??

=+-===h h

y y xy dx Bx Ax dy 00

02

0)23(,0)(τ023=--Bh Ah 由式(3)、(4)解出常数 和 ,进而可求得应力分量: A B

h

q

B h q A =

-=,2(

)

32(,)31(2,0h x h qx Py h x h qy xy y x --=--==τσ

σx

x x 图

(a ) (b )

解: 1.设应力函数为: 3223Dy Cxy y Bx Ax +++=? 不难验证其满足 。

所以应力分量为:

04=??

)(,0)(00====y xy y y τσ0

cos sin 0

cos sin cos ,sin )90cos(0

=+-=+-=-=+=y xy xy x m l ασατατασαααα

ρτρσαραρσα

ραρcot ,cot 2cot cot 3

,cot 2

,022gy gy gy gx g

D g

C B A xy y x -=-=-=-

==

==??x =10

)(2)2(2

)(2))((221222

22222

2

212

=???

=???=????=??+??+??=??+??=?????

?????x

x x y x x x x y x 0

)2(,2222222

=???=????=?y

y ???? 2.用边界条件确定常数,进而求出应力解答: 上边界:

斜边:

解得:

解:将 代入相容条件,得:

?1

3.如果 为平面调和函数,它满足 ,问 ?02=???

??)(,,22y x y x + 是否可作为应力函数。

满足双调和方程,因此,可作为应力函数。将 ?

?y =2 代入相容条件得

)444(444

(232222232=??+??+?=????+??+=+?=?y

y x x y y

x

x

y x ?

????

???? x

q 0x

解:由满足相容方程确定系数A 与B 的关系:

也能作为应力函数。把 代入相容条件,得: 2???)(2

23y x += 所以, 也可作为应力函数。

3?

4.图所示矩形截面简支梁受三角形分布荷载作用,试取应力函数为:

Fxy Ex Dxy y Cx Bxy y Ax +++++=333533? ,求简支梁的应力分量(体力不计)。

)

3(0

)

(6)2(6)2(6,)(2

302=-=+-+--=-

=-

=h y xy h y y l x q Ex h

Cx h Ax l x q τσ)

4(0)2

(33)2(5)2(922

422

=+-++-+-F h D Cx h B h Ax

B A Bxy Axy Axy

y x Bxy y x 3

50

1207236,120,02244444-

==+=???=??=???

??

含待定系数的应力分量为

)

2()3359(6666206224223

33??

?

???

?++++-=++=++=F Dy Cx By y Ax Ex Cxy Axy Dxy

Bxy y Ax xy y x τσσ

由边界条件确定待定系数:

)

6(0)2(33)2(5)2(9,0)

()

5(0

6)2

(6)2(6,0)(224222

32

=++++==++==

=

F h

D Cx h B h Ax Ex h

Cx h Ax h

y xy h y y τσ、

由以上式子可求得:

)

8(0

,0)()7(6804,6)(4,5,3,122222

0203

002

20

30300=++=--=+===-=-

=?

?-==-D Bh Al ydy l q l h q Fh Dh l q dy lh q

C lh q B lh q A l q E h

h l x x x h h

xy στ

由此可解得:

l

h

q h l q F h

l

q lh q D 804,

3100

0300+-

=+-

=

应力分量为

3

4xy d =?)

9(203)(4(4)43(2)10

32(22

2

22223

03

323

032

2230????

??

???+---=--=-+-=h l y x h y lh q h y y h x lh q h l x y xy lh q xy

y x τσσ5.如图所示,右端固定悬臂梁,长为l ,高为h ,在左端面上受分布力作用(其合力为P )。

不计体力,试求梁的应力分量。

解:用凑和幂次不同的双调和多项式函数的半逆解法来求解。显然,应力函数 3

4xy d 所对应的面力,在梁两端与本题相一致,只是该函数在上、下边界面上多出了一个大小为

244

3-h d 的剪应力,为了抵消它,在应力函数 上再添加一个与纯剪应力对应的应力

函数

xy b 2

xy b xy d 234+=?

由平衡条件得含有待定系数的应力表达式为:

2

4222

242

230,6y d b y

x x

xy d y

xy

y

x --=???-==??==??=?τ?σ

利用边界条件确定,并求出应力分量: 上、下边界:

)

(,

0)

(2

2

==±

=h

y xy h

y y

τσ

左端部:

P

dy h h x xy x x -==?

-==22

00)(,

0)(τσ

解得:

2

333

42623,0,122,23y

h P h P xy h P h P d h P b xy y x +-==-=-==τσσ

6.试考察应力函数3ay Φ=在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)?

【解答】⑴相容条件:

不论系数a 取何值,应力函数3ay Φ=总能满足应力函数表示的相容方程,式(2-25).

⑵求应力分量

当体力不计时,将应力函数Φ代入公式(2-24),得

6,0,0x y xy yx ay σσττ====

⑶考察边界条件

上下边界上应力分量均为零,故上下边界上无面力. 左右边界上;

当a>0时,考察x σ分布情况,注意到0xy τ=,故y 向无面力 左端:0()6x x x f ay σ=== ()0y h ≤≤ ()

0y xy x f τ===

右端:()6x x x l f ay σ=== (0)y h ≤≤ ()0y xy x l f τ===

应力分布如图所示,当l h ?时应用圣维南原理可以将分布的面力,等效为主矢,主矩

y

x

f x

f

主矢的中心在矩下边界位置。即本题情况下,可解决各种偏心拉伸问题。 偏心距e :

因为在A 点的应力为零。设板宽为b ,集中荷载p 的偏心距e :

2()0/6/6x A p pe

e h bh bh σ=

-=?= 同理可知,当a <0时,可以解决偏心压缩问题。 7.试考察应力函数22

3(34)2F xy h y h

Φ=

-,能满足相容方程,并求出应力分量(不计体力),画出图3-9所示矩形体边界上的面力分布(在小边界上画出面力的主矢量和主矩),指出该应力函数能解决的问题。

【解答】(1)将应力函数代入相容方程(2-25)

444422420?Φ?Φ?Φ

++=????x x y y

,显然满足 (2)将

Φ代入式(2-24),得应力分量表达式

y

3

12

,0,

x y

Fxy

h

σσ

=-=

2

2

34

(1)

2

=

=--

xy yx

F y

h h

ττ

(3)由边界形状及应力分量反推边界上的面力:

①在主要边界上(上下边界)上,

2

h

y=±,应精确满足应力边界条件式

(2-15),应力()()

/2/2

0,0

y yx

y h y h

στ

=±=±

==

因此,在主要边界

2

h

y=±上,无任何面力,即0,0

22

x y

h h

f y f y

????

=±==±=

? ?

????

②在x=0,x=l的次要边界上,面力分别为:

2

2

34

0:0,1-

2

x y

F y

x f f

h h

??

=== ?

??

3

2

2

1234

:,1

2

x y

Fly F y

x l f f

h h

h

??

==-=--

?

??

因此,各边界上的面力分布如图所示:

③在x=0,x=l的次要边界上,面力可写成主矢、主矩形式:

x=0上x=l上

12

12

h/2/2

/2/2

h/2/2

/2/2

h/2/2

12

-h/2/2

=0,0

=,

=0,

h

N x N x

h h

h

S y S y

h h

h

x x

h

x F f dy F f dy

y F f dy F F f dy F

M f ydy M f ydy Fl

--

--

-

===

===-

===-

??

??

??

向主矢:

向主矢:

主矩:

因此,可以画出主要边界上的面力,和次要边界上面力的主矢与主矩,如图:

(a) (b)

因此,该应力函数可解决悬臂梁在自由端受集中力F 作用的问题。 8.设有矩形截面的长竖柱,密度为ρ,在一边侧面上受均布剪力q (图3-10),试求应力分量。

【解答】采用半逆法求解。

由材料力学解答假设应力分量的函数形式。 (1)假定应力分量的函数形式。

根据材料力学,弯曲应力y σ主要与截面的弯矩有关,剪应力xy τ主要与截面的剪力有关,而挤压应力x σ主要与横向荷载有关,本题横向荷载为零,则0x σ=

(2)推求应力函数的形式

将0x σ=,体力0,x y f f g ρ==,代入公式(2-24)有

220x x f x y

σ?Φ

=-=?

对y 积分,得

()f x y

=? (a ) ()()1yf x f x Φ=+ (b )

其中()()1,f x f x 都是x 的待定函数。 (3)由相容方程求解应力函数。 将(b )式代入相容方程(2-25),得

()()

44144

0d f x d f x y dx dx += (c )

在区域内应力函数必须满足相容方程,(c )式为y 的一次方程,相容方程要求它有无数多个根(全竖柱内的y 值都应满足它),可见其系数与自由项都必须

图3-10

为零,即

()()

44140,0d f x d f x dx dx

== 两个方程要求

()()32321,f x Ax Bx Cx f x Dx Ex =++=+ (d )

()f x 中的常数项,()1f x 中的常数项和一次项已被略去,因为这三项在Φ的表达式中成为y 的一次项及常数项,不影响应力分量。将(d )式代入(b )式,得应力函数

()()3232y Ax Bx Cx Dx Ex Φ=++++ (e )

(4)由应力函数求应力分量

220x x f x y

σ?Φ

=-=? (f )

226262y y f y Axy By Dx E gy x

σρ?Φ

=-=+++-? (g)

2232xy

Ax Bx C x y

τ?Φ=-=---?? (h)

(5)考察边界条件

利用边界条件确定待定系数A 、B 、C 、D 、E 。 主要边界0x =上(左):

()000,()0x xy x x στ====

将(f ),(h )代入

()00x x σ==,自然满足

0()0xy x C τ==-= (i )

主要边界x b =上,

()0x x b σ==,自然满足

()xy x b q τ==,将(h )式代入,得

2()32xy x b Ab Bb C q τ==---= (j )

在次要边界0y =上,应用圣维南原理,写出三个积分的应力边界条件:

()200

0()62320b

b

y y dx Dx E dx Db Eb σ==+=+=?? (k )

()3200

()6220b b y y xdx Dx E xdx Db Eb σ==+=+=?

? (l )

()23200

()320b

b yx y dx Ax Bx C dx Ab Bb Cb τ==---=---=?

? (m )

由式(i ),(j),(k ),(l ),(m )联立求得

2, , 0q q

A B C D E b b

=-

==== 代入公式(g ),(h)得应力分量

230, 13, 2x y xy qx x q gy x x b b b b σσρτ????==

--=- ? ?????

9.设图3-13中的三角形悬臂梁只受重力作用,而梁的密度为ρ,试用纯三次式的应力函数求解。

【解答】采用半逆解法求解

(1) 检验应力函数是否满足相容方程(2-25)

设应力函数3223=Ax Bx y Cxy Dy Φ+++,不论上式中的系数如何取值,纯三次式的应力函数总能满足相容方程(2-25)

(2) 由式(2-24)求应力分量

由体力分量0,x y f f g ρ==,将应力函数代入公式(2-24)得应力分量:

2226x x f x Cx Dy y

σ?Φ

=-=+? (a )

2262y y f y Ax By gy y

σρ?Φ

=-=+-? (b )

222xy

Bx Cy x y

τ?Φ=-=--?? (c )

(3)考察边界条件:由应力边界条件确定待定系数。 ①对于主要边界0y =,其应力边界条件为:

0()0

y y σ==,

0()0

yx y τ== (d )

将式(d )代入式(b ),(c ),可得

0=0A B =, (e )

②对于主要边界tan y x α=(斜面上),应力边界条件:

在斜面上没有面力作用,即0x y f f ==,该斜面外法线方向余弦为,sin l α=-,cos m α=.由公式(2-15)

,得应力边界条件 tan tan tan tan sin ()cos ()0sin ()cos ()0x y x yx y x xy y x y y x ααααασατατασ====-?+?=?

?-?+?=?

(f )

将式(a )、(b )、(c )、(e )代入式(f ),可解得

2cot ,cot 2

3

g

g

C D ρραα=

=-

(g )

将式(e )、(g )代入公式(a )、(b )、(c ),得应力分量表达式:

2cot 2cot cot x y xy gx gy gy

gy σραρα

σρτρα

?=-?

=-??

=-?

10. 设单位厚度的悬臂梁在左端受到集中力和力矩的作用,体力可以不计,l>>h ,图3-5,试用应力函数Φ=Axy+By 2+Cy 3+Dxy 3求解应力分量。

解:本题是较典型的例题,已经给出了应力函数Φ,可按下列步骤求解。 1.将Φ代入相容方程,显然是满足的。

2.将Φ代入式(2-24),求出应力分量

()

2266,0,

3。

x y xy B Cy Dxy A Dy σστ=++==-+

3.考虑边界条件:主要边界y =±h /2上,应精确满足式(2-15),

()

()

y 2

2

2

0,满足;30,

得04y h yx y h A Dh στ=±=±==+

=

在次要边界x =0上,只给出了面力的主矢量和主矩,应用圣维南原理,用三个积分的

边界条件代替。注意x =0是负x 面,图3-5中表示了负x 面上σx ,和τxy 的正方向,由此得

()()()

()

2

02

2

30

2

2

3

2

,求得

;22,求得;

1,得。4

h N

x N x h

h x x

h h xy

S S x h F dy F B h M

ydy M C h

dy F Ah Dh F b σστ=-=-

=-=-=-

=-=-=-+

=???

由式(a),(b )解出

332,。2h S S F F

A D h =

=-

最后一个次要边界条件(x =l 上),在平衡微分方程和上述边界条件均已满足的条件下,

是必须满足的,故不必再校核。

代入应力公式,得

x 33221212,0,314。

2N S y S

xy

F F M

y xy h h h

F

y h

h σστ=-

--=??

=-- ??

?

11. 挡水墙的密度为ρ1,厚度为b ,图3-6,水的密度为ρ2,试求应力分量。

解:用半逆解法求解 1.假设应力分量的函数形式,因为在y =-b /2边界上,σy =0;y=b /2边界上,σy =-ρ2gx ,所以可假设在区域内σy 为

()y 。

xf y σ=

2.推求应力函数的形式。由σy 推测Φ的形式,

()()()()()()2y

2

2

13

12,则

,2。

6

xf y x

x f y f y x x f y xf y f y σ?Φ==??Φ=+?Φ=

++

3.由相容方程求应力函数。将Φ代入▽4Φ=0,得

44342124442

20。

6d f d f x d f d f x x dy dy dy dy +++=

要使上式在任意的x 处都成立,必须

4324

425432114

24322

24

0,得f=Ay +y ;

20,得;

10

6

0,得

f 。

d f

B Cy D dy d f d f

A

B

f y y Gy Hy Iy dy dy d f Ey Fy dy

=+++==-

-

+++==+

代入Φ,即得应力函数的解答,其中已略去了与应力无关的一次式。 4.由应力函数求应力分量,将Φ代入式(2-24),注意体力f x =ρ1g ,f y =0,求得应力分量为

()()()

()

2332

x 2

1232

2

22

2432

2262362,

,322

232。23x y y xy

B f x x Ay x Ay By Gy H y Ey

F gx f y x Ay By Cy D x x Ay By C x y A B y y Gy Hy I σρστ???Φ=-=++--+++

???

?+-?Φ=-=+++??Φ=-=-+++

????+--- ???

5.考虑边界条件:在主要边界y =±b /2上,有

()

()

()

()()

34y 222

322

22

2

432,得x ;8420,得0;84230,

得2430。32124y b y y b xy y b b b b

gx A B C D gx a b b b

x A B C D b x b A Bb C b b b A B G Hb I σρρστ==-=±??=-+++=- ?????=-+-+= ???

??=-±++

???

??±--= ???m

由上式得到

()()

24323b 0,,430。,32124

A Bb C c d b b b A

B G Hb I e f ±+=±--=m

求解各系数,由

(a)+(b)得

22

1

,4

2b B

D g ρ+=-

(a)-(b)得

23

1

,8

2

2b b

A

C

g ρ+=-

(c)-(d)得

21

0,,2B D g ρ=∴=-

(c)+(d)得2

30。4b A C +=

由此得

2232

3

,。2b

A g C g b ρρ=

=-

又有 (e)-(f)得

0,H =

(e)+(f)得 4

2

30,324b b A G I --=

代入A ,得

()

2

23。

g 164

b

b I g G ρ=-

在次要边界(小边界)x =0上,列出三个积分的边界条件:

()()

()()2

2

20

2

2

220

2

0,

得,80

4

0,得0,0,

得0。

b xy x

b b x x b b

x x

b b

b dy I g G h dy F ydy E τρσσ=-=-=-==

-

====???

由式(g),(h)解出

221

,

。80

10b

I g G g b ρρ=-

=

33

222133

323232223323g 4+

,531222333。

41080x y xy

g

g x y xy xy gx b b b y y gx b b

y y y b gx gy b b y b b ρρρσρσρτρρ=--??

=-- ?

??????=----+- ? ?????

12. 已知

()

()()

()

22222432224,,

a Ay a x Bxy C x y

b Ax Bx y Cx y Dxy Ey Φ=-+++Φ=++++

试问它们能否作为平面问题的应力函数? 解:作为应力函数,必须首先满足相容方程,

40。?Φ=

将Φ代入,

(a )其中A =0,才可成为应力函数;(b )必须满足 3(A+E )+C =0,才可成为应力函数。

13. 图3-7所示的矩形截面柱体,在顶部受有集中力F 和力矩

M = b

2F 的作用,试用应力函数

32Ax Bx Φ=

+

求解图示问题的应力及位移,设在A 点的位移和转角均为零。 解:应用应力函数求解:

(1)校核相容方程 ▽4Φ=0,满足。

(2)求应力分量,在无体力时,得

62,0。

y x xy Ax B σστ=+==

(3)考虑主要边界条件 ,0,0,

x xy x b στ=±== ,均已满足。考虑

次人边界条件,在y =0上,

()

()()

20

0,满足;

得;2得

A=-。

2

8yx y b

y b

y b

y b

y F dx F

B b Fb

F xdx b τσσ=-

=-===-=-

=-

??

代入,得应力的解答,

y 31,0。

22x xy F x b

b σστ??=-

+== ???

上述Φ和应力已满足了▽4Φ=0和全部边界条件,因而是上述问题的解。

(4)求应变分量,

x 331,1,0。

2222y xy F x F x Eb

b Eb b μεεγ????

=

+=-+= ?

??

???

(5)求位移分量,

()()2123由

1,对积分,得

223u ;

243由1,对积分,得223v=-

。2b 2x y u F

x x x Eb

b F x x f y Eb b v F x y y Eb b F xy y f x E b μεμε??

?==+ ????

??=++ ???

???==-+ ??????

++ ???

将u,v 代入几何方程第三式

v 0,xy u x y γ??+==??

两边分开变量,并令都等于常数ω,即

()()212

3。4df x df y F

y dx

dy

Eb ω=-

+

=

从上式分别积分,求出

()()202

102

f ,

3。8x x F f y y y u Eb ω

νω=+=

-+

代入u,v ,得

22

0233,2483x+v 。22F x F u x y y u Eb b Eb F xy v y Eb b μωω???=++

-+? ? ????

????

=-

++ ????

?

再由刚体约束条件,

()()2

0,202

0,00,u 30,得=;430,得;80,得。2x y h

x y h

x

y h

F

h y Eb F

u u h Eb

F

v v h Eb ω======???= ????====

代入u,v ,得到位移分量的解答:

()()22233u ,24831。

22b F x F x h y Eb

b Eb F x v h y Eb μ?

??=

++-? ????

???

?=-+ ????

?

在顶点x=y =0。

()0

。2x

y Fh

Eb ν===

14.矩形截面的简支梁上,作用有三角形分布荷载,图3-8。

试用下列应力函数

335333=x ,A y Bxy Cx y Dxy Ex Fxy Φ+++++

求解应力分量。

解:应用上述应力函数求解:、

(1)将Φ代入相容方程

450,721200,得。3A B A B ?Φ=+==-

由此,

33

53335=-

x xy 。3B y Bxy Cx y D Ex Fxy Φ+++++

(2)求应力分量,在无体力下,得

()

33x 322422=-10Bx 20xy 6,1066,

15533。

y xy y B Dxy Bxy Cxy Ex Bx y By Cx Dy F σστ++=-++=--++++

(3)考虑主要边界条件(y ±h /2),

22421553y 0,得30。

4164xy h x C Bh Bh Dh F τ????=±=-+++= ? ?????

对于任意的x 值,上式均应满足,由此得

()()()

()

2

4233153-

h 0,453

0。b 164

5,0,360,452,,36。d 4y y C B a Bh Dh F y h x Bh Ch E c x x

y h q x Bh Ch E q l l σσ=++=??

==-++= ???

??=-=--+=- ???

由(c)+(d)得

。12q

E l =-

由(c)-(d)得

()

25-h 3。42q B C e lh

+=

由(e )-(a)得

3

,。45q q

B C lh lh

=

= (4)考虑小边界上的边界条件(x =0),由

()

2

2

,6h xy

x h ql

dy τ=-=

?

弹性力学-第三章-应变状态分析

第三章应变状态分析知识点 位移与变形 正应变 纯变形位移与刚性转动位移 应变分量坐标转轴公式主应变齐次方程组 体积应变 变形协调方程 变形协调方程证明变形与应变分量 切应变 几何方程与应变张量 位移增量的分解 应变张量 应变状态特征方程 变形协调的物理意义 变形协调方程的数学意义多连域的变形协调 一、内容介绍 本章讨论弹性体的变形,物体的变形是通过应变分量确定的。因此,首先确定位移与应变分量的基本关系-几何方程。由于应变分量和刚体转动都是通过位移导数表达的,因此必须确定刚体转动位移与纯变形位移的关系,才能完全确定一点的变形。 对于一点的应变分量,在不同坐标系中是不同的。因此,应变状态分析主要是讨论不同坐标轴的应变分量变化关系。这个关系就是应变分量的转轴公式;根据转轴公式,可以确定一点的主应变和应变主轴等。当然,由于应变分量满足二阶张量变化规律,因此具体求解可以参考应力状态分析。 应该注意的问题是变形协调条件,就是位移的单值连续性质。假如位移函数不是基本未知量,由于弹性力学是从微分单元体入手讨论的,因此变形后的微分单元体也必须满足连续性条件。这在数学上,就是应变分量必须满足变形协调方程。在弹性体的位移边界,则必须满足位移边界条件。 二、重点 1、应变状态的定义:正应变与切应变;应变分量与应变张量; 2、几 何方程与刚体转动;3、应变状态分析和应变分量转轴公式;4、应变 状态特征方程和应变不变量;主应变与应变主轴;5、变形协调方程 与位移边界条件。

§3.1 位移分量与应变分量几何方程 学习思路: 由于载荷的作用或者温度的变化,物体内各点在空间的位置将发生变化,就是产生位移。这一移动过程,弹性体将同时发生两种可能的变化:刚体位移和变形位移。变形位移是与弹性体的应力有着直接的关系。 弹性体的变形通过微分六面体单元描述,微分单元体的变形分为两个部分,一是微分单元体棱边的伸长和缩短;二是棱边之间夹角的变化,分别使用正应变和切应变表示这两种变形的。 由于是小变形问题,单元变形可以投影于坐标平面分析。根据正应变和切应变定义,不难得到应变与位移的关系-几何方程,或者称为柯西方程。 几何方程给出的应变通常称为工程应变。几何方程可以表示为张量形式,应该注意的是,正应变与对应应变张量分量相等;而切应变等于对应的应变张量分量的两倍。 几何方程给出了位移分量和应变分量之间的关系。 学习要点: 1、位移函数; 2、变形与应变分量; 3、正应变表达式; 4、切应 变分量;5、几何方程与应变张量。 1、位移函数 由于载荷作用或者温度变化等外界因素等影响,物体内各点在空间的位置将发生变化,即产生位移。这个移动过程,弹性体将可能同时发生两种位移变化。 第一种位移是位置的改变,但是物体内部各个点仍然保持初始状态的相对位置不变,这种位移是物体在空间做刚体运动引起的,因此称为刚体位移。 第二种位移是弹性体形状的变化,位移发生时不仅改变物体的绝对位置,而且改变了物体内部各个点的相对位置,这是物体形状变化引起的位移,称为变形。 一般来说,刚体位移和变形是同时出现的。当然,对于弹性力学,主要是研究变形,因为变形和弹性体的应力有着直接的关系。 根据连续性假设,弹性体在变形前和变形后仍保持为连续体。那么弹性体中某点在变形过程中由M(x,y,z)移动至M'(x',y',z'),这一过程也将是连

弹性力学概念汇总

1、五个基本假定在建立弹性力学基本方程时有什么用途? 答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化 各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。 2、试分析简支梁受均布荷载时,平面截面假设是否成立? 解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。所以,严格来说,不成立。 3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题? 解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。教材中式(2-15),就会影响大部分区域的应力分布,会使问题的解答具有的近似性。 4、在导出平面问题的三套基本方程时,分别应用了哪些基本假定?这些方程的适用条件是什么? 答:1、在导出平面问题的平衡微分方程和几何方程时应用的基本假定是:物体的连续性,小变形和均匀性。在两种平面问题中,平衡微分方程和几何方程都适用。2、在导出平面问题的物理方程时应用的基本假定是:物体的连续性,完全弹性,均匀性,小变形和各向同性,即物体为小变形的理想弹性体。在两种平面问题中的物理方程不一样,如果将平面应力问题的物理方程中的E换为换为,就得到平面应变问题的物理方程。 5、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。 在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。弹性力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。另一份答案:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立平衡微分方程、几何方程和物理方程;在边界s上考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。 在研究内容方面:材料力学研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题;结构力学在

弹性力学试题

第一章绪论 1、所谓“完全弹性体”是指(B)。 A、材料应力应变关系满足虎克定律 B、材料的应力应变关系与加载时间、历史无关 C、本构关系为非线性弹性关系 D、应力应变关系满足线性弹性关系 2、关于弹性力学的正确认识是(A )。 A、计算力学在工程结构设计中的作用日益重要 B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设 C、任何弹性变形材料都是弹性力学的研究对象 D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析 3、下列对象不属于弹性力学研究对象的是(D )。 A、杆件 B、板壳 C、块体 D、质点 4、弹性力学研究物体在外力作用下,处于(弹性)阶段的(应力)、(应变)和(位移) 5、弹性力学可以解决材料力学无法解决的很多问题;并对杆状结果进行精确分析,以及验算材力结果的适用范围和精度。与材料力学相比弹性力学的特点有哪些? 答:1)研究对象更为普遍; 2)研究方法更为严密; 3)计算结果更为精确; 4)应用范围更为广泛。 6、材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。(×) 改:弹性力学不仅研究板壳、块体问题,并对杆件进行精确的分析,以及检验材料力学公式的适用范围和精度。 7、弹性力学对杆件分析(C) A、无法分析 B、得出近似的结果 C、得出精确的结果 D、需采用一些关于变形的近似假定 8、图示弹性构件的应力和位移分析要用什么分析方法?(C)

A 、材料力学 B 、结构力学 C 、弹性力学 D 、塑性力学 解答:该构件为变截面杆,并且具有空洞和键槽。 9、弹性力学与材料力学的主要不同之处在于( B )。 A 、任务 B 、研究对象 C 、研究方法 D 、基本假设 10、重力、惯性力、电磁力都是体力。(√) 11、下列外力不属于体力的是(D ) A 、重力 B 、磁力 C 、惯性力 D 、静水压力 12、体力作用于物体内部的各个质点上,所以它属于内力。(×) 解答:外力。它是质量力。 13、在弹性力学和材料力学里关于应力的正负规定是一样的。( × ) 解答:两者正应力的规定相同,剪应力的正负号规定不同。 14、图示单元体右侧面上的剪应力应该表示为(D ) A 、xy τ B 、yx τ C 、zy τ D 、yz τ 1 τ2 τ3 τ4 τO x z 15、按弹性力学规定,下图所示单元体上的剪应力( C )。

弹性力学试题参考答案与弹性力学复习题

弹性力学复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和

混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。如何确定它们的正负号 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz 、、zx 。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题什么叫平面应变问题各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑各方面反映的是那些变量间的关系 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之 间的关系,也就是平面问题中的物理方程。 7.按照边界条件的不同,弹性力学平面问题分为那几类试作简要说明 答:按照边界条件的不同,弹性力学平面问题可分为两类: (1)平面应力问题 : 很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存在 yx xy y x ττσσ=、、三个应力分量。 (2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,而且体力

清华大学弹性力学讲义chap2_Elasticity of Solids

2.Elasticity of Solids References J.H.Weiner ,Statistical mechanics of elasticity, Wiley, 1981 Green & Zerna ,Theoretical elasticity, 1968 Ashby & Jones ,Engineering materials 2.1 Definition of Elasticity Elasticity σ F Figure 2.1 An elastic response. An elastic response of the material can be abstracted mathematically as ()X F ,T σ= (2.1) where σ denotes the stress tensor, T the response function that depends only on the current values of the deformation gradient X x F ??=, with X denoting the material coordinates of a point while x the spatial coordinates. If the material is homogeneous within the domain under consideration, the explicit dependence on X in (2.1) can be eliminated. Several remarks can be made to the definition in (2.1): (1) In the claim of ()()X t X, F ,T σ=, one pins down an elastic response as the one prtrayed by the current status of deformation, and henceforth irrelevant to the

弹性力学试题

第一章绪论 1、所谓“完全弹性体”就是指(B)。 A、材料应力应变关系满足虎克定律 B、材料的应力应变关系与加载时间、历史无关 C、本构关系为非线性弹性关系 D、应力应变关系满足线性弹性关系 2、关于弹性力学的正确认识就是(A )。 A、计算力学在工程结构设计中的作用日益重要 B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设 C、任何弹性变形材料都就是弹性力学的研究对象 D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析 3、下列对象不属于弹性力学研究对象的就是(D )。 A、杆件 B、板壳 C、块体 D、质点 4、弹性力学研究物体在外力作用下,处于(弹性)阶段的(应力)、(应变)与(位移) 5、弹性力学可以解决材料力学无法解决的很多问题;并对杆状结果进行精确分析,以及验算材力结果的适用范围与精度。与材料力学相比弹性力学的特点有哪些? 答:1)研究对象更为普遍; 2)研究方法更为严密; 3)计算结果更为精确; 4)应用范围更为广泛。 6、材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。(×) 改:弹性力学不仅研究板壳、块体问题,并对杆件进行精确的分析,以及检验材料力学公式的适用范围与精度。 7、弹性力学对杆件分析(C) A、无法分析 B、得出近似的结果 C、得出精确的结果 D、需采用一些关于变形的近似假定 8、图示弹性构件的应力与位移分析要用什么分析方法?(C) A、材料力学 B、结构力学

C 、弹性力学 D 、塑性力学 解答:该构件为变截面杆,并且具有空洞与键槽。 9、弹性力学与材料力学的主要不同之处在于( B )。 A 、任务 B 、研究对象 C 、研究方法 D 、基本假设 10、重力、惯性力、电磁力都就是体力。(√) 11、下列外力不属于体力的就是(D) A 、重力 B 、磁力 C 、惯性力 D 、静水压力 12、体力作用于物体内部的各个质点上,所以它属于内力。(×) 解答:外力。它就是质量力。 13、在弹性力学与材料力学里关于应力的正负规定就是一样的。( × ) 解答:两者正应力的规定相同,剪应力的正负号规定不同。 14、图示单元体右侧面上的剪应力应该表示为(D) A 、xy τ B 、yx τ C 、zy τ D 、yz τ 1τ2 τ3τ4τO x z 15、按弹性力学规定,下图所示单元体上的剪应力( C )。

弹性力学习题(新)

1-3 五个基本假定在建立弹性力学基本方程时有什么用途? 答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应 力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是 相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是 相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的 改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。

2-1 已知薄板有下列形变关系:式中A,B,C,D皆为常数,试检查在形变过程中是否符合连续条件,若满足并列出应力分量表达式。 解: 1、相容条件: 将形变分量带入形变协调方程(相容方程)

其中 所以满足相容方程,符合连续性条件。 2、在平面应力问题中,用形变分量表示的应力分量为 3、平衡微分方程

其中 若满足平衡微分方程,必须有

分析:用形变分量表示的应力分量,满足了相容方程和平衡微分方程条件,若要求出常数A,B,C,D还需应力边界条件。 例2-2 如图所示为一矩形截面水坝, 其右侧面受静水压力(水的密度为ρ), 顶部受集中力P作用。试写出水坝的应 力边界条件。 解: 根据在边界上应力与面力的关系 左侧面:

弹性力学复习重点+试题及答案【整理版】

弹性力学2005 期末考试复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题? 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz、、zx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑?各方面反映的是那些变量间的关系? 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方 面主要反映的是形变分量与应力分量之间的关系,也就是平 面问题中的物理方程。 7.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明 答:按照边界条件的不同,弹性力学问题可分为两类边界问题:

弹性力学作业习题

HOMEWORK OF THEORETICAL ELASTICITY 1. DATE: 2001-9-20 1. 设地震震中距你居住的地方直线距离为l ,地层的弹性常数ν,E 和密度ρ均为已知。假 设你在纵波到达0t 秒后惊醒。问你在横波到达之前还有多少时间跑到安全地区试根据Km 200=l ,GPa 20=E ,3.0=ν,36g/m 100.2?=ρ,s 30=t 来进行具体估算。 2. 假定体积不可压缩,位移112(,)u x x 与212(,)u x x 很小,30u ≡。在一定区域内已 知22 12 11(1) ()u x a bx cx =-++,其中a ,b ,c 为常数,且120ε=,求212(,)u x x 。 3. 给定位移分量 21123()u cx x x =+,22213()u cx x x =+,23312()u cx x x =+,此处c 为一个很小的常数。求 应变分量ij ε及旋转分量ij Q 。 4. 证明 ,1 122 i ijk jk ijk k j e Q e u ω== 其中i ω为转动矢量。 5. 设位移场为22131232123()()u a x x e a x x e ax x e =-++-,其中a 为远小于1的常数。确定在 (0,2,1)P -点的小应变张量分量,转动张量分量和转知矢量分量。 6. 试分析以下应变状态能否存在。 (1)22111 22()k x x x ε=+,2 2223kx x ε=,330ε=,121232kx x x γ=,23310γγ== (2)22111 2()k x x ε=+,2222kx x ε=,330ε=,12122kx x γ=,23310γγ== (3)21112ax a ε=,22212ax x ε=,3312ax x ε=,120γ=,22332ax bx γ=+,22 3112ax bx γ=+ 其中,,k a b 为远小于1的常数。 2. DATE: 2001-9-17 1. 证明对坐标变换?? ? ?????????-=? ??? ??2121cos sin sin cos x x x x αααα ,33x x =,无论α为何值均有

《弹性力学》试题

《弹性力学》试题 一.名词解释 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2.圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 二.填空 1.最小势能原理等价于弹性力学基本方程中:平衡微分方程,应力边界条件。 2.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以分为位移边界条件、应力边界条件和混合边界条件。 3.一组可能的应力分量应满足:平衡微分方程,相容方程(变形协调条件)。 4.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 5.平面问题的应力函数解法中,Airy应力函数 在边界上值的物理意义为边界上某一点(基准点)到任一点外力的矩。 6.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于远处的应力,或远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 7.弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 8.利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 三.绘图题 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1

弹性力学复习题(水工)要点

弹性力学复习题(06水工本科) 一、选择题 1. 下列材料中,()属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。 2 关于弹性力学的正确认识是()。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 3. 弹性力学与材料力学的主要不同之处在于()。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 4. 所谓“完全弹性体”是指()。 A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。 5. 所谓“应力状态”是指()。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。 6. 变形协调方程说明()。 A. 几何方程是根据运动学关系确定的,因此对于弹性体的变形描述是不正确的; B. 微分单元体的变形必须受到变形协调条件的约束; C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件; D. 变形是由应变分量和转动分量共同组成的。 7. 下列关于弹性力学基本方程描述正确的是()。 A. 几何方程适用小变形条件; B. 物理方程与材料性质无关; C. 平衡微分方程是确定弹性体平衡的唯一条件; D. 变形协调方程是确定弹性体位移单值连续的唯一条件; 8、弹性力学建立的基本方程多是偏微分方程,最后需结合()求解这些微分方程,以

弹性理论习题及答案

第三章弹性理论 姓名班级学号考试时间:20分钟 一、单项选择题 1、点弹性和弧弹性之间()关系 A、有 B、没有 C、不确定 2、冰棒的需求价格弹性()药品的需求价格弹性 A、大于 B、小于 C、等于 D、大于或等于 3、供给弹性()点弹性和弧弹性的区分 A、有 B、没有 C、不确定 4、垂直的需求曲线是()弹性 A、完全有 B、富有 C、完全无 5、水平的供给曲线是()弹性 A、完全有 B、富有 C、完全无 6、一种商品价格下降,另外一种商品需求上升,则两种商品之间是()关系 A、互补品 B、替代品 C、正常品 D、劣品 7、在长期中,供给曲线更()弹性 A、缺乏 B、富有 C、不确定 D、依商品而定 8、容易被替代的商品,其需求弹性() A、大 B、小 C、不确定 二、多项选择题 1、弹性一般分为()弹性 A、供给 B、需求 C、价格 D、收入 2、利用价格需求弹性可以区分出() A、生活必须品 B、奢侈品 C、经济商品 D、免费物品 三、简答题 1、影响商品需求价格弹性的因素 2、需求价格弹性的五种情况

答案 一.单项选择题 2. A 二.多项选择题 三.简答题 1. 影响商品需求价格弹性的因素 (1). 必需品与奢侈品 一般地说,奢侈品需求对价格是有弹性的,而必需品则是缺乏弹性的。 (2). 相近替代品的可获得性 一般来说,相近替代品越多的商品越富有弹性。替代品多,消费者从这种商品转向购买其他商品较为容易,对商品价格更敏感(如,香烟)。 (3). 商品所划定范畴的大小 一般来说,如果某产品存在着很接近的替代品的数量愈多,其需求价格弹性愈大。 (4). 时间的长短 计算某种商品价格弹性系数所考虑的时间愈长,其系数会愈大。当某一商品价格上升时,消费者需要一段时间去寻找可以接受的替代品,因此,短期内对该商品的需求量变化不大,而长期内消费者更可能转向其他替代品,因此,该提价商品的需求量变化会更加明显些。 2. 需求价格弹性的五种情况 (1). 当e=0时,需求对价格是完全无弹性的,即需求量与价格无关。则需求曲线为一条垂直于x轴的直线。如,垄断价格;婚丧用品,特效药等接近于完全无弹性。 (2). 当e=1时,需求对价格为单位弹性,即价格变化的百分比与需求量变化的百分比相等。 (3). 当e=∞时,需求对价格是完全有弹性,即需求曲线为一条垂直于P轴的直线。如,银行以某一固定的价格收购黄金;实行保护价的农产品。 (4). 当e>1时,需求对价格富有弹性,即需求变化的幅度大于价格变化的幅度。如,奢侈品。 (5). 当e<1时,需求队价格缺乏弹性,即需求变化的幅度小于价格变化的幅度。如,生活必需品。

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1 MT -2 。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa , =2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa , =2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa , =2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

同济【弹性力学试卷】2008年期终考试A-本科

同济大学课程考核试卷(A 卷) 2008 — 2009 学年第 一 学期 命题教师签名: 审核教师签名: 课号:030192 课名: 弹性力学 考试考查:考试 此卷选为:期中考试( )、期终考试(√ )、重考( )试卷 年级 专业 学号 姓名 得分 一.是非题(正确,在括号中打√;该题错误,在括号中打×。)(共30分,每小题2分) 1. 三个主应力方向必定是相互垂直的。( ) 2. 最小势能原理等价于平衡方程和面力边界条件。( ) 3. 轴对称的位移对应的几何形状和受力一定是轴对称的。( ) 4. 最大正应变是主应变。( ) 5. 平面应力问题的几何特征是物体在某一方向的尺寸远小于另两个方向的尺寸。( ) 6. 最大剪应力对应平面上的正应力为零。( ) 7. 弹性体所有边界上的集中荷载均可以按照圣维南原理放松处理边界条件。( ) 8. 用应力函数表示的应力分量满足平衡方程,但不一定满足协调方程。( ) 9. 经过简化后的平面问题的基本方程及不为零的基本未知量(应力、应变和位移)均为8 个。( ) 10. 运动可能的位移必须满足已知面力的边界条件。( ) 11. 实对称二阶张量的特征值都是实数。( ) 12. 对单、多连通弹性体,任意给出的应变分量只要满足协调方程就可求出单值连续的位 移分量。( ) 13. 若整个物体没有刚体位移,则物体内任意点处的微元体都没有刚体位移。( ) 14. 出现最大剪应力的微平面和某两个应力主方向成45度角。( ) 15. 对任意弹性体,应力主方向和应变主方向一致。( ) 二.分析题(共20分,每小题10分) 1.已知应力张量为()()2211e e e e σ?-+?+=b a b a ,0>>a b (1) 设与xy 平面垂直的任意斜截面的法向矢量为21sin cos e e n θθ+=,试求该斜截面上的正应力与剪应力。 (2) 求最大和最小剪应力值。

弹性力学习题

弹性力学习题 填空题 1。弹性力学是建立在连续性、完全弹性、均匀性、各项同性及小变形假定(假定形变和唯一是微小的)假定基础。 2。在平面应力问题中,其中应力分量不恒为零的有σx,σy,τxy=τyx。而在平面应变问题中,应变分量横为零的有?z,txz=tzx,tzy=tyz。两类问题的应力和应变位移都只是坐标x,y的函数,与z无关。 3。体力不计,两端受转向相反力偶作用的等截面质感扭转问题中,存在的应力有横截面上的切应力t,其余应力为0,其任一横截面在xy轴上的投影的形状相同,而只是转动一个角度a=kz。 4。相容方程是形变分量之间的变形协调方程,只有满足相容方程,才能保证位移分量的存在,实际位移值应包括u,v,w。 5。平面问题中,(a)已知一点的应力为61=62=6,那么任一方向的正应力6n为6。 tn为0。 6。空间问题一点的应力状态是由6个独立的应力分量决定的,分别是沿直角坐标系的正应力6x,6y,6z和切应力txy,txz,tyz。任一方向的正应力和切应力实际上是这些应力分量在该方向上的合成。 1。弹性力学是固体力学的一个分支,其基本任务是研究由于受外力作用或边界约束,温度改变等原因为发生的。 2。在平面应力问题中,应力分量为0的是6x,tzx,tzy,而在平面应变中,应力分量一般不为0的有6x,6y,6z,txy。计算两种状态的基本方程中,平衡威风方程和几何方程是一样的。

3。对轴对称问题,得出的位移公式却是非轴对称的,因为位移包含刚体位移分量,只有位移边界条件也是轴对称的,则位移才是轴对称的。 4。一点的应力状态由6个独立的应力分量决定的,分别是沿坐标面的正应力6x,6y,6z和切应力tzy,tyz,tzx。一点应变状态有6的独立的独立的应变分量决定的,分别沿坐标面的线应变?x,?y,?z,和切应变rxy,ryz,rzx。 5。弹性力学的基本做题方法有应力法,位移法。 6。平面问题中,艾里应力函数是在条件常体力下得到的,应满足区域内的相容方程。 简答题 1、简述弹性力学的基本假设,并说说建立弹性力学基本方程时分别用到哪些假设, a、连续性 2、完全弹性 3、均匀性 4、各向同性 5、小变形假设即形变和位移均是微小的平衡微分方程和几何方程:物体的连续性、均匀性、小变形物理方程:全部用到 2、简述弹性力学应力、应变、体力和面力的符号规定(可用文字说明)。正的切应力对应正的切应变吗, 应力:截面的外法线沿坐标轴正向,则此截面为正面,正面上的应力沿坐标轴正向为正、负向为负。相反,负面上的应力沿坐标轴负向为正、正向为负。 应变:线应变以伸长时为正、缩短时为负;切应变以直角变小时为正、变大时为负。体力:沿坐标轴正方向为正、沿坐标轴负方向为负。 面力:沿坐标轴正方向为正、沿坐标轴负方向为负。 正的切应力对应正的切应变。(图)τxy与τyx均为正的切应力,它们的作用是使DA与DB间的夹角有减小的趋势,而根据切应变定义,此时应变为正。 3、简述平面问题的几何方程是如何得到的, a、先求出一点沿坐标轴x、y的线应变ξx、ξy。

弹性力学基础知识归纳

一.填空题 1.最小势能原理等价于平衡微分方程和应力边界条件 2.一组可能的应力分量应满足平衡微分方程和相容方程。二.简答题 1.简述圣维南原理并说明它在弹性力学中的作用。 如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。 作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。 (2)将次要的位移边界条件做应力边界条件处理。 2.写出弹性力学的平面问题的基本方程。应用这些方程时,应注意什么问题? (1).平衡微分方程:决定应力分量的问题是超静定的。 (2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。 (3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。但是形变分量完全确定时,位移分量不完全确定。 3.按照边界条件的不同,弹性力学分为哪几类边界问题? 应力边界条件,位移边界条件和混合边界条件。 4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号?

由六个分量决定。在确定方向的时候,正面上的应力沿正方向为正,负方向为负。负面上的应力沿负方向为正,正方向为负。 5.什么叫平面应力问题和平面应变问题?举出工程实例。平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。例如工程中的深梁和平板坝的平板支墩。平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。例如 6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。 (1)完全弹性假定。 (2)均匀性假定。 (3)连续性假定。 (4)各向同性假定。 (5)小变形假定。 满足完全弹性假定,均匀性假定,连续性假定和各向同性假定的是理想弹性体。一般混凝土构件和一般土质地基可以看做为理想弹性体。 7.什么是差分法?写出基本差分公式? 差分法是把基本方程和边界条件近似地看改用差分方程(代

弹性力学基本概念和考点汇总

基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时, 0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律, 0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (7) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程:

相关主题
文本预览
相关文档 最新文档