当前位置:文档之家› 单相桥式全控整流电路纯电阻性负载课程设计.

单相桥式全控整流电路纯电阻性负载课程设计.

单相桥式全控整流电路纯电阻性负载课程设计.
单相桥式全控整流电路纯电阻性负载课程设计.

1 绪论

电力电子技术又称为功率电子技术,他是用于电能变换和功率控制的电子技术。电力电子技术是弱电控制强电的方法和手段,是当代高新技术发展的重要内容,也是支持电力系统技术革命发展的重要基础,并节能降耗、增产节约提高生产效能的重要技术手段。微电子技术、计算机技术以及大功率电力电子技术的快速发展,极大地推动了电工技术、电气工程和电力系统的技术发展和进步。

电力电子器件是电力电子技术发展的基础。正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。而二十世纪九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。电力电子技术在电力系统中的应用中也有了长足的发展,电力电子装置与传统的机械式开关操作设备相比有动态响应快,控制方便,灵活的特点,能够显著地改善电力系统的特性,在提高系统稳定、降低运行风险、节约运行成本方面有很大潜力。

随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。在电能的生产和传输上,目前是以交流电为主。电力网供给用户的是交流电,而在许多场合,例如电解、蓄电池的充电、直流电动机等,需要用直流电。要得到直流电,除了直流发电机外,最普遍应用的是利用各种半导体元件产生直流电。这个方法中,整流是最基础的一步。整流,即利用具有单向导电特性的器件,把方向和大小交变的电流变换为直流电,整流的基础是整流电路。

2 设计任务

2.1 设计目的

1.加深理解《电力电子技术》课程的基本理论。

2.掌握电力电子电路的一般设计方法,具备初步的独立设计能力。

3.学习MATLAB仿真软件及各模块参数的确定。

2.2 设计内容和要求

设计条件:

1.电源电压:交流100V/50Hz

2.输出功率:500W

α

3.触发角

90

=

4.纯电阻负载

根据课程设计题目和设计条件,说明主电路的工作原理、计算选择元器件参数。设计内容包括:

1.整流变压器额定参数的计算

2.晶闸管电流、电压额定参数选择

3.触发电路的设计

2.3 设计工作内容及工作量的要求

1.根据设计题目要求的指标,通过查阅有关资料分析其工作原理,确定各器件参数,设计电路原理图。

2.利用MATLAB仿真软件绘制主电路结构模型图,设置相应的参数。

3.仿真用示波器模块观察和记录电源电压、触发信号、晶闸管电流和电压,负载电流和电压的波形图。

3设计内容

3.1 设计方案的选择

单相全控桥式纯电阻负载整流电路可分为单相桥式带阻感负载相控整流电路和单相桥式带阻感负载半控整流电路,它们所连接的负载性质不同就会有不同的特点。下面分析两种单相桥式整流电路在带电感性负载的工作情况。

单相半控桥式整流电路的优点是:线路简单、调整方便。弱点是:输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。

单相全控桥式整流电路其输出平均电压是半波整流电路2倍,在相同的负载下流过晶闸管的平均电流减小一半;且功率因数提高了一半。单相半波相控整流电路因其性能较差,实际中很少采用,在中小功率场合采用更多的是单相全控桥式整流电路。根据以上的比较分析因此选择的方案为单相全控桥式整流电路(负载为阻感性负载)。

3.2 整流电路设计

id

R

图3.2单相桥式全控整流电路(纯电阻性负载)

单相桥式全控整流电路是由交流电源、整流变压器、晶闸管、负载以及触发电路组成。

其工作原理如下:

1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。因此在0~α区间,4个晶闸管都不导通。假如4个晶闸管的漏电阻相等,则Ut1、4= Ut2、3=1/2*u2。

2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。

3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。

4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

3.3 元器件的选择

3.3.1 晶闸管

晶管又称为晶体闸流管,可控硅整流(Silicon Controlled Rectifier-- SCR),开辟了电力电子技术迅速发展和广泛应用的崭新时代; 20世纪80年代以来,开始被性能更好的全控型器件取代。能承受的电压和电流容量最高,工作可靠,以被广泛应用于相控整流、逆变、交流调压、直流变换等领域,成为功率低频(200Hz以下)装置中的主要器件。晶闸管往往专指晶闸管的一种基本类型--普通晶闸管。广义上讲,晶闸管还包括其许多类型的派生器件。

1)晶闸管的结构

晶闸管是大功率器件,工作时产生大量的热,因此必须安装散热器。引出阳极A、阴极K和门极(或称栅极)G三个联接端。

2)晶闸管的工作原理图

晶闸管由四层半导体(P

1、N

1

、P

2

、N

2

)组成,形成三个结J

1

(P

1

N

1

)、J

2

(N

1

P

2

)、

J 3(P 2N 2),并分别从P 1、P 2、N 2引入A 、G 、K 三个电极。由于具有扩散工艺,具有

三结四层结构的普通晶闸管可以等效成如图 3.3.1(右)所示的两个晶闸管T 1(P 1-N 1-P 2)和(N 1-P 2-N 2)组成的等效电路。

图3.3.1 晶闸管的内部结构和等效电路

3)晶闸管的门极触发条件

(1): 晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通;

(2):晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通;

(3):晶闸管一旦导通门极就失去控制作用;

(4):要使晶闸管关断,只能使其电流小到零一下。

晶闸管的驱动过程更多的是称为触发,产生注入门极的触发电流IG的电路称

为门极触发电路。也正是由于能过门极只能控制其开通,不能控制其关断,晶闸管才被称为半控型器件。

只有门极触发是最精确、迅速而可靠的控制手段。

3.3.2 晶闸管电流、电压额定值的选择 晶闸管所能承受的最大正向电压和反向电压分别为

22222U U 和。 为选择晶闸管、变压器容量、导线面积等定额,需要考虑发热问题,为此需要计算电流有效值。流过晶闸管的电流有效值为

()π

απαπωωπβα-sin2212t d t sin R 221vt 222+==?R U U I )( 变压器二次电流有效值2I 与输出直流电流有效值I 相等,为

I=()π

απαπωωππ

-sin221t d t sin 21

20222+=???? ??=?R U R U I 由上面两式可得出: I I VT 21

=

不考虑变压器的损耗时,要求变压器的容量为22I U S =。

4 单相桥式全控整流电路纯电阻性负载电路设计

4.1 单相桥式全控整流电路纯电阻性负载工作原理

4.1.1 单相桥式全控整流电路纯电阻性负载工作原理图

R

id

图4.1.1 单相桥式全控整流电路纯电阻性负载工作原理图

4.1.2 工作原理说明 晶闸管1V 和4V 组成一对桥臂,2V 和3V 组成另一对桥臂。当变压器二次电压U 2为正半周时(a 端为正,b 端为负),相当于控制角a 的瞬间给1V 和4V 以触发脉冲,

1V 和4V 即导通,这时电流从电源a 端经1V 、R 、V 4流回到电源b 端。这期间V 2和V 3均承受反压而截止。当电源电压过零时,电流也降到零,V 1和4V 即关断。

在电源电压的负半周期,仍在控制角为a 处触发晶闸管2V 和3V ,则2V 和3V 导通。电流从电源b 端经3V 、R 、2V 流回电源a 端。到一周期结束时电压过零,电流亦降至零,2V 和3V 关断。在电源电压的负半周期,1V 和4V 均承受反向电压而截止。很显然上述两组触发脉冲在相位上相差180°。以后又是1V 和4V 导通,如此循环工作下去。

4.2 基本参数计算

1) 由变压器容量S=22I U =500W 、变压器二次侧电压U 2可得到

变压器二次电流有效值2I =A U S 5100

5002== 输出直流电流有效值I=A I 52=

2)根据I==+=π

απαπ-sin2212

2R U I =5A 可得到负载电阻值 R=Ω=+20-sin22122

π

απαπI U 3)整流电压平均值:

V U U 452

cos9011009.02cos 19.0o

2d =+??=+=α 4) 输出电流平均值:

2

90cos 1021009.02cos 19.02d o

d R U R U I +??=+==α=2.25A 5) 晶闸管的电流平均值:

2cos 145.0212d α+==R U I I d VT =2

90cos 10210045.0o +??=1.125A 4) 流过晶闸管的电流有效值:

παπαπ-sin2212vt 2+=R U I =π

ππππ2-sin 21202100+=3.536A 5) 晶闸管所承受的最大正向电压

222U =10022?V=70.71V 最大反向电压为22U =141.42V

6) 晶闸管的额定电压:

V V U U N 84.2820012)3~2(2)3~2(2=??==~424.26V

8) 晶闸管的额定电流:

I N ==57.1)

2~5.1(VT I =?57.13.536)2~5.1(A 504.4~8A 73.3

4.3建模

在MATLAB 新建一个Model ,命名为untitled.mdl ,同时模型建立如下图所示:

图4.3.1 在matlab中建立的单相桥式全控整流电路电阻性负载电路图在此电路中,输入电压的电压设置为141,4V,频率设置为50Hz,电阻阻值设置为20欧姆,电感设置为1e-5H,脉冲输入的电压设置为1V,周期设置为0.02(与输入电压一致周期),占空比设置为10%,触发角设置为90°因为4个晶闸管在对应时刻不断地周期性交替导通,关断,所以脉冲出发周期应相差180°。

a.交流电源参数

图4.3.1 交流电源Us的参数设定b.同步脉冲信号发生器参数

图4.3.2 VT1、VT4触发脉冲的设置

图4.3.3 VT2、VT3触发脉冲的设置

见图4.3.2和图4.3.3,幅值均为1V ,即大于晶闸管的门槛0.8V ,周期为0.02s ,也就是50Hz ,脉宽均为10,延迟时间分别为0.005s 和0.015s 。

按照关系式t=o 360T

?α,控制角α=90o ,周期T=0.02s ,则第一个脉冲在t 1=

0.005s 时到来。互补的两套管在一个周期内各导通一次,所以第二个脉冲在t 2=0.01+t 1=0.015s 。

c.负载电阻的参数

图4.3.4 纯电阻性负载的设置

4.4 仿真结果

图4.4.1 示波器所示仿真结果

示波器显示内容:第一行U:VT

4

1、和VT

3

2、

的触发脉冲;第二行U

2

:二次侧交

流电压值;第三行i

vt :晶闸管电流;第四行

vt

u:晶闸管电压;第五行

d

i:流过负

载的电流;第六行U

d

:负载两端的电压。

5 总结

这次电力电子技术课程设计,我完成的是单相桥式全控整流电路纯电阻性负载。通过实际仿真操作,我明白了很多关于电力电子仿真技术方面的知识,尤其是在课本中没有完全介绍的有关matlab的软件知识。要完成这次课程设计,关靠书本知识是远远不够的,所以我查阅了很多关于电力电子的书籍,并且也通过网络查到了很多相关的知识,为这次课程设计做了很多帮助。

对于课程设计的内容,首先要做的应是对设计内容的理论理解,在理论充分理解的基础上,才能做好课程设计,才能设计出性能良好的电路。整流电路中,基本元件的选择是最关键的,开关器件和触发电路选择的好,对整流电路的性能指标影响很大。在这次课程设计过程中,碰到的难题就是对相关参数的计算,因为在学习中没能很好的系统的总结相关知识。在整个课程设计中贯穿的计算过程没能很好的把握。在今后的学习中要认真总结经验,对电力电子课程进行补充,为以后深入的学习专业知识做铺垫。

设计过程中,我明白了整流电路,尤其是单相桥式全控整流电路的作用以及整流电路设计方法的多样性。另外通过这次课程设计,我对文档的编排也有了一定的掌握,这对于以后的毕业设计及工作需要都有很大的帮助,在完成课程设计的同时我也在复习一遍电力电子这门课程。

这是我第一次完成整个课程设计,通过这次的经历我加深了对《电力电子技术》这门课程的基本理论的理解,掌握了电力电子电路的一种设计方法,也学习MATLAB 仿真软件及各模块参数的确定。由于理论知识的缺乏,以及对课程设计的不熟悉,课程设计还有很多不足之处,在以后的课程设计中,希望能有所改善。

参考文献

[1].王兆安.电力电子技术.机械工业出版社.2009

[2].李传琦.电力电子技术计算机仿真实验.电子工业出版社.2005

[3].洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真.机械工业出版社.2006

[4].钟炎平.电力电子电路设计.华中科技大学出版社.2010

三相桥式全控整流电路

1主电路的原理 1.1主电路 其原理图如图1所示。 图1 三相桥式全控整理电路原理图 习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。 1.2主电路原理说明 整流电路的负载为带反电动势的阻感负载。假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图2所示。

图2 反电动势α=0o时波形 α=0o时,各晶闸管均在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

单相桥式全控整流电路Matlab仿真

单相桥式全控整流电路 M a t l a b仿真 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录( ( (3 4 6 8 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 电路结构 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则==1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,==1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电

单相桥式全控整流电路(阻感性负载)

1. 单相桥式全控整流电路(阻-感性负载) 1.1单相桥式全控整流电路电路结构(阻-感性负载) 单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。单相桥式全控整流电路(阻-感性负载)电路图如图1所示 图1. 单相桥式全控整流电路(阻-感性负载) 1.2单相桥式全控整流电路工作原理(阻-感性负载) 1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。2)在u2正半波的ωt=α时刻及以后: 在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b→Tr的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。 3)在u2负半波的(π~π+α)区间: 当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。

在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。 4)在u2负半波的ωt=π+α时刻及以后: 在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。 1.3单相桥式全控整流电路仿真模型(阻-感性负载) 单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示: 图2 单相双半波可控整流电路仿真模型(阻-感性负载)

单相桥式晶闸管全控整流电路课程设计

学号:2011551917 湘潭大学 课程设计 题目单相全控桥式晶闸管整流电路设计 学院信息工程学院 专业自动化专业 班级自动化4班 姓名严梦宇 指导教师兰志勇 2014 年 5 月19 日

课程设计任务书 学生姓名:严梦宇专业班级:自动化4班 指导教师:兰志勇工作单位:湘潭大学 题目: 初始条件:单相全控桥式晶闸管整流电路的设计(阻感负载) 1、电源电压:交流100V、50Hz 2、输出功率:500w 3、移相范围0°~90° 摘要 本次课程设计只要是对单相全控桥式晶闸管整流电路的研究。首先对几种典型的整流电路的介绍,从而对比出桥式全控整流的优点,然后对单相全控桥式晶闸管整流电路的整体设计,包括主电路,触发电路,保护电路。主电路中包括电路参数的计算,器件的选型;触发电路中包括器件选择,参数设计;保护电路包括过电压保护,过电流保护,电压上升率抑制,电流上升率抑制。之后就对整体 电路进行Matlab仿真,最后对仿真结果进行分析与总结。 关键词:单相全控桥、晶闸管、整流 单相桥式全控整流电路 电路简图如图: 单相桥式全控整流电路 此电路对每个导电回路进行控制,无须用续流二极管,也不会失控现象,负

载形式多样,整流效果好,波形平稳,应用广泛。变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。 而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。相同的负载下流过晶闸管的平单相全控式整流电路其输出平均电压是半波整流电路2倍,在均电流减小一半;且功率因数提高了一半。 系统流程框图 根据方案选择与设计任务要求,画出系统电路的流程框图如图1-5所示。整流电路主要由驱动电路、保护电路和整流主电路组成。根据设计任务,在此设计中采用单相桥式全控整流电路带阻感性负载。 系统流程框图 主电路的设计 主电路原理图如图1-6所示 主电路原理图 输入 过电流保护 整流主电路 过电压保护 驱动触发电路 输出

三相桥式全控整流电路的性能研究.

三相桥式全控整流电路的性能研究 一、原理及方案 三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。变流主电路和电网之间用变压器隔离,还可以抑制由变流器进入电网的谐波成分。保护电路采用RC过电压抑制电路进行过电压保护,利用快速熔断器进行过电流保护。采用锯齿波同步KJ004集成触发电路,利用一个同步变压器对触发电路定相,保证触发电路和主电路频率一致,触发晶闸管,使三相全控桥将交流整流成直流,带动直流电动机运转。 结构框图如图1-1所示。整个设计主要分为主电路、触发电路、保护电路三个部分。框图中没有表明保护电路。当接通电源时,三相桥式全控整流电路主电路通电,同时通过同步电路连接的集成触发电路也通电工作,形成触发脉冲,使主电路中晶闸管触发导通工作,经过整流后的直流电通给直流电动机,使之工作。 图1-1 三相桥式全控整流电路结构图

二、主电路的设计及器件选择 实验参数设定负载为220V、305A的直流电机,采用三相整流电路,交流测由三相电源供电,设计要求选用三相桥式全控整流电路供电,主电路采用三相全控桥。 1.三相全控桥的工作原理 如图2-1所示,为三相桥式全控带阻感负载,根据要求要考虑电动机的电枢电感与电枢电阻,故为阻感负载。习惯将其中阴极连接在一起的3个晶闸管称为共阴极组;阳极连接在一起的3个晶闸管称为共阳极组。共阴极组中与a、b、c 三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。变压器为Y ?-型接法。变压器二次侧接成星形得到零线,而一次侧接成三角形避免3次谐波流入电网 KP1KP3KP5 图1 三相桥式全控整流电路 图2-1 三相桥式全控整流电路带(阻感)负载原理图 2. 三相全控桥的工作特点 ⑴2个晶闸管同时通形成供电回路,其中共阴极组和共阳极组各1个,且不能为同1相器件。 ⑵对触发脉冲的要求: 按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差。 共阴极组VT1、VT3、VT5的脉冲依次差。 共阳极组VT4、VT6、VT2也依次差。 同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180。

单相半控桥式晶闸管整流电路电阻负载

电气工程学院 电力电子课程设计 设计题目:单相半控桥式晶闸管整流电路(电阻负载)学号: 姓名: 同组人: 指导教师: 设计时间: 设计地点:

电力电子课程设计成绩评定表 指导教师签字: 年月日

电力电子课程设计任务书 学生姓名:指导教师: 一、课程设计题目: 单相半控桥式晶闸管整流电路(电阻负载) 二、课程设计要求 1. 根据具体设计课题的技术指标和给定条件,独立进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 查阅有关参考资料和手册,并能正确选择有关元器件和参数,对设计方案进行仿真; 3. 完成预习报告,报告中要有设计方案,设计电路图,还要有仿真结果; 4. 进实验室进行电路调试,边调试边修正方案; 5. 撰写课程设计报告——最终的电路图、调试过程中遇到的问题和解决问题的方法。 三、进度安排 2.执行要求 课程设计共5个选题,每组不得超过2人,要求学生在教师的指导下,独力完成所设计的详细电路(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告雷同。

摘要 本次课程设计的题目为:单相半控桥式晶闸管整流电路,其中负载为纯电阻负载。电路设计的主要参数及要求:1、电源电压:交流100V/50Hz;2、输出功率:500W;3、移相范围:0o-180o。 对于单相半控桥式晶闸管整流电路(电阻负载),其电路设计的主要功能为:单相桥式半控整流电路的工作特点是晶闸管触发导通,而整流二极管在阳极电压高于阴极电压时自然导通。 单相桥式半控整流电路在纯电阻负载电流连续时,当相控角α<180°时,可实现将交流电功率变为直流电功率的相控整流,同时,调节触发电路,可改变触发角进行调压;在α>180°时,由于二极管的单相导电性,电路无法实现逆变,输出电压为零。 关键词:单相半控桥式晶闸管整流电路、纯电阻负载、相控角调节 Abstract ABSTRACT:Curriculum design topics: single-phase half-controlled bridge thyristor rectifier circuit, where the load is purely resistive load. The main parameters and requirements of the circuit design: 1, the power supply voltage: AC 100V/50Hz, output power: 500W; 2; 3, the phase shift range: 0 o ~180 o. For the single phase half controlled bridge thyristor rectifier circuit (resistive load), the main function of the circuit design: Characteristics of single phase bridge half controlled rectifier circuit is triggered thyristor turn-on, and rectifier diode is higher than that of cathode voltage in the anode voltage natural conduction. Single phase bridge half controlled rectifier circuit load current is continuous in the pure resistance, while the mouldings α <180 °, c an realize the phase control rectifier, AC power into DC power at the same time, adjusting trigger circuit, which can change the trigger angle regulator; when α >180 °, because the phase conductivity diode, the circuit can not be achieved inverter, output voltage to zero. KEYWORDS:S ingle phase half controlled bridge thyristor rectifier circuit, pure resistive load, adjust phase mouldings

单相桥式全控整流电路

单相桥式全控整流电路 一、原理 图1.1为单相桥式全控整流带电阻电感性负载,图中DJK03是装置上的晶闸管触发装置。假设电路已工作于稳态。 在u2正半周期,触发角α处给晶闸管VT1和VT4加触发脉冲使其开通,ud=u2。负载中有电感存在时负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流id连续且波形近似为一水平线,u2过零变负时,由于电感的作用晶闸管VT1和VT4中仍流过电流id,并不关断。至ωt=π+α时刻,给VT3和VT2加触发脉冲,因VT3和VT2本已承受正电压,故两管导通。VT3和VT2导通后,u2通过VT3和VT2分别向VT1和VT4施加反压使VT1和VT4关断,流过VT1和VT4的电流迅速转移到VT3和VT2上,此过程成为换相,亦称换流。至下一周期重复上述过程,如此循环下去,其平均值为Ud=0.9U2。 图1.2为单相桥式有源逆变电路实验原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。图中的电阻Rp、电抗Ld和触发电路与单相桥式整流电路相同。 产生有源逆变的条件如下: (1)要有直流电动势,其极性需和晶闸管的导通方向一致,其值应大于变流电路直流侧的平均电压。 (2)要求晶闸管的控制角α>π/2.,使Ud为负值。 两者必须同时具备才能实现有源逆变。 二、实验内容 (1)单相桥式全控整流电路带电阻性负载。 (2)单相桥式有源逆变电路带电阻电感性负载。 (3)有源逆变电路逆变颠覆现象的观察。 (4)单相桥式整流、单相桥式有源逆变电路带电阻电感性负载时MATLAB的仿真。 三、实验仿真 1.带电阻电感性负载的仿真 启动MATLAB,进入SIMULINK后新建文档,绘制单相桥式全控整流电路模型,如图1.3所示。双击各模块,在出现的对话框内设置相应的参数。

三相桥式全控整流电路

图1 三相桥式全控整流电路 实验六:三相桥式全控整流电路 (一)实验目的 1.掌握实验电路的工作原理和关键波形; 2.分析不同参数设置对仿真结果的影响 (二)实验原理 在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。 为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管KP1和KP4接a 相,晶闸管KP3和KP6接b 相,晶管KP5和KP2接c 相。 晶闸管KP1、KP3、KP5组成共阴 极组,而晶闸管KP2、KP4、KP6组成 共阳极组。 为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的变化规 则,下面研究几个特殊控制角,先分 析α=0的情况,也就是在自然换相点 触发换相时的情况。图1是电路接线 图。 为了分析方便起见,把一个周期 等分6段(见图2)。 在第(1)段期间,a 相电压最高,而共阴极组的晶闸管KP1被触发导通,b 相电位最低,所以供阳极组的晶闸管KP6

被触发导通。这时电流由a相经KP1流向负载,再经KP6流入b相。变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。加在负载上的整流电压为 =-= 经过60°后进入第(2)段时期。这时a相电位仍然最高,晶闸管KPl继续导通,但是c相电位却变成最低,当经过自然换相点时触发c相晶闸管KP2,电流即从b相换到c相,KP6承受反向电压而关断。这时电流由a相流出经KPl、负载、KP2流回电源c相。变压器a、c两相工作。这时a相电流为正,c相电流为负。在负载上的电压为 =-= 再经过60°,进入第(3)段时期。这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管KP3,电流即从a相换到b相,c相晶闸管KP2因电位仍然最低而继续导通。此时变压器bc两相工作,在负载上的电压为 =-= 余相依此类推。 由上述三相桥式全控整流电路的工作过程可以看出: 1.三相桥式全控整流电路在任何时刻都必须有两个晶闸管导通,而且这两个晶闸管一个是共阴极组,另一个是共阳极组的,只有它们能同时导通,才能形成导电回路。 2. 三相桥式全控整流电路就是两组三相半波整流电路的串联,所以与三相半波整流电路一样,对于共阴极组触发脉冲的要求是保证晶闸管KPl、KP3和KP5依次导通,因此它们的触发脉冲之间的相位差应为120°。对于共阳极组触发脉冲的要求是保证晶闸管KP2、KP4和KP6依次导通,因此它们的触发脉冲之间的相位差也是120°。 3.由于共阴极的晶闸管是在正半周触发,共阳极组是在负半周触发,因此接在同一相的两个晶闸管的触发脉冲的相位应该相差180°。 4. 三相桥式全控整流电路每隔60°有一个晶闸管要换流,由上一号晶闸管换流到下一号晶闸管触发,触发脉冲的顺序是:1→2→3→4→5→6→1,依次下去。相邻两脉冲的相位差是60°。

单相半控桥式整流电路设计

单相半控桥式整流电路 设计 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

摘要随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定。整流的基础是整流电路。由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。整流电路的应用十分广泛。广泛的应用于直流电动机、电镀、电解电源、同步发电机励磁、通信系统电源灯。 本设计研究了单相半控桥式整流电路,对整流电路的原理及特点进行了分析,对整流元件进行了参数计算并选择出了合适的器件。本设计选择KJ004集成触发器做为晶闸管的触发电路,详细的介绍了KJ004的工作原理。本设计还设计了合理的保护电路。最后利用simulink搭建仿真模型。 关键词:半控整流,驱动电路,保护电路,simulink仿真 单相半控桥式整流电路设计 1 主电路的设计 设计目的 (1)、把从电力电子技术课程中所学到的理论和实践知识,在课程设计实践中全 综合的加以运用,使这些知识得到巩固、提高,并使理论知识与实践技能密切结合起来。 (2)、初步树立起正确的设计思想,掌握一般电力电子电路设计的基本方法和技 能,培养观察、分析和解决问题及独立设计的能力,训练设计构思和创新能力。 (3)、培养具有查阅参考文献和技术资料的能力,能熟悉或较熟悉地应用相关手 册、图表、国家标准,为今后成为一名合格的电气工程技术人员进行必须的基本技能和基本素质训练。 整流电路的选择 整流电路是电力电子电路中出现最早的一种,整流电路是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。20

单相桥式全控整流电路课程设计

目录一设计目的 1 二设计任务 1 三设计内容与要求 1 四设计资料及有关规定 五设计成果要求 5.2课程设计方案的选择 5.2.1整流电路 5.3主电路的设计 5.3.1系统总设计框图 5.3.4晶闸管基本参数 5.3.4.1 动态特性 5.3.4.2晶闸管的主要参数说明 5.3.4.3晶闸管的选型 5.3.5变压器的选取 5.3.6 性能指标分析 5.4触发电路和保护电路的设计 5.4.1触发电路 5.4.2保护电路的设计 5.4.2.1 主电路的过电压保护电路设计 5.4.2.2主电路的过电流保护电路设计 5.4.2.3电流上升率、电压上升率的抑制保护5.6设计总结

单相全控晶闸管整流电路课程设计 一 设计目的 (1)培养综合应用所学知识,并设计出具有电压可调功能的直流电源系统的能力; (2)较全面地巩固和应用本课程中所学的基本理论和基本方法,并初步掌整流电路设计的基本方法。 (3)培养独立思考、独立收集资料、独立设计的能力; (4)培养分析、总结及撰写技术报告的能力。 二 设计任务 (1)进行设计方案的比较,并选定设计方案; (2)课程设计的主要内容是主电路的确定,主电路的分析说明 主电路元器件的计算和选型,以及控制电路的设计; (3)完成主电路的原理分析,各主要元器件的选择; (4)完成驱动电路的设计,保护电路的设计; 三 设计内容与要求 负载为电阻电感性负载:L=700mH,R=500欧姆 技术要求:电网供电电压为单相220V,50赫兹,输出电压为100V, 输出功率为1000W 设计技术要求: (1)电源电压:交流100V/50Hz (2)输出功率:500W; (3)移相范围:0~90度。 。

三相桥式全控整流电路

KP5 图1 三相桥式全控整流电路 实验六:三相桥式全控整流电路 (一)实验目的 1.掌握实验电路的工作原理和关键波形; 2.分析不同参数设置对仿真结果的影响 (二)实验原理 在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。 为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管KP1和KP4接a相,晶闸管KP3和KP6接b相,晶管KP5和KP2接c相。 晶闸管KP1、KP3、KP5组成 共阴极组,而晶闸管KP2、KP4、KP6 组成共阳极组。

为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的变化规则,下面研究几个特殊控制角,先分析α=0的情况,也就是在自然换相点触发换相时的情况。图1是电路接线图。 为了分析方便起见,把一个周期等分6段(见图2)。 在第(1)段期间,a 相电压最高,而共阴极组的晶闸管KP1被触发导通,b 相电位最低,所以供阳极组的晶闸管KP6被触发导通。这时电流由a 相经KP1流向负载,再经KP6流入b 相。变压器a 、b 两相工作,共阴极组的a 相电流为正,共阳极组的b 相电流为负。加在负载上的整流电压为 = - = 经过60°后进入第(2)段时期。这 时a 相电位仍然最高,晶闸管KPl 继 续导通,但是c 相电位却变成最低, 当经过自然换相点时触发c 相晶闸管 KP2,电流即从b 相换到c 相,KP6 承受反向电压而关断。这时电流由a 相流出经KPl 、负载、KP2流回电源c 相。变压器a 、c 两相工作。这时a 相电流为正,c 相电流为负。在负载上的电压为 = - = 再经过60°,进入第(3)段时期。这时b 相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管KP3,电流即从a 相换到b 相,c 相晶闸管KP2因电位仍然最低而继续导通。此时变压器bc 两相工作,在负载上的电压为 = - =

实验一-单相桥式全控整流电路

实验一-单相桥式全控整流电路

实验一单相桥式全控整流电路 姓名:王栋 班级:15级自动化(2)班 学号:1520301081 一、实验目的 1.加深理解单相桥式全控整流电路的工作原理 2.研究单相桥式变流电路整流的全过程 3.掌握单相桥式全控整流电路MATLAB的仿真方法,会设置各模块的参数。 二、预习内容要点 1. 单相桥式全控整流带电阻性负载的运行情况 2. 单相桥式全控整流带阻感性负载的运行情况 3. 单相桥式全控整流带具有反电动势负载的运行情况 三、实验仿真模型

图 1.1 单相桥式阻性负载整流电路 四、实验内容及步骤 1.对单相桥式全控整流带电阻性负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。 以延迟角30°为例 (1)器件的查找 以下器件均是在MATLAB R2017b环境下查找的,其他版本类似。有些常 用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources 中查找;其他一些器件可以搜索查找 (2)连接说明 有时查找出来的器件属性并不是我们想要的例如:变压器可以双击变压器进入属性后,取消three windings transformer就是单相变压器。 (3)参数设置 1.双击交流电源把电压设置为311V,频率为50Hz;

2.双击脉冲把周期设为0.02s,占空比设为10%,延迟角设为30度,由于属性 里的单位为秒,故把其转换为秒即,30×0.02/360; 3.双击负载把电阻设为1Ω; 4.双击示波器把Number of axes设为7; 5.在“Power Electronics”库中选择‘Universal Bridge’模块,选择桥臂数为 2,器件为晶闸管,晶闸管参数保持默认即可 (4)仿真波形及分析 当α=30°时, 当α=60°时,

单相半控桥式晶闸管整流电路的设计样本

学号: 课程设计 题目单相半控桥式晶闸管整流电路设计 (带续流二极管)(阻感负载) 学院自动化 专业自动化 班级100...班 姓名 指引教师许湘莲 年12 月29 日

一课程设计性质和目 性质:是电气信息专业必修实践性环节。 目: 1、培养学生综合运用知识解决问题能力与实际动手能力; 2、加深理解《电力电子技术》课程基本理论; 3、初步掌握电力电子电路设计办法。 二课程设计内容: 单相半控桥式晶闸管整流电路设计(带续流二极管)(阻感负载) 设计条件: 1、电源电压:交流100V/50Hz 2、输出功率:500W 3、移相范畴0o~180o 三课程设计基本规定 1、两人一种题目,按学号组合; 2、依照课程设计题目,收集有关资料、设计主电路、控制电路; 3、用MATLAB/Simulink对设计电路进行仿真; 4、撰写课程设计报告——画出主电路、控制电路原理图,阐明主电路工作原理、选取元器件参数,阐明控制电路工作原理、绘出主电路典型波形,绘出触发信号(驱动信号)波形,阐明仿真过程中遇到问题和解决问题办法,附参照资料; 5、通过答辩。

电力电子技术课程设计是在教学及实验基本上,对课程所学理论知识深化和提高。本次课程设计要完毕单相桥式半控整流电路设计,对电阻负载供电,并使输出电压在0到180伏之间持续可调,由于是半控电路,因而会用到晶闸管与电力二极管。此外,还要用MATLAB 对设计电路进行建模并仿真,得到电压与电流波形,对成果进行分析。 核心词:半控整流晶闸管

1 设计基本规定 (1) 1.1设计重要参数及规定:........................................................................................ 错误!未定义书签。 1.2 设计重要功能 (1) 2总体系统 (2) 2.1主电路构造及其工作原理 (2) 2.2 参数计算 (2) 3硬件电路 (4) 3.1 系统总体原理框图 (4) 3.2 驱动电路 (5) 3.2.1 驱动电路方案 (5) 3.2.2 驱动电路设计 (5) 3.3 保护电路 (8) 3.3.1 变压器二次侧熔断器 (8) 3.3.2 晶闸管保护电流 (9) 3.4 触发电路 (10) 4 元器件选取 (11) 4.1 晶闸管 (11) 4.1.1 晶闸管构造与工作原理 (11) 4.1.2 晶闸管选取 (13) 4.2 电力二极管 (13) 5 MATLAB建模与仿真 (14) 6 心得体会 (18) 参照文献 (19)

单相桥式全控整流电路设计说明

电子技术课程设计说明书 单相桥式全控整流电路设计 学生姓名:学号: 学院:计算机与控制工程学院---- 专业:电气工程及其自动化------ 指导教师:李静李郁峰--------- 2016年 1 月

目录 1引言 (1) 1.1整流电路 (1) 1.2整流电路的发展与应用 (1) 2 课程设计目的与要求 (1) 2.1课程设计目的 (1) 2.2课程设计的预备知识 (2) 2.3 课程设计要求 (2) 3元器件的选择 (2) 3.1晶闸管 (2) 3.1.1晶闸管的结构 (2) 3.1.2晶闸管的工作原理图 (2) 3.1.3晶闸管的门极触发条件 (3) 3.1.4晶闸管的主要参数说明 (3) 3.2 可关断晶闸管 (4) 4电路的结构与工作原理 (5) 4.1电路结构 (5) 4.2 工作原理 (5) 4.3基本数量关系 (5) 5 MATLAB仿真 (6) 5.1 MATLAB软件介绍 (6) 5.2 系统建模与参数设置 (6) 5.2.1 仿真图形 (6) 5.2.2模型参数设置 (7) 5.3 仿真结果与分析 (8) 6 结论 (9) 参考文献 (9) 致谢 (9)

1引言 1.1整流电路 整流电路是电力电子中出现最早的一种,它的作用是将交流电能变为直流电能供给直流用电设备。大多数整流电路由变压器.整流主电路和滤波器等组成。它在直流电动机的调速,发电机的励磁调节,电解,电镀等领域得到广泛应用。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中交流成分。变压器设置与否是具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入详述分为单相电路和多相电路;按变压器二次侧的方向是单向还是双向,又可分为单拍电路和双拍电路。 1.2整流电路的发展与应用 电力电子器件的发展对电力电子的发展起着决定性的作用。1947年美国贝尔实验室发明了晶体管,引发了电子技术的一场革命;70年代后期,以门极可关断晶闸管(GTO).电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件发展迅速,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。另外,采用全控型器件的电路的主要控制方式为PWM脉宽调制式,后来,又把驱动,控制,保护电路和功率器件集成在一起,构成功率集成电路(PIC),随着全控型电力电子器件的发展,电力电子电路的工作频率也不断提高。同时,电力电子器件的开关损耗也随之增大,为了减小开关损耗,软开关技术应运而生,零电压开关(ZVS)和零电流开关(ZCS)把电力电子技术和整流电路的发展推向了新的高潮。 2 课程设计目的与要求 2.1课程设计目的 “电力电子技术”课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。因此,通过电力电子计术的课程设计达到以下几个目的: (1)培养综合应用所学知识,并设计出具有电压可调功能的直流电源系统的

单相桥式可控整流电路

信息科学与技术学院实验报告 课程名称: 电力电子应用技术 实验项目: 单相桥式可控整流电路 实验地点: 指导老师: 实验日期: 2014.12.11 实验类型: 专业: 电子信息科学与技术 班级: 姓名: 学号: 一、实验目的及要求 1.掌握锯齿波同步移相触发电路的调试步骤和方法。 2.掌握单相桥式可控整流电路在电阻负载及电阻电感性负载时的工作情况。 3.了解续流二极管的作用。 二、实验仪器、设备或软件 1. 电源控制屏 2. 晶闸管触发电路(含锯齿波同步触发电路模块) 3. 双踪示波器 4. 晶闸管主电路 5. 可调电阻,电感等 三、实验内容 1、电阻性负载 闸管VT1和VT4组成一对桥 臂,VT2和VT3组成另一对桥臂。在u 2正半周,VT1和VT4串联承受正压,若未加触发脉冲,若4个晶闸管均不导通,i d =0,u d =0。在触发角α处给VT1和VT4加触发脉冲,VT1和VT4即导通,电流从电源a 端经VT1、R 、VT4流回电源b 端。当u 2变负时,VT1和VT4串联承受反压而关断。在u 2负半周,仍在触发角α处触发VT2和VT3,VT2和VT3导通,电流从电源b 端流出,经VT3、R 、VT2流回电源a 端。到 u 2过零变正时,VT2和VT3串联承受反压而关断。

直流输出电压平均值为 2. 电感性负载(无续流二极管) 电感性负载的特点是感生电 动势总是阻碍电感中流过的电流使得流过电感的电流不发生突变。 在u 2正半周期,触发角α处给晶闸管VT1和VT4加触发脉冲使其开通,u d =u 2。负载电感很大,i d 不能突变且波形近似为一条水平线。u 2过零变负时,由于电感产生感生电动势的作用,晶闸管VT1和VT4继续承受正压而导通。πα+=wt 时刻, 触发VT2和VT3,VT2和VT3导通,u 2通过VT2和VT3分别向VT1和VT4施加反压使VT1和VT4关断。u 2过零变正时,由于电感产生感生电动势的作用,晶闸管VT2和VT3继续承受正压而导通。α=wt 时刻,触发VT1和VT4,VT1和VT4导通,u 2通过 VT1和VT4分别向VT2和VT3施加反压使VT2和VT3关断。 3.反电动势负载 当负载为蓄电池、直流电动机的电枢(忽略其中的电感)等时,负载可看 成一个直流电压源,对于整流电路,它们就是反电动势负载。 ()2 cos 19.02cos 1π22d sin 2π1222d α αωωπα+=+==?U U t t U U ?+== = α πα α απ ωωπcos 9.0cos 2 2)(d sin 21 222d U U t t U U

三相桥式全控整流电路设计

电气工程学院课程设计报告 课程名称:电力电子技术 设计题目:三相桥式全控整流电路设计 专业班级:自动化1班 学号: 20120220 姓名: 时间: 2015年9月2日--9月30日 ——————以下由指导教师填写——————分项成绩:出勤成品答辩及考核 总成绩:总分成绩 指导教师(签名):

前言 课程设计是《电力电子技术》课程的实践性教学环节,通过课程设计,可 使学生在综合运用所学理论知识,拓展知识面,理论分析和计算,实验研究以及系统地进行工程实践训练等方面得到训练和提高,从而培养学生具有独立解决实际问题和从事科学研究的初步能力。通过设计过程,可是学生初步建立正确的设计思想,熟悉工程设计的一般顺序呢、规范和方法,提高正确使用技术 资料、标准、手册等工具书的能力。通过设计工作还可以培养学生实事求是和一丝不苟的工作作风,树立正确的生产观点、经济观点和全局观点,为后续课程的学习和毕业设计,乃至向工程技术人员的过渡打下基础。 目录 前言 1 一课程设计的内容和具体要求 2 二变压器设计 3 三晶闸管的选择 3 四晶闸管的保护设计 4 五触发电路设计 5 六触发电路供电电源设计 6 七Matlab仿真7 八实验总结8

一.课程设计的内容和具体要求 要求设计一个完整的三相桥式全控整流电路,包括主电路、触发电路、整流变压器的设计,晶闸管的选型和保护等。 (一)技术指标 1、整流器负载为10KW 直流电动机 额定电压D C 220V,额定电流55A,电枢电阻0.5?,总电阻1? 2、输入电压A C 380V(+5~10%) 3、输入电压D C 0~220V,输出最大电流λI nom (λ=1.5) 4、最小α角为15° 5、触发电路采用K J004 6、主变压器采用Y/Y12 联接。 7、主电路采用三相桥式全控整流电路。 (二)设计要求 1、变压器 设计 1)二次相电压U 2 的计算 2)二次电流I 2 和一次电流I 1 的计算 3)变压器容量的计算 2、晶闸管的选择 3、晶闸管保护设计 1)晶闸管过流保护 2)晶闸管过压保护 4、触发电路设计 1)同步变压器设计及同步电压的相位选择2)三相触发电路设计(双窄脉冲) 5、触发脉冲供电电源设计 (三)成品要求 1、课程设 计报告一份 2、电路图一份

单相桥式全控整流电路 (1)

电力电子技术实验报告 实验名称:单相桥式全控整流电路_______班级:自动化_________________ 组别:第组___________________分工: 金华职业技术学院信息工程学院 年月日 目录

一.单项全控整流电路电阻负载工作分 析..................................................- 1 - 1.电路的结构与工作原 理............................................................ ...............- 1 - 2.建 模…………….................................................. ...........................................- 3 - 3.仿真结果与分 析............................................................ ...........................- 5 - 4.小 结…………….................................................. ...........................................- 5 - 二.单项全控整流电路组感负载工作分 析..................................................- 6 - 1.电路的结构与工作原 理............................................................ ...............- 6 - 2.建 模…………….................................................. ............................................- 8 - 3.仿真结果与分 析............................................................ ..........................- 10- 4.小 结…………….................................................. ...........................................- 10 - 三.单项全控整流电路带反电动势阻感负载工作分 析...............................- 11 - 1.电路的结构与工作原 理............................................................ ...............- 11 - 2.建 模…………….................................................. ............................................- 13 - 3.仿真结果与分 析............................................................ ............................- 15 - 4.小 结…………….................................................. ............................................- 15 -

(完整版)单相桥式半控整流电路

单相桥式半控整流电路 1.带电阻负载的工作情况 在单向桥式半控整流电路中,VT1和VD4组成一对桥臂,VD2和VT3组成另一对桥臂。在u 正半周(即a 点电位高于b 点电位),若4个管子均不导通,负载电流id 为零,ud 也为零,VT1、VD4串联承受电压u ,设VT1和VD4的漏电阻相等,则各承受u 的一半。若在触发角处给VT1加触发脉冲,VT1和VD4即导通,电流从电源a 端经VT1、R 、VD4流回电源b 端。当u 过零时,流经晶闸管的电流也降到零,VT1和VD4关断。 在u 负半周,仍在触发延迟角处触发VD2和VT3,VD2和VT3导通,电流从电源b 端流出,经VT3、R 、VD2流回电源a 端。到u 过零时,电流又降为零,VD2和VT3关断。此后又是VT1和VD4导通,如此循环地工作下去。晶闸管承受的最大正向电压和反向电压分别为22U2和2U2。 整流电压平均值为 α=0时, Ud =Ud0=0.9 U2。 α =180°时, Ud = 0。可见,α角的移相范围为0--180°。θ 的范围为0--180. 向负载输出的直流电流平均值为: 晶体管VT1和VD4,VD2和VT3轮流导电,流过晶闸管的电流平均值只有输出直流平均值的一半,即: 流过晶闸管的电流有效值为:

变压器二次侧电流有效值I2与输出直流电流有效值I相等,为 2.带RL负载的工作情况 先不考虑(续流二极管VDR ) 1.每一个导电回路由 1个晶闸管和1个二极管 构成。 2.在u2正半周,处 触发VT1,u2经VT1和 VD4向负载供电。 3.u2过零变负时,因 电感作用使电流连续, VT1继续导通,但因a点 电位低于b点电位,电流 是由VT1和VD2续流, ud=0。 4.在u2负半周,处 触发触发VT3,向VT1加 反压使之关断,u2经VT3 和VD2向负载供电。 5.u2过零变正时, VD4导通,VD2关断。VT3 和VD4续流,ud又为零。 续流二极管VDR 1若无续流二极管,则 当α突然增大至180或 触发脉冲丢失时,会发生 一个晶闸管持续导通而两 个二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,称为失控。 2有续流二极管VDR时,续流过程由VDR完成,避免了失控的现象。 3续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。 整流电压平均值为

相关主题
文本预览
相关文档 最新文档