当前位置:文档之家› 基于K-L变换的特征提取

基于K-L变换的特征提取

基于K-L变换的特征提取
基于K-L变换的特征提取

快速傅里叶变换的意义

傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。 傅里叶变换属于谐波分析。 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)). 1、为什么要进行傅里叶变换,其物理意义是什么? 傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。 因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;5. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;4. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 2、图像傅立叶变换的物理意义 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率

的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。 因此需要一种如下的数学工具:可以将信号的时域和频域结合起来构成信号的时频谱,描述和分析其时频联合特征,这就是所谓的时频局部化分析方法,即时频分析法。1964年,Gabor 等人在傅立叶变换的基础上引入了一个时间局部化“窗函数”g(t),改进了傅立叶变换的不足,形成窗口化傅立叶变换,又称“Gabor 变换”。 定义“窗函数”(t)g 在有限的区间外恒等于零或很快地趋于零,用函数(t )g -τ乘以(t)f ,其效果等同于在t =τ附近打开一个窗口,即: ()()()dt e t g t f G t j f ωττω-+∞ ∞--=?, (4-3) 式(4-3)即为函数f(t)关于g(t)的Gabor 变换。由定义可知,信号(t)f 的Gabor 变换可以反映该信号在t =τ附近的频谱特性。其逆变换公式为: ()()()ττωτωπ ωd G t g e d t f f t j ,21 ? ?+∞ ∞ --- = (4-4) 可见()τω,f G 的确包含了信号(t)f 的全部信息,且Gabor 窗口位置可以随着 τ的变化而平移,符合信号时频局部化分析的要求。 虽然Gabor 变换一定程度上克服了傅立叶变换缺乏时频局部分析能力的不

傅里叶变换的应用

傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法, 比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘; 2.图像分割之边缘检测 提取图像高频分量 3.图像特征提取: 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来计算纹理特征 其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 4.图像压缩 可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换; 傅立叶变换 傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。 傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里面); 时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变; 频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输); 卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点) 信号在频率域的表现 在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。当频率为0时,表示直流信号,没有变化。因此,频率的大小反应了信号的变化

基于Gabor小波变换的人脸表情特征提取

—172 — 基于Gabor 小波变换的人脸表情特征提取 叶敬福,詹永照 (江苏大学计算机科学与通信工程学院,镇江 212013) 摘 要:提出了一种基于Gabor 小波变换的人脸表情特征提取算法。针对包含表情信息的静态灰度图像,首先对其预处理,然后对表情子区域执行Gabor 小波变换,提取表情特征矢量,进而构建表情弹性图。最后分析比较了在不同光照条件下不同测试者做出6种基本表情时所提取的表情特征,结果表明Gabor 小波变换能够有效地提取与表情变化有关的特征,并能有效地屏蔽光照变化及个人特征差异的影响。关键词:模式识别;表情特征提取;Gabor 小波变换 Facial Expression Features Extraction Based on Gabor Wavelet Transformation YE Jingfu, ZHAN Yongzhao (School of Computer Science and Communications Engineering, Jiangsu University, Zhenjiang 212013) 【Abstract 】This paper introduces a facial expression features extraction algorithm. Given a still image containing facial expression information,preprocessors are executed firstly. Secondly, expression feature vectors of the expression sub-regions are extracted by Gabor wavelet transformation to form expression elastic graph. Different expression features are extracted and compared while different subjects display six basic expressions with illumination variety. Experiment shows that expression features can be extracted effectively based on Gabor wavelet transformation, which is insensitive to illumination variety and individual difference. 【Key words 】Pattern recognition; Expression feature extraction; Gabor wavelet transformation 计 算 机 工 程Computer Engineering 第31卷 第15期 Vol.31 № 15 2005年8月 August 2005 ·人工智能及识别技术·文章编号:1000—3428(2005)15—0172—03 文献标识码:A 中图分类号:TP37 人脸表情识别是指从给定的表情图像或者视频序列中分析检测出特定的表情状态,进而确定被识别对象的心理情绪。人脸表情识别技术在许多领域有着潜在的应用价值,这些领域包括心理学研究、图像理解、合成脸部动画、视频检索、机器人技术、虚拟现实技术以及新型人机交互环境等[1]。 典型的人脸表情识别系统包括人脸检测、表情特征提取、表情特征分类识别3个阶段。人脸检测要能够从复杂的背景中检测出人脸的存在并确定其位置,对于图像序列,还要能精确跟踪人脸区域,国内外在人脸检测方面已做了大量的研究,且已有相关的有效方法及成果报道。而对于表情特征的提取和分类识别算法的研究目前还处于探索之中,国外学者已做了一定的研究工作,国内关于这方面的研究则相对较少。 针对处理图像的性质,可将表情特征提取方法分为两类:基于静态图像的表情特征提取和基于视频序列的动态表情特征提取。前者处理的是单帧静态表情图像,一般要求该图像反映的表情处于夸张或极大状态,使得提取的表情特征更为典型,这类方法主要包括主成份分析、奇异值分解以及基于小波变换的方法等。后者处理的是表情图像序列,目标是提取表情特征的变化过程。光流模型(Optical Flow Models)是提取动态表情特征的典型方法。比较而言,静态方法处理的数据量少,方法简单可靠,且提取的特征较为典型,能获得较高的识别率,但待处理的图像所包含的表情信息需处于夸张状态。而动态方法处理视频序列中的每一帧图像,因此计算量较大,难以满足实时性要求。 1表情图像的预处理 表情图像的预处理包括表情图像子区域的分割以及表情图像的归一化处理。前者指从表情图像中分割出与表情最相关的子区域,而后者包括图像的灰度均衡和尺度归一。图像预处理的好坏直接影响表情特征提取的效果和计算量。 (a) (b) 图1 分割人脸表情图像以提取特征区域 人脸表情特征可分为两类:持久性表情特征和瞬态表情特征,前者包括嘴巴、眼睛和眉毛,决定了基本表情状态,后者包括脸颊和额角皱纹的瞬间变化,能在一定程度上揭示表情状态。实验表明[3],嘴角形状对表情的影响最大,其次是眼睛和眉毛,而皱纹变化属于动态特征,且受年龄等因素影响较大,对表情的贡献不大,甚至会对表情识别产生不利影响。因此表情识别应重点提取嘴巴、眼睛和眉毛等局部表情特征,并忽略皱纹的变化。图像分割算法的目标就是要精确定位和分离出持久表情特征子区域。对于样本图像,可以人工框出这些区域,也可以根据眼睛的灰度特征并结合先验知识采用特定的定位算法实现特征区域的自动分割。分割结 基金项目:国家自然科学基金资助项目(60273040);江苏省高校自然科学基金资助项目(02KJB520003) 作者简介:叶敬福(1980—),男,硕士生,研究方向:多媒体技术,CSCW ;詹永照,教授、博导 定稿日期:2004-06-26 E-mail :yejingfu@https://www.doczj.com/doc/fe18214533.html,

基于小波变换的语音特征参数提取

基于小波变换的语音特征参数提取 【摘要】将小波变换的多分辨率特性用于改进Mel频率倒谱系数MFCC的前端处理中,给出了一种新的语音特征参数——小波MFCC。其特点在于采用小波变换、分层FFT和频率合成代替原来MFCC中的FFT部分,使频谱分辨率提高了一倍。试验证明,小波MFCC特征参数在较大词汇量情况下,其识别率优于MFCC特征参数的结果。 【关键词】小波分析;语音识别;MFCC Abstract:The multi resolution characteristic of wavelet is used to improve the front end processing of MFCC.So,a new feature parameter wavelet MFCC is presented in this paper.It uses wavelet transform,multi degree FFT and frequency synthesis to replace original FFT of MFCC,and increases spectrum resolution by 2.The experiments demonstrate that robustness and recognition rate of wavelet MFCC feature are better than one of MFCCs in large vocabulary. Key words:wavelet transformation;speech recognition;MFCC 1.引言 在语音识别和说话人识别中,基于Mel频率的倒谱系数MFCC(mel frequency cepstrum cofficient)是将人耳的听觉感知特性和语音的产生机制相结合,与其他特征参数相比较,体现了较优越的性能,在无噪声情况下能得到较高的识别率,因此是目前使用最广泛的特征参数。但是,随着识别词汇量的增大,这种参数的识别性能急剧地下降。说明这种特征不适合大词汇量识别。 近年来,小波变换被广泛应用于语音处理中,主要包括:利用小波变换对听觉感知系统进行模拟,对语音信号去噪,进行清、浊音判断。因为小波变换的局部化性质,可以在很小的分帧长下对语音信号仍具有较高的频谱分辨率,本文将小波变换技术引入到MFCC特征参数中,来进行语音识别系统的特征提取,可以提高对辅音区的识别效果。因此,用WMFCC特征参数作为隐马尔可夫(HMM)识别网络的输入信号,识别效果明显提高。 2.MFCC特征参数 图1所示为MFCC特征参数的计算流程图。 图1 MFCC特征参数的提取 人类听觉系统对声音高低的感知与实际频率是一种非线性映射关系[1],而与Mel频率成线性关系。根据人的听觉机理来进行Mel滤波器组的频带划分,模拟不同频率下人耳对语音的感知特性。实际频率和Mel频率的转换关系用公

5.图像的频域增强及傅里叶变换

5.图像的频域增强及傅里叶变换 傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方而,傅立叶的改进算法,比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分呈:,通过低通滤波器来滤除髙频一一噪声;边缘也是图像的髙频分量,可以通过添加髙频分量来增强原始图像的边缘; 2?图像分割Z边缘检测 提取图像高频分量 3.图像特征提取: 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来汁算纹理特征 英他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 4.图像压缩 可以直接通过傅里叶系数来压缩数据:常用的离散余弦变换是傅立叶变换的实变换:傅立叶变换傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一左存在。冈萨雷斯版<图像处理>里而的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决泄。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时, 讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。 傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里而);时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变;频移性:函数在时域中乘以』wt,可以使整个频谱搬移W U这个也叫调制左理,通讯里而信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输): 卷积泄理:时域卷积等于频域乘枳:时域乘积等于频域卷积(附加一个系数)。(图像处理里而这个是个重点)信号在频率域的表现在频域中,频率越大说明原始信号变化速度越快:频率越小说明原始信号越平缓。当频率为O时,表示直流信号,没有变化。因此,频率的大小反应了信号的变化快慢。高频分疑解释信号的突变部分,而低频分量决左信号的整体形象。 在图像处理中,频域反应了图像在空域灰度变化剧烈程度,也就是图像灰度的变化速度, 也就是图

傅里叶变换公式

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。 非确定性信号(随机信号):给定条件下 取值是不确定的 按取值情况分类:模拟信号,离散信 号

数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号 频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、周期信号傅里叶级数的三角函数形式 周期信号时域表达式 T:周期。注意n的取值:周期信号“无始

无终” # 傅里叶级数的三角函数展开式 (n=1, 2, 3,…) 傅立叶系数: 式中T--周期;0--基频, 0=2/T。 三角函数展开式的另一种形式: 周期信号可以看作均值与一系列谐波之和--谐波分析法 频谱图 周期信号的频谱三个特点:离散性、谐波性、收敛性 例1:求周期性非对称周期方波的傅立叶级数并画出频谱图 解:

解: 信号的基频 傅里叶系数 n次谐波的幅值和相角 最后得傅立叶级数 频谱图 幅频谱图相频谱图 二、周期信号傅里叶级数的复指数形式 欧拉公式 或 傅立叶级数的复指数形式

复数傅里叶系数的表达式 其中a n,b n的计算公式与三角函数形式相同,只是n包括全部整数。 一般c n是个复数。 因为a n是n的偶函数,b n是n的奇函数,因此# 即:实部相等,虚部相反,c n与c-n共轭。 c n的复指数形式 共轭性还可以表示为 , 即:c n与c-n模相等,相角相反。 傅立叶级数复指数也描述信号频率结构。它与三角函数形式的关系 对于n>0 (等于三角函数模的一半) (与三角函数形式中的相角相等)

小波在图像特征提取中的应用

小波理论课程设计论文题目小波在图像特征提取中的应用 专业 学号 学生 指导教师

摘要 在模式识别以及神经网络对图标的识别过程中,优化特征向量是首要的环节。本文通过二维小波在图像压缩以及分解的研究,提出了由图像生成特征向量的几个新思路,降低了特征向量的维数并有效保存原图像的信息。小波变换生成的特征向量在保存图像信息上显示了良好的优越性。这些方案在降低后续模式识别的计算量,提高识别率,改善识别系统性能方面,有良好的发展空间。 关键词:小波变换;图像特征提取;图标识别 一课题背景 在对图像的模式识别领域,特征提取与选择是一个很重要的问题。原始图像样本的特征空间维数很好,需要压缩维数以便进行分类,一种方式是特征提取,一种方式是特征选择。小波变换可以满足要求。 我在本科毕业设计是《BP神经网络对图标的识别》,其中很重要的特征提取部分,是提取一个图标图象的特征。当时采用的方法是把256*256的二值化图像矩阵转化成65536维的01向量,通过一族向量样本对神经网络的训练,得到一个训练过的网络,用它正确识别有破坏的图标。实际应用中,对于一个1/4部分完全破坏的图标的正确识别率能达到90%。 在设计中,渐渐突出而当时没有解决的问题有两个:一,这种直观的转化方式并没有有效的提取图标的特征信息。具体来说,图标的形状信息,高频边缘信息,轮廓等都没有充分利用,而只是简单的用65536个值笼统的代表图标,并没有真正的“描述”图像。这是影响识别率的一个重要的原因。二,这种处理方式的65536个输入值对于神经网络的输入来说是很庞大的,也就是说特征提取的时候并没有有效的对特征向量进行降维压缩。 本文正是在这个背景下,通过小波变换在图像压缩,图像的分解与合成中的应用的研究,寻求得到可以实现图像分类要求的特征向量的新思路和方法。

简述信号特征提取使用小波变换的优点(1)

简述信号特征提取使用小波变换的优点 摘要:通过对小波变换所进行的理论分析和计算机模拟发现,利用小波变换具有的高低频分离的特点,可在不丢失原信号重要信息成分的前提下,将原光谱信号的边缘部分进行滤化处理,消除了噪音信息,重构出更加清晰的光谱特征图形,从而提高了信号的清晰度,为信号的预处理提供了更加方便的条件。该信号特征提取的方法,与傅氏变换相比较,具有多项明显的优点,在实际工程应用中具有重要的意义。 关键词小波变换傅氏变换;信号 一、引言 在当今科技飞速发展的信息时代,信息资源中的信号应用日益广泛,信号的结构越来越复杂,为了更加清楚地分析和研究实际工程信号的有用信息,对信号进行预处理是至关重要的。例如,对于环境的监测,其中对空气成分的检测已经成为必不可少的环节,其方法是将空气中的某一成分(例如丁烯)进行特征的提取,提取的信息中仍然会存在着由一系列高频信号构成的噪音信号。由于这些边缘部分的存在,使原信号的基本特征在光谱信号中不能完全清晰地呈现,导致某些信息的细微环节部分难以识别,致使研究目的无法实现。 本文通过对小波变换所进行的理论分析和计算机模拟发现,利用小波变换具有的高低频分离的特点,可在不丢失原信号重要信息成分的前提下,将原光谱信号的边缘部分进行滤化处理,消除了噪音信息,重构出更加清晰的光谱特征图形,从而提高了信号的清晰度,为信号的预处理提供了更加方便的条件。 二、傅氏变换与小波变换 近年来,小渡变换已经成为对信号、图像等进行分析不可或缺的实用工具之一,其实质是对原始信号的滤波过程。与傅氏变换相比较,小波变换的优势在于,对分析信号可进行任意的放大平移并对其特征进行提取。对复杂信号作小波变换,进行多分辨率分析,在信号图象分析领域已占据着相当重要的地位。 已有的科研成果表明,物质的荧光光谱取决于物质的原子分子结构,所以不同的物质具有不同的荧光光谱。非线性荧光光谱是利用大功率超短激光脉冲和气体的非线性作用得到的;对于这种非线性荧光光谱的研究,主要集中在形成原理、光谱强度等方面。①由于采用传统的光谱分析方法分析该光谱存在很大的困难,所以这方面的研究还处于刚刚起步的状态。笔者发现,由此得到的非线性荧光光谱与超短脉冲激光器的波长以及强度无关,只与气体的分子原子结构有关;对于混合气体,则与其组成成分(包括浓度的不同)有关,因而可以用来进行混合气体成分识别。含有不同成分的混合气体的非线性荧光光谱虽然不同,但不同的气体在同一波段上可能有很大成分的交叉重叠,因此很难像吸收光谱那样找出每种气体特有的非线性荧光光谱,然后利用最小二乘法进行拟合而加以识别。神经网络对于不能精确识别或用数学公式近似加以描述的模式识别具有非常好的识别能力和推广性。对此,已有不少关于气体传感器(电子鼻) 联合神经网络识别分析气体组成成分的报道,这些方法的一个共同特点,就是必须对检测的气体进行取

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若 则 其中a和b均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数。 解因 由式(3-55)得 二、对称性 若则 证明因为 有 将上式中变量换为x,积分结果不变,即

再将t用代之,上述关系依然成立,即 最后再将x用t代替,则得 所以 证毕 若是一个偶函数,即,相应有,则式(3-56) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数。式中的表示频谱函数坐标轴必须正负对调。例如: 例3-7若信号的傅里叶变换为 试求。 解将中的换成t,并考虑为的实函数,有 该信号的傅里叶变换由式(3-54)可知为

根据对称性 故 再将中的换成t,则得 为抽样函数,其波形和频谱如图3-20所示。 三、折叠性 若 则 四、尺度变换性 若 则 证明因a>0,由

令,则,代入前式,可得 函数表示沿时间轴压缩(或时间尺度扩展) a倍,而则表示 沿频率轴扩展(或频率尺度压缩) a倍。 该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。 例3-8已知,求频谱函数。 解前面已讨论了的频谱函数,且 根据尺度变换性,信号比的时间尺度扩展一倍,即波形压缩了一半,因此其频谱函数 两种信号的波形及频谱函数如图3-21所示。

图像处理 傅立叶变换

图像处理中的傅立叶变换 众所周至,傅立叶变换可以将连续或离散的函数序列从空域映射到频域上,因此,傅立叶变换是信息与信号学中不可获缺的强大工具。但是,由于傅立叶变换在学习表示已经很熟悉了,撇开傅立叶变换本身和其在其他领域的应用不谈,只谈图像傅立叶变换前后的对应关系。我们知道傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示时是以一大堆公式的形式给出的,因此很多人(包括我在内)往往在做了一大堆习题掌握了变换的数学表示却对其变换后的物理意义一无所知,尤其是自学的时候更是晕头转向。 这里假设大家对傅立叶变换的数学,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图(看看频谱图的各点的计算公式就知道为什么叫功率图了:)),我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正玄(sin的正玄,找不到这个字,郁闷)干扰,一副带有正玄干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰。 傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法, 比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘;

基于小波变换的交通图像特征提取.

基于小波变换的交通图像特征提取 摘要:小波是一种用于多层次分解函数的数学工具。作为现代分析学开拓的一个新领域,目前小波变换已经广泛应用于信号处理、图像处理、模式识别、语音识别、量子物理、地震勘测、流体力学、电磁场、CT 成像、机器视觉、机器故障诊断与监控、分形以及数值计算等等工程领域。本文就应用小波变换理论解决交通图像特征提取的问题,做了简单的分析。 关键词:小波变换;交通图像;特征提取 Abstract: The wavelet decomposition is a multi-level functions for mathematical tools. As a modern analytics opened up a new area, the current wavelet transform has been widely used in signal processing, image processing, pattern recognition, speech recognition, quantum physics, seismic surveying, fluid mechanics, electromagnetic fields, CT imaging, machine vision, machine fault diagnosis and monitoring, and numerical calculation of the fractal, and so engineering. In this paper, wavelet transform theory to solve the traffic issue of the image feature extraction, do a simple analysis. Key words: wavelet transform ;traffic images ; Feature Extraction 一、引言 基于小波包变换的图像分析法,主要是利用小波包对图像进行多尺度分解,然后在每个尺度上独立地提取特征,即把不同分解尺度上信号的能量求解出来,将这些能量值按尺度顺序排列形成特征向量供识别使用,这就是基于小波包变换提取多尺度空间能量特征的基本原理[1]。 二、小波变换理论 小波分析方法是一种窗口大小(即窗口面积)固定但其形状可变,时间窗和频率窗都可改变的时频局部化分析方法。在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率。 如果)()(2R L t Ψ∈()(2R L 表示平方可积的实数空间,即能量有限的信号空 间),其傅立叶变换为)(?ωΨ 。)(?ωΨ满足条件 ∞<=?R Ψd ωω|ωΨ|C 2)(?

傅里叶变换的基本性质 (2)

3-5 傅里叶变换的基本性质 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常需 要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、 线性 傅里叶变换是一种线性运算。若 则 其中a 和b 均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6 利用傅里叶变换的线性性质求单位阶跃信号的频谱函数)(ωj F 。 解 因 由式(3-55)得 二、对称性 若 证明 因为 有 将上式中变量ω换为x ,积分结果不变,即 再将t 用ω代之,上述关系依然成立,即 最后再将x 用t 代替,则得 所以 证毕 若)(t f 是一个偶函数,即)()(t f t f =-,相应有)()(ωωf f =-,则式(3-56)成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数π2。式中的ω-表示频谱函数坐标轴必须正负对调。例如

例3-7 若信号)(t f 的傅里叶变换为 试求)(t f 。 解 将)(ωj F 中的ω换成t ,并考虑)(ωj F 为ω的实函数,有 该信号的傅里叶变换由式(3-54)可知为 根据对称性 故 再将)(ω-f 中的ω-换成t ,则得 )(t f 为抽样函数,其波形和频谱如图3-20所示。 三、折叠性 若 则 四、尺度变换性 观看动画 若 则 证明 因a >0,由 令at x =,则adt dx =,代入前式,可得 函数)(at f 表示)(t f 沿时间轴压缩(或时间尺度扩展) a 倍,而 ) (a j F ω 则表示 )(ωj F 沿频率轴扩展(或频率尺度压缩) a 倍。 该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。 例3-8 已知 ,求频谱函数)(ωj F 。 解 前面已讨论了

傅里叶变换与数字图像处理

傅里叶变换与数字图像处理 (2012-05-24 20:06:24) 转载▼ 标签: it 傅里叶变换是将时域信号分解为不同频率的正弦和/余弦和的形式。傅里叶变换是数字图像处理技术的基础,其通过在时域和频域来回切换图像,对图像的信息特征进行提取和分析。 一维傅里叶变换及其反变换 单变量连续函数,f(x)的傅里叶变换F(u)定义为等式: u=0,1,2,…,M一 1 同样,给出F(u),能用反DFT来获得原函数:

其中,u=0,1,2,…,M一1。因此,我们看到傅里叶变换的每项[即对于每个u 值,F(u)的值由f(x)函数所有值的和组成。f(x)的值则与各种频率的正弦值和余弦值相乘。F(u)值的范围覆盖的域(u的值)称为频率域,因为u决定了变换的频率成分(x 也作用于频率,但它们相加,对每个u值有相同的贡献)。F(u)的M项中的每一个被称为变换的频率分量。使用术语“频率域”和“频率成分”与“时间域”和“时间成分”没有差别,如果x是一个时间变量,可以用它来表示f(x)的域和值。 二维DFT及其反变换 一维离散傅里叶变换及其反变换向二维扩展是简单明了的。一个图像尺寸为M×N 的函数f(x,y)的离散傅里叶变换由以下等式给出:

像在一维中的情形一样,此表达式必须对u值(u=0,1,2,…,M-1)和v值(v=0,1,2,…,N-1)计算。同样,给出F(u,v),可以通过反傅里叶变换获得,f(x,y),由表达式给出: 其中,x=0,1,2,…,M-1,y=0,1,2,…,N-1。变量u和v是变换或频率变量,x和y是空间或图像变量。正如在一维中的情形那样,常量1/MN的位置并不重要,有时它在反变换之前。其他时候,它被分为两个相等的常数1/根号MN,分别乘在变换和反变换的式子前。 定义傅里叶谱、相角和频率谱: 并且其功率谱为: 其中,R(u,v)和I(u,v)分别是F(u,v)的实部和虚部。 通常在进行傅里叶变换之前用(-1)x+y乘以输入的图像函数。由于指数的性质,很容易看出:

数字图像处理的傅里叶变换

数字图像处理的傅里叶变换 1. 课程设计目的和意义 (1) 了解图像变换的意义和手段 (2) 熟悉傅里叶变换的基本性质 (3) 热练掌握 FFT 的方法反应用 (4) 通过本实验掌握利用 MATLAB 编程实现数字图像的傅里叶变换 通过本次课程设计,掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解 决问题等方法,养成良好的学习习惯。扩展理论知识,培养综合设计能力。 2. 课程设计内容 (1) 熟悉并掌握傅立叶变换 (2) 了解傅立叶变换在图像处理中的应用 (3) 通过实验了解二维频谱的分布特点 (4) 用 MATLAB 实现傅立叶变换仿真

3. 课程设计背景与基本原理 傅里叶变换是可分离和正交变换中的一个特例,对图像的傅里叶变换将图像从图像 空间变换到频率空间,从而可利用傅里叶频谱特性进行图像处理。从 20 世纪 60 年代傅 里叶变换的快速算法提出来以后,傅里叶变换在信号处理和图像处理中都得到了广泛的 使用。 3.1 课程设计背景 数字图像处理( Digital Image Processing )又称为计算机图像处理,它是指将图 像信号转换成数字信号并利用计算机对其进行处理的过程。是通过计算机对图像进行去 除噪声、增强、复原、分割、提取特征等处理的方法和技术。 3.2 傅里叶变换 (1) 应用傅里叶变换进行数字图像处理 数字图像处理( digital image processing )是用计算机对图像信息进行处理的一 门技术,使利用计算机对图像进行各种处理的技术和方法。 20 世纪 20 年代,图像处理首次得到应用。 20 世纪 60

年代中期,随电子计算机的发 展得到普遍应用。 60 年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。利用 数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有 利用数字图像处理可以对图像进行体积压缩,便于传输和保存。数字图像处理主要研究 以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种 方法对图像进行复原和增强;对图像进行分割、描述和识别等。随着技术的发展,数字 图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等 数字图像处理的傅里叶变换 1. 课程设计目的和意义 (1) 了解图像变换的意义和手段 (2) 熟悉傅里叶变换的基本性质 (3) 热练掌握 FFT 的方法反应用 (4) 通过本实验掌握利用 MATLAB 编程实现数字图像的傅里叶变换 通过本次课程设计,掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解 决问题等方法,养成良好的学习习惯。扩展理论知识,培养综合设计能力。 2. 课程设计内容

基于小波变换的一维数据中的特征部位提取算法

基于小波变换的一维数据中的特征部位提取算法 摘要:介绍了基于小波变换的图像分解与重构,小波变换具有时—频局部化的特点,因此不能对图像提供较精确的时域定位,也能提供较精确的频域定位。基于小波变换的这些特性,对图像进行变换,例如图像的增强,图像的特征部位的提取。研究结果表明,基于小波变换的图像处理的特征部位的提取具有理想的效果。 关键词:小波分析,图像处理,特征部位的提取 一、小波的基本知识 1、小波的发展历史及现状 小波理论是傅里叶分析的重要发展,1807年J. Fourier 提出Fourier 级数,1946年,Gabor 提出了Gabor 变换;稍后Gabor 变换发展为窗口傅里叶变换,20世纪80年代初,一些科学家开始使用小波,1986年Y . Meyer 第一次构造出正交小波基。从数学的角度看,小波实际上是在特定的空间内按照称之为小波的基函数对数学表达式的展开与逼近。 经典的小波理论尽管在90年代初期已经显得非常完善,但在实际应用中仍然存在许多缺陷。1995年,Sweldens 提出了通过矩阵的提升格式(lifting scheme)来研究完全重构滤波器,从而建立了称之为第二代小波变换的框架体系。1999年,Kingsbury 等提出了复小波变换,1999年,Candes 与Donoho 提出了脊波(ridgelet)和曲波(curvelet)。2002年,Donoho 和M. Vetterli 提出了轮廓波(contourlet)。2005年,Le Pennec 和Mallat 提出了Bandlet 。2005年,D. Labate 等提出了shearlet 。 2.小波的特点和发展 小波变换的具有如下3个特点:1、小波变换,既有频率分析的性质,又能表现发生的时间。有利于分析确定时间发生的现象(傅里叶变换只具有频率分析的性质)。2、小波变换的多分辨度的变换,有利于各分辨度不同特征不同特征的提取(图像的压缩、边缘抽取、噪声过滤等)。3、小波变换比傅里叶变换还要快一个数量级信号长度为M 时,傅里叶变换和小波变换的计算复杂性分别为:M M O f 2log =,M O w =。“小波分析”是分析原始信号的各种变换的特性,进一步应用于数据的压缩,噪音去除,特征选择等。例如歌唱信号:是高音还是低音,发声时间长短,起伏,旋律等。从平稳的波形发现突变的尖峰。小波分析是利用多种“小波基函数”对“原始信号”进行分解。运用小波基,可以提取信号中“指定时间”和“制定频率”的变化。时间:提取信号中“指定时间”(时间A 或时间B )的变化。顾名思义,小波在某时间发生的小的波动。频率:提取信号中时间A 的比较慢速变化,称较低频率成分;而提取信号中时间B 的变化比较快速变化,称较高频率成分。 3、小波的成就 小波是数学分析、应用数学和工程技术的完美结合。从数学来说是大半个世纪“调和分析”的结晶(包括傅里叶分析、函数空间等)。小波变换是20世纪最辉煌科学成就之一。在计算机应用、信号处理、图像分析、非线性科学、地球科学和应用技术等已有重大突破,预示着

相关主题
文本预览
相关文档 最新文档