当前位置:文档之家› MRI化学位移成像技术

MRI化学位移成像技术

MRI化学位移成像技术
MRI化学位移成像技术

MRI化学位移成像技术

化学位移成像(chemical shift imaging)也称同相位(in phase)/反相位(out of phase)成像。目前在临床上,化学位移成像技术得到越来越广泛的应用。

一、化学位移成像技术的原理

化学位移成像技术基于脂肪和水分子中质子的化学位移效应。由于分子结构的不同,脂肪中的质子周围受电子云的屏蔽作用比水分子中的质子明显,因此在同一场强下脂肪中质子所感受的磁场强度略低于水分子中的质子,其进动频率也略低于后者,其差别约为3.5PPM,即147HZ / T。也就是说在某种场强下,这两种质子的进动频率差别是恒定的。

由于我们检测到的MR信号实际上是组织的宏观横向磁化矢量,而宏观横向磁化矢量是质子的横向磁化分矢量的合成。由于质子的进动,其横向磁化分矢量实际上是在以Z轴为圆心,在XY平面作圆周运动,犹如时钟的指针。在某一场强下,水分子中和脂肪中的质子的进动频率差别是恒定的,也犹如时钟的分针和时针的运动频率差别。我们就是时钟为例介绍化学位移成像技术的原理。

在射频脉冲激发后,由于脉冲的聚相位效应,水分子中和脂肪中质子处于同一相位,相当于时针和分针在12点钟时完全重叠。射频脉冲关闭后,这两种质子将以自己的频率进动,由于水分子的质子进动频率略高于脂肪中的质子,两者的相位将逐渐开始离散,到某个时刻,水分子中的质子的相位将超过脂肪中的质子半圈,即两种质子的相位相差180?,相当于时钟到了6点钟时针和分针相差180?,这两种质子的横向磁化分矢量将相互抵消。如果组织中同时含有这两种质子,那么此时采集到MR信号相当于这两种组织信号相减的差值,我们把这种图像称为反相位(out of phase或opposed phase)图像。过了这一时刻后,水分子的质子又将逐渐赶上脂肪中的质子,两种之间的相位差又开始逐渐缩小,又经过相同的时间段,水分子中质子的进动将超过脂肪中质子一整圈,这两种质子的相位又完全重叠,相当于时钟到了24点时针和分针又一次重叠,这时两种质子横向磁化分矢量相互叠加,此时采集到的MR信号为这两种组织叠加的信息,我们把这种图像称为同相位(in phase)图像。过了同相位时刻,两种质子的相位有开始逐渐离散,直至出现相位相差180?(反相位);反相位后又开始逐渐聚相位,直至又出现相位完全重聚(同相位)。因此实际上射频脉冲激发后,反相位、同相位是周期性出现的。

a b c

图48 化学位移成像技术示意图我们以时钟的方式来演示,以分针(长细箭)表示进动较快的水分子中质子,以时针(短空箭)表示进动较慢的脂肪中质子。射频脉冲激发时刻(t0),由于射频脉冲的聚相

位作用,两种质子的相位一致(图a),相当于12点整;射频脉冲关闭后,由于水分子中质子进动较快,其相位将超前于脂肪中质子,到一定时刻(t/),其相位将超过后者半圈,即相差180?(图b),相当于6点整,这时由于相位相差180?,这两种质子的横向磁化矢量相互抵消,如果此时采集回波得到的将是反相位图像;过了此时刻后,水分子中质子的相位将超前脂肪中质子更多,经过与(t/-t0)相同的时间段后,其相位将比脂肪中质子超前一整圈(360?),实际上又重叠在一起(图c),相当于24点整,两种质子的横向磁化矢量相互叠加,此时如果采集回波得到的将是同相位图像。

二、化学位移成像技术的实现

目前临床上化学位移成像技术多采用扰相GRE T1WI序列,利用该序列可很容易获得反相位和同相位图像。

扰相GRE T1WI序列需要选择不同的TE可得到反相位或同相位图像,关键在于如何选择合适的TE。不同场强的扫描机获得反相位的TE不同,获得同相位的TE也不同。同相位TE=1000 ms ÷〔147HZ/T×场强(T)〕,反相位TE=同相位TE÷2。1.5 T扫描机同相位TE =1000ms ÷〔147HZ/T×1.5 T〕≈ 4.5ms,反相位TE≈ 2.2 ms。表3所列为不同场强MRI仪同相位、反相位应该选择的TE值。

上表所列的反相位、同相位的TE值是根据公式计算的理论值,临床应用中实际上只要所选TE值与表中所列TE值接近,即可获得较好的成像效果。如在1.5 T扫描机中TE选择在1.8 ~ 2.7ms,都可获得较理想的反相位图像。

在实际应用中,化学位移成像最好能同时采集反相位和同相位图像,以便比较。同相位图像实际上就是普通的扰相GRE T1WI,反相位图像与同相位图像相比,可初步判断组织或病灶内是否含脂及其大概比例。目前在1.5T以上的新型MRI仪上利用扰相GRE T1WI序列,选用双回波(dual echo)技术可在同一次扫描中同时获得反相位和同相位图像,所获图像更具可比性。

三、化学位移成像技术的临床应用

目前化学位移成像技术在临床上得以较为广泛的应用,同相位图像即普通的T1WI,在介绍化学位移成像的临床应用之前首先来了解一下反相位图像的特点。

(一)反相位图像的特点

与扰相GRE普通T1WI(同相位图像)相比,反相位图像具有以下主要特点。

1. 水脂混合组织信号明显衰减,其衰减程度一般超过频率选择饱和法脂肪抑制技术假设某组织的信号的30%来自脂质,70%来自水分子。如果利用频率选择饱和法进行脂肪抑制,即便所有来自脂质的信号完全被抑制,那么还保留70%来自水分子的信号,即信号衰减幅度为30%。而在反相位图像上,则不仅30%的脂质信号消失,同时70%来自水分子的信号中,也有30%被脂肪质子抵消,组织仅保留原来40%信号,信号衰减幅度达60%。

2. 纯脂肪组织的信号没有明显衰减在几乎接近于纯脂肪的组织如皮下脂肪、肠系膜、网膜等,其信号来源主要是脂肪,所含的水分子极少,在反相位图像上,两种质子能够相互抵消的横向磁化矢量很少,因此组织的信号没有明显衰减。

3. 勾边效应反相位图像上,周围富有脂肪组织的脏器边缘会出现一条黑线,把脏器的轮廓勾画出来。因为一般脏器的信号主要来自与水分子,而其周围的脂肪组织的信号主要来自脂肪,所以在反相位图像上,脏器和周围脂肪组织的信号都下降不明显,但在两者交界线上的各体素中同时夹杂有脏器(水分子)和脂肪,因此在反相位图像上信号明显降低,从而出现勾边效应。

(二)化学位移成像技术的临床应用

目前临床上化学位移成像技术多用在腹部脏器中,主要用途有:(1)肾上腺病变的鉴别诊断。因为肾上腺腺瘤中常含有脂质,在反相位图像上信号强度常有明显降低,利用化学位移成像技术判断肾上腺结节是否为腺瘤的敏感性约为70%~80%,特异性高达90%~95%。(2)脂肪肝的诊断与鉴别诊断。对于脂肪肝的诊断敏感性超过常规MRI和CT。(3)判断肝脏局灶病灶内是否存在脂肪变性。因为肝脏局灶病变中发生脂肪变性者多为肝细胞腺瘤或高分化肝细胞癌。(4)其他。利用化学位移成像技术还有助于肾脏或肝脏血管平滑肌脂肪瘤的诊断和鉴别诊断。

磁共振常用英文缩写

磁共振常用英文缩写 A ACR 美国放射学会 ADC 模数转换器、表面扩散系数 B BBB 血脑屏障 BOLD 血氧合水平依赖性(成像法) C CBF 脑血流量 CBV 脑血容量 CE 对比度增强 CSI 化学位移成像 CHESS 化学位移选择性(波谱分析法) CNR 对比度噪声比 CNS 中枢神经系统 Cr 肌酸 CSF 脑脊液 D DAC 数模转换器 DDR 偶极-偶极驰豫、对称质子驰豫

DICOM 医学数字成像和通信标准 DTPA 对二亚乙基三胺五乙酸 DWI 扩散加权成像 DSA 数字减影成像术 DRESS 磷谱研究所用空间定位法,又称深度分辨表面线圈波普E EPI 回波平面成像 TE 回波时间 ETL 回波链长度 ETS 回波间隔时间 EVI 回波容积成像 EDTA 乙二胺四乙酸 ETE 有效回波时间 EPR 电子顺磁共振 ESR 电子自旋共振 F FFT 快速傅里叶变换 FLASH 快速小角度激发 FSE 快速自旋回波 FE 场回波 FID 自由感应衰减 FOV 成像野

FISP 稳定进动快速成像 FLAIR 液体抑制的反转恢复 fMRI 功能磁共振成像 FID 自由感应衰减信号 FIS 自由感应信号 FT 傅里叶变换 FWHH 半高宽 G GM 灰质 GMC 梯度矩补偿 GMN 梯度矩置零 GMR 梯度矩重聚 GRE 梯度回波 H HPG-MRI 超极化气体磁共振成像术I IR 反转序列 IRSE 反转恢复自旋回波序列 K K-space K空间 L LMR 定域磁共振

M MRA 磁共振血管成像 MRCM 磁共振对比剂 MRI 磁共振成像 MRM 磁共振微成像 MRS 磁共振波谱学 MRSI 磁共振波谱成像 MRV 磁共振静脉造影 MT 磁化转移 MTC 磁化转移对比度 MAST 运动伪影抑制技术 MIP 最大密度投影法 MTT 平均转运时间 MESA 多回波采集 MPR 多平面重建 MP-RAGE 磁化准备的快速采集梯度回波序列MS-EPI 多次激发的EPI N NEX 激励次数 NMR 核磁共振 NMRS 核磁共振波谱学 NSA 信号(叠加)平均次数

关于磁共振成像技术的学习心得体会-学习心得体会

关于磁共振成像技术的学习心得体会-学习 心得体会 每一次到医院拜访或会议上讲完课总有老师问该如何学习磁共振成像技术?到底应该看哪本书?这些的确是很多磁共振使用者一个共同的困惑。 坦率的说我和大家有着相同的困惑和痛苦。我是纯学临床医学的,当时大学课程里所学习的唯一一门影像课程就是放射诊断学。其中连CT的内容都没有,就更别提磁共振了。毕业后从事放射诊断工作,渐渐的接触到CT和磁共振诊断内容。 相比于其他影像学设备而言磁共振成像技术原理复杂,也更具多学科交叉的属性。由于我们大多数影像科医生在大学阶段渐渐淡化了数学和物理学等的学习,所以这给我们学习磁共振成像技术带来了很大挑战。那么,以我个人的经验看我们到底应不应该学习磁共振成像技术?我们又该怎样学习磁共振成像技术且能学以致用呢?在此,谈一点个人体会。需要提前声明这些绝不是什么经验,仅仅想以此抛砖引玉而已。 作为读片医生或者磁共振操作者,到底有没有必要学习磁共振技术? 显而易见,答案是肯定的。 磁共振成像技术非常复杂,学习起来耗时耗力,很容易让人望而

却步、从而采取消极抵抗策略。但是我要告诉所有有这些想法的老师如果这样做牺牲的一定是自己。大家知道随着磁共振成像设备性能的不断进步和完善,新的技术也层出不穷,然而非常遗憾的是,真正能把这些新技术用起来的医院少之又少。究其原因就是因为使用者因为不了解这些新技术就主观上产生了畏难和恐惧心理。 事实上,要能真正快速理解、掌握新技术,就必须要有扎实的基础知识。我要告诉大家一点:所有的新技术都是在常规序列基础之上衍生出来的,如果我们有夯实的基础,那么面对每一个新技术你只需了解它的革新和变化点即可,而且通过与相关传统技术对比你也更容易感觉和认识到这些新技术的临床优势可能有哪些。这些对于你的临床和科研切入都至关重要。 我常常见到一些从事某项课题研究的医生或研究生,当深入谈及其课题所采用的相关技术时却没有完整或清醒的认识,每一天都懵懵懂懂的在盲目的扫描着。我不理解这样的研究工作乐趣何在? 另一方面,磁共振本身作为一门多序列多参数对比的成像技术,充分利用好其优势不仅可以大大提高病变的检出率也能为诊断和鉴别诊断提供更特异性的信息。 举个栗子: 对于一个怀疑脊髓内病变的患者,如果你在颈椎轴位扫描时还只是墨守成规的扫描了FSE T2加权像,你就很难发现早期脊髓内改变。如果此时你深入了解到梯度回波准T2加权像更有利于显示脊髓内灰质结构,再进一步你还知道在GE磁共振平台的MERGE序列较常规梯

核磁共振成像技术分析

电磁波成像 一、核磁共振成像技术分析 1.基本概况 核磁共振成像(Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(spin imaging),也称磁共振成像(Magnetic Resonance Imaging,简称MRI),台湾又称磁振造影,是利用核磁共振(nuclear magnetic resonnance,简称NMR)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。 将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。 2.检测设备及原理 核磁共振谱仪是专门用于观测核磁共振的仪器,主要由磁铁、探头和谱仪三大部分组成。磁铁的功用是产生一个恒定的磁场;探头置于磁极之间,用于探测核磁共振信号;核磁共振谱仪是将共振信号放大处理并显示和记录下来。采用调节频率的方法来达到核磁共振。由线圈向样品发射电磁波,调制振荡器的作用是使射频电磁波的频率在样品共振频率附近连续变化。当频率正好与核磁共振频率吻合时,射频振荡器的输出就会出现一个吸收峰,这可以在示波器上显示出来,同时由频率计即刻读出这时的共振频率值。 3.核磁共振成像优缺点 磁共振成像的最大优点是它是目前少有的对人体没有任何伤害的安全、快速、准确的临床诊断方法。如今全球每年至少有6000万病例利用核磁共振成像技术进行检查。具体说来有以下几点优点: 1.对软组织有极好的分辨力。对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT;

磁共振弥散加权成像(DWI)技术在诊断超急性期脑梗塞的临床应用

龙源期刊网 https://www.doczj.com/doc/fe17281796.html, 磁共振弥散加权成像(DWI)技术在诊断超急性期脑梗塞的临床应用 作者:阳俊葛凯任元亮吴凤英杨丽兰 来源:《健康必读·下旬刊》2018年第08期 【摘要】目的:对磁共振弥散加权成像(DWI)技术在诊断超急性期脑梗塞的临床应用 价值进行研究。方法:选取本院在2016年6月到2017年6月间收治的80例超急性期脑梗塞 患者作为实验研究对象,对80例超急性期脑梗塞患者进行磁共振弥散加权成像(DWI)序列及T2W1序列扫描,另根据患者实际病情进行其他序列扫描。扫描后对影响结果进行医学分析。结果:在15例超急性期脑梗塞患者中,有14例患者检测后显示为高信号,阳性率为93.33%;在65例急性期脑梗塞患者中,经T2W1序列和T2WF-FLAIR序列扫描中有58例患 者表现为稍高信号,阳性率为89.23%,DWI序列扫描检测有65例患者显示高信号,其阳性率检测为100.00%。结论:磁共振弥散加权成像(DWI)技术在超急性期脑梗塞的临床诊断中具有重要的价值,值得在临床实践中进行推广。 【关键词】磁共振;弥散加权成像;超急性期脑梗塞;应用价值 Abstract:Objective: to study the clinical value of DWI in the diagnosis of hyperacute cerebral infarction. Methods: 80 cases of hyperacute cerebral infarction admitted from June 2016 to June 2017 in our hospital were selected. Infarct patients as experimental subjects, Mr diffusion weighted imaging (DWI) sequence and T2W1 sequence were performed in 80 patients with hyperacute cerebral infarction. In addition,other sequence scans were performed according to the patient’s actual condition. Medical analysis of the results was performed after scanning. Results: of the 15 patients with hyperacute cerebral infarction, 14 showed high reliability after examination. In 65 patients with acute cerebral infarction, 58 of the 65 patients with acute cerebral infarction showed slightly hyperintense signal, and the positive rate was 89.23%. Conclusion: diffusion weighted Mr imaging (DWI) technique is of great value in the diagnosis of hyperacute cerebral infarction, and it is worth popularizing in clinical practice. keywords Magnetic resonance imaging; diffusion weighted imaging; hyperacute cerebral infarction; application value 【中图分类号】R445.2 【文献标识码】A 【文章编号】1672-3783(2018)08-03--01 在临床治疗中,脑血管疾病是一种多发、常见的疾病,患者由于脑部缺血形成的脑组织坏死被称为脑梗死,其是神经系统疾病中一种发病率高、致残率高、致死率高的疾病,对人类的身体健康构成了严重的威胁。所以,在临床治疗中,对该类疾病做到早发现,早治疗,对治疗效果起到着至关重要的作用。随着现代医疗技术的发展,磁共振成像技术在几年新发展出一种

医学实习报告——核磁共振成像仪的原理和应用

医学实习报告 ——核磁共振成像仪的原理和应用 班级:生物医学0902 姓名:xx 日期:2010年1月6日

核磁共振成像仪的原理和应用 摘要 核磁共振(MRI)又叫核磁共振成像技术。核磁共振成像仪就是因这项技术而产生的仪器。它是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学、生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MRI)。 关键词 核磁共振、扫描、成像、计算机 正文: 前言 1930年代,物理学家伊西多?拉比发现在磁场中的原子核会沿磁场方向 呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。 1946年,美国哈佛大学的珀塞尔和斯坦福大学的布洛赫发现,将具有奇数个核子(包括质子和中子)的原子核置于磁场中,再施加以特定频率的射频场,就会发生原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识。 人们在发现核磁共振现象之后很快就产生了实际用途,早期核磁共振主要用于对核结构和性质的研究,如测量核磁矩、电四极距、及

核自旋等,化学家利用分子结构对氢原子周围磁场产生的影响,发展出了核磁共振谱,用于解析分子结构,随着时间的推移,核磁共振谱技术不断发展,从最初的一维氢谱发展到碳谱、二维核磁共振谱等高级谱图,核磁共振技术解析分子结构的能力也越来越强。 进入1990年代以后,人们甚至发展出了依靠核磁共振信息确定蛋白质分子三级结构的技术,使得溶液相蛋白质分子结构的精确测定成为可能。后来核磁共振广泛应用于分子组成和结构分析,生物组织与活体组织分析,病理分析、医疗诊断、产品无损监测等方面。 20世纪70年代,脉冲傅里叶变换核磁共振仪出现了,它使13C 谱的应用也日益增多。 仪器结构 MRI是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 其中型台式核磁共振成像仪主要由谱仪、磁体柜、电子柜、梯度柜、监视器等部分组成。

MR 化学位移成象

化学位移成像技术 叫同/反相位成像,目前应用越加广泛。我们已经知道,人体MRI的信号主要来源于两种成分: 水和脂肪。水分子中的氢质子的化学键为O-H键,而脂肪分子中氢质子的化学键为C-H键。由于这两种结构中氢质子周围电子云分布的不同,造成水分子中氢质子所感受到的磁场强度稍高些,最终导致水分子中氢质子的进动频率要比脂肪分子中氢质子稍快些,其差别为 3.5ppm,相当于150Hz/T,这种进动频率差异随着场强的增大而加大。 1.5T,水分子比脂肪分子中的氢质子进动频率快225Hz。目前临床上化学位移成像技术多采用2D扰相GRE T1WI序列,选择不同的TE得到正反相位图像。 同相位TE=1000ms÷[150Hz/T×场强] 反相位TE=同相位TE÷2 1.5T,同相位TE=1000÷(150× 1.5)= 4.4ms 反相位TE= 2.2ms (理解为: 2.2ms的时间水分子中的氢质子走一圈,而脂肪分子中的氢质子走半圈-----反相位。再过 2.2ms,即 4.4ms时,水走两圈,脂肪走一圈-----同相位)。

在实际应用中,所选TE越接近效果越好。化学位移成像最好能在同一序列中采集同反相位图像,以便对比。同相位图像实际上就是普通的扰相GRE T1WI,反相位图像与同相位图像相比,可初步判断组织或病灶内是否含脂及其大概比例。 目前在 1.5T以上的新型MRI仪上利用扰相GRE T1WI序列,选用双回波技术可在同一次扫描中同时获得同反相位图像,所获图像更具可比性。 化学位移成像也可利用其他序列如Balance-SSFP序列等。 1、反相位图像特点: ①水脂混合组织信号明显衰减。②纯脂肪组织信号没有明显衰减。如皮下脂肪、肠系膜、网膜等。③勾边效应。周围富有脂肪组织的脏器边缘会出现一条黑线,把脏器的轮廓勾画出来。因为一般脏器的信号主要来自水分子,而其周围脂肪组织的信号主要来自脂肪,所以在反相位图像上,脏器和周围脂肪组织的信号下降都不明显,但在两者交界面上的各像素中同时夹有脏器(水分子)和脂肪,因此反相位图像上信号明显降低,从而出现勾边效应。 2、化学位移成像技术的临床应用。①肾上腺病变的鉴别诊断。因为肾上腺腺瘤中常含有脂质,反相位明显降低,其敏感性70~80%,特异性90~95%。 ②脂肪肝的诊断与鉴别诊断,敏感性超过常规MRI和CT。③判断肝脏局灶病灶内是否存在脂肪变性。因为肝脏局灶病变中发生脂肪变性者多为肝细胞腺瘤或高分化肝细胞癌。④有助于肾脏或肝脏血管平滑肌脂肪瘤等其他含脂病变的诊断和鉴别诊断。 需要注意的是: 化学位移成像技术本身并不能区分脂质位于细胞内还是细胞外。 所以反相位信号衰减并不能说明细胞内含有脂质。 四、Dixon技术。利用同相位和反相位像,还可产生单独的“水”或“脂肪”信号的图像。

复杂峰型的耦合常数及化学位移标注法

复杂峰型的偶合常数及化学位移标注法 (1) ddd (doublet of doublet of doublets) 特点:8 条谱线,相对高度大约为1:1:1:1:1:1:1:1 J1= a-b(a,b 为化学位移值,峰值,下同)×核磁兆数(如为500MHz,则剩以500); J2=[(a+b)/2-d]×核磁兆数; J3=[(a+b)/2-e]×核磁兆数; 化学位移值为(d+e)/2 实例:

1.58 (ddd, J =14.5, 13.0, 5.5 Hz, 1H ) 更简单的偶合常数计算法: 第一条线减去第二条线的值乘以核磁兆数(我们核磁为500MHz,下同)(1.613-1.602)×500=5.5Hz (注:用第七条线减去第八条线结果相同(1.558-1.547)×500=5.5Hz) 第一条线减去第三条线的值乘以核磁兆数 (1.613-1.587)×500=13.0 Hz 第一条线减去第四条线的值乘以核磁兆数 (1.613-1.584)×500=14.5 Hz 其他简单的ddd 峰 实例: 4.02 (ddd, J =12.5, 5.0, 3.0 Hz, 1H ) (4.041-4.035) ×500=3.0 Hz (4.041-4.031) ×500=5.0 Hz (4.041-4.016) ×500=12.5 Hz (2) dt (doublet of triplets) 特点:6 条谱线,两个明显的三重峰,积分值为1

实例: 2.40 (dt, J =15.0, 2.5 Hz, 1H) 偶合常数计算法: 第二条线减去第五条线的值乘以核磁兆数 (2.419-2.389)×500=15 Hz (注:用第一条线减去第四条线乘以核磁兆数亦可) 用第一条线减去第二条线乘以核磁兆数 (2.424-2.419)×500=2.5Hz (3) td (triplet of doublets) 特点:6 条谱线,一个明显的三重峰(三重峰的每一个峰再分裂成两个峰),积分值为1

核磁共振成像

磁共振成像技术(核磁共振,MRI)是与CT几乎同步发展起来的医学成像技术。MRI 作为最先进的影像检查技术之一,在许多方面有其独到的优势,尤其是近年来高场磁共振超快速成像与功能成像的出现,使得MRI的优势更为明显。但是,由于国情所限,MRI远没有CT普及,实际工作中,大量的病例本应首选MRI检查,却都进行了CT检查,因此造成的误诊及漏诊屡见不鲜。除病人经济情况的原因之外,临床医生对MRI的了解不足也是一个重要原因。目前关于磁共振成像的书籍虽很多,专业性均很强,信息量也非常大,临床医生很难有时间仔细翻阅,但临床医生又急需了解磁共振的相关知识。鉴于此,我们编写了这本小册子,以期临床医生在阅读之后能够了解磁共振成像的临床应用价值、哪些情况下应当建议病人进行MRI检查、以及一些磁共振基本读片知识。 1 磁共振成像的特点一、无损伤性检查。CT、X线、核医学等检查,病人都要受到电离辐射的危害,而MRI投入临床20多年来,已证实对人体没有明确损害。孕妇可以进行MRI检查而不能进行CT检查。 二、多种图像类型。CT、X线只有一种图像类型,即X线吸收率成像。而MRI常用的图像类型就有几十种,且新的技术和序列不断更新,理论上有无限多种图像类型。可根据组织特意性用不同的技术制造对比,制造影像,力求诊断疾病证据充分、客观、可靠。有更丰富的细节和依据方便医师作出明确的诊断,对疾病的治疗前及愈后作出更详细、系统的评估。 三、图像对比度高。磁共振图像的软组织对比度要明显高于CT。磁共振的信号来源于氢原子核,人体各处都主要由水、脂肪、蛋白质三种成分构成,它们均含有丰富的氢原子核作为信号源,且三种成分的MRI信号强度明显不同,使得MRI图像的对比度非常高,正常组织与异常组织之间对比更显而易见。CT的信号对比来源于X线吸收率,而软组织的X线吸收率都非常接近,所以MRI的软组织对比度要明显高于CT. 四、任意方位断层。由于我院MRI拥有1.5T高场强主磁体及先进的三维梯度系统逐点获得容积数据,所以可以在任意设定的成像断面上获得图像。五、心血管成像无须造影剂增强。基于MRI特有的时间飞逝法(TOF)和相位对比法(PC)血流成像技术,磁共振血管成像(MRA)与传统的血管造影(DSA)相比,对人体无损伤性(不需要注射造影剂)、费用低、检查方便等优点。且随着MRI技术的不断进步,我院磁共振MRA的图像质量与诊断能力已与DSA非常接近,基于以上MR血管成像特性,MRA完全可作DSA术前筛查以及血管手术后复查。六、代谢、功能成像。MRI的成像原理决定了MRI信号对于组织的化学成分变化极为敏感。我院在高场MRI系统上拥有丰富磁共振功能成像技术,划时代地实现了对于功能性疾病、代谢性疾病的影像诊断,同时也大大提高了对一些疾病的早期诊断能力,甚至可达到分子水平。 2 磁共振成像的原理想获得人体的体层图像,任何成像系统都需要解决三方面问题:图像信号的来源、图像组织对比度的来源、图像空间信息的来源。磁共振成像也同样要解决这些问题。现对磁共振成像的原理作一简单介绍。 2.1 核磁共振信号的来源磁共振成像,是依靠核磁共振现象来成像的。核磁共振现象,是指处于静磁场中的原子核系统受到一定频率的电磁波作用时,将在他们的磁能级间产生共振跃迁。上述过程,是原子核与磁场发生的共振,所以称为核磁共振,因为“核”字涉嫌核辐射,所以业内将其改称为磁共振。氢原子是人体中含量最多的元素,它的核只有一个质子,是最活跃、最易受磁场影响的原子核。所以磁共振成像采集的是氢原子核的信号。业内常把氢原子核简称为质子。核磁共振现象是一个无法直观观察的现象,理解起来较为抽象,在此只作简要解释。 层厚、层间距。MRI中层厚的概念与CT是一致的。层间距与非螺旋CT的层间距概念一致。层间距一般显示为层厚加上两层之间的间隔。如果层间距大于层厚,两层之间就有未扫描到的区域,需要注意是否有遗漏病灶的可能性。扫描矩阵(resolution)。扫描矩阵代表扫描时图像点阵的密度。扫描矩阵越大,图像空间分辨率越高,但信噪比就越低;扫描矩阵越小,

一种新的多b值弥散加权成像后处理模型

一种新的多 b 值弥散加权成像后处理模型第 1 部分改良三指数模型的提出及其- 与双指数模型和传统三指数模型的比 较目的:建立多b值DWI后处理新模型并与双指数模型和传统三指数模型进行比较。材料和方法:本研究通过了浙二医院伦理委员会评审,纳入了6例健康受试者,采集多b值DWI影像资料,包含从0 s/mm2到8000 s/mm2的17个b值。 在白质区域选取了6个感兴趣区(ROI),在灰质区域选取了1个ROI。采用前16个b值所得DW信号值分别对三个模型进行拟合,拟合方法采用最速下降法, 计算得到各个参数图以及拟合残差平方和(RSS)和赤池信息量修正准则(AICc), 并预测 b=8000s/mmm时的DWI信号值,进而计算得到预测平方差(SPE)。 本研究将RSS和AICc视为模型拟合程度的评价指标,而将SPE视为模型可预测性评价指标。结果:在所有白质区域内,改良三指数模型的RSS值均显著低于其他两个模型(p<0.05), 传统的三指数模型的AICc显著高于其他两个模型 (p<0.05), 而双指数模型的SPE显著高于其他两个模型(p<0.05)。 白质的f0 中位值介于11.9%到19.6%之间,而灰质的f0 中位值仅为0.8%。 白质区域的ADC very-slow中位数(0-7 X10-6mm2/s)远小于在灰质区域的ADCvery-slow 中位数(487 X 10-6 mm2/s)。 结论:采用新模型拟合多b值DWI影像效果优于其他两个模型。新模型可以用来探测组织中弥散严格受限的组分, 而传统的三指数模型不能探测此组分。 第2部分改良三指数模型在胶质瘤分级及胶质瘤鉴别诊断中的价值目的:探索改良三指数模型在胶质瘤分级及胶质瘤鉴别诊断中的价值。材料和方法:研究纳入了18例低级别胶质瘤(LGG),45例高级别胶质瘤(HGG以及5例原发性中枢 系统淋巴瘤(PCNSL)。

磁共振常用英文缩写含义

磁共振常用英文缩写含义 A ACR 美国放射学会 ADC 模数转换器、表面扩散系数 B BBB 血脑屏障 BOLD 血氧合水平依赖性(成像法) C CBF 脑血流量 CBV 脑血容量 CE 对比度增强 CSI 化学位移成像 CHESS 化学位移选择性(波谱分析法) CNR 对比度噪声比 CNS 中枢神经系统 Cr 肌酸 CSF 脑脊液 D DAC 数模转换器 DDR 偶极-偶极驰豫、对称质子驰豫 DICOM 医学数字成像和通信标准 DTPA 对二亚乙基三胺五乙酸 DWI 扩散加权成像 DSA 数字减影成像术 DRESS 磷谱研究所用空间定位法,又称深度分辨表面线圈波普E EPI 回波平面成像 TE 回波时间 ETL 回波链长度 ETS 回波间隔时间 EVI 回波容积成像 EDTA 乙二胺四乙酸 ETE 有效回波时间 EPR 电子顺磁共振 ESR 电子自旋共振 F FFT 快速傅里叶变换 FLASH 快速小角度激发 FSE 快速自旋回波 FE 场回波 FID 自由感应衰减 FOV 成像野

FISP 稳定进动快速成像 FLAIR 液体抑制的反转恢复 fMRI 功能磁共振成像 FID 自由感应衰减信号 FIS 自由感应信号 FT 傅里叶变换 FWHH 半高宽 G GM 灰质 GMC 梯度矩补偿 GMN 梯度矩置零 GMR 梯度矩重聚 GRE 梯度回波 H HPG-MRI 超极化气体磁共振成像术 I IR 反转序列 IRSE 反转恢复自旋回波序列 K K-space K空间 L LMR 定域磁共振 M MRA 磁共振血管成像 MRCM 磁共振对比剂 MRI 磁共振成像 MRM 磁共振微成像 MRS 磁共振波谱学 MRSI 磁共振波谱成像 MRV 磁共振静脉造影 MT 磁化转移 MTC 磁化转移对比度 MAST 运动伪影抑制技术 MIP 最大密度投影法 MTT 平均转运时间 MESA 多回波采集 MPR 多平面重建 MP-RAGE 磁化准备的快速采集梯度回波序列MS-EPI 多次激发的EPI N NEX 激励次数 NMR 核磁共振 NMRS 核磁共振波谱学 NSA 信号(叠加)平均次数

核磁共振的成像原理

核磁共振的成像原理 核磁共振成像术又叫磁共振成像术,简称核磁共振、磁共振或核磁,是80年代发展起来的一种全新的影像检查技术。它的全称是:核磁共振电子计算机断层扫描术(简称MRI--CT 或者MRl)。什么是核磁共振成像技术呢?简单地说,就是利用核磁共振成像技术(英文简写MRI、MR或NMR,法文简写RMN)进行医学诊断的一种新颖的医学影像技术。核磁共振是一种物理现象,早在1946年就被美国的布劳克和相塞尔等人分。别发现,作为一种分析手段广泛应用于物理、化学等领域,用作研究物质的分子结构。直到1971年,美国人达曼迪恩才提出,将核磁共振用于医学的诊断,当时,未能被科学界所接受。然而,仅仅10 年的时间,到1981年,就取得了人体全身核磁共振的图像。使人们长期以来,设想用无损伤的方法,既能取得活体器官和组织的详细诊断图像,又能监测活体器官和组织中的化学成分和反应的梦想终于得以实现。 核磁共振完全不同于传统的X线和CT,它是一种生物磁自旋成像技术,利用人体中的遍布全身的氢原子在外加的强磁场内受到射频脉冲的激发,产生核磁共振现象,经过空间编码技术,用探测器检测并接受以电磁形式放出的核磁共振信号,输入计算机,经过数据处理转换,最后将人体各组织的形态形成图像,以作诊断。 核磁共振所获得的图像异常清晰、精细、分辨率高,对比度好,信息量大,特别对软组织层次显示得好。使医生如同直接看到了人体内部组织那样清晰、明了,大大提高了诊断效率。避免了许多以往因手术前诊断不明而不得不进行的开颅、开胸、开腹探查及其他的一些探查诊断性手术,使病人避免了不必要的手术痛苦以及探查性手术所带来的副损伤及并发症。所以它一出现就受到影像工作者和临床医生的欢迎,目前已普遍的应用于临床,对一些疾病的诊断成为必不可少的检查手段。 核磁共振提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,它是一项革命性的影像诊断技术。因此,它对疾病的诊断具有很大的潜在优越性。 80年代美国政府开始批准核磁共振机的商品化生产,并开始临床应用。我国从1985年引进第1台核磁共振机至今已有超过1000台在工作,目前医生们越来越认识到它在诊断各种疾病中的重要作用,其使用范围也越来越广泛。

学习心得:关于磁共振成像技术学习的点滴体会

关于磁共振成像技术学习的点滴体会 每一次到医院拜访或会议上讲完课总有老师问该如何学习磁共振成像技术?到底应该看哪本书?这些的确是很多磁共振使用者一个共同的困惑。 坦率的说我和大家有着相同的困惑和痛苦。我是纯学临床医学的,当时大学课程里所学习的唯一一门影像课程就是放射诊断学。其中连CT的内容都没有,就更别提磁共振了。毕业后从事放射诊断工作,渐渐的接触到CT和磁共振诊断内容。 相比于其他影像学设备而言磁共振成像技术原理复杂,也更具多学科交叉的属性。由于我们大多数影像科医生在大学阶段渐渐淡化了数学和物理学等的学习,所以这给我们学习磁共振成像技术带来了很大挑战。那么,以我个人的经验看我们到底应不应该学习磁共振成像技术?我们又该怎样学习磁共振成像技术且能学以致用呢?在此,谈一点个人体会。需要提前声明这些绝不是什么经验,仅仅想以此抛砖引玉而已。 Q1 作为读片医生或者磁共振操作者,到底有没有必要学习磁共振技术? 显而易见,答案是肯定的。 磁共振成像技术非常复杂,学习起来耗时耗力,很容易让人望而却步、从而采取消极抵抗策略。但是我要告诉所有有这些想法的老师如果这样做牺牲的一定是自己。大家知道随着磁共振成像设备性能的不断进步和完善,新的技术也层出

不穷,然而非常遗憾的是,真正能把这些新技术用起来的医院少之又少。究其原因就是因为使用者因为不了解这些新技术就主观上产生了畏难和恐惧心理。 事实上,要能真正快速理解、掌握新技术,就必须要有扎实的基础知识。我要告诉大家一点:所有的新技术都是在常规序列基础之上衍生出来的,如果我们有夯实的基础,那么面对每一个新技术你只需了解它的革新和变化点即可,而且通过与相关传统技术对比你也更容易感觉和认识到这些新技术的临床优势可能有哪些。这些对于你的临床和科研切入都至关重要。 我常常见到一些从事某项课题研究的医生或研究生,当深入谈及其课题所采用的相关技术时却没有完整或清醒的认识,每一天都懵懵懂懂的在盲目的扫描着。我不理解这样的研究工作乐趣何在? 另一方面,磁共振本身作为一门多序列多参数对比的成像技术,充分利用好其优势不仅可以大大提高病变的检出率也能为诊断和鉴别诊断提供更特异性的信息。 举个例子: 对于一个怀疑脊髓内病变的患者,如果你在颈椎轴位扫描时还只是墨守成规的扫描了FSE T2加权像,你就很难发现早期脊髓内改变。如果此时你深入了解到梯度回波准T2加权像更有利于显示脊髓内灰质结构,再进一步你还知道在GE 磁共振平台的MERGE序列较常规梯度回波序列更敏感,那你就会根据临床需求而加扫MERGE这个序列了。当然这其中的原因很简单就是因为这些脊髓内病变的含水量没有那么丰富,在FSE序列T2加权像一般TE时间很长导致这些髓内病变的高信号衰减掉了,而在梯度回波我们可以在相对短的时间内获取准T2加

临床化学位移成像技术

临床化学位移成像技术 化学位移成像(chemical shift imaging)也称同相位(in phase)/反相位(out of phase)成像。目前在临床上,化学位移成像技术得到越来越广泛的应用。 化学位移成像技术的原理

化学位移成像技术的实现 目前临床上化学位移成像技术多采用扰相GRE T1WI序列,利用该序列可很容易获得反相位和同相位图像。 扰相GRE T1WI序列需要选择不同的TE可得到反相位或同相位图像,关键在于如何选择合适的TE。不同场强的扫描机获得反相位的TE 不同,获得同相位的TE也不同。同相位TE=1000 ms ÷〔147HZ/T×场强(T)〕,反相位TE=同相位TE÷2。1.5T扫描机同相位TE=1000ms ÷〔147HZ/T×1.5 T〕≈ 4.5ms,反相位TE≈ 2.2 ms。表3 所列为不同场强MRI仪同相位、反相位应该选择的TE值。

上表所列的反相位、同相位的TE值是根据公式计算的理论值,临床应用中实际上只要所选TE值与表中所列TE值接近,即可获得较好的成像效果。如在1.5T扫描机中TE选择在1.8~2.7ms,都可获得较理想的反相位图像。 在实际应用中,化学位移成像最好能同时采集反相位和同相位图像,以便比较。同相位图像实际上就是普通的扰相GRE T1WI,反相位图像与同相位图像相比,可初步判断组织或病灶内是否含脂及其大概比例。目前在1.5T以上的新型MRI仪上利用扰相GRE T1WI序列,选用双回波(dual echo)技术可在同一次扫描中同时获得反相位和同相位图像,所获图像更具可比性。 化学位移成像技术的临床应用 目前化学位移成像技术在临床上得以较为广泛的应用,同相位图像即普通的T1WI,在介绍化学位移成像的临床应用之前首先来了解一下反相位图像的特点。 (一)反相位图像的特点

磁共振波谱成像的基本原理

磁共振波谱成像的基本原理、序列设计与临床应用 磁共振波谱(MR Spectroscopy,MRS)是医学影像学近年来发展的新的检查手段,作为一种无创伤性研究活体器官组织代谢、生化变化及化合物定量分析的方法,随着MRI、MRS装置不断改进,软件开发及临床研究的不断深入,人们通过MRS对各种疾病的生化代谢的认识将不断提高,为临床的诊断、鉴别、分期、治疗和预后提供更多有重要价值的信息。1H MRS可对神经元的丢失、神经胶质增生进行定量分析,31P磁共振波谱可对心肌梗塞能量代谢变化进行评价。MRS以分子水平了解人体生理上的变化,从而对疾病的早期诊断、预后及鉴别诊断、疗效追踪等方面,做出更明确的结论。本文从MRS波谱成像的基本原理和序列设计方面简要作一介绍。 一磁共振波谱的基本原理 在理想均匀的磁场中,同一种质子(如1H)理论上应具有相同的共振频率。事实上,当频率测量精度非常高时会发现,即使同一种核处在相同磁场中,它们的共振频率也不完全相同,而是在一个有限的频率范围内。这是由于原子核外的电子对原子核有磁屏蔽作用,它使作用于原子核的磁场强度小于外加磁场的强度,其屏蔽作用大小用屏蔽系数s来表示,被这种屏蔽作用削弱掉的磁场为sB,与外加磁场方向相反。外加磁场越强sB越大,原子核实际感受到的磁场强度与外加磁场强度之差越大。此外,s还与核的特性和化学环境有关。核的化学环境指核所在的分子结构,同一种核处在不同的分子中,甚至在同一分子的不同位置或不同的原子基团中,它周围的电子数和电子的分布将有所不同。因而,受到电子的磁屏蔽作用的程度不同,如图1所示。考虑到电子的磁屏蔽作用,决定共振频率的拉莫方程应表示为:w=gBeff=gB0(1-s) 由上式可知,在相同外加磁场作用下,样品中有不同化学环境的同一种核,由于它们受磁屏蔽的程度(s的大小)不同,它们将具有不同的共振频率。如在MRS中,水、NAA(N-乙酰天门冬氨酸)、Cr(肌酸)、Cho(胆碱)、脂肪的共振峰位置不同,这种现象就称为化学位移(Chemical Shift)。即因质子所处的化学环境不同,也就是核外电子云密度不同和所受屏蔽作用的不同,而引起相同质子在磁共振波谱中吸收信号位置的不同,如图2所示。实际上,研究某种样品物质的磁共振频谱时,常选用一种物质做参考基准,以它的共振频率作为频谱图横坐标的原点。并且,将不同种原子基团中的核的共振频率相对于坐标原点的频率之差作为该基团的化学位移。显然,这种用频率之差表示的化学位移的大小与磁场强度高低有关。在正常组织中,代谢物在物质中以特定的浓度存在,当组织发生病变时,代谢物浓度会发生改变。磁共振成像主要是对水和脂肪中的氢质子共振峰进行测量和脂肪中的氢质子共振峰进行测量,在1.5T场强下水和脂肪共振频率相差220Hz (化学位移),但是在这两个峰之间还有多种浓度较低代谢物所形成的共振峰,如NAA、Cr、Cho等,这些代谢物的浓度与水和脂肪相比非常低。MRS 需要通过匀场抑制水和脂肪的共振峰,才能使这些微弱的共振峰群得以显示。 下面是研究MRS谱线时常用到的参数: (1)共振峰的共振频率的中心—峰的位置V: 化学位移决定磁共振波谱中共振峰的位置。 (2)共振峰的分裂。 (3)共振峰下的面积和共振峰的高度: 在磁共振波谱中,吸收峰占有的面积与产生信号的质子数目成正比。在研究波谱时,共振峰下的面积比峰的高度更有价值,因为它不受磁场均匀度的影响,对噪音相对不敏感。 (4)半高宽: 半高宽是指吸收峰高度一半时吸收峰的宽度,它代表了波谱的分辨率。 原子核自旋磁矩之间的相互作用称为自旋自旋耦合。高分辨率磁共振频谱可以观察到自旋自旋耦合引起的共振谱线的裂分,裂分的数目和幅度是相互耦合的核的自旋和核的数目的指征。在一个氢核和一个氢核发生自旋耦合的情况下,由于一个氢核的磁矩有顺磁场和逆磁场两种可能的取向,因此它对受耦合作用的氢核可能产生两个不同的附加磁场的作用,这引起受耦合的氢核的共振由一个单峰分裂为二重峰。如此类推,在两个氢核和一个氢核发生耦合的情况下,共振谱由一个分裂为三个。 磁共振波谱仪不仅可以描绘频谱,还可以描绘频谱的积分曲线,积分曲线对应共振峰的面积。峰的

1.5T磁共振全身弥散加权成像技术与全身T2加权成像的脂肪抑制技术联合应用的临床价值

1.5T磁共振全身弥散加权成像技术与全身T2加权成像的脂肪抑制技 术联合应用的临床价值 目的评价1.5T磁共振全身弥散加权成像技术(whole body diffusion weighted imaging,WB-DWI)与全身T2加权成像的脂肪抑制技术(whole body T2-weighted imaging-shot TI inversion recovery,WB-T2-STIR)联合应用的临床价值。方法采用西门子Avanto 1.5T超导磁共振成像系统,收集患者56例均采用WB-DWI与WB-T2-STIR技术联合应用获得三维图像,对其临床资料和成像技术进行分析。结果WB-DWI与WB-T2-STIR在全身病变敏感性、检出率、定位及定量方面均优于WB-DWI、正电子发射断层成像(PET)。结论采用1.5T磁共振WB-DWI 与WB-T2-STIR技术联合应用对全身各系统的恶性肿瘤具有很高的诊断价值,同时也是一种快速发现全身各系统良性病变的好方法。 标签:磁共振成像;磁共振全身弥散;加权成像技术与全身;T2加权成像的脂肪抑制技术联合应用;应用价值 磁共振全身T2加权成像的脂肪抑制技术(whole body T2-weighted imaging-shot TI inversion recovery,WB-T2-STIR)能够有效地协助全身性寻找病变。我院应用1.5T WB-DWI与WB-T2-STIR技术联合对患者进行检查,本文旨在进一步提高MRI诊断符合率、诊断效率及临床指导作用。 1资料与方法 1.1一般资料2010年7月~2014年4月在本院应用1.5T WB-DWI与WB-T2-STIR技术联合应用的方法对83例患者进行了检查,对其中56例患者影像资料作回顾性分析,男性32例,女性24例;年龄12~83岁,平均56.3岁。这些患者均已病理结果或临床随访证实,恶性病变53例均在上级医院行PET检查,其中肺癌17例,前列腺癌9例,乳腺癌11例,淋巴瘤5例,鼻咽癌3例,肾癌2例,骨肉瘤3例,子宫颈癌3例;良性病变3例未行PET检查,其中多发性骨纤维结构不良2例,多发性肌炎1例。 1.2仪器、方法及扫描参数采用西门子Avanto 1.5T超导磁共振成像系统,composing成像软件、自动移床技术、头颅矩阵线圈、颈部矩阵线圈、两个大柔表面线圈、一个小柔表面线圈、脊柱矩阵线圈。进行冠状位采集,然后应用composing成像软件,拼接所有T2-STIR图像,自动生成冠状位全身T2-STIR图像,然后选取一张满意的冠状位全身T2-STIR图像作为定位像行全身弥散扫描。WB-DWI扫描参数:TR:7000ms,TE:84ms,TI:180ms,激励次数(number of excitation,NEX):4次,FOV:50.0mmX50.0mm,层厚:4mm,层间距:0mm,b值分别为50s/mm2及800 s/mm2。进行轴位采集,全身共分6到7段扫描,一次采集50层。自动移床至待扫位置,直至完成全部扫描。全身T2-STIR检查时间约10min,WB-DWI检查时间约40min,全身总检查时间近50min。将全部弥散b-800 s/mm2原始图像应用3D软件进行处理,采用3DMIP、黑白反转获得三

化学位移

核磁共振图谱的解析 1.一般来说,分析核磁共振图谱需要按如下步骤进行: (1)看峰的位置,即化学位移。确定该峰属于哪一个基团上的氢。 (2)看峰的大小。可用核磁共振仪给出的积分图的台阶高度看出各峰下面所包围的面积之比,从而知道基团含氢的数目比。例如,从图7.3-2的积分图可看出乙基苯三个基团的含氢数目为5∶2∶3。 (3)看峰的形状(包括峰的数目、宽窄情况等),以确定基团和基团之间的相互关系。这一步较复杂,需应用n+1律、二级分裂和耦合常数等知识。 (4)如遇到二级分裂,解析时显然要比一级分析时困难得多,好在人们已经根据不同的二级分裂,将它们分成不同的自旋系统进行了相应的计算可供参阅,这里不再详述。 2.影响核磁共振谱的因数 (1)旋转边峰 为了提高核磁共振信号的分辨能力,样品管需要吹风推动它旋转,使样品所受到的磁场趋于均匀化。但由于样品管旋转,核磁共振图谱上的主峰两旁便会对称地出现新峰,这就是旋转边峰。旋转边峰离主峰的距离等于样品管的旋转速度。 旋转边峰不难判断,只要改变样品管的转速,观察其离主峰的距离是否相应改变。如果距离随样品管转速增大而变大,便可断定是旋转边峰。 (2)13C同位素边峰 若样品中同时含有13C和1H者可以发生耦合。在图谱放大或者在非重氢溶剂的溶剂峰中可以观察到由于这种耦合产生的13C边峰。它在共振图谱上出现的形式和旋转边峰类似,也是左右对称地出现在主峰两旁,但两者很易识别,因为同位素边峰不会因样品管转速的改变而改变其离开主峰的距离。 (3)杂质峰和溶剂峰 在核磁共振图谱中,因样品含有杂质,经常可观察到杂质峰。 溶剂峰可包括结晶溶剂、样品中部分残留的合成或提取时所用的溶剂以及做核磁共振实验时所用溶剂的溶剂峰。 这两种附加峰都应根据具体情况作具体分析,然后判别之。 (4)活泼氢的影响 在含氢化合物中,—OH基团中的氢是常见的一种活泼氢。它的化学位移由于温度、浓度、氢键等因数的影响变化范围较大,从而会改变核磁共振图谱的形状。对于含—OH基团的样品,若纯度很高,—OH的交换速度就很慢,因而就可以观察到它与邻近氢所发生的耦合,如图7.3-3的乙醇中—OH中的氢可以表现为与邻位—CH2—的氢耦合而分裂成三重峰。若在乙醇中加入痕量的酸或碱,加快交换速度,三重峰立即变成单峰,见图3(b)和图3(c)所示。 另外,实验发现,在不同浓度的乙醇中(溶剂为CCl4),—OH峰在核磁共振图谱上出现的位置可以变化很大。这是由于这种氢核的化学位移对氢键非常敏感的缘故。随着乙醇浓度的增大,—OH形成的氢键也就得到增强,导致其化学位移移向低场,而与此同时,—CH3和—CH2—峰的化学位移则变化非常小。 (5)样品溶液处理不当 例如,有些化合物会与溶剂发生反应,因此在测试时要临时新鲜配制的溶液而不能利用已放置很久的溶液,否则就会改变共振图谱的形状。另外,如溶液中有灰尘混入,测试时又未经过滤则易导致局部磁场的不均匀性,而使共振谱线加宽。若其中混有铁质,结果就更为严重,有时甚至会使谱线丧失所有细节,甚至达到不能辨认的程度。

相关主题
文本预览
相关文档 最新文档