当前位置:文档之家› 基于FPGA的窄带干扰抑制算法在GPS中的应用

基于FPGA的窄带干扰抑制算法在GPS中的应用

基于FPGA的窄带干扰抑制算法在GPS中的应用
基于FPGA的窄带干扰抑制算法在GPS中的应用

电磁干扰及其抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (葛洲坝通信工程有限公司方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和内部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统内部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统内的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率范围。

1.1 EMI特性分析 在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统内部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 E=5.5· P·G d 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰 雷电辐射场到机箱辐射干扰

扩频通信中窄带干扰抑制技术的研究

第8卷 第1期2009年2月常 州 信 息 职 业 技 术 学 院 学 报Jou rnal of Changz hou V ocati on alC oll ege of In f or m ati on T echnology Vo.l 8N o .1 Feb .2009 收稿日期:2008-11-13 作者简介:虞建华(1958-),男,高级工程师,从事研究方向:通信技术、计算机应用注:2007年常州市第十三批科技计划项目(CE2007046) 扩频通信中窄带干扰抑制技术的研究 虞建华1 张国俊2 潘之俊 1 (1.常州无线电厂有限公司 江苏常州 213001 2.常州信息职业技术学院 江苏常州 213164) 摘 要:将常用的窄带干扰抑制技术进行了较为系统的研究,给出了基于时域预测滤波的窄带干扰抑制模型,重点讨论了变 换域窄带干扰各种常用方法的特点,并给出了性能仿真。 关键词:窄带干扰;线性预测;变换域;门限法 中图分类号:TN 914.42 文献标志码:A 文章编号:1672-2434(2009)01-0006-04 Study on Narrow -band Interference Rejecti on i n Spread Spectru m Syste m s YU Ji a n-hua 1 Z HANG Guo -j u n 2 PAN Zh-i j u n 1 (1.Chang z hou R ad i o P l ant Co.,L td .,Changzhou 213001 2.Changzhou College o f In f o r m ati on T echno l ogy ,Chang zhou 213164,Chi na) Abstrac t:The paper g i ves a syste m atic study on N BI re j ection techno l ogy ,sho w s the m ode l o f NB I re jecti on i n ti m e doma i n ,ma i n l y discusses the features of d ifferent m ethods o f NB I suppression i n transf o r m dom ai n ,and show s t he perfor m ance si m ulation . K ey word s:narrowband i nter f e rence ; li near prediction ;transfor m do m a i n ;m et hod o f t hresho ld 0.引言 虽然在许多情况下,扩频系统本身所固有的扩频增益可以提供足够的抗干扰能力,但在有些强干扰情况下,例如,对直接序列扩频系统,在其扩展频谱的中心频率附近,利用高功率电平的单音连续波 干扰或多音干扰,可以使系统性能严重恶化。从理论上讲,通过提高扩频系统的处理增益可以得到任意等级的抗干扰能力,但为此所付出的代价是传输带宽的增加。 在实际应用中,也不可能无限制地提高处理增益,许多因素诸如发送/接收机的复杂性以及可用带宽等都限制了处理增益的提高。因此,必须考虑用信号处理技术来弥补扩频处理增益的不足,在不增 加带宽的情况下提高系统处理增益,增强系统的干 扰抑制能力。 1.域窄带干扰抑制方法的研究 基于时域的窄带干扰抑制技术的基本思想就是利用窄带信号和宽带信号在可预测上的差异而达到抑制窄带干扰的目的。因为窄带干扰是非高斯的,样值间有很强的相关性,可以从过去样值来估计当前样值,而扩频信号频谱平坦,其样值之间几乎不相关。当接收信号同时包含宽带有用信号和窄带干扰时,对接收信号进行预测,预测值将主要是窄带信号的预测值。所以在解扩之前从当前信号中减去预测值,将大大减小接收信号中的窄带干扰。主要有两类结构 [1] ,如图1所示:

为什么扩频信号能够有效的抑制窄带干扰资料

为什么扩频信号能够有效的抑制窄带干扰? 答:扩频信号对窄带干扰的抑制作用在于接收机对信号的解扩的同时,对干扰信号的扩频, 这降低了干扰信号的功率谱密度。扩频后的干扰和载波相乘、积分大大削弱了他对信号的干 扰,因此在采样器的输出信号受干扰的影响将大大减小输出的采样只会比较稳定。 什么是同频干扰?是如何产生的?如何减少? 答:同频干扰:是指相同载频电台之间的干扰 如何产生的:蜂窝小区的结构产生的。 如何减少:合理的选定蜂窝结构与频率规划,表现为系统设计中队同频道干扰因子的选择。 若载波MHz f 8000=,移动台速度h km v /60=,求最大多普勒频移。 解:αλcos v f d = Hz c vf v f d 4.443600103108001060/8630max =?????===∴λ 说明多径衰落对数字移动通信系统的主要影响。 答:①信息信号分散,信噪比低,传输语音和数据质量不佳; ②可能引入尖锐的噪声,照成传输数据大量出错; ③不同路径传来的信号互相相关,难以直接叠加。增加接收电路单元的复杂度,从而提 高系统的建设和运营成本。 多选题:请将下列每道题中包含正确答案的字母A 、B 、C 、D 填入题目相应的( )中。错选、漏选、多选均不得分。 1、移动通信系统包括( ABCD )等。 A 、无绳电话 B 、无线寻呼 C 、陆地蜂窝移动通信 D 、卫星移动通信 2、电波传播环境中,以下哪些一般属于阴影衰落?( AB ) A 、山地起伏 B 、高低各异的建筑物 C 、雷电雨雪等恶劣天气 D 、茂密的林木等 3、电波传播环境中,以下哪些一般属于多径衰落?( AC ) A 、高大建筑 B 、各种电磁干扰 C 、通信体快速运动 D 、发射功率不稳定 4、目前移动通信中常见的微观分集的方式是哪三种?( ABC ) A 、时间分集 B 、频率分集 C 、空间分集 D 、以上都不是 5、目前移动通信中应用的多址方式有( ABC )及它们的混合应用方式。 A 、FDMA B 、TDMA C 、CDMA D 、SDMA 6、在FDMA 中主要的干扰有( ABC )。 A 、互调干扰 B 、邻道干扰 C 、同频干扰 D 、以上都不是 7、GSM 的越区切换主要有( ABD )。 A 、同一BSC 内不同小区间的切换

北斗卫星导航接收机抗窄带干扰技术研究

北斗卫星导航接收机抗窄带干扰技术研究 抗干扰技术一直是卫星导航通信方向研究的前沿,特别是在军事领域的应用,是决定信息化战争成败的关键因素之一。虽然我国卫星导航系统起步晚,但发展迅速。 对干扰抑制技术的不断研究会在更加完善的第三代北斗卫星导航系统(Beidou Navigation Satellite System,BDS)中发挥不可或缺的作用。接收机天线收到的导航信号微弱,容易受到周围电磁波和干扰的破坏。 窄带干扰(Narrowband Interference,NBI)是接收机常见的干扰类型。为了提高接收机抗窄带干扰的性能,有必要在接收机中加入窄带干扰抑制模块。 本文主要深入的研究了时域和频域的自适应抑制窄带干扰的方法,并选择了一种频域自适应门限算法进行了硬件实现。以接收机收到的卫星导航信号和噪声、干扰的混合信号为前提,本文主要完成了以下工作:(1)介绍了卫星导航系统中采用的扩频通信技术,以直接序列扩频(Direct Sequence Spread Spectrum,DSSS)系统为例,对窄带干扰下扩频前后的误码率曲线进行了仿真,由结果对比分析了 其抗干扰性能。 接着根据北斗信号和窄带干扰的结构,给出了数学模型,并阐述了导航接收 机原理和自适应滤波技术理论。(2)从自适应预测估计角度,研究了时域抑制窄带干扰技术。 详细介绍了最小均方(Least Mean Square,LMS)、递归最小二乘(Recursion Least Square,RLS)以及改进的可变步长最小二乘(Variable Step-size Least Mean Square,VSLMS)算法,对比了各算法抑制窄带干扰前后的仿真结果图,分析 了算法的收敛性。从滤波器结构角度对IIR陷波器进行了改进,并对改进前后进

传感器的噪声及其抑制方法

传感器的噪声及其抑制方法 1 引言 传感器作为自控系统的前沿哨兵,犹如电子眼一般将被测信息接收并转换为有效的电信号,但同时,一些无用信号也搀杂在其中。这些无用信号我们统称为噪声。 应该说,噪声存在于任何电路之中,但它对传感器电路的影响却尤为突出。这是因为,传感器的输出阻抗一般都很高,使其输出信号衰减厉害,同时,传感器自容易被噪声信号淹没。因此,噪声的存在必定影响传感器的精度和分辨率,而传感器又是检测自控系统的首要环节,于是势必影响整个自控系统的性能。 由此,噪声的研究是传感器电路设计中必须考虑的重要环节,只有有效地抑制、减少噪声的影响才能有效利用传感器,才能提高系统的分辨率和精度。 但噪声的种类多,成因复杂,对传感器的干扰能力也有很大差异,于是抑制噪声的方法也不同。下面就传感器的噪声问题进行较全面的研究。 2 传感器的噪声分析及对策 传感器噪声的产生根源按噪声源分为内部噪声和外部噪声。 2.1 内部噪声——来自传感器件和电路元件的噪声 2.1.1 热噪声 热噪声的发生机理是,电阻中自由电子做不规则的热运动时产生电位差的起伏,它由温度引发且与之呈正比,由下面的奈奎斯特公式表示: 其中,Vn:噪声电压有效值;K:波耳兹曼常数(1.38×10-23J〃K-1);T:绝对温度(K);B:系统的频带宽度(Hz);R:噪声源阻值(Ω)。 噪声源包括传感器自身内阻,电路电阻元件等。 由公式(1)可见,热噪声由于来自器件自身,从而无法根本消除,宜尽可能选择阻值较小的

电阻。 同时,热噪声与频率大小无关,但与频带宽成正比,即,对应不同的频率有均匀功率分布,故,也称白噪声。因此,选择窄频带的放大器和相敏检出器可有效降低噪声。 2.1.2 放大器的噪声 2.1.3 散粒噪声 散粒噪声的噪声源为晶体管,其机理是由到达电极的带电粒子的波动引起电流的波动形成的。噪声电流In与到达电极的电流Ic及频带宽度B成正比,可表示为: 由此可见,使用双极型晶体管的前置放大器来放大传感器的输出信号的场合,选Ic取值尽可能小。同时,也可选择窄频带的放大器降低散粒噪声电流。 2.1.4 1/f噪声 1/f噪声和热噪声是传感器内部的主要噪声源,但其产生机理目前还有争议,一般认为它是一种体噪声,而不是表面效应,源于晶格散射引起。在晶体管的P-N附近是电子-空穴再复合的不规则性产生的噪声,该噪声的功率分布与频率成反比,并由此而得名。其噪声电压表示为: Hooge还在1969年提出了一个解释1/f噪声的经验公式: 式中,SRH和SVH为相应于电阻起伏和电压起伏的功率噪声密度,V为加在R上的偏压,N 为总的自由载流子数,α叫Hooge因子,是一个与器件尺寸无关的常数,它是一个判断材料性能的重要参数。 对于矩形电阻,总的自由载流子数N=PLWH,其中,P为载流子浓度,L、W、H为电阻的长、宽、厚。

电磁干扰的屏蔽方法知识

电磁干扰的屏蔽方法 EMC问题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具体的抑制方法。 电磁兼容性(EMC)是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEEC63.12-1987)。”对于无线收发设备来说,采用非连续频谱可部分实现EMC 性能,但是很多有关的例子也表明EMC并不总是能够做到。例如在笔记本电脑和测试设备之间、打印机和台式电脑之间以及蜂窝电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。 EMC问题来源 所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。 EMI有两条途径离开或进入一个电路:辐射和传导。信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。 很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。 对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。 金属屏蔽效率

电磁干扰和抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (洲坝通信工程方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率围。 1.1 EMI特性分析

在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 E=5.5·√P·G d 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰 雷电辐射场到机箱辐射干扰 设备到设备辐射辐射干扰

DSSS 系统窄带干扰抑制技术

摘要:本文分析直接序列扩频系统通信中的基于时域和变换域等传统干扰抑制方法存在的不足,提出一种基于离散傅立叶变换(D FT)的时域自适应陷波技术。当干扰为时变窄带干扰时,基于D FT的时域陷波技术优于传统时域和变换域的窄带干扰抑制技术。针对基于加窗离散傅里叶变换(DFT) 的直接序列扩频(DSSS) 系统窄带干扰抑制工程实现中的关键技术,分析了重叠相加法减小加窗对接收信号失真的效果, 并首次提出一种基于频域谱线的模平方服从指数分布假设条件下的干扰检测和处理算法——自适应多门限检测干扰抑制算法, 分析和仿真的结果表明, 该算法有较强的自适应性能, 可抑制扩频系统中存在的多种窄带干扰。 关键词:直接序列扩频;窄带干扰抑制;陷波器;自适应多门限检测;子带判决门限 Abstract:This text analyzes the traditional interference suppression method shortcomings that based on time-domain and transform domain of the direct sequence spread spectrum system communication, as proposed Time-domain adaptive notch technology based on discrete Fourier transform (D FT). When the interference becomes narrow-band interference, the time-domain notch technology based on the D FT is superior to the narrowband interference suppression techniques of the traditional time-domain and transform domain technology. For key technologies of the direct sequence spread spectrum (DSSS) system narrow-band interference suppression project based on the windowed discrete Fourier transform (DFT) , the text analysis the effect of overlap-add and reduces windowed method to the received signal .For the first time proposed a method of Interference detection and processing algorithms under the assumption of Modulus square based on frequency domain spectrum obey exponential distribution- adaptive multi-threshold detection interference suppression algorithms, analysis and simulation results show that the algorithm has a strong adaptive properties, can inhibit a variety of narrow-band interference exist in the spread-spectrum systems . Keywords: direct sequence spread spectrum; narrowband interference suppression; notch filter; adaptive multi-threshold detection; sub-band Decision Threshold 1 引言 由于扩频通信具有抗干扰能力强、信息信号隐蔽、便于加密、任意选址、以及易于组网等独特优点,近几年来世界各国对扩频技术的研究已形成高潮,因而扩频通信作为一种新型通信方式得到了迅速发展和广泛应用。也由于扩频通信在可靠性和抗毁性等方面具备了常规有线通信无法提供的优势,因此扩频通信成为对可靠性敏感的商业及工业机构建立专网的重要手段。 扩频通信的研究和应用之所以在近年来能够进入一个更广泛的领域,表现出很强的抗干扰能力,一方面是因为其本身具有独特的工作方式,在抗干扰方面性能卓著;另一方面是因为在这些特有的工作方式基础上,又采用了先进的干扰抑制技术,能够不断解决通信中存在的难题。 在许多情况下,扩频系统本身所固有的扩频增益可以提供足够的抗干扰能力,但在强干扰存在的情形下,扩频通信系统性能会严重恶化。因此,用信号处理技术来弥补扩频处理增益的不足,通过信号处理的技术在不提高系统处理增益的情况下增强系统的干扰抑制能力是一种行之有效的方法。 由于直接序列扩频(DSSS) 通信系统有良好的保密性、灵活的信道分配以及较强的抗多址

485通信中干扰抑制方法

485通信中干扰抑制方法 RS-485匹配电阻 RS-485就是差分电平通信,在距离较长或速率较高时,线路存在回波干扰,此时要在通信线路首末两端并联120Ω匹配电阻。推荐在通信速率大于19、2Kbps或线路长度大于500米时,才考虑加接匹配电阻。 RS-485接地 RS-485通信双方的地电位差要求小于1V,所以建议将两边RS-485接口的信号地相连,注意信号地不要接大地。 还有,就就是采用隔离措施 变频器应用中的干扰抑制措施 在进线侧加装电抗器,可以抑制变频器产生的谐波对电网的干扰。 输出侧不能加吸收电容,因为会导致变频器过电流时延迟过电流保护动作,只能加电抗器,以改善功率因数。 避免变频器的动力线与信号线平行布线与集束布线,应分散布线。检测器的连接线、控制用信号线要使用双绞屏蔽线。变频器、电机的接地线应接到同一点上。在大量产生噪声的机器上装设浪涌抑制器,加数据线滤波器到信号线上。将检测器的连接线、控制用信号线的屏蔽层用电缆金属夹钳接地。 信号线与动力线使用屏蔽线并分别套入金属管后,效果更好。 容易受干扰的其它设备的信号线,应远离变频器与她的输入输出线。 如何解决中频炉的谐波干扰

中频炉在使用中产生大量的谐波,导致电网中的谐波污染非常严重。谐波使电能传输与利用的效率降低,使电气设备过热,产生振动与噪声,并使其绝缘老化,使用寿命降低,甚至发生故障或烧毁;谐波会引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容补偿设备等设备烧毁。谐波还会引起继电器保护与自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波会对通信设备与电子设备产生严重干扰,因而,改善中频炉电力品质成为应对的主要着力点。 滤除中频炉系统谐波的传统方法就是LC滤波器,LC滤波器就是传统的无源谐波抑制装置,由滤波电容器、电抗器与电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要。这种滤波器出现最早,成本比较低,但同时存在一些较难克服的缺点,比如只能针对单次谐波,容易产生谐波共振,导致设备损毁,随着时间谐振点会漂移,导致谐波滤除效果越来越差。同时,这一方式无法应对瞬变、浪涌与高次谐波,存在节能的漏洞。 谐波抑制的另一个比较新的方法就是采用有源电力滤波器(Active Power Filter--APF)。它就是一种电力电子装置,其基本原理就是从补偿对象中检测出谐波电流,由补偿装置产生一个与该谐波电流大小相等而极性相反的补偿电流,从而使电网电流只含基波分量。这种滤波器能对频率与幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响,因而受到广泛的重视,并且已在日本等国获得广泛应用。但有源电力滤波器成本高昂,价格昂贵,投资回报期长,大多数企业难以承受。 MF-Saver吸收融合了LC技术与APF技术的优点,同时引入TOPSPARK G5的核心技术,扬长避短,创造性地解决了上述技术的不足,以独特的方式为中频炉环保节能提供了更有效的解决方案。

继电器电磁干扰的分析及抑制

摘要:本文主要介绍了对电气设备中继电器及其开关触点干扰抑制的机理,提出了抑制干扰的有效措施。 关键词:继电器电磁干扰分析抑制 1前言 随着科学技术的飞速发展,电子、电力电子、电气设备应用越来越广泛,它们在运行过程中会产生较强的电磁干扰和谐波干扰。其中,电磁干扰具有很宽的频率范围(从几百Hz 到MHz),又有一定的幅度,经过传导和辐射会污染电磁环境,对电子设备造成干扰,有时甚至危及操作人员的安全。特别是大功率中、短波广播发射中心,其周围电磁环境尤为复杂,要想保证设备安全稳定运行,电子设备及电源必须具有更高的电磁兼容性。 2电磁干扰的抑制 电磁干扰EMI(Electromagnetic Interference)是指由无用信号或电磁骚扰(噪声)对有用电磁信号的接收或传输所造成的损害。一个系统或系统内,某一线路受到电磁干扰的程度可以表示为如下关系式: N=G×C/I 其中:G为噪声源强度; I为受干扰电路的敏感程度;

C为噪声通过某种途径传导受干扰处的耦合因素。 从上式可以看出,电磁干扰抑制的技术就是围绕这三个要素所采取的各种措施,归纳起来就是: (1)抑制电磁干扰源; (2)切断电磁干扰耦合途径; (3)降低电磁敏感装置的敏感性。 2.1抑制电磁干扰源 首先必须确定干扰源在何处,越靠近干扰源的地方采取措施抑制效果越好,一般来说,电流电压瞬变的地方(即di/dt或du/dt)即是干扰源,如:继电器开合、电容充放电、电机运转、集成电路开关工作等都可能成为干扰源。另外,市电并非理想的50Hz正弦波,其中充满各种频率噪声,也是不可忽视的干扰源。 抑制干扰源就是尽可能的减小di/dt或du/dt,这是抗干扰设计时最优先和最重要的原则。减小di/dt的干扰源,主要是在干扰回路串联电感或电阻以及增加续流二极管来实现;减小du/dt的干扰源,则是通过在干扰源两端并联电容来实现。 抑制方法通常采用低噪声电路、瞬态抑制电路、稳压电路等,所选用的器件应尽可能采用低噪声、高频特性好、稳定性高的电子元件,特别要注意,抑制电路中不适当的器件选择可能会产生新的干扰源。

电气设备的干扰及其抑制

电气设备的干扰及其抑制 1引言 随着电力电子技术的发展,供电系统中增加了大量的非线性负载,特别是静止变流器,从低压小容量家用电器到高压大容量用的工业交、直流变换装置,应用广泛。由于静止变换器是以开关方式工作的,会引起电网电流、电压波形发生畸变,使高次谐波显著增加。尽管供电系统中电弧炉、电焊机、变压器、旋转电机、荧光灯等其它非线性负载都会在电网中产生不同频率和幅值的高次谐波,但静止变 流器产生的高次谐波最为严重,成为电网中的公害”。 2高次谐波产生的主要原因 2.1整流器 作为直流电源装置,整流器广泛应用于各种场合。其典型电路如图1所示。在整流装置中,交流电源的电流为矩形波,该矩形波为工频基波电流波形和奇数倍频率的高次谐波电流波形的合成波形。图2给出了6脉冲3相桥式整流器在不同时的高次谐波含有率。2.2交流调压器 交流调压器多用于调光装置、电阻炉和感应电动机等工业设备的电力调整。其典型电路如图3所示。交流电力调压器产生的谐波次数与整流器基本相同。 2.3频率变换器 频率变换器是ac-ac变换器的代表设备。当用作电动机的调速装置时,它含有随输出频率变化的边频带,由于频率连续变化,出现的谐波含量比较复杂。 2.4通用变频器 通用变频器的输入电路通常由二极管全桥整流电路和直流侧电容器所组成,如图4(a)所示,这种电路的输入电流波形随阻抗的不同相差很大。在电源阻抗比较小的情况下,其波形为窄而高的瘦长型波形,如图4(b)所示;反之,当电源阻抗比 较大时,其波形为矮而宽的扁平型波形,如图4(b)虚线所示。 2.5高频开关电源 除了上述典型变流装置会产生大量的谐波以外,近年来彩电、个人电脑、电池充电器等装置的迅速普及,使得电容滤波的整流电路迅猛增加。对其交流侧谐波的分析已经开始成为谐波源分析领域关注的焦点之一。 3高次谐波的危害 3.1对电力电容器的影响 由于电容器的容抗与频率成反比,因此在高次谐波电压作用下的容抗要比在基波电压作用下的容抗小得多,从而使谐波电流的波形畸变更比谐波电压的波形畸变大得多,即便电压中谐波所占的比例不大,也会产生显著的谐波电流。特别是在发生谐振的情况下,很小的谐波电压就可引起很大的谐波电流,使电容器成倍地过负荷,导致电容器因过流而损坏。 3.2对旋转电机的影响 谐波电压或电流会在电机的定子绕组、转子回路以定子和转子铁芯中引起附加损耗。由于涡流和集肤效应的关系,定子和转子导体内的这些附加损耗要比直流电阻引起的损耗大。 另外,谐波电流还会增大电机的噪音和产生脉动转矩。转子第k次谐波电流与基波旋转磁场产生的脉动转矩可由下式表示:(2)

电磁干扰及常用的抑制技术

电磁干扰及常用的抑制技术 刘宇媛 哈尔滨工程大学 摘要:各种干扰是机电一体化系统和装置出现瞬时故障的主要原因。电磁兼容性设计是目前电子设备及机电 一体化系统设计时考虑的一个重要原则,它的核心是抑制电磁干扰。电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手,切断干扰耦合的途径,干扰的影响也将被消除。常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔离等。 关键词:电磁干扰干扰抑制屏蔽接地 1.电磁干扰 电磁干扰(electro magnetic interference,EMI)是指系统在工作过程中出现的一些与有用信号无关的、并且对系统性能或信号传输有害的电气变化现象。构成电磁干扰必须具备三个基本条件:①存在干扰源;②有相应的传输介质;③有敏感的接收元件。只要除去其中一个条件,电磁干扰就可消除,这就是电磁抑制技术的基本出发点。 1.1 电磁干扰的分类 常见的各种电磁干扰根据干扰的现象和信号特征不同有以下分类方法。 1、按其来源分类(1) 自然干扰。自然干扰是指由于大自然现象所造成的各种电磁噪声。 (2) 人为干扰。由于电子设备和其他人工装置产生的电磁干扰。 2、按干扰功能分类 (1) 有意干扰。有意干扰是指人为了达到某种目的而有意识制造的电磁干扰信号。这是当前电子战的重要手段。 (2) 无意干扰。无意干扰是指人在无意之中所造成的干扰,如工业用电、高频及微波设备等引起的干扰等。 3、按干扰出现的规律分类 (1) 固定干扰。多为邻近电气设备固定运行时发出的干扰。 (2) 半固定干扰。偶尔使用的设备(如行车、电钻等)引起的干扰。 (3) 随机干扰。无法预计的偶发性干扰。 4、按耦合方式分类 (1) 传导耦合干扰。传导耦合是指电磁噪声的能量在电路中以电压或电流的形式,通过金属导线或其他元件(如电容器、电感器、变压器等)耦合到被干扰设备(电路)。 (2) 辐射耦合干扰。电磁辐射耦合是指电磁噪声的能量以电磁场能量的形式,通过空间辐射传播,耦合到被干扰设备(或电路)。 1.2 电磁噪声耦合途径 干扰源对电子设备的干扰是通过一定耦合形式进行的,无论是内部干扰或外部干扰,都是通过“路”(传输线路或电路)或“场”(静电场或交变电磁场)耦合到被干扰设备中的。 1、电磁噪声传导耦合 (1)直接传导耦合。电导性直接传导耦合最简单、最常见,但它也是最易被人们忽视的一种耦合方式。在考虑电磁兼容性问题时,必须考虑导线不但有电阻足,而且有电感L,漏电阻R,以及杂散电容C。在实际使用中尤其是频率比较高时,这些分布参数对信号的传输有着十分重要的影响。如何考虑分布参数的影响与传输线的长度密切相关。根据传输线的长度与传输信号频率的关系可把传输线分为长线和短线,对短信号线不必进行阻抗匹配,而对长信号线应在终端进行阻抗匹配。 (2)公共阻抗耦合。当干扰源的输出回路与被干扰电路存在一个公共阻抗时,两者之间就会产生公共阻抗耦合。干扰源的电磁噪声将会通过公共阻抗耦合到被干扰电路而产生干扰。所谓“公共阻抗”通常不是人们故意接人的阻抗,而是由公共地线和公共电源线的引线电感所

自动检测过程中的干扰及其抑制方法

自动检测过程中的干扰及其抑制方法 在检测过程中,由于各种原因的影响,常会有一些与被测信号无关的电压、电流存在,这样就影响了测量结果,产生测量误差。这些信号就是干扰,它可分内部干扰和外部干扰。 内部干扰是测量系统内部各部件间的互相干扰。这种干扰可通过测量装置的正确设计及零部件的合理布局或采取隔离措施,加以消除或减弱。如仪表中放大器的输入线与输出线、交流电源线,分开走线,不要平行走线,且输入走线尽可能短;又如触发可控硅的脉冲变压器用磁屏蔽,即利用高导磁率材料做成磁屏蔽罩。 外部干扰是测量系统外部的因素对仪器、仪表或系统产生的干扰。在这里就自动化仪表检测工作中常会遇到的一些干扰及抑制方法归纳如下。 1 机械干扰 机械干扰最为严重,也很广泛。由于振动,会使导线在磁场中运动,产生感应电动势。抑制这类干扰用减振措施即可,如采用减振弹簧或减振橡胶等。在有振动的环境中,仪器、仪表信号导线常因松动而影响测量,应定期加以紧固。在此种环境中,少用动圈仪表。 2 温度干扰 由于温度过高,波动且不均匀,在检测中常导致电子元件参数变化或产生热电势,从而对测量结果造成严重干扰。在工程上,一般采用热屏蔽方法抑制热干扰,而把敏感元件装入恒温箱中。在电子测量装置中,常采用温度补偿措施,以补偿温度变化时对检测结果的影响。如:在实际现场使用热电偶时,自由端离热源很近,并随环境温度变化而变化。所以必须对自由端温度加以补偿。无论是采用补偿导线还是补偿电桥等,都是为了抑制此种干扰。又如:本人在修理天津仪表七厂生产的电动执行器位置反馈板时发现,不同的环境温度反应出不同的信号值。采取的办法是:把反馈回路原有的电阻用普通电阻串联或并联一只热敏电阻代换,在实际应用中,效果相当不错。再如,热电阻三线制接法,其中两根导线在不同的桥臂上,另一根接电源端,使环境温度变化引起导线阻值的变化。在不同的桥臂上同时增加或减小,而相互抵消。四线制接法既可消除连接导线电阻的影响,又可消除线路中寄生电势引起的测量误差。特别值得注意的是,温度过低也会造成仪表误差或失灵。北方冬季寒冷,自动化仪表的光电耦合器件及红外探测元件常会因环境温度太低而无法正常工作。如我厂采用台湾产的工业电视系统摄像器件CCD、美国产的筒体扫描仪器、德国西门子的比色高温计等,冬天都曾出现过不能正常使用的现象,加装了相应的伴热装置后,工作恢复正常。 3 电气干扰 由于厂矿中发电机、电动机及气体放电器件等杂散电磁场的存在,电场或磁场的变化,会使电或磁的干扰进入电子测量装置中,引起干扰信号。 (1)电磁感应 电磁感应通过磁耦合的方式在测量电路中形成干扰。如信号源与仪表之间的连接导线,仪表内部的配线通过磁耦合在电路中形成干扰。当两条平行导线有电流通过时,它们彼此之间会通过磁交链产生电磁耦合干扰。再如:各种开关设备在产生弧光火花放电的过程中,会向周围幅射出低频到高频的电磁波,这种无线电干扰信号以电磁场辐射的形式进入到测量仪器、仪表中,造成瞬时干扰信号。这种干扰信号直接影响微机检测系统的正常工作,有时甚至会冲乱程序。 为了降低电磁感应所产生的干扰,将导线远离那些强电设备及动力网,调整走线方向,减小导线回路面积以及采用绞线或屏蔽导线,强电电源线不与弱电信号线平行布线,不使用同一根电缆,分开布线且距离要尽量远些。对微机检测系统而言,其扩展接口片与主机之间连接导

电磁干扰的屏蔽方法

电磁干扰的屏蔽方法 EMC'可题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具 体的抑制方法。 电磁兼容性(EMC)是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEE C63.12-1987)。”对于无线收发设备来说,采用非连续频谱可部分实现EMC生能,但是很多有关的例子也表明EMC并不总是能够做到。例如在笔记本电脑和测试设备之间、打印机和台式电脑之间以及蜂窝电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。 EMC'可题来源 所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这 样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。 EMI 有两条途径离开或进入一个电路:辐射和传导。信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。 很多EMI 抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。EMI抑制性、隔离性和低敏感性应该作为所有电路设计 人员的目标,这些性能在设计阶段的早期就应完成。 对设计工程师而言,采用屏蔽材料是一种有效降低EMI 的方法。如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。 金属屏蔽效率 可用屏蔽效率(SE)对屏蔽罩的适用性进行评估,其单位是分贝,计算公式为 SEdB=A+R+B 其中A :吸收损耗(dB) R :反射损耗(dB) B :校正因子(dB)(适用于薄屏蔽罩内存在多个反射的情况) 一个简单的屏蔽罩会使所产生的电磁场强度降至最初的十分之一,即SE等于20dB;而有些 场合可能会要求将场强降至为最初的十万分之一,即SE要等于100dB。 吸收损耗是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算式为

电动汽车电磁干扰抑制

电动汽车电磁干扰抑制 在订单的设计及市场问题处理过程中学习了电磁干扰方面的相关内容,主要将抑制电磁干扰的的措施进行了总结。 抑制、消除电磁干扰主要有接地、屏蔽和滤波三种方法,三种方法各具特色,也相互关联。 1、搭铁搭铁就是在两点之间建立导电通路,其中的一点通常是系统的电气元件,而另一点则是参考点,一个搭铁系统的有效性取决于在多大程度上减小搭铁系统的电位差和减小搭铁电流。良好的搭铁可以消除各种噪声的产生,减小电磁干扰的作用,降低对屏蔽和滤波的要求。 2、屏蔽屏蔽能有效地抑制通过空间传播的电磁干扰,即辐射电磁干扰。采用屏蔽的目的有两个:一是限制辐射电磁能量越出某一区域;二是防止外来的辐射电磁能量进入某一区域。屏蔽按其机理可以分为电场屏蔽、磁场屏蔽和电磁场屏蔽。在电源设计时,主要是采用全密封的金属外壳封装来实现屏蔽,达到抑制辐射电磁干扰的目的。 3、滤波滤波能有效地抑制通过载流导体传播的电磁干扰,即传导电磁干扰。采用滤波的目的有两个:一是限制传导电能通过载流导体越出某一区域;二是防止外来的传导电能通过载流导体进入某一区域。传导电磁干扰分为差模干扰和共模干扰两种。在实际工作中,抑制电源传导电磁干扰通过载流导体转播,主要是采取在电源的输入端和输出端设置差模共模滤波器,我们公司就曾在高压配电箱正负极并联滤波电容。 对于纯电动客车和插电式混合动力客车,可考虑从以下几个方面抑制电磁干扰:1、电器部件的布置 电动汽车在有限的空间中集成了大功率电力电子元件及多个电动机。在电动汽车布置中,电机控制器应尽可能靠近驱动电机布置,使电机控制器和电机之间的连线尽可能缩短,最好不要超过1500mm,整车控制器作为电动汽车的控制核心,是整个CAN网络的网关,它作为敏感源,整车布置时要远离电机和电机控制器等高压电气部件。 2、电动汽车用线束的走向及选材 在电动汽车电磁兼容问题的因素中,高低压线束占有重要地位。这是因为线束电缆是一根根高效的接收和辐射天线,另外线束中的导线平行传输的距离最长,因此导线之间存在较大的分部电容和互电感,这会导致导线之间发生信号的串扰。 由于电动汽车上安装空间的限制,不可能使所有导线都保持起码的间距,但必须将具有相同潜在的干扰和大致相同灵敏度的导线综合在一起,并分开布线。为达到充分的退耦,电动汽车各类导线之间应保持最小间距。电池连接线等高压直流线与低压导线应保持的最小间距为100mm,与CAN总线、信号线应保持的

相关主题
文本预览
相关文档 最新文档