当前位置:文档之家› 时间序列建模的基本步骤

时间序列建模的基本步骤

时间序列建模的基本步骤
时间序列建模的基本步骤

精心整理

时间序列建模的基本步骤

1.数据的预处理:数据的剔取及提取趋势项。

2.取n=1,拟合)12,2ARMA(-n n (即ARMA(2,1))模型

(1)3=p ,拟和)(AR p 模型。

设所要拟合的模型为

t t t t t a X X X X +++=---332211???,

3,I 的

值。 (2 于是 知道了321及

1,再用下式来确定ARMA(2,1)模型中的21:

111θ?+=I ;21122I I +-=θθ?。 (3)以(2)中得到的121,,θ??为初始值,利用非线性最小二乘法得到

121,,θ??的终值及置信区间,并且求出残差平方和(RSS)。

3.1+=n n ,拟合ARMA )12,2(-n n 模型

其基本步骤与2类似。

.用F 准则检验模型的适用性。若

F 检验显着,则转入第2步。若F 检验不显着,转入第5步。

对于ARMA 模型的适用性检验的实际就是对t a 的独立性检验。检验t a 的独立性的一个简便而有效的办法是拟合更高阶的模型。若更高阶模型的残差平方和有明显减少,就意味着现有模型的t a 不

设假设

0A =t

a 之其中γ型模型是适用的。

5.检查122,-n n θ?的值是否很小,其置信区间是否包含零。若不是,则适用的模型就是)12,2ARMA(-n n 。

若122,-n n θ?很小,且其置信区间包含零,则拟合)22,12ARMA(--n n 。

6.利用F 准则检验模型)12,2ARMA(-n n 和)22,12ARMA(--n n ,若F 值不显着,

转入第7步;若F 值显着,转入第8步。

7.舍弃小的MA 参数,拟合22-

8.舍弃小的MA 参数,拟合12-

多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1 1989 1956.0 2199.9 1990 2985.8 2574.3 1991 3827.1 3398.7 1992 4676.3 4443.3 1993 5284.8 5986.2 1994 10421.8 9960.1 1995 12451.8 11048.1 1996 12576.4 11557.4 1997 15160.7 11806.5 1998 15223.6 11626.1 1999 16159.8 13736.5 2000 20634.4 18638.8 2001 22024.4 20159.2 2002 26947.9 24430.3 2003 36287.9 34195.6 2004 49103.3 46435.8 2005 62648.1 54273.7 2006 77594.6 63376.9 2007 93455.6 73284.6 2008 100394.9 79526.5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2); run;

时间序列预测模型

时间序列预测模型时间序列是指把某一变量在不同时间上的数值按时间先后顺序排列起来所形成的序列,它的时间单位可以是分、时、日、周、旬、月、季、年等。时间序列模型就是利用时间序列建立的数学模型,它主要被用来对未来进行短期预测,属于趋势预测法。一、简单一次移动平均预测法例1.某企业1月~11月的销售收入时间序列如下表所示.取n 4,试用简单一次移动平均法预测第12月的销售收入,并计算预测的标准误差. 二、加权一次移动平均预测法简单一次移动平均预测法,是把参与平均的数据在预测中所起的作用同等对待,但参与平均的各期数据所起的作用往往是不同的。为此,需要采用加权移动平均法进行预测,加权一次移动平均预测法是其中比较简单的一种。三、指数平滑预测法 1、一次指数平滑预测法一元线性回归模型 * 项数n的数值,要根据时间序列的特点而定,不宜过大或过小.n过大会降低移动平均数的敏感性,影响预测的准确性;n过小,移动平均数易受随机变动的影响,难以反映实际趋势.一般取n的大小能包含季节变动和周期变动的时期为好,这样可消除它们的影响.对于没有季节变动和周期变动的时间序列,项数n的取值可取较大的数;如果历史数据的类型呈上升或下降型的发展趋势,则项数n的数值应取较小的数,这样能取得较好的预测效果. 1102.7 1015.1 963.9 892.7 816.4 772.0 705.1 649.8 606.9 574.6 533.8 销售收入 11 10 9 8 7 6 5 4 3 2 1 月份 t 158542.7 993.6 12 12950.4 19016.4 17662.4 24617.6 27989.3

时间序列分析资料报告——ARMA模型实验

基于ARMA模型的社会融资规模增长分析 ————ARMA模型实验

第一部分实验分析目的及方法 一般说来,若时间序列满足平稳随机过程的性质,则可用经典的ARMA模型进行建模和预则。但是, 由于金融时间序列随机波动较大,很少满足ARMA模型的适用条件,无法直接采用该模型进行处理。通过对数化及差分处理后,将原本非平稳的序列处理为近似平稳的序列,可以采用ARMA模型进行建模和分析。 第二部分实验数据 2.1数据来源 数据来源于中经网统计数据库。具体数据见附录表5.1 。 2.2所选数据变量 社会融资规模指一定时期(每月、每季或每年)实体经济从金融体系获得的全部资金总额,为一增量概念,即期末余额减去期初余额的差额,或当期发行或发生额扣除当期兑付或偿还额的差额。社会融资规模作为重要的宏观监测指标,由实体经济需求所决定,反映金融体系对实体经济的资金量支持。 本实验拟选取2005年11月到2014年9月我国以月为单位的社会融资规模的数据来构建ARMA模型,并利用该模型进行分析预测。 第三部分 ARMA模型构建 3.1判断序列的平稳性 首先绘制出M的折线图,结果如下图:

图3.1 社会融资规模M曲线图 从图中可以看出,社会融资规模M序列具有一定的趋势性,由此可以初步判断该序列是非平稳的。此外,m在每年同时期出现相同的变动趋势,表明m还存在季节特征。下面对m的平稳性和季节性·进行进一步检验。 为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下: 图3.2 lm曲线图

对数化后的趋势性减弱,但仍存在一定的趋势性,下面观察lm的自相关图 表3.1 lm的自相关图 上表可以看出,该lm序列的PACF只在滞后一期、二期和三期是显著的,ACF随着滞后结束的增加慢慢衰减至0,由此可以看出该序列表现出一定的平稳性。进一步进行单位根检验,由于存在较弱的趋势性且均值不为零,选择存在趋势项的形式,并根据AIC自动选择之后结束,单位根检验结果如下: 表3.2 单位根输出结果 Null Hypothesis: LM has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=12) t-Statistic Prob.*

时间序列分析及VAR模型

Lecture 6 6. Time series analysis: Multivariate models 6.1Learning outcomes ?Vector autoregression (VAR) ?Cointegration ?Vector error correction model (VECM) ?Application: pairs trading 6.2Vector autoregression (VAR)向量自回归 The classical linear regression model assumes strict exogeneity; hence, there is no serial correlation between error terms and any realisation of any independent variable (lead or lag). As we discovered, serial correlation (or autocorrelation) is very common in financial time series and panel data. Furthermore, we assumed a pre-defined relation of causality: explanatory variable affect the dependent variable? 传统的线性回归模型假设严格的外主性,误差项与可实现的独立变量之间没有序列相关性。金融时间序列及面板数据往往都有很强的自相关性,假定解释变量影响因变量。 We now relax bo什]assumptions using a VAR model. VAR models can be regarded as a generalisation of AR(p) processes by adding additional time series. Hence, we enter the field of multivariate time series analysis. VAR模型可以'"l作是在一般的自回归过程中加入时间序列。 Lefs look at a standard AR(p) process for hvo variables (y( and xj? (1)%= Ql + 琅]仇『一 +仏 (2)x t = a2 + - + £2t The next step is to allow that lagged values of xt can affect y( and vice versa. This means that we obtain a system of equations for two dependent variables(y(and xj?Both dependent variables are influenced by past realisations of y(and x t. By doing that, we violate strict exogeneity (see Lecture 2); however, we can use a more relaxed concept, namely weak exogeneity?As we use lagged values of bodi dependent variables, we can argue that these lagged values are known to us, as we observed them in the previous period? We call these variables predetermined? Predetermined (lagged) variables fulfil weak exogeneity in the sense that they have to be uncorrelated with the contemporaneoiis error term in t? We can still use OLS to estimate the following system of equations, which is called a VAR in reduced form. (3)+y 仇1化_丫+sr=i ^12 +£it (4)X t = a2+2X1021”—, + _i + f2t

《时间序列分析及应用:R语言》读书笔记

《时间序列分析及应用:R语言》读书笔记 姓名:石晓雨学号:1613152019 (一)、时间序列研究目的主要有两个:认识产生观测序列的随机机制,即建立数据生成模型;基于序列的历史数据,也许还要考虑其他相关序列或者因素,对序列未来的可能取值给出预测或者预报。通常我们不能假定观测值独立取自同一总体,时间序列分析的要点是研究具有相关性质的模型。 (二)、下面是书上的几个例子 1、洛杉矶年降水量 问题:用前一年的降水量预测下一年的降水量。 第一幅图是降水量随时间的变化图;第二幅图是当年降水量与去年降水量散点图。 win.graph(width=4.875, height=2.5,pointsize=8) #这里可以独立弹出窗口 data(larain) #TSA包中的数据集,洛杉矶年降水量 plot(larain,ylab='Inches',xlab='Year',type = 'o') #type规定了在每个点处标记一下 win.graph(width = 3,height = 3,pointsize = 8) plot(y = larain,x = zlag(larain),ylab = 'Inches',xlab = 'Previous Year Inches')#zlag 函数(TSA包)用来计算一个向量的延迟,默认为1,首项为NA

从第二幅图看出,前一年的降水量与下一年并没有什么特殊关系。 2、化工过程 win.graph(width = 4.875,height = 2.5,pointsize = 8) data(color) plot(color,ylab = 'Color Property',xlab = 'Batch',type = 'o') win.graph(width = 3,height = 3,pointsize = 8) plot(y = color,x = zlag(color),ylab = 'Color Property',xlab = 'Previous Batch Color Property') len <- length(color) cor(color[2:len],zlag(color)[2:len])#相关系数>0.5549 第一幅图是颜色属性随着批次的变化情况。

时间序列模型

时间序列模型 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

时间序列模型 一、分类 ①按所研究的对象的多少分,有一元时间序列和多元时间序列。 ②按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种。 ③按序列的统计特性分,有平稳时间序列和非平稳时间序列。 狭义时间序列:如果一个时间序列的概率分布与时间t 无关。 广义时间序列:如果序列的一、二阶矩存在,而且对任意时刻t 满足均值为常数和协方差为时间间隔τ的函数。(下文主要研究的是广义时间序列)。 ④按时间序列的分布规律来分,有高斯型时间序列和非高斯型时间序列。 二、确定性时间序列分析方法概述 时间序列预测技术就是通过对预测目标自身时间序列的处理,来研究其变化趋势的。一个时间序列往往是以下几类变化形式的叠加或耦合。 ①长期趋势变动:它是指时间序列朝着一定的方向持续上升或下降,或停留在某一水平上的倾向,它反映了客观事物的主要变化趋势。通常用T t表示。 ②季节变动:通常用S t表示。 ③循环变动:通常是指周期为一年以上,由非季节因素引起的涨落起伏波形相似的波动。通常用C t表示。 ④不规则变动。通常它分为突然变动和随机变动。通常用R t表示。也称随机干扰项。 常见的时间序列模型: ⑴加法模型:y t=S t+T t+C t+R t; ⑵乘法模型:y t=S t·T t·C t·R t; ⑶混合模型:y t=S t·T t+R t;y t=S t+T t·C t·R t;R t2 这三个模型中y t表示观测目标的观测记录,E(R t)=0,E(R t2)=σ2 如果在预测时间范围以内,无突然变动且随机变动的方差σ2较小,并且有理由认为过去和现在的演变趋势将继续发展到未来时,可用一些经验方法进行预测。 三、移动平均法 当时间序列的数值由于受周期变动和不规则变动的影响,起伏较大,不易显示出发展趋势时,可用移动平均法,消除这些因素的影响,分析、预测序列的长期趋势。 移动平均法有简单移动平均法,加权移动平均法,趋势移动平均法等。 、简单移动平均法 当预测目标的基本趋势是在某一水平上下波动时,可用一次简单移动平均方法建立预测模型: 其预测目标的标准差为:

Eviews时间序列分析实例.

Eviews时间序列分析实例 时间序列是市场预测中经常涉及的一类数据形式,本书第七章对它进行了比较详细的介绍。通过第七章的学习,读者了解了什么是时间序列,并接触到有关时间序列分析方法的原理和一些分析实例。本节的主要内容是说明如何使用Eviews软件进行分析。 一、指数平滑法实例 所谓指数平滑实际就是对历史数据的加权平均。它可以用于任何一种没有明显函数规律,但确实存在某种前后关联的时间序列的短期预测。由于其他很多分析方法都不具有这种特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。 (-)一次指数平滑 一次指数平滑又称单指数平滑。它最突出的优点是方法非常简单,甚至只要样本末期的平滑值,就可以得到预测结果。 一次指数平滑的特点是:能够跟踪数据变化。这一特点所有指数都具有。预测过程中添加最新的样本数据后,新数据应取代老数据的地位,老数据会逐渐居于次要的地位,直至被淘汰。这样,预测值总是反映最新的数据结构。 一次指数平滑有局限性。第一,预测值不能反映趋势变动、季节波动等有规律的变动;第二,这种方法多适用于短期预测,而不适合作中长期的预测;第三,由于预测值是历史数据的均值,因此与实际序列的变化相比有滞后现象。 指数平滑预测是否理想,很大程度上取决于平滑系数。Eviews提供两种确定指数平滑系数的方法:自动给定和人工确定。选择自动给定,系统将按照预测误差平方和最小原则自动确定系数。如果系数接近1,说明该序列近似纯随机序列,这时最新的观测值就是最理想的预测值。 出于预测的考虑,有时系统给定的系数不是很理想,用户需要自己指定平滑系数值。平滑系数取什么值比较合适呢?一般来说,如果序列变化比较平缓,平滑系数值应该比较小,比如小于0.l;如果序列变化比较剧烈,平滑系数值可以取得大一些,如0.3~0.5。若平滑系数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预测。 [例1]某企业食盐销售量预测。现在拥有最近连续30个月份的历史资料(见表l),试预测下一月份销售量。 表1 某企业食盐销售量单位:吨 解:使用Eviews对数据进行分析,第一步是建立工作文件和录入数据。有关操作在本

现代时间序列分析模型

现代时间序列分析模型§1 时间序列平稳性和单位根检验§2 协整与误差修正模型经典时间序列分析模型: MA、AR、ARMA 平稳时间序列模型分析时间序列自身的变化规律现代时间序列分析模型:分析时间序列之间的关系单位根检验、协整检验现代宏观计量经济学§1 时间序列平稳性和单位根检验一、时间序列的平稳性二、单整序列三、单位根检验一、时间序列的平稳性 Stationary Time Series ⒈问题的提出经典计量经济模型常用到的数据有:时间序列数据(time-series data ;截面数据cross-sectional data 平行/面板数据(panel data/time-series cross-section data 时间序列数据是最常见,也是最常用到的数据。经典回归分析暗含着一个重要假设:数据是平稳的。数据非平稳,大样本下的统计推断基础――“一致性”要求――被破怀。数据非平稳,往往导致出现“虚假回归”(Spurious Regression)问题。表现为两个本来没有任何因果关系的变量,却有很高的相关性。例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的可决系数。 2、平稳性的定义假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列 Xt (t 1, 2, …)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:均值E Xt ?是与时间t 无关的常数;方差Var Xt ?2是与时间t 无关的常数;协方差Cov Xt,Xt+k ?k 是只与时期间隔k有关,与时间t 无关的常数;则称该随机时间序列是平稳的(stationary ,

时间序列模型的建立与预测

第六节时间序列模型的建立与预测 ARIMA过程y t用 Φ (L) (Δd y t)= α+Θ(L) u t 表示,其中Φ (L)和Θ (L)分别是p, q阶的以L为变数的多项式,它们的根都在单位圆之外。α为Δd y t过程的漂移项,Δd y t表示对y t 进行d次差分之后可以表达为一个平稳的可逆的ARMA 过程。这是随机过程的一般表达式。它既包括了AR,MA 和ARMA过程,也包括了单整的AR,MA和ARMA过程。 可取 图建立时间序列模型程序图 建立时间序列模型通常包括三个步骤。(1)模型的识别,(2)模型参数的估计,(3)诊断与检验。

模型的识别就是通过对相关图的分析,初步确定适合于给定样本的ARIMA模型形式,即确定d, p, q的取值。 模型参数估计就是待初步确定模型形式后对模型参数进行估计。样本容量应该50以上。 诊断与检验就是以样本为基础检验拟合的模型,以求发现某些不妥之处。如果模型的某些参数估计值不能通过显著性检验,或者残差序列不能近似为一个白噪声过程,应返回第一步再次对模型进行识别。如果上述两个问题都不存在,就可接受所建立的模型。建摸过程用上图表示。下面对建摸过程做详细论述。 1、模型的识别 模型的识别主要依赖于对相关图与偏相关图的分析。在对经济时间序列进行分析之前,首先应对样本数据取对数,目的是消除数据中可能存在的异方差,然后分析其相关图。 识别的第1步是判断随机过程是否平稳。由前面知识可知,如果一个随机过程是平稳的,其特征方程的根都应在单位圆之外;如果 (L) = 0的根接近单位圆,自相关函数将衰减的很慢。所以在分析相关图时,如果发现其衰减很慢,即可认为该时间序列是非平稳的。这时应对该时间序列进行差分,同时分析差分序列的相关图以判断差分序列的平稳性,直至得到一个平稳的序列。对于经济时间序列,差分次数d通常只取0,1或2。 实际中也要防止过度差分。一般来说平稳序列差分得到的仍然是平稳序列,但当差分次数过多时存在两个缺点,(1)序列的样本容量减小;(2)方差变大;所以建模过程中要防止差分过度。对于一个序列,差分后若数据的极差变大,说明差分过度。 第2步是在平稳时间序列基础上识别ARMA模型阶数p, q。表1给出了不同ARMA模型的自相关函数和偏自相关函数。当然一个过程的自相关函数和偏自相关函数通常是未知的。用样本得到的只是估计的自相关函数和偏自相关函数,即相关图和偏相关图。建立ARMA模型,时间序列的相关图与偏相关图可为识别模型参数p, q提供信息。相关图和偏相关图(估计的自相关系数和偏自相关系数)通常比真实的自相关系数和偏自相关系数的方差要大,并表现为更高的自相关。实际中相关图,偏相关图的特征不会像自相关函数与偏自相关函数那样“规范”,所以应该善于从相关图,偏相关图中识别出模型的真实参数p, q。另外,估计的模型形式不是唯一的,所以在模型识别阶段应多选择几种模型形式,以供进一步选择。

时间序列分析与建模简介

第五章时间序列分析与建模简介 时间序列建模( Modelling viatime series )。时间序列分析与建模是数理统计的重要分支,其主要学术贡献人是Box和Jenkins。本章扼要介绍吴宪民和Pandit的工作,仅要求一般了解当前时间序列分析与建模的一些主要结果。参考书:“时间序列及系统分析与应用(美)吴宪民,机械工业出版社(1988)TP13/66。 引言 根据对系统观测得出的按照时间顺序排列的数据,通过曲线拟合和参数估计或者谱分析,建立数学模型的理论与方法,理论基础是数理统计。有时域和频域两类建模方法,这里概括介绍时域方法,即基于曲线拟合与参数估计(如最小二乘法)的方法。常用于经济系统建模(如市场预测、经济规划)、气象与水文预报、环境与地震信号处理和天文等学科的信号处理等等。 §5—1 ARMA模型分析 一、模型类 把具有相关性的观测数据组成的时间序列{x k }视为以正态同分布白噪声序列{ a k }为输入的动态系统的输出。用差分模型ARMA (n,m) 为Φ(z-1)xk= θ(z-1)a k式

(5-1-1) 其中:Φ (z -1) = 1- φ1 z -1-…- φn z-n θ (z -1) = 1- θ1 z -1-…- θm z-m 离散传函 式(5-1-2) 为与参考书符号一致,以下用B表示时间后移算子 即: B xk = x k -1 B即z -1,B 2即z -2… Φ (B)=0的根为系统的极点,若全部落在单位园内则系统稳定;θ(B)=0的根为系统的零点,若全部在单位园内则系统逆稳定。 二、关于格林函数和时间序列的稳定性 1.格林函数Gi 格林函数G i 用以把x t 表示成a t 及at 既往值的线性组合。 式(5-1-3) G I 可以由下式用长除法求得: 例1.A R(1): xt - φ1x t-1 = a t x B B B a B B a a t t t j t j j ==-=+++=-=∞∑θφφφφφ()()()1111112210 )()()(111---=z z z G φθ∑∞=-=0j j t j t a G x

时间管理时间序列模型

最新卓越管理方案您可自由编辑

Wold 分解定理:任何协方差平稳过程x t ,都可以被表示为 x t - μ - d t = u t + ψ1 u t -1+ ψ2 u t -2 + … + = ∑∞ =-0 j j t j u ψ 其中μ 表示x t 的期望。d t 表示x t 的线性确定性成分,如周期性成分、时间t 的多项式和指数形式等,可以直接用x t 的滞后值预测。ψ0 = 1,∑ ∞ =0 2 j j ψ< ∞。u t 为白噪声过程。u t 表示用x t 的滞后项预测x t 时的误差。 u t = x t - E(x t | x t -1, x t -2 , …) ∑ ∞=-0 j j t j u ψ称为x t 的线性非确定性成分。当d t = 0时,称x t 为纯线性非确定性过程。 Wold 分解定理由Wold 在1938年提出。Wold 分解定理只要求过程2阶平稳即可。从原 理上讲,要得到过程的Wold 分解,就必须知道无限个ψj 参数,这对于一个有限样本来说是不可能的。实际中可以对ψj 做另一种假定,即可以把ψ (L )看作是2个有限特征多项式的比, ψ(L ) =∑ ∞ =0 j j j L ψ=)()(L L ΦΘ=p p q q L L L L L L φφφθθθ++++++++...1...1221221 注意,无论原序列中含有何种确定性成分,在前面介绍的模型种类中,还是后面介绍的 自相关函数、偏自相关函数中都假设在原序列中已经剔除了所有确定性成分,是一个纯的随机过程(过程中不含有任何确定性成分)。如果一个序列如上式, x t = μ + d t + u t + ψ1 u t -1+ ψ2 u t -2 + … + 则所有研究都是在y t = x t - μ - d t 的基础上进行。例如前面给出的各类模型中都不含有均值项、时间趋势项就是这个道理。 2.3 自相关函数 以上介绍了随机过程的几种模型。实际中单凭对时间序列的观察很难确定其属于哪一种模型,而自相关函数和偏自相关函数是分析随机过程和识别模型的有力工具。 1. 自相关函数定义 在给出自相关函数定义之前先介绍自协方差函数概念。由第一节知随机过程{x t }中的每一个元素x t ,t = 1, 2, … 都是随机变量。对于平稳的随机过程,其期望为常数,用 μ 表示,即 E(x t ) = μ, t = 1, 2, … (2.25) 随机过程的取值将以 μ 为中心上下变动。平稳随机过程的方差也是一个常量 Var(x t ) = E [(x t - E(x t ))2 ] = E [(x t - μ)2 ] = σx 2 , t = 1, 2, … (2.26) σx 2用来度量随机过程取值对其均值 μ 的离散程度。 相隔k 期的两个随机变量x t 与x t - k 的协方差即滞后k 期的自协方差,定义为 γk = Cov (x t , x t - k ) = E[(x t - μ ) (x t - k - μ ) ] (2.27) 自协方差序列 γk , k = 0, 1, …, K , 称为随机过程 {x t } 的自协方差函数。当k = 0 时 γ0 = Var (x t ) = σx 2 自相关系数定义

时间序列分析及其应用

时间序列分析及其应用 摘要:本文介绍了目前时间序列分析的发展状况以及应用情况,对常见的几种趋势拟合及其预测方法进行了简要叙述。 关键词:时间序列趋势建模 1 引言 时间序列分析是一种动态数据处理的统计方法。该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。它包括一般统计分析(如自相关分析,谱分析等),统计模型的建立与推断,以及关于时间序列的最优预测、控制与滤波等内容。经典的统计分析都假定数据序列具有独立性,而时间序列分析则侧重研究数据序列的互相依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。时间序列是按时间顺序的一组数字序列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来 事物的发展。时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。二是考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。 2 时间序列分析的趋势及建模 时间序列分析的成分有:(1)长期趋势,即时间序列随时间的变化而逐渐增加或减少的长期变化的趋势;(2)季节变动,即时间序列在一年中或固定时间内,呈现出的固定规则的变动;(3)循环变动,即

沿着趋势线如钟摆般地循环变动;(4)不规则变动,即在时间序列中由于随机因素影响所引起的变动。 时间序列建模基本步骤是:用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据;根据动态数据作相关图,进行相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。然后辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。 主要的趋势拟合方法有平滑法、趋势线法和自回归模型。对于很多情况,时间序列具有季节趋势,比如气象学中的气温、降雨量,水文学中雨季和干季的河流水量等等。这就需要分析时间序列时,将季节趋势考虑在内。季节性预测法的基本步骤是(1)对原时间序列求移动平均,以消除季节变动和不规则变动,保留长期趋势;(2)将原序列y除以其对应的趋势方程值(或平滑值),分离出季节变动(含不规则变动),即季节系数=tsci/趋势方程值(tc或平滑值);(3)将月度(或季度)的季节指标加总,以由计算误差导致的值去除理论加总值,得到一个校正系数,并以该校正系数乘以季节性指标从而获得调整后季节性指标;(4)求预测模型,若求下一年度的预测值,延长趋势线即可;若求各月(季)的预测值,需以趋势值乘以各月份(季

典型时间序列模型分析

实验1 典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型:AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对对上述三种模型进行统计特性分析,通过对2 阶模型的仿真分析,探讨几种模型的适用范围,并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有 AR(2)模型, X(n)=-0.3X(n-1)-0.5X(n-2)+W(n) 其中:W(n)是零均值正态白噪声,方差为4。 (1)用MA TLAB 模拟产生X(n)的500 观测点的样本函数,并绘出波形 (2)用产生的500 个观测点估计X(n)的均值和方差 (3)画出理论的功率谱 (4)估计X(n)的相关函数和功率谱 【分析】给定二阶的AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 1 2 1 ()10.30.5H z z z --= ++ 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, ()() 2 2 12 12exp 11x w z jw P w a z a z σ--==++ 可以看出, () x P w 完全由两个极点位置决定。 对于 AR 模型的自相关函数,有下面的公式: 这称为 Yule-Walker 方程,当相关长度大于p 时,由递推式求出: 这样,就可以求出理论的 AR 模型的自相关序列。

1.产生样本函数,并画出波形 2.题目中的AR 过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20 点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2 阶AR 过程 plot(x,'r'); ylabel('x(n)'); title('邹先雄——产生的AR 随机序列'); grid on; 得到的输出序列波形为: 2.估计均值和方差 可以首先计算出理论输出的均值和方差,得到 x m ,对于方差可以先求出理论自相 关输出,然后取零点的值。

时间序列模型

时间序列模型 一、分类 ①按所研究的对象的多少分,有一元时间序列和多元时间序列。 ②按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种。 ③按序列的统计特性分,有平稳时间序列和非平稳时间序列。 狭义时间序列:如果一个时间序列的概率分布与时间t 无关。 广义时间序列:如果序列的一、二阶矩存在,而且对任意时刻t 满足均值为常数和协方差为时间间隔的函数。(下文主要研究的是广义时间序列)。 ④按时间序列的分布规律来分,有高斯型时间序列和非高斯型时间序列。 二、确定性时间序列分析方法概述 时间序列预测技术就是通过对预测目标自身时间序列的处理,来研究其变化趋势的。一个时间序列往往是以下几类变化形式的叠加或耦合。 ①长期趋势变动:它是指时间序列朝着一定的方向持续上升或下降,或停留在某一水平上的倾向,它反映了客观事物的主要变化趋势。通常用表示。 ②季节变动:通常用表示。 ③循环变动:通常是指周期为一年以上,由非季节因素引起的涨落起伏波形相似的波动。通常用表示。 ④不规则变动。通常它分为突然变动和随机变动。通常用表示。也称随机干扰项。 常见的时间序列模型: ⑴加法模型:; ⑵乘法模型:; ⑶混合模型:;; 这三个模型中表示观测目标的观测记录, 如果在预测时间范围以内,无突然变动且随机变动的方差较小,并且有理由认为过去和现在的演变趋势将继续发展到未来时,可用一些经验方法进行预测。 三、移动平均法

当时间序列的数值由于受周期变动和不规则变动的影响,起伏较大,不易显示出发展趋势时,可用移动平均法,消除这些因素的影响,分析、预测序列的长期趋势。 移动平均法有简单移动平均法,加权移动平均法,趋势移动平均法等。 、简单移动平均法 当预测目标的基本趋势是在某一水平上下波动时,可用一次简单移动平均方法建立预测模型: 其预测目标的标准差为: 当然我们还可以得到如下递推关系: N的选取方式: ①一般N 取值范围:5 ≤N ≤ 200。当历史序列的基本趋势变化不大且序列中随机变动成分较多时,N 的取值应较大一些。否则N 的取值应小一些。 ②选择不同的N比较若干模型的预测误差,预测标准误差最小者为最好。 、加权移动平均法 在简单移动平均公式中,每期数据在求平均时的作用是等同的。但是,每期数据所包含的信息量不一样,近期数据包含着更多关于未来情况的信心。因此,把各期数据等同看待是不尽合理的,应考虑各期数据的重要性,对近期数据给予较大的权重,这就是加权移动平均法的基本思想。 其中为权数,体现了相应的在加权平均数中的重要性。 在加权移动平均法中,的选择,同样具有一定的经验性。一般的原则是:近期数据的权数 大,远期数据的权数小。至于大到什么程度和小到什么程度,则需要按照预测者对序列的了解和分析来确定。

应用时间序列分析简答题

1.简述非平稳时间序列的确定性因素分解方法及其优缺点:确定性因素分解方法产生于长期的实践。序列的各种变化可以归纳为三大因素的影响:(1)长期趋势波动,包括长期趋势和无固定周期的循环波动(2)季节性变化,包括所有具有固定周期的循环波动(3)随机波动,包括除了长期趋势波动和季节性变化之外的其他因素的综合因素。优点:原理简单;操作方便;易于理解。缺点:(1)只能提取强劲的确定性信息,对随机性信息浪费严重(2)它把所有序列的变化归纳为四大因素的综合影响,却始终无法提供明确有效的方法判断各大因素之间明确的作用关系。 2.比较传统的统计分析与时间序列分析数据结构并说明引入序列平稳性的意义: (1)根据数理统计学常识,传统的统计分析的随机变量越少越好,而每个变量获得的样本信息越多越好。因为随机变量越少,分析的过程越简单,而样本容量越大,分析的结果越可靠。(2)时间序列数据分析的结构有它的特殊性。对随机序列{…,1x ,2x ,…t x …}而言,它在任意时刻t 的序列值t x 都是一个随机变量,而且由于时间的不可重复性,该变量在任意一个时刻只能获得唯一的一个样本观察值。(3)时间序列分析的数据结构的样本信息太少,如果没有其他的辅助信息,通常这种数据结构是没有办法进行分析的。序列的平稳性概念的提出可以有效地解决这个困难。 3.什么是模型识别?模型识别的基本原则是什么?计算出样本自相关系数和偏自相关系数的值之后,就要根据他们表现出来的性质,选择适当的ARMA 模型拟合观察值序列。这个根据样本自相关关系数和偏自相关系数的性质估计自相关阶数p ?和移动平均阶数q ?的过程即是模型识别过程。ARMA 模型定阶基本原则如下表: 4.简述单整和协整分析的含义。(1)单整是处理伪回归问题的一种方式。如果一个时间序列经过一次差分变成平稳的,则称原序列是1阶单整的,记为I (1)。一般地,如果时间序列经过d 次差分后变成平稳序列,而经过d-1次差分仍不平稳,则称原序列是d 阶单整序列,记为I (d )。(2)假定回归模型t k 1i it i 0t y εχββ++=∑=

数学建模之时间序列模型

一、时间序列 时间序列分析是当前对动态数据处理的一种有效方法,它不要求考虑影响观测值的各种力学因素,而只是分析这些观测数据的统计规律性。通过对时间序列统计规律性进行分析,构造拟合出这些规律的可能数值,最后给出预测结果的精度分析。 1.1AR 模型: 1.1.1 模型的应用 ①年降雨水量的预测, ②城市税收收入的预测。 1.1.2步骤 ①模型识别 令均值为零的时间序列(1,2,,)t x t n =L ,延迟k 周期的自协方差函数是 [],k k t t k E y y γγ-+== (1) 用?k γ、?k ρ分别表示自协方差函数的估计值和自相关函数的估计值,则自相关系数为 k k k γρργ-== (2) 1 1??,0,1,2,,1n k k k t t k t y y k n n γγ-+==-==-∑L (3) ???,0,1,2,,1k k k k n γρργ-== =-L (4)

(1)对p 阶AR(P)模型有 01122t t t p t p t x x x x φφφφε---=+++++L (5) {}00,()t x AR p φ=当为中心化序列, 当00φ≠ ,可通过平移得到中心化()AR p 序列。 用B 表示移位算子,1;t t j t t j Bx x B x x --==,则AR(P)模型的算子形式: 212(1)p p t t B B B x φφφε----=L 即 ()p t t B x φε= (5)两边同乘t k x +后再取均值得: 1122[,][,()]t k t t k t t p t p t E x x E x x x x φφφε++---=++++L 由协方差函数函数得: 211220k k k p k p k r εφγφγφγσδ---=++++L (6) 取0,1,2,,k p =L ,再将得到的差分方程两边同时除以0γ得: 1121121122 1122p p p p p p p p ρφφρφρρφρφφρρφρφρφ----=+++=+++ =+++L L M L (7) 由上式(7)可得,k ρ应该满足: ()0,0p k B k φρ=> (8) 解得通解为 1122k k k k p p c c c ρλλλ---=+++L (9) 其中,1,2,,i c i p =L 可以由p 个初值021,,,p ρρρ-L 代入计算得到, ,1,2,,i i p λ=L 是特征方程()0p B φ=的根。 平稳条件:P 个特征根都在单位圆外,即||1i λ>。

多因素时间序列的灰色预测模型

第 39卷 第 2期 2007年 4月 西 安 建 筑 科 技 大 学 ( 学 报 ( 自然科学版) ) V ol.39 No.2 Apr . 2007 J 1Xi ’an Univ . of Arch . & Tech . Natural Scie nce Editio n 多因素时间序列的灰色预测模型 苏变萍 ,曹艳平 ,王 婷 (西安建筑科技大学理学院 ,陕西 西安 710055) 摘 要:对于传统的单因素时间序列预测法在实际应用中的不足之处 ,提出采用灰色 DGM (1 ,1) 模型和多元 线性回归原理相结合的方法 ,综合各种因素建立多因素时间序列的灰色预测模型。它首先利用 DGM (1 ,1) 模 型对影响事物发展趋势的各项因素进行预测 ;然后利用多元线性回归法将各种因素综合起来 ,以预测事物的 发展趋势。最后将该模型应用于预测分析陕西省的就业状况 ,取得了较好的预测效果 ,同时也验证了此模型 的可行性。 关键词: 时间序列 ;单因素 ;多因素 ;预测模型 中图分类号:TB114 文献标识码:A 文章编号 :100627930 2007 022******* ( ) 多年以来 ,对时间序列的预测研究 ,大多是停留在对单因素时间序列上 ,对其预测通常采用的是趋 势外推法 ,而且该方法适合于原始时间序列规律性较好的情况 ,若时间序列中包含了随机因素的影 响 ,再采用这种方法得出的预测结果可能会失真. 同时 ,客观世界又是复杂多变的 ,事物的发展通常不 是由某个单个因素决定 ,往往是许多错综复杂的因素综合作用的结果 ,为了对某项事物的发展做出更加 符合实际的预测 ,这就需要来探讨多因素时间序列的预测问题 ,正是基于这些 ,本文在应用灰色 D GM (1 ,1)模型对单因素时间序列预测的基础上 ,结合多元回归原理 ,提出建立多因素时间序列的灰色预测 模型 ,这样就充分发挥了二者的优点 ,既克服了时间序列的随机因素影响 ,又综合考虑了影响事物发展 的多种因素 ,从而达到提高预测精度和增加预测结果可靠性的效果. 1 模型的建立 设 Y = (y (1) , y (2) , …, y( n)) 表示事物发展的特征因素时间序列, X i = (x i (1) , x i (2) , …, x i ( n)) (i = 1 ,2 , …, p) 表示影响事物发展的单因素时间序列. 1.1 单因素时间序列的 DGM(1 ,1) 模型 对于单因素原始时间序列{ X i } (i = 1 ,2 , …, p) ,根据灰色系统理论建模方法 ,得 D GM (1 ,1) 模 型 : x i (1) a (1 - a) + a b ,t > 1 1.2 多因素时间序列的预测模型 为了能将影响事物发展的众多因素结合起来进行综合预测和相关因素的预测分析 ,在经过多次研 究与比较后,采用多元回归的原理建立多因素时间序列的灰色预测模型: y t = a 0 + a 1 x 1 t + a 2 x 2 t + …+ a p x p t 2 式中 y t 为该事物在 t 时刻的预测值;x i t i = 1 ,2 , …, p 为第 i 个单因素 ,通过应用上述的灰色 3收稿日期 :2005201209 修改稿日期:2006204212 基金项目 :陕西省教育厅专项基金项目 01J K133( ) 作者简介 :苏变萍 19632( ) ,女 ,山西忻州人 ,副教授 ,博士研究生 ,研究方向为计量经济学. [122] (0) (0) (0) ( ) ( ) [4] (0) x (1) = x (1) ^ x (t) = (1) ( ) ^ ^ ^ ^ ^ ^

相关主题
文本预览
相关文档 最新文档