当前位置:文档之家› 时间序列模型

时间序列模型

时间序列模型
时间序列模型

时间序列模型

Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

时间序列模型

一、分类

①按所研究的对象的多少分,有一元时间序列和多元时间序列。

②按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种。

③按序列的统计特性分,有平稳时间序列和非平稳时间序列。

狭义时间序列:如果一个时间序列的概率分布与时间t 无关。

广义时间序列:如果序列的一、二阶矩存在,而且对任意时刻t 满足均值为常数和协方差为时间间隔τ的函数。(下文主要研究的是广义时间序列)。

④按时间序列的分布规律来分,有高斯型时间序列和非高斯型时间序列。

二、确定性时间序列分析方法概述

时间序列预测技术就是通过对预测目标自身时间序列的处理,来研究其变化趋势的。一个时间序列往往是以下几类变化形式的叠加或耦合。

①长期趋势变动:它是指时间序列朝着一定的方向持续上升或下降,或停留在某一水平上的倾向,它反映了客观事物的主要变化趋势。通常用T t表示。

②季节变动:通常用S t表示。

③循环变动:通常是指周期为一年以上,由非季节因素引起的涨落起伏波形相似的波动。通常用C t表示。

④不规则变动。通常它分为突然变动和随机变动。通常用R t表示。也称随机干扰项。

常见的时间序列模型:

⑴加法模型:y t=S t+T t+C t+R t;

⑵乘法模型:y t=S t·T t·C t·R t;

⑶混合模型:y t=S t·T t+R t;y t=S t+T t·C t·R t;R t2

这三个模型中y t表示观测目标的观测记录,E(R t)=0,E(R t2)=σ2

如果在预测时间范围以内,无突然变动且随机变动的方差σ2较小,并且有理由认为过去和现在的演变趋势将继续发展到未来时,可用一些经验方法进行预测。

三、移动平均法

当时间序列的数值由于受周期变动和不规则变动的影响,起伏较大,不易显示出发展趋势时,可用移动平均法,消除这些因素的影响,分析、预测序列的长期趋势。

移动平均法有简单移动平均法,加权移动平均法,趋势移动平均法等。

、简单移动平均法

当预测目标的基本趋势是在某一水平上下波动时,可用一次简单移动平均方法建立预测模型:

其预测目标的标准差为:

当然我们还可以得到如下递推关系:

N的选取方式:

①一般N 取值范围:5 ≤N ≤200。当历史序列的基本趋势变化不大且序列中随机变动成分较多时,N 的取值应较大一些。否则N 的取值应小一些。

②选择不同的N比较若干模型的预测误差,预测标准误差最小者为最好。

、加权移动平均法

在简单移动平均公式中,每期数据在求平均时的作用是等同的。但是,每期数据所包含的信息量不一样,近期数据包含着更多关于未来情况的信心。因此,把各期数据等同看待是不尽合理的,应考虑各期数据的重要性,对近期数据给予较大的权重,这就是加权移动平均法的基本思想。

其中w i为y t?i+1权数,体现了相应的y t在加权平均数中的重要性。

在加权移动平均法中,的选择,w i同样具有一定的经验性。一般的原则是:近期数据的权数大,远期数据的权数小。至于大到什么程度和小到什么程度,则需要按照预测者对序列的了解和分析来确定。

、趋势移动平均法

简单移动平均法和加权移动平均法,在时间序列没有明显的趋势变动时,能够准确反映实际情况。但当时间序列出现直线增加或减少的变动趋势时,用简单移动平均法和加权移动平均法来预测就会出现滞后偏差。因此,需要进行修正,修正的方法是作二次移动平均,利用移动平均滞后偏差的规律来建立直线趋势的预测模型。这就是趋势移动平均法。

一次移动的平均数为

二次移动的平均数为

下面讨论如何利用移动平均的滞后偏差建立直线趋势预测模型:

设时间序列{y t} 从某时期开始具有直线趋势,且认为未来时期也按此直线趋势变化,则可设此直线趋势预测模型为

其中t 为当前时期数;T 为由t 至预测期的时期数;a t为截距,b t为系数,两者均称为平滑系数。

可以推算出:

趋势移动平均法对于同时存在直线趋势与周期波动的序列,是一种既能反映趋势变化,又可以有效地分离出来周期变动的方法。

四、指数平滑法

;而一次移动平均实际上认为最近N 期数据对未来值影响相同,都加权1

N

N 期以前的数据对未来值没有影响,加权为0。但是,二次及更高次移动平均数,且次数越高,权数的结构越复杂,但永远保持对称的权数,即的权数却不是1

N

两端项权数小,中间项权数大,不符合一般系统的动态性。一般说来历史数据对未来值的影响是随时间间隔的增长而递减的。所以,更切合实际的方法应是对各期观测值依时间顺序进行加权平均作为预测值。指数平滑法可满足这一要求,而且具有简单的递推形式。

指数平滑法根据平滑次数的不同,又分为一次指数平滑法、二次指数平滑法和三次指数平滑法等,分别介绍如下:

、一次指数平滑法

其中α为加权系数。

预测模型为:

也就是以第t期指数平滑值作为t +1期预测值。

如何选择加权系数α

具体如何选择一般可遵循下列原则:

①如果时间序列波动不大,比较平稳,则α应取小一点,如(~)。以减少修正幅度,使预测模型能包含较长时间序列的信息;

②如果时间序列具有迅速且明显的变动倾向,则α应取大一点,如(~)。使预测模型灵敏度高一些,以便迅速跟上数据的变化。

③在实用上,类似移动平均法,多取几个α值进行试算,看哪个预测误差小,就采用哪个。

如何确定初值S0(1)

具体如何选择一般可遵循下列原则:

①当时间序列的数据较多,比如在20 个以上时,初始值对以后的预测值影响很少,可选用第一期数据为初始值。

②如果时间序列的数据较少,在20个以下时,初始值对以后的预测值影响很大,这时,就必须认真研究如何正确确定初始值。一般以最初几期实际值的平均值作为初始值。

、二次指数平滑法

当时间序列的变动出现直线趋势时,采用二次指数平滑法

其中S t(1)为一次指数的平滑值;S t(2)为二次指数的平滑值。当时间序列{y t},从某时期开始具有直线趋势时,类似趋势移动平均法,可用直线趋势模型:

进行预测。

、三次指数平滑法

当时间序列的变动表现为二次曲线趋势时,则需要用三次指数平滑法。三次指数平滑是在二次指数平滑的基础上,再进行一次平滑,其计算公式为

式中S t(3)为三次指数平滑值

三次指数平滑法的预测模型为:

其中:

选择α值的一些基本准则:

指数平滑预测模型是以时刻t为起点,综合历史序列的信息,对未来进行预测的。选择合适的加权系数α是提高预测精度的关键环节。根据实践经验,α的取值范围一般以~为宜。α值愈大,加权系数序列衰减速度愈快,所以实际上α取值大小起着控制参加平均的历史数据的个数的作用。α值愈大意味着采用的数据愈少。

(1)如果序列的基本趋势比较稳,预测偏差由随机因素造成,则α值应取小一些,以减少修正幅度,使预测模型能包含更多历史数据的信息。

(2)如果预测目标的基本趋势已发生系统地变化,则α值应取得大一些。这样,可以偏重新数据的信息对原模型进行大幅度修正,以使预测模型适应预测目标的新变化。

如何确定初值

初始值可以取前3~5个数据的算术平均值作为初始值。

五、差分指数平滑法

当时间序列的变动具有直线趋势时,用一次指数平滑法会出现滞后偏差,其原因在于数据不满足模型要求。因此,我们也可以从数据变换的角度来考虑改进措施,即在运用指数平滑法以前先对数据作一些技术上的处理,使之能适合于一次指数平滑模型,以后再对输出结果作技术上的返回处理,使之恢复为原变量的形态。差分方法是改变数据变动趋势的简易方法。

、一阶差分指数平滑法

当时间序列呈直线增加时,可运用一阶差分指数平滑模型来预测。

其中的为差分记号。第一个式子表示对呈现直线增加的序列作一阶差分,构成一个平

稳的新序列,第二个式子表示把经过一阶差分后的新序列的指数平滑预测值与变量当前的

实际值迭加,作为变量下一期的预测值。

指数平滑值实际上是一种加权平均数。因此把序列中逐期增量的加权平均数(指数平滑值)加上当前值的实际数进行预测,比一次指数平滑法只用变量以往取值的加权平均数作为下一期的预测更合理。从而使预测值始终围绕实际值上下波动,从根本上解决了在有直线增长趋势的情况下,用一次指数平滑法所得出的结果始终落后于实际值的问题。

二阶差分指数平滑模型

当时间序列呈现二次曲线增长时,可用二阶差分指数平滑模型来预测,计算公式如下:

其中?2表示二阶差分。

差分方法和指数平滑法的联合运用,除了能克服一次指数平滑法的滞后偏差之外,对初始值的问题也有显着的改进。因为数据经过差分处理后,所产生的新序列基本上是平稳的。这时,初始值取新序列的第一期数据对于未来预测值不会有多大影响。其次,它拓展了指数平滑法的适用范围,使一些原来需要运用配合直线趋势模型处理的情况可用这种组合模型来取代。但是,对于指

数平滑法存在的加权系数α的选择问题,以及只能逐期预测问题,差分指数平滑模型也没有改进。

六、自适应滤波法

、自适应滤波法的基本过程

自适应滤波法与移动平均法、指数平滑法一样,也是以时间序列的历史观测值进行某种加权平均来预测的,它要寻找一组“最佳”的权数,其办法是先用一组给定的权数来计算一个预测值,然后计算预测误差,再根据预测误差调整权数以减少误差。这样反进行,直至找出一组“最佳”权数,使误差减少到最低限度。由于这种调整权数的过程与通讯工程中的传输噪声过滤过程极为接近,故称为自适应滤波法。

自适应滤波法的基本预测公式为:

其中为第t+1期的预测值,w i为第t-i+1期的观测值权数,y t?i+1为第期的观测值,N为权数的个数。其调整权数的公式为:

式中i=1,2,?,t=N,N+1,?n,n为序列数据的个数,w i为调整前的第i个权数,为调整后的第i个权数,k为学习常数,e i+1为第t+1期的预测误差。

该式表明调整后的一组权数应等于旧的一组权数加上误差调整项,这个调整项包括预测误差、原观测值和学习常数等三个因素。学习常数k的大小决定权数调整的速度。

N, k值和初始权数的确定

在开始调整权数时,首先要确定权数个数N和学习常数k。一般说来,当时间序列的观测值呈季节变动时,N应取季节性长度值。如序列以一年为周期进行季节变动时,若数据是月度的,则取 N=12,若季节是季度的,则取N=4。

如果时间序列无明显的周期变动,则可用自相关系数法来确定,即取N为最高自相关系数的滞后时期。k的取值一般可定为 1/N,也可以用不同的k值来进行计算,以确定一个能使S最小的k值。初始权数的确定也很重要,如无其它依据,也可用 1/N作为初始权系数用。

自适应滤波法有两个明显的优点:一是技术比较简单,可根据预测意图来选择权数的个数和学习常数,以控制预测。也可以由计算机自动选定。二是它使用了全部历史数据来寻求最佳权系数,并随数据轨迹的变化而不断更新权数,从而不断改进预测。由于自适应滤波法的预测模型简单,又可以在计算机上对数据进行处理,所以这种预测方法应用较为广泛。

七、趋势外推预测方法

趋势外推法是根据事物的历史和现时资料,寻求事物发展规律,从而推测出事物未来状况的一种比较常用的预测方法。利用趋势外推法进行预测,主要包括六个阶段:

(a)选择应预测的参数;(b)收集必要的数据;(c)利用数据拟合曲线;(d)趋势外推;(e)预测说明;(f)研究预测结果在进行决策中应用的可能性。

趋势外推法常用的典型数学模型有:指数曲线、修正指数曲线、生长曲线、包络曲线等。

、指数曲线

一般来说,技术的进步和生产的增长,在其未达饱和之前的新生时期是遵循指数曲线增长规律的,因此可以用指数曲线对发展中的事物进行预测。

指数曲线的数学模型为:y=y0e Kt

其中系数y0和K值由历史数据利用回归方法求得。

对该式取对数得ln y=ln y0+Kt,令Y=ln y,A=ln y0,则Y=A+Kt。可利用最小二乘法求得A和K。

、修正指数曲线法

利用指数曲线外推来进行预测时,存在着预测值随着时间的推移会无限增大的情况。这是不符合客观规律的。因为任何事物的发展都是有一定限度的。例如某种畅销产品,在其占有市场的初期是呈指数曲线增长的,但随着产品销售量的增加,产品总量接近于社会饱和量时。这时的预测模型应改用修正指数曲线。

在此数学模型中有三个参数 a,b,K要用历史数据来确定。

修正指数曲线用于描述这样一类现象:

(1)、初期增长迅速,随后增长率逐渐降低。

(2)、当K>0,a<0,0

当K值可预先确定时,采用最小二乘法确定模型中的参数。而当K值不能预先确定时,应采用三和法。

把时间序列的n个观察值等分为三部分,每部分有m期,即m=3n

第一部分:y1,y2,?,y m;

第二部分:y m+1,y m+2,?,y2m;

第三部分:y2m+1,y2m+2,?,y3m;

则:

是否适应修正指数曲线

检验方法是看给定数据的逐期增长量的比率是否接近某一常数b。即

y t+1?y t

≈b

y t?y t?1

、Compertz曲线

曲线的一般形式

Compertz曲线用于描述这样一类现象:初期增长缓慢,以后逐渐加快。当达到一定程度后,增长率又逐渐下降。

参数估计方法如下:

对上式取对数得:

仿照修正指数曲线的三和法估计参数,令

其中

则系数为

是否适应Compertz曲线

检验方法是看给定数据的对数逐期增长量的比率是否接近某一常数b

ln y t+1?ln y t

≈b

t t?1

、Logistic曲线(生长曲线)

生物的生长过程经历发生、发展到成熟三个阶段,在三个阶段生物的生长速度是不一样的,例如南瓜的重量增长速度,在第一阶段增长的较慢,在发展时期则突然加快,而到了成熟期又趋减慢,形成一条S形曲线,这就是有名的Logistic曲线(生长曲线),很多事物,如技术和产品发展进程都有类似的发展过程,因此Logistic曲线在预测中有相当广泛的应用。

Logistic曲线的一般数学模型是

式中y为预测值,L为y的极限值,r为增长率常数, r>0

Logistic曲线的一般形式为

对上式做变换

仿照修正指数曲线的三和法估计参数,令

则各个系数为:

趋势线的选择

趋势线的选择有以下几种方式。

1.由散点图选择趋势线。

2.由数据本身的取值规律选择趋势线。

3.比较预测标准误差大小

当有几种趋势线可供选择时,应选择S最小的趋势线。

八、平稳时间序列模型

这里的平稳是指宽平稳,其特性是序列的统计特性不随时间的平移而变化,即均值和协方差不随时间的平移而变化。

、一般自回归模型AR(n)

假设时间序列X t仅与X t?1,X t?2,?,X t?n有线性关系,而在X t?1,X t?2,?,X t?n 已知条件下,X t与X t?i无关,(i=n+1,n+2,?)。a t是一个独立于

X t?1,X t?2,?,X t?n的白噪声序列,a t~N(0,σ2)。

X t=φ1X t?1+φ2X t?2+?+φn X t?n+a t

上式也可以表示为:a t=X t?φ1X t?1?φ2X t?2???φn X t?n

可见AR(n)系统响应X t具有n阶动态性。AR(n)通过把X t中依赖于X t?1、

X t?2、X t?n的部分消除掉之后,使得具有n阶动态性的序列X t转化为独立的序列a t。因此,AR(n)拟合模型的过程也就是使相关序列独立化的过程。

、移动平均模型MA(m)

AR(n)系统的特征是系统在t时刻的响应X t仅与其以前时刻的响应

X t?1,X t?2,?,X t?n有关,而与其以前时刻进入系统的扰动无关。如果一个系统在t 时刻的响应 t X,与其以前时刻的响应X t?1,X t?2,?,X t?n无关,而与其以前时刻进入系统的扰动a t?1,a t?2,?,a t?m存在着一定的相关关系,那么,这一类系统为系统MA(m)。

X t=a t?θ1a t?1?θ2a t?2???θn a t?m

、自回归移动平均模型

一个系统,如果它在时刻t的响应X t,不仅与其以前时刻的自身值有关,而且还与其以前时刻进入系统的扰动存在一定的依存关系,那么,这个系统就是自回归移动平均系统。

ARMA(n,m)模型为

X t?φ1X t?1?φ2X t?2???φn X t?n=a t?θ1a t?1?θ2a t?2???θn a t?m

对于平稳系统来说,由于AR(n)、MA(m)、ARMA(n,m)模型都是ARMA(n,n?1)模

型的特例,我们以ARMA(n,n?1)模型为一般形式来建立时序模型。

九、ARMA模型的特征

在时间序列的时域分析中,线性差分方程是极为有效的工具。事实上,任何一个ARMA模型都是一个线性差分方程。

、AR(1)系统的格林函数

格林函数就是描述系统记忆扰动程度的函数。

AR(1)模型为:X t?φ1X t?n=a t

设X t?1=y(t),则有

y(t+1)?φ1y(t)=a t

显然这是一个一阶非齐次差分方程,依次递推下去得:

X t=∑φ1j

a t?j

j=0

上式就是格林函数的解。方程解的系数函数φ1j客观地描述了该系统的动态性,故这个系统函数就叫做记忆函数,也叫格林函数。不妨另G j=φ1j,显然G0=φ10=1。

定义后移算子B,BX t=X t?1,B2X t=X t?2,?,这样AR(1)可写成

(1?φ1B)X t=a t

解为:

X t=∑G j a t?j

j=0

由于格林函数就是差分方程解的系数函数,格林函数的意义可概括如下:(1)G j是前j个时间单位以前进入系统的扰动a t?j对系统现在行为(响应)影响的权数。

(2)G j客观地刻画了系统动态响应衰减的快慢程度。

(3)对于一个平稳系统来说,在某一时刻由于受到进入系统的扰动a t的作用,离开其平衡位置(即平均数-零),G j描述系统回到平衡位置的速度,φ1的值较小,速度较快;φ1的值较大,回复的速度就较慢。

、ARMA(2,1)系统的格林函数

、ARMA(2,1)系统的格林函数的隐式

ARMA(2,1)模型是一个二阶非齐次差分方程

它的解为:

若采用B算子

同时我们也可以得到:

、ARMA(2,1)系统的格林函数的显式

ARMA(2,1)模型是一个二阶非齐次差分方程

该齐次方程得到的特征方程为:

其特征根为:

该齐次方程的通解为:

系数C1,C2也可以求得,最终得到结果为:

、逆函数和可逆性

前面的格林函数,把X t表示为过去a t对X t的影响,或者说系统对过去a t的记忆性,也就是用一个MA模型来逼近X t的行为。平稳序列X t的这种表达形式称为X t的“传递形式”。同样我们也可以用过去的X t的一个线性组合来逼近系统现在时刻的行为。即

我们把这种表达形式称为X t的“逆转形式”。其中的系数函数I j(I0=1)称为逆函数,可见它是一个无穷阶的自回归模型。一个过程是否具有逆转形式,也就是说逆函数是否存在的性质,通常称为过程是否具有可逆性,如果一个过程可以用一个无限阶的自回归模型逼近,即逆函数存在,我们就称该过程具有可逆性,否则,就是不可逆的。

对于AR(2)模型

可见,所谓可逆性,是指移动平均模型可以用AR模型表示。

MA(1)模型:

那么:

可见,I j=?θ1j,显然,只有|θ1|<1时,才有j→∞,I j→0,故MA(1)的可逆性条件

为|θ1|<1

十、时间序列建模的基本步骤

应用时间序列分析习题答案解析整理

第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列 LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221Λ+++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 3.2 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .02110211212112011φρφρφρφρρφφρφρφρ 解得:???==15/115 /72 1φφ 3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0 2212122 ) 1)(1)(1(1)(σφφφφφφ-+--+-= t x Var 2) 15.08.01)(15.08.01)(15.01() 15.01(σ+++--+= =1.98232σ ?????=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ?? ? ??=-====015.06957.033222111φφφρφ

时间序列预测模型

时间序列预测模型时间序列是指把某一变量在不同时间上的数值按时间先后顺序排列起来所形成的序列,它的时间单位可以是分、时、日、周、旬、月、季、年等。时间序列模型就是利用时间序列建立的数学模型,它主要被用来对未来进行短期预测,属于趋势预测法。一、简单一次移动平均预测法例1.某企业1月~11月的销售收入时间序列如下表所示.取n 4,试用简单一次移动平均法预测第12月的销售收入,并计算预测的标准误差. 二、加权一次移动平均预测法简单一次移动平均预测法,是把参与平均的数据在预测中所起的作用同等对待,但参与平均的各期数据所起的作用往往是不同的。为此,需要采用加权移动平均法进行预测,加权一次移动平均预测法是其中比较简单的一种。三、指数平滑预测法 1、一次指数平滑预测法一元线性回归模型 * 项数n的数值,要根据时间序列的特点而定,不宜过大或过小.n过大会降低移动平均数的敏感性,影响预测的准确性;n过小,移动平均数易受随机变动的影响,难以反映实际趋势.一般取n的大小能包含季节变动和周期变动的时期为好,这样可消除它们的影响.对于没有季节变动和周期变动的时间序列,项数n的取值可取较大的数;如果历史数据的类型呈上升或下降型的发展趋势,则项数n的数值应取较小的数,这样能取得较好的预测效果. 1102.7 1015.1 963.9 892.7 816.4 772.0 705.1 649.8 606.9 574.6 533.8 销售收入 11 10 9 8 7 6 5 4 3 2 1 月份 t 158542.7 993.6 12 12950.4 19016.4 17662.4 24617.6 27989.3

第五章-时间序列的模型识别

第五章时间序列的模型识别 前面四章我们讨论了时间序列的平稳性问题、可逆性问题,关于线性平稳时间序列模型,引入了自相关系数和偏自相关系数,由此得到ARMA(p, q)统计特性。从本章开始,我们将运用数据开始进行时间序列的建模工作,其工作流程如下: 图5.1 建立时间序列模型流程图 在ARMA(p,q)的建模过程中,对于阶数(p,q)的确定,是建模中比较重要的步骤,也是比较困难的。需要说明的是,模型的识别和估计过程必然会交叉,所以,我们可以先估计一个比我们希望找到的阶数更高的模型,然后决定哪些方面可能被简化。在这里我们使用估计过程去完成一部分模型识别,但是这样得到的模型识别必然是不精确的,而且在模型识别阶段对于有关问题没有精确的公式可以利用,初步识别可以我们提供有关模型类型的试探性的考虑。 对于线性平稳时间序列模型来说,模型的识别问题就是确定ARMA(p,q)过程的阶数,从而判定模型的具体类别,为我们下一步进行模型的参数估计做准备。所采用的基本方法主要是依据样本的自相关系数(ACF)和偏自相关系数(PACF)初步判定其阶数,如果利用这种方法无法明确判定模型的类别,就需要借助诸如AIC、BIC 等信息准则。我们分别给出几种定阶方法,它们分别是(1)利用时间序列的相关特性,这是识别模型的基本理论依据。如果样本的自相关系数(ACF)在滞后q+1阶时突然截断,即在q处截尾,那么我们可以判定该序列为MA(q)序列。同样的道理,如果样本的偏自相关系数(PACF)在p处截尾,那么我们可以判定该序列为AR(p)序列。如果ACF和PACF 都不截尾,只是按指数衰减为零,则应判定该序列为ARMA(p,q)序列,此时阶次尚需作进一步的判断;(2)利用数理统计方法检验高阶模型新增加的参数是否近似为零,根据模型参数的置信区间是否含零来

时间序列分析基于R——习题答案

第一章习题答案 略 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 ()0t E x =,2 1 () 1.9610.7 t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115 φ= 3.3 ()0t E x =,10.15 () 1.98(10.15)(10.80.15)(10.80.15) t Var x += =--+++ 10.8 0.7010.15 ρ= =+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-= 1110.70φρ==,2220.15φφ==-,330φ= 3.4 10c -<<, 1121,1,2 k k k c c k ρρρρ--?=? -??=+≥? 3.5 证明: 该序列的特征方程为:32 --c 0c λλλ+=,解该特征方程得三个特征根: 11λ=,2c λ=3c λ=-

平稳时间序列模型的建立

-0.8 -0.6-0.4-0.20.00.20.40.60.82 4 6 8 10 12 14 -0.8 -0.6-0.4-0.20.0 0.20.40.60.82 4 6 8 10 12 14 第四章 平稳时间序列模型的建立 本章讨论平稳时间序列的建模问题,也就是从观测到的有限样本数据出发,通过模型的识别、模型的定阶、参数估计和诊断校验等步骤,建立起适合的序列模型。学习重点为模型的识别和模型的检验。 第一节 模型识别 一、 识别依据 模型识别主要是依据SACF 和SPACF 的拖尾性与截尾性来完成。常见的一些ARMA 类型的SACF 和SPACF 的统计特征在下表中列出,可供建模时,进行对照选择。 表 ARIMA 过程与其自相关函数偏自相关函数特征 模 型 自相关函数特征 偏自相关函数特征 ARIMA(1,1,1) ? x t = ?1? x t -1 + u t + θ1u t -1 缓慢地线性衰减 AR (1) x t = ?1 x t -1 + u t 若?1 > 0,平滑地指数衰减 若?1 < 0,正负交替地指数衰减 -0.8 -0.6-0.4-0.20.00.20.40.60.82 4 6 8 10 12 14 若?11 > 0,k =1时有正峰值然后截尾 若?11 < 0,k =1时有负峰值然后截尾 -0.8 -0.6-0.4-0.20.00.20.40.60.82 4 6 8 10 12 14 MA (1) x t = u t + θ1 u t -1 若θ1 > 0,k =1时有正峰值然后截尾 若θ1 > 0,交替式指数衰减 -1.0 -0.5 0.0 0.5 1.02 4 6 8 10 12 14 -1.0 -0.5 0.0 0.5 1.0 2 4 6 8 10 12 14

典型时间序列模型分析

实验1典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型: AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对 对上述三种模型进行统计特性分析,通过对2阶模型的仿真分析,探讨几种模型的适用范围, 并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有AR(2)模型, X( n)=-0.3X( n-1)-0.5X( n-2)+W( n) 其中:W(n)是零均值正态白噪声,方差为 4。 (1 )用MATLAB 模拟产生X(n)的500观测点的样本函数,并绘出波形 (2) 用产生的500个观测点估计X(n)的均值和方差 (3) 画出理论的功率谱 (4) 估计X(n)的相关函数和功率谱 【分析】给定二阶的 AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, 可以看出, FX w 完全由两个极点位置决定。 对于AR 模型的自相关函数,有下面的公式: \(0) 打⑴ 匚⑴… ^(0) ■ 1' G 2 W 0 JAP) 人9-1)… 凉0) _ 这称为Yule-Walker 方程,当相关长度大于 p 时,由递推式求出: r (r) + -1) + -■ + (7r - JJ )= 0 这样,就可以求出理论的 AR 模型的自相关序列。 H(z) 二 1 1 0.3z , P x w +W 1 1 a 才 a 2z^

1. 产生样本函数,并画出波形 2. 题目中的AR过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为 2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2阶AR过程 plot(x,'r'); ylabel('x(n)'); title(' 邹先雄——产生的AR随机序列'); grid on; 得到的输出序列波形为: 邹先雄——产生的AR随机序列 2. 估计均值和方差 可以首先计算出理论输出的均值和方差,得到m x =0 ,对于方差可以先求出理论自相 关输出,然后取零点的值。

时间序列分析基于R——习题答案

第一章习题答案 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 Au+ocorreliil. i ons Correlation -1 M 7 6 5 4 3 2 1 0 I ; 3 4 5 6 7 9 9 1 1.00000■Hi ■ K. B H,J B ik L L1■* J.1 jA1-.IM L L* rn^rp ■ i>i?iTwin H'iTiii M[lrp i,*nfr 'TirjlvTilT'1 iBrp O.7QOO0■ill. Ii ill ■ _.ill?L■ ill iL si ill .la11 ■ fall■ 1 ■ rpTirp Tp和阳申■丽轉■晒?|?卉(ft 0.41212■强:料榊<牌■ 0.14343'■讯榊* -.07078■ -.25758, WWHOHHf ■ -.375761 marks two 总t and&rd errors 2.2 (1) 非平稳,时序图如下 (2) - ( 3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

Ctorrelat ion LOOOOO n.A'7F1 0.72171 0.51252 Q,34982 0.24600 0.20309 0.?1021 0.26429 0.36433 0.49472 0.58456 0.60198 0.51841 Q ?菲晡 日 0.20671 0.0013& -,03243 -.02710 Q.01124 0,08275 0.17011 Autocorrel at ions raarka two standard errors 2.3 (1) 自相关系数为: 0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2 )平稳序列 (3) 白噪声序列 2.4 LB=4.83 , LB 统计量对应的分位点为 0.9634 , P 值为0.0363。显著性水平 :-=0.05,序列 不能视为纯随机序列。 2.5 (1) 时序图与样本自相关图如下 AuEocorreI ati ons 弗卅制iti 电卅栅冷卅樹 側樹 榊 惟 1 ■ liihCidi iliihQriHi il>LljU_nll Hnlidiili Hialli iT ,, T^,, T^s ?T* iTijTirr ,^T 1 IT * -i> ■> - ■ ■ *畑** ? ■ ■ 耶曲邯 ? ■ ■ ■ >|{和怦I {册卅KHi 笊出恸 mrpmrp 山!rpEHi erp . 卑*寧* a 1 *

实验十时间序列模型

实验十时间序列模型 10.1 实验目的 掌握时间序列的基本理论,时间序列模型种类的识别、估计、诊断和预测方法,以及相应的EViews软件操作方法。 10.2 实验原理 时间序列分析方法由Box-Jenkins (1976) 年提出。它适用于各种领域的时间序列分析。 时间序列模型不同于经济计量模型的两个特点是: (1)这种建模方法不以经济理论为依据,而是依据变量自身的变化规律,利用外推机制描述时间序列的变化。 (2)明确考虑时间序列的非平稳性。如果时间序列非平稳,建立模型之前应先通过差分把它变换成平稳的时间序列,再考虑建模问题。 时间序列模型的应用: (1)研究时间序列本身的变化规律(建立何种结构模型,有无确定性趋势,有无单位根,有无季节性成分,估计参数)。 (2)在回归模型中的应用(预测回归模型中解释变量的值)。 (3)时间序列模型是非经典计量经济学的基础之一(不懂时间序列模型学不好非经典计量经济学)。 10.3 实验内容 建立中国人口时间序列模型。 表10.1给出了中国人口数据y t(1952-2004,单位万人),试建立y t的时间序列模型,并预测2005年中国人口总数。 表10.2

10.4 建模步骤 10.4.1 识别模型 利用表10.2数据建立y t序列图,如图10.20。 图10.20 中国人口序列(1952-2004) 从人口序列图可以看出我国人口总水平除在1960和1961两年出现回落外,其余年份基本上保持线性增长趋势。 察看序列的相关图,在序列窗口选择View/Correlogram,便会弹出如下窗口,见图10.21,选择滞后阶数(本例输入滞后期10),点击ok,得到如图10.22所示的序列y t的相关图和偏相关图。 图10.21 图10.22 y t的相关图,偏相关图 由y t的相关图,偏相关图判断y t为非平稳性序列。进一步考察其差分序列Dy t,序列图见图10.23,其相关图,偏相关图见图10.24。 图10.23 图10.24 Dy t的相关图,偏相关图 人口差分序列Dy t是平稳序列。应该用Dy t建立模型。因为Dy t均值非零,结合图2.14拟建立带有漂移项的AR(1)模型。 10.4.2 估计模型 采用AR(1)模型对Dy t进行估计,从EViews主菜单中点击Quick键,选择Estimate Equation功能。随即会弹出Equation specification对话框。输入漂移项非零的AR(1)模型估计命令(C表示漂移项)如下: D(Y) C AR(1) 结果如图10.25所示,整理如下: Dy t = 1374.097 + 0.6681 (Dy t-1– 1374.097) + v t

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

基于时间序列模型的中国GDP增长预测分析

第33卷 第178期2012年7月 财经理论与实践(双月刊) THE THEORY AND PRACTICE OF FINANCE AND ECONOMICS Vol.33 No.178 Jul. 2012 ·信息与统计· 基于时间序列模型的中国GDP增长预测分析 何新易 (南通大学商学院,江苏南通 226019)* 摘 要:作为度量一个国家或地区所有常住单位在一定时期之内所生产和所提供的最终产品或服务的重要总量指标,如果能够对GDP做出正确的预测,必然可以有效引导宏观经济健康发展,为高层管理部门提供决策依据。选用适合短期预测的ARIMA模型对中国1952~2010年的GDP进行计量建模分析,预测结果认为未来五年中国的经济增长仍将处于一个水平较高的上升通道。 关键词:时间序列模型;GDP;预测 中图分类号:F234 文献标识码: A 文章编号:1003-7217(2012)04-0096-04 一、引 言 作为度量一个国家或地区所有常住单位在一定时期之内所生产和所提供的最终产品或服务的重要总量指标,国内生产总值(Gross Domestic Product,GDP)对于判断经济态势运行、衡量经济综合实力、正确制定经济政策等诸多方面,以及在经济研究实际工作中,均起着不可替代的重要作用。 熊志斌(2011)深入分析了时间序列模型与神经网络(NN)模型的优势和劣势,按照两种模型的预测特性,在比较的基础之上,分别构建了ARIMA模型和NN模型,并根据一定算法对两种模型进行了集成。将GDP时间序列的数据结构,根据在非线性空间和线性空间的预测优势,进一步分解为线性非线性残差和自相关主体两部分,即首先用ARIMA分析技术构建线性主体模型,然后用NN模型估计非线性残差,再对序列的整个预测结果进行最终集成。仿真实证结果表明:与单一模型相比,集成模型的预测准确率显著提高,进行GDP预测当然使用集成模型更为有效[1]。桂文林和韩兆洲(2011)认为由于迄今为止,包括季度GDP在内的经季节调整之后的经济数据,中国政府尚未进行公布,不但无法进行国际之间的横向比较,也不利于监测中国宏观经济态势。本文运用1996年第1季度至2009年第4季度的中国实际GDP数据,构建了状态空间模型,使用卡尔曼滤波迭代算法对季节调整模型状态向量的 各分量,进行了最优平滑、预测和估计,并使用极大似然方法估计了超参数。经过对GDP的主要季节和趋势特征的分析,计算出了环比增长率指标来监测和分析经济走势,并与国际通用的TRAMO-SEATS季节调整模型进行了对比,以便鉴别趋势拐点,制定相关的经济政策[2]。高帆(2010)运用1952~2008年的上海GDP增长率数据,实证研究其内在变动机制,将GDP增长率分解为纯生产率效应、纯劳动投入效应、纯生产结构效应、纯劳动结构效应,并分析了这四种效应之间的交互影响。结果表明:在上海GDP增长率提高的四种效应之中,纯生产率效应起到了关键作用。上海GDP增长率自1978年改革开放之后,在整体上对纯生产率效应的依赖度趋于增强。在1978~1989年期间,纯劳动结构效应是GDP增长的主要因素,由于市场化改革的进一步加大,劳动力跨部门流转在很大程度上得以实现。在1990~2008年期间,纯生产率效应是GDP增长的主要因素,正是由于在此历史阶段,由于资本深化进一步加速,从而有效提高了部门劳动生产率。基于实证的研究结论,可以针对性地制定出今后上海市经济实现持续增长的若干宏观政策[3]。腾格尔和何跃(2010)利用中国季度GDP数据分别构建了ARIMA和ARCH模型,同时利用GMDH自组织方法尝试建模,经过Bon-ferroni-Dunn检验,表明与单一模型相比,组合模型的拟合能力更强。研究表明,基于GMDH组合的GDP模 *收稿日期: 2012-02-12 作者简介: 何新易(1966—),男,湖北武汉人,南通大学商学院副教授,经济学博士,研究方向:宏观国民经济问题、中国企业集团融资和投资。

基于时间序列序列分析优秀论文

梧州学院 论文题目基于时间序列分析梧州市财政 收入研究 系别数理系 专业信息与计算科学 班级 09信息与计算科学 学号 200901106034 学生姓名胡莲珍 指导老师覃桂江 完成时间

摘要 梧州市财政收入主要来源于基金收入,地方税收收入和非税收收入等几方面。近年来梧州市在自治区党委、自治区政府和市委的正确领导下,全市广大干部群众深入贯彻落实科学发展观,抢抓机遇,开拓进取,克难攻坚,使得全市经济连续几年快速发展,全市人民的生活水平也大幅度提高,但伴随着发展的同时也存在一些问题,本文主要通过研究分析梧州财政收入近几年的状况,根据采用时间序列分析中的一次简单滑动平均法研究分析梧州市财政收入和支出的情况,得到的结果是梧州市财政收入呈现下降状态,而财政支出却逐年上涨,这种状况将导致梧州市人民生活水平下降,影响梧州市各方面的发展。给予一些有益于梧州市财政发展的建议。本文首先介绍主要运用的时间序列分析的概念及其一次简单滑动平均法的方法,再用图表说明了梧州市财政近几年的财政收入和支出状况,然后建立模型,分析由时间序列分析方法得出的对2012年财政收入状况的预测结果,最后,鉴于提高梧州市财政收入的思想,给予了一些合理性建议,比如:积极实施工业强县战略,壮大工业主导财源;大力发展第三产业,强化地方财源建设;完善公共财政支出机制,着力构建和谐社会。 关键词:梧州市;财政收入;时间序列分析;建立模型;建议

Based onThe Time Series Analysis of Wuzhou city Finance Income Studies Abstract Wuzhou city, fiscal revenue mainly comes from fund income, local tax revenue and the tax revenue etc. Wuzhou city in recent years in the autonomous region party committee, the government of the autonomous region and the municipal party committee under the correct leadership, the cadres and masses thoroughly apply the scientific outlook on development, catch every opportunity, pioneering and enterprising, g hard, make the crucial economic rapid development for several years, the people's living standard has also increased significantly, but with the development at the same time, there are also some problems, this paper mainly through the research and analysis the condition of wuzhou fiscal revenue in recent years, according to the time series analysis of a simple moving average method research and analysis of financial income and expenditure wuzhou city, the result obtained is wuzhou city, fiscal revenue decline present condition, and fiscal spending is rising year by year, the situation will lead to wuzhou city, the people's living standards decline, influence all aspects of wuzhou city development. Give some Suggestions on the development of the financial benefit wuzhou city. This paper first introduces the main use of the time series analysis of the concept and a simple moving average method method, reoccupy chart illustrates the wuzhou city, in recent years the financial revenue and expenditure situation, then set a model, analysis the time series analysis method to draw 2012 fiscal income condition prediction results, finally, in view of wuzhou city, improve the financial income thoughts, give some advice, for instance: rationality vigorously implement the strategy of industrial county, strengthen the industry leading financial sources, A vigorous development of the third industry, and to strengthen the construction of local revenue;

时间序列分析实验2 时间序列模型的识别、参数估计

实验2:时间序列模型的识别、参数估计 实验目的: 1. 掌握时间序列的平稳性检验、纯随机性检验。 2. 能够利用自相关系数和偏自相关系数对时间序列模型进行识别。 3. 掌握参数估计的方法。 实验内容: 利用教材P151习题7.6所给的样本数据,在Eviews中实现下列内容:(1)画出时序图; (2)给出直至滞后48期的所有样本自相关系数和样本偏自相关系数;

(3)利用(2)的结果判断该序列的平稳性和纯随机性; 解:由(2)的序列分析结果:a、可以看出自相关系数(AC)始终在零周围波动,判定该序列为平稳时间序列;b、看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值几乎都<5%的显著性水平,所以拒绝原假设,即序列不是纯随机序列(白噪声序列)。 (4)对该序列建立不同的模型,并进行比较,最后选择一个最优的模型; 解:观察(2)的图形,我们可以假设模型为MA(q)、AR(p)或ARMA(p,q)模型。 下面对每一个模型进行检验。 对MA(1):

如图所示:c对应的prob<0.05,故拒绝原假设,不能省去c。MA(1)对应的prob<0.05,故此模型有意义。AIC为0.3354.

对MA(2): MA(2)(p>0.05故此模型没有意义)。 如图所示:c对应的prob<0.05,故拒绝原假设,不能省去c;AR(1)对应的prob<0.05,故此模型有意义。AIC值为0.3092.

对AR(2): AR(2)对应的p>0.05故此模型没有意义。

ARMA模型的eviews的建立--时间序列分析实验指导

时间序列分析 实验指导 4 2 -2 -4 50100150200250

统计与应用数学学院

前言 随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。 这套实验教学指导书具有以下特点: ①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。 ②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。 这套实验教学指导书在编写的过程中始终得到安徽财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢! 限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。 统计与数学模型分析实验中心 2007年2月

目录 实验一 EVIEWS中时间序列相关函数操作···························- 1 - 实验二确定性时间序列建模方法 ····································- 8 - 实验三时间序列随机性和平稳性检验 ···························· - 18 - 实验四时间序列季节性、可逆性检验 ···························· - 21 - 实验五 ARMA模型的建立、识别、检验···························· - 27 - 实验六 ARMA模型的诊断性检验····································· - 30 - 实验七 ARMA模型的预测·············································· - 31 - 实验八复习ARMA建模过程·········································· - 33 - 实验九时间序列非平稳性检验 ····································· - 35 -

时间序列模型的建立与预测

第六节时间序列模型的建立与预测 ARIMA过程y t用 Φ (L) (Δd y t)= α+Θ(L) u t 表示,其中Φ (L)和Θ (L)分别是p, q阶的以L为变数的多项式,它们的根都在单位圆之外。α为Δd y t过程的漂移项,Δd y t表示对y t 进行d次差分之后可以表达为一个平稳的可逆的ARMA 过程。这是随机过程的一般表达式。它既包括了AR,MA 和ARMA过程,也包括了单整的AR,MA和ARMA过程。 可取 图建立时间序列模型程序图 建立时间序列模型通常包括三个步骤。(1)模型的识别,(2)模型参数的估计,(3)诊断与检验。

模型的识别就是通过对相关图的分析,初步确定适合于给定样本的ARIMA模型形式,即确定d, p, q的取值。 模型参数估计就是待初步确定模型形式后对模型参数进行估计。样本容量应该50以上。 诊断与检验就是以样本为基础检验拟合的模型,以求发现某些不妥之处。如果模型的某些参数估计值不能通过显著性检验,或者残差序列不能近似为一个白噪声过程,应返回第一步再次对模型进行识别。如果上述两个问题都不存在,就可接受所建立的模型。建摸过程用上图表示。下面对建摸过程做详细论述。 1、模型的识别 模型的识别主要依赖于对相关图与偏相关图的分析。在对经济时间序列进行分析之前,首先应对样本数据取对数,目的是消除数据中可能存在的异方差,然后分析其相关图。 识别的第1步是判断随机过程是否平稳。由前面知识可知,如果一个随机过程是平稳的,其特征方程的根都应在单位圆之外;如果 (L) = 0的根接近单位圆,自相关函数将衰减的很慢。所以在分析相关图时,如果发现其衰减很慢,即可认为该时间序列是非平稳的。这时应对该时间序列进行差分,同时分析差分序列的相关图以判断差分序列的平稳性,直至得到一个平稳的序列。对于经济时间序列,差分次数d通常只取0,1或2。 实际中也要防止过度差分。一般来说平稳序列差分得到的仍然是平稳序列,但当差分次数过多时存在两个缺点,(1)序列的样本容量减小;(2)方差变大;所以建模过程中要防止差分过度。对于一个序列,差分后若数据的极差变大,说明差分过度。 第2步是在平稳时间序列基础上识别ARMA模型阶数p, q。表1给出了不同ARMA模型的自相关函数和偏自相关函数。当然一个过程的自相关函数和偏自相关函数通常是未知的。用样本得到的只是估计的自相关函数和偏自相关函数,即相关图和偏相关图。建立ARMA模型,时间序列的相关图与偏相关图可为识别模型参数p, q提供信息。相关图和偏相关图(估计的自相关系数和偏自相关系数)通常比真实的自相关系数和偏自相关系数的方差要大,并表现为更高的自相关。实际中相关图,偏相关图的特征不会像自相关函数与偏自相关函数那样“规范”,所以应该善于从相关图,偏相关图中识别出模型的真实参数p, q。另外,估计的模型形式不是唯一的,所以在模型识别阶段应多选择几种模型形式,以供进一步选择。

时间序列分析ARMA模型实验

基于ARMA模型的社会融资规模增长分析 ————ARMA模型实验

第一部分实验分析目的及方法 一般说来,若时间序列满足平稳随机过程的性质,则可用经典的ARMA模型进行建模和预则。但是, 由于金融时间序列随机波动较大,很少满足ARMA模型的适用条件,无法直接采用该模型进行处理。通过对数化及差分处理后,将原本非平稳的序列处理为近似平稳的序列,可以采用ARMA模型进行建模和分析。 第二部分实验数据 2.1数据来源 数据来源于中经网统计数据库。具体数据见附录表5.1 。 2.2所选数据变量 社会融资规模指一定时期内(每月、每季或每年)实体经济从金融体系获得的全部资金总额,为一增量概念,即期末余额减去期初余额的差额,或当期发行或发生额扣除当期兑付或偿还额的差额。社会融资规模作为重要的宏观监测指标,由实体经济需求所决定,反映金融体系对实体经济的资金量支持。 本实验拟选取2005年11月到2014年9月我国以月为单位的社会融资规模的数据来构建ARMA模型,并利用该模型进行分析预测。 第三部分 ARMA模型构建 3.1判断序列的平稳性 首先绘制出M的折线图,结果如下图:

图3.1 社会融资规模M曲线图 从图中可以看出,社会融资规模M序列具有一定的趋势性,由此可以初步判断该序列是非平稳的。此外,m在每年同时期出现相同的变动趋势,表明m还存在季节特征。下面对m的平稳性和季节性·进行进一步检验。 为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下: 图3.2 lm曲线图

对数化后的趋势性减弱,但仍存在一定的趋势性,下面观察lm的自相关图 表3.1 lm的自相关图 上表可以看出,该lm序列的PACF只在滞后一期、二期和三期是显著的,ACF随着滞后结束的增加慢慢衰减至0,由此可以看出该序列表现出一定的平稳性。进一步进行单位根检验,由于存在较弱的趋势性且均值不为零,选择存在趋势项的形式,并根据AIC自动选择之后结束,单位根检验结果如下: 表3.2 单位根输出结果 Null Hypothesis: LM has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=12) t-Statistic Prob.*

基于时间序列模型与线性回归模型的历史数据预测

基于时间序列模型与线性回归模型的历史数据预测 摘要:本文通过具体案例,简要说明根据时间序列数据建立和相应经济理论建立线性回归模型的简要步骤及基本原则,并着重介绍了在模型建立和模型有效性检验过程中需要注意的三个主要问题,最后简单介绍了进行模型修正的相应方法。 一、引言 多元线性回归模型的一般形式为: Y=β0+β1X1+β2X2+…+βkXk+μi(k,i=1,2,…,n) 其中k为解释变量的数目,βk(k=1,2,…,n)称为回归系数,上式也被称为总体回归函数的随机表达式。 从统计意义上说,所谓时间序列模型就是将某一个指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。这种数列由于受到各种偶然因素的影响,往往表现出某种随机性,彼此之间存在着统计上的依赖关系。从数学意义上说,如果我们对某一过程中的某一个变量或一组变量X(t)进行观察测量,在一系列时刻t1,t2,…,tn(t为自变量,且t1

相关主题
文本预览
相关文档 最新文档